Трехфазные и однофазные трансформаторы: устройство, принцип работы, виды
Преобразование трёхфазной системы напряжения можно реализовать с помощью трёх однофазных трансформаторов. Но при этом будет использован аппарат значительного веса и внушительных размеров. Трехфазный трансформатор лишён этих недостатков, так как его обмотки располагаются на стержнях общего магнитопровода. Поэтому в сетях мощностью до 60 тыс. кВА его применение является оптимальным вариантом.
Назначение трёхфазного трансформатора
Главной функцией трансформаторов является передача электроэнергии на большие дистанции. Электрическая энергия переменного тока вырабатывается на электростанциях. При передаче электроэнергии появляются потери на нагревание проводов. Их можно уменьшить, снизив силу тока. Для этого необходимо увеличить напряжение таким образом, чтобы его значение находилось в диапазоне от 6 до 500 кВ.
Кратность увеличения зависит от значения передаваемой мощности и расстояния до конечного пункта. Мощность, которая при этом передаётся, зависит от двух параметров: напряжения и силы тока. Главной характеристикой, влияющей на изменение потерь проводов, связанных с нагревом, является значение силы тока. Соответственно для того, чтобы снизить потери на нагревание, необходимо уменьшить силу тока. Уменьшая ток, величину напряжения соответственно нужно увеличивать. Тогда значение мощности, которая передаётся, останется неизменным.
После того как напряжение будет доставлено потребителям, его следует снизить до необходимой величины. Соответственно, основной задачей трёхфазных трансформаторов является повышение напряжения перед передачей электроэнергии и понижение после неё.
Определение и виды прибора
Трехфазный трансформатор — это статический аппарат с тремя парами обмоток. Прибор предназначен для преобразования напряжения при передаче мощности на значительные дистанции.
Классификация по количеству фаз:
- однофазные;
- трехфазные.
Однофазные трансформаторы имеют небольшую мощность. Основными областями их применения являются быт и проведение работ специального назначения (сварка, измерения, испытания).
Диапазон мощности трёхфазных трансформаторов варьируется в больших пределах. Поэтому и область их применения весьма разнообразна:
- для питания токоприёмников специального назначения;
- для присоединения измерительных приборов;
- для изменения значения напряжения при испытаниях;
- для увеличения или уменьшения напряжения при подключении освещения или силовой нагрузки.
Принцип действия
Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции. При подключении к сети первичной обмотки, в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе. В каждом витке появляется одинаковая по значению и величине электродвижущая сила.
Если количество витков вторичной обмотки меньше, нежели число витков первичной, то на выходе окажется напряжение меньшего значения, чем на входе и наоборот.
Тот факт, что значение электродвижущей силы зависит лишь от количества витков определённой обмотки, подтверждают формулы:
E 1 = 4, 44f 1 Ф W 1
E 2 = 4, 44 f 1 Ф W 2
E 1, Е 2 — значение электродвижущей силы в первичной и вторичной обмотках соответственно, В;
f 1 — частота тока в сети, Гц;
Ф — максимальное значение основного магнитного потока, Вб;
W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.
Строение трансформатора
Основными частями преобразователя напряжения являются:
- магнитопровод;
- обмотки высокого и низкого напряжения;
- бак;
- вводы и выводы.
К дополнительной аппаратуре относятся:
- расширительный бак;
- выхлопная труба;
- пробивной предохранитель;
- приборы для контроля и сигнализации.
Магнитопровод необходим для крепления всех частей аппарата. Он является своеобразным скелетом преобразователя напряжения. Второй его задачей является создание направление движения для основного магнитного потока. В зависимости от особенностей крепления обмоток к сердечнику, магнитопровод трансформатора может быть трёх видов:
- бронестержневой;
- броневой;
- стержневой.
Для изготовления обмоток трансформаторов небольшой мощности используют провод из меди, имеющий прямоугольное или круглое сечение.
Трансформаторное масло является очень важным элементом в аппарате. В маломощных трансформаторах (сухих) его не применяют. При средней и высокой мощности его использование обязательно. У трансформаторного масла
- охлаждение обмоток, нагревающихся вследствие протекания по ним тока;
- повышение изоляции.
Расширительный бак устанавливают в трансформаторах с обмоткой высокого напряжения более 6 кВ и мощностью аппарата выше 75 кВА. Отбирая теплоту у обмоток, трансформаторное масло постепенно нагревается и расширяется. Его излишек попадает в расширительный бак. Функцией расширителя является защита масла от окисления и увлажнения.
В высокомощных трансформаторах трубопровод расширителя снабжён газовым реле и краном, который отсоединяет расширитель от бака в случае необходимости.
Вводы и выводы нужны для присоединения концов обмоток к линиям электропередачи. Находятся они на крышке бака. Представляют собой стеклянный или фарфоровый изолятор с токопроводящим медным стержнем внутри. К вводам прикрепляют первичную, а к выводам — вторичную обмотку.
На крышке бака расположен переключатель напряжения (анцапфа). С помощью этого устройства можно изменять число подключённых витков обмоток единовременно по трём фазам. Эта манипуляция позволяет повышать или понижать выходное напряжение при необходимости.
Функция выхлопной трубы состоит в предотвращении повреждения бака при возникновении аварийных режимов. В случае пробоя, короткого замыкания, масло стремительно нагревается, и появляются газы. Благодаря наличию выхлопной трубы, бак при значительном давлении не разрывается, а повреждается всего лишь стеклянная мембрана в трубе. При этом масло и газы попадают наружу.
Пробивной предохранитель устанавливают рядом с вводами и выводами. Его цель состоит в защите низковольтных сетей от появления в них высокого напряжения.
Термометрический сигнализатор необходим для контроля над уровнем температуры трансформаторного масла, а также для подачи сигнала при перегреве.
Схемы и группы соединения обмоток
В трёхфазных трансформаторах необходимо соединять между собой первичные обмотки по фазам и вторичные. Существует три схемы соединения:
- звезда;
- треугольник;
- зигзаг.
При соединении обмоток звездой напряжение линейное — между началами фаз — будет в 1,73 раза больше, чем фазное (между началом и концом фазы). При соединении обмоток трансформатора треугольником фазное и линейное напряжения будут одинаковы.
Группа соединения обмоток показывает отставание вектора электродвижущей силы понижающей обмотки от вектора э. д. с. повышающей обмотки. Обозначают группу соединения рядом чисел от 0 до 11.
Потери и коэффициент полезного действия
Трансформатор — вид электрической машины с минимальным количеством потерь. Их число ничтожно мало и составляет 1—2%.
Электрические потери идут на нагревание обмоток аппарата и колеблются прямо пропорционально изменению нагрузки. Магнитные потери появляются из-за перемагничивания сердечника магнитопровода и зависят лишь от значения напряжения, которое подводится к первичной обмотке. Поэтому подключение трансформатора на повышенное напряжение приводит к увеличению магнитных потерь.
Коэффициент полезного действия (КПД) электрической машины являет собой отношение полезной мощности на выходе электрической машины к подводимой на входе. КПД трансформатора принимает максимальное значение при загрузке аппарата на 45—65%.
Трансформаторы специального назначения
Преобразователи напряжения, которые не предназначены для питания осветительной и силовой нагрузки, относятся к специальным трансформаторам. Они бывают нескольких видов: измерительные, сварочные, автотрансформаторы.
Измерительные преобразователи напряжения
Измерительные трансформаторы применяются для включения приборов измерения в цепи высокого напряжения. Их использование позволяет:
- расширить границы измерения установок переменного тока;
- увеличить защиту лиц, обслуживающих аппараты;
- применять для измерения приборы небольшого размера и веса.
Подразделяются на трансформаторы тока и трансформаторы напряжения.
Первичная обмотка измерительных трансформаторов подключается в сеть, а к вторичной присоединяются приборы измерения.
Сварочное оборудование
Сварочные трансформаторы снижают напряжение сети (220 В или 380 В) до необходимого 60—70 В. Невысокое напряжение при сварке обеспечивает безопасность лицам, проводящим сварку. Понижение значения напряжения меньше 60 В недопустимо ввиду того, что дуга может попросту не зажечься.
Сварочные трансформаторы не боятся коротких замыканий, так как при этом режиме работы сила тока длительное время удерживается в пределах допустимых значений.
Автотрансформатор с плавным регулированием напряжения
В машинных залах для запуска двигателей большой мощности, а также в лабораториях при проведении различного рода испытаний используются автотрансформаторы.
Основная отличительная черта автотрансформаторов — наличие электрического соединения между первичной и вторичной обмотками. В понижающих автотрансформаторах этот факт является недостатком, так как при недостаточном соблюдении техники безопасности, при аварийном режиме, поломке прибора, жизнь и здоровье обслуживающего персонала может оказаться под угрозой.
Параллельная работа
Для надёжной работы большого количества токоприёмников недостаточно одного силового трансформатора. Поэтому на подстанциях в работу подключено несколько преобразователей напряжения. Присоединение трансформаторов к группе одних и тех же потребителей, называется параллельной работой. Включать любые преобразователи напряжения на параллельную работу нельзя. Необходимо, чтобы выполнялись некоторые особые требования.
Изобретение трансформатора дало шанс переменному току прочно войти в развитие промышленности и занять своё место в быту и сельском хозяйстве.
Трехфазные трансформаторы
Трехфазные сети широко распространены в энергетике и используются для производства и передачи электрической энергии. Трехфазные системы были разработаны русским электриком М.О.Доливо-Добровольским (1862 – 1919 гг.) и представляют собой систему из трёх источников переменного тока, ЭДС которых сдвинуты друг относительно друга на угол 120°.
Это трёхпроводная и четырёхпроводная линии. Напряжение каждого генератора – фазное напряжение, а напряжение между фазами — линейное напряжение.
На рисунке изображены временные зависимости для фазных и линейных ЭДС трехфазной системы напряжений.
Трансформирование трехфазного тока можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу (так называемый групповой трансформатор) или трёхфазным трансформатором. Обмотки первичной и вторичной цепей соединяются одним из способов: ”звезда” — Y, “треугольник” — ∆ , “зигзаг” — Z.
Обмотки трехфазных трансформаторов принято соединять по следующим схемам: звезда; звезда с нулевым выводом; треугольник; зигзаг с нулевым выводом. Схемы соединения обмоток трансформатора обозначают дробью, в числителе которой указана схема соединения обмоток ВН (высшего напряжения), а в знаменателе — обмоток НН (низшего напряжения). Например, Y/Δ означает, что обмотки ВН соединены в звезду, а обмотки НН — в треугольник.
Соединение в зигзаг применяют только в трансформаторах специального назначения, например для выпрямителей. При соединении в зигзаг каждую фазу обмотки НН делят на две части, располагая их на разных стержнях. Указанные части обмоток соединяют так, чтобы конец одной части фазной обмотки был присоединен к концу другой части этой же обмотки, расположенной на другом стержне. Зигзаг называют равноплечным, если части обмоток, располагаемые на разных стержнях и соединяемые последовательно, одинаковы, и неравноплечными, если эти части неодинаковы. При соединении в зигзаг ЭДС отдельных частей обмоток геометрически вычитаются.
Выводы обмоток трансформаторов принято обозначать следующим образом: обмотки ВН — начало обмоток А, В, С, соответствующие концы X, Y, Z; обмотки НН — начала обмоток а, b, с, соответствующие концы х, у, z.
При соединении обмоток звездой линейное напряжение больше фазного в раз, а при соединении обмоток треугольником линейное напряжение равно фазному (Uл = Uф ).
Отношение линейных напряжений трехфазного трансформатора определяется следующим образом:
Схема соединения обмоток | Y/Y | Δ/Y | Δ/Δ | Y/Δ |
Отношение линейных напряжений | w1/w2 | w1/(w2) | w1/w2 | w1/w2 |
Видно, что отношение линейных напряжений в трехфазном трансформаторе определяется не только отношением чисел витков фазных обмоток, но и схемой их соединения.
Рассмотрим способ соединения “звезда”.
На рисунке изображена векторная диаграмма напряжений и условное обозначение схемы соединения обмоток трансформатора.
Точка на схеме трансформатора обозначает конец вектора ЭДС или начало обмотки.
При соединении звездой линейные (Iл) и фазные токи (Iф) одинаковы, потому что для тока, проходящего через фазную обмотку, нет иного пути, кроме линейного провода. Линейные напряжения (Uл) больше фазных (Uф) в раза.
Соединение в звезду выполняется с нулевым выводом или без него, что является достоинством схемы соединения
Соединение в “треугольник”:
При соединении треугольником Uл = Uф,потому что каждыедва линейных провода присоединены к началу и концу одной из фазных обмоток, а все фазные обмотки одинаковы. Линейные токи Iл = Iф.
Мощность трёхфазной системы не зависит от схемы соединения (звездой или треугольником) иопределяется выражениями:
Полная
активная [Вт]
реактивная [ВАР]
где j — угол сдвига фаз между напряжением и током.
Группы соединения обмоток трехфазного трансформатора
При определении группы соединения обмоток трансформатора пользуются циферблатом часов. Линейный вектор обмотки высшего напряжения (ВН) соответствует минутной стрелке циферблата часов и устанавливается на цифру 12, часовая стрелка соответствует линейному вектору ЭДС обмотки низкого напряжения (НН) и ее поворот по отношению к обмотке ВН определяет номер группы и угол поворота = n*300, где n – группа.
Определим группу соединения обмоток трансформатора соединения “звезда-звезда”. Для построения диаграммы условно объединяют одноименные выводы обмоток первичной (С) и вторичной (с) цепей трансформатора. Из построения видно, что номер группы соединения равен
n = 180°/30° = 6 .
Определим группу соединения обмоток трансформатора для соединения “звезда-треугольник”. Для построения диаграммы условно объединяем одноименные выводы обмоток первичной (а) и вторичной (А) цепей трансформатора. Из построения видно, что номер группы соединения равен n = j/30° =30°/30° = 1 .
Соединение вторичных обмоток трансформатора в зигзаг
Соединение зигзагом применяют для того, чтобы нагрузку вторичных обмоток распределить более равномерно между фазами первичной сети, а также для расщепления фаз при создании многопульсных выпрямителей и в других случаях.
Для соединения зигзагом вторичная обмотка каждой фазы составляется из двух половин: одна половина расположена на одном стержне, другая – на другом. При таком соединении э.д.с. обмоток, расположенных на разных стержнях сдвинуты на угол 1200. .
Угол поворота вектора ЭДС вторичной цепи по отношению к первичной зависит от соотношения витков W21/W22.
Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
Из уравнений токов третьей гармоники в трехфазной системе
iA3=I3maxsin3ωt
iB3=I3maxsin(3ωt-1200)
iC3=I3maxsin(3ωt+1200)
видно, что эти токи в любой момент времени совпадают по фазе, т. е. имеют одинаковое направление. Этот же вывод распространяется на все высшие гармоники тока, кратные трем, — 3, 9, 15 и т.д. Это обстоятельство оказывает существенное влияние на процессы, сопровождающие намагничивание сердечников при трансформировании трехфазного тока.
Рассмотрим особенности режима холостого хода трехфазных трансформаторов для некоторых схем соединении обмоток.
Соединение Y/Yo. Если напряжение подводится со стороны обмоток, соединенных звездой без нулевого вывода, то токи третьей гармоники (и кратные трем — 9, 15 и т. д.), совпадая по фазе во всех трех фазах, будут равны нулю. Объясняется это отсутствием нулевого провода, а следовательно, отсутствием выхода из нулевой точки. В итоге токи третьей и гармоник кратных трём будут взаимно компенсироваться и намагничивающий ток трансформатора окажется синусоидальным, но магнитный поток в магнитопроводе окажется несинусоидальным (уплощенным) с явно выраженным потоком третьей гармоники Ф3 .
Потоки третьей гармоники не могут замкнуться в трехстержневом магнитопроводе, так как они совпадают по фазе. Эти потоки замыкаются через воздух (масло) и металлические стенки бака. Большое магнитное сопротивление потоку Ф3 ослабляет его величину, поэтому наводимые потоками Ф3 в фазных обмотках ЭДС третьей гармоники невелики и обычно их амплитуда не превышает 5…7% от амплитуды основной гармоники. На практике поток Ф3 учитывают лишь с точки зрения потерь от вихревых токов, индуцируемых этим потоком в стенках бака. Например, при индукции в стержне магнитопровода порядка 1,4 Тл потери от вихревых токов в баке составляют около 10% от потерь в магнитопроводе, а при индукции 1,6 Тл эти потери возрастают до 50 …65%.
В случае трансформаторной группы, состоящей из трех однофазных трансформаторов, магнитопроводы отдельных фаз магнитно не связаны, поэтому магнитные потоки третьей гармоники всех трех фаз беспрепятственно замыкаются (поток каждой фазы замыкается в своем магнитопроводе). При этом значение потока Ф3 может достигать 15 … 20% от Ф1.
Несинусоидальный магнитный поток Ф, содержащий кроме основной гармоники Ф1 еще и третью Ф3, наводит в фазных обмотках несинусоидальную ЭДС.
Повышенная частота 3ω магнитного потока Ф3 приводит к появлению значительной ЭДС е3, резко увеличивающей амплитудное значение фазной ЭДС обмотки при том же ее действующем значении, что создает неблагоприятные условия для электрической изоляции обмоток.
Амплитуда ЭДС третьей гармоники в трансформаторной группе может достигать 45—65% от амплитуды основной гармоники. Однако следует отметить, что линейные ЭДС (напряжения) остаются синусоидальными и не содержат третьей гармоники, так как при соединении обмоток звездой фазные ЭДС e3A, e3B и е3С, совпадая по фазе, не создают линейной ЭДС. Объясняется это тем, что линейная ЭДС при соединении обмоток звездой определяется разностью фазных ЭДС. Так, для основной гармоники линейная ЭДС.
Если первичная обмотка трансформатора является обмоткой НН и ее нулевой вывод присоединен к нулевому выводу генератора, то намагничивающие токи фаз содержат третьи гармоники. Эти токи совпадают по фазе, а поэтому все они направлены либо от трансформатора к генератору, либо наоборот. В нулевом проводе будет протекать ток, равный 3i3. При этом магнитный поток трансформатора, а следовательно, и ЭДС в фазах будут синусоидальны.
Соединения, при которых обмотки какой-либо стороны трансформатора (НН или ВН) соединены в треугольник. Эти схемы соединения наиболее желательны, так как они лишены недостатков, рассмотренных ранее схем.
Допустим, что в треугольник соединены первичные обмотки трансформатора. Тогда ток третьей гармоники беспрепятственно замыкается в замкнутом контуре фазных обмоток, соединенных в треугольник. Но если намагничивающий ток содержит третью гармонику, то магнитные потоки в стержнях, а следовательно, и ЭДС в фазах практически синусоидальны.
Если же вторичные обмотки трансформатора соединены в треугольник, а первичные — в звезду, то ЭДС третьей гармоники, наведенные во вторичных обмотках, создают в замкнутом контуре треугольника ток третьей гармоники. Этот ток создает в магнитопроводе магнитные потоки третьей гармоники Ф23, направленные встречно потокам третьей гармоники от намагничивающего тока Ф13 (по правилу Ленца). В итоге результирующий поток третьей гармоники Фрез3=Ф13+Ф23 значительно ослабляется и практически не влияет на свойства трансформаторов.
Трехфазные трансформаторы: принцип действия, схемы соединения
Содержание:
- Принцип действия трехфазного трансформатора
- Как передается трехфазный ток
- Соединение звездой
- Соединение треугольником
- Подключение трех однофазных трансформаторов к трехфазной сети 380 В
Электрическая энергия в промышленных масштабах не может передаваться в виде однофазного переменного тока. С этой целью успешно применяется трехфазный ток, а для его передачи используются трехфазные трансформаторы. Одним из способов трансформации трехфазного тока служит применение трех однофазных трансформаторов.
Соединение первичных и вторичных обмоток в этих устройствах осуществляется в одну из трехфазных систем – звезду или треугольник. Именно по этому принципу происходит работа мощных однофазных трансформаторов, которыми оборудуются крупные электростанции. Их первичные обмотки соединяются с соответствующими фазами генераторов, а вторичные обмотки, соединенные звездой, подключаются к соответствующим фазам линий электропередачи.
Принцип действия трехфазного трансформатора
Как видно из приведенной схемы, вместо трех однофазных устройств может быть использован один трехфазный трансформатор. В состав его магнитопровода входят три стержня, которые замыкаются ярмами сверху и снизу. На каждый стержень наматывается первичная и вторичная обмотка, соединяемые затем звездой или треугольником. Каждый стержень с обмотками по своей сути является однофазным трансформатором. Одновременно, он выполняет функцию отдельной фазы трехфазного трансформатора.
Под действием тока первичной обмотки во всех стержнях происходит появление магнитного потока. Следует учитывать принадлежность каждой такой обмотки к одной из фаз, входящих в трехфазную систему. Поэтому токи, протекающие по этим обмоткам, а также приложенные напряжения, относятся к трехфазным. Поэтому сформированные магнитные потоки тоже являются трехфазными.
Ранее считалось, что движение магнитного потока осуществляется по замкнутой траектории, то есть, проходя по стержню, он возвращается к его началу. В трехфазных трансформаторах такой обратный путь отсутствует, в нем просто нет необходимости, при условии одинаковой нагрузки фаз. Кроме того, отсутствует и необходимость нейтрального соединения в звезду.
Циркуляция каждого потока происходит лишь по собственному стержню. В конечном итоге все потоки сходятся в центральных частях верхнего и нижнего ярма. В этих точках получается геометрическое сложение этих потоков, сдвинутых между собой на величину угла 120 градусов. В результате, геометрическая сумма сложенных величин, окажется равной нулю. Следовательно, каждый магнитный поток проходит лишь по собственному стержню, обратного пути не имеет, а все три потока в сумме дают нулевое значение.
Движение потоков крайних фаз происходит не только по стержню. Оно захватывает половину каждого ярма. Поток в средней фазе будет проходить только по своему стержню. Поэтому значение токов холостого хода в фазах, расположенных по краям, всегда превышает аналогичное значение в средней фазе.
Как передается трехфазный ток
Первичным источником питания в большинстве случаев является электрическая сеть. Ее напряжение представлено в виде синусоиды с частотой 50 Гц. Однако в тех случаях, когда линии электропередачи обладают большой протяженностью, происходит излучение передаваемой энергии в окружающее пространство, что приводит к дополнительным потерям. Поэтому в цепях электропитания высокой мощности применяется трехфазное напряжение.
Для того чтобы уменьшить излучение, сумма напряжений на всех трех фазах в любое время должна быть равна нулю. С этой целью производится сдвиг синусоидального напряжения по фазе в каждом проводе относительно друг друга на 120 градусов. В таком состоянии передача электроэнергии может осуществляться в двух вариантах: с помощью четырех или трех проводов линии передачи. Условные схемы каждого варианта отображены на рисунке.
Четырехпроводная линия позволяет выдавать потребителю два вида напряжения: фазное (220 В) и линейное (380 В). Трехпроводная схема позволяет выдавать лишь линейные напряжения. Формирование линейного напряжения описывается с помощью векторной диаграммы напряжений фаз. При положительном чередовании фаз, они условно увеличиваются по часовой стрелке. Для соединения обмоток трехфазных трансформаторов используются два основных способа – звезда и треугольник.
Соединение звездой
Данный вид соединения рекомендуется рассматривать на примере схемы «звезда-звезда». В этом случае источник тока и нагрузка соединяются методом звезды.
На рисунке обозначение фазных напряжений, вырабатываемых вторичными обмотками трансформатора, выполнено символами UA, UB, и UC. От фазных обмоток до нагрузки идут проводники, выполняющие функцию линейных проводов. Следует учитывать наличие напряжения не только между нулевым и линейным проводами, но и между двумя линейными проводниками. Такое напряжение называется линейным и обозначается UAC или UCA.
Значение линейного напряжения всегда превышает фазное. Разница между ними составляет √3 раза, поскольку представляет собой векторную разность фазных напряжений. Таким образом, трехфазная линия электропередачи позволяет получить не только 380 В, но и 220 В, в зависимости от того по какой схеме включена нагрузка.
Соединение треугольником
Соединение вторичных обмоток в трехфазном трансформаторе треугольником будет выдавать одинаковое линейное и фазное напряжение, как и при соединении звездой, если напряжение составит 220 В. При одинаковом значении потребляемой мощности, линейные токи будут превышать фазные в √3 раза.
Трехфазная система напряжений представляет собой симметричную схему. Это означает, что и магнитная система, которую имеют все трехфазные трансформаторы, будет симметричной. Такая система очень сложная в изготовлении, поэтому широкое распространение получила плоская конструкция, в которой отсутствует центральный стержень. Необходимость в нем отпадает, поскольку сумма магнитных потоков здесь равна нулю.
Плоский вариант конструкции считается более технологичным и удобным при компоновке, хотя она и является несимметричной. Токи в крайних фазах заметно превышают ток в средней фазе, из-за чего нарушаются фазовые углы. Для ликвидации такой асимметрии сечение в верхнем и нижнем ярме увеличивается примерно на 10-15% по сравнению со стержнем. Однако, несмотря на принятые меры, некоторая асимметрия все равно остается.
Устройство 3-трехфазного трансформатора, схема подключения, принцип работы
Устройство 3 фазного трансформатора
Устроен трехфазный трансформатор преимущественно с стержневыми сердечниками. Если использовать три однофазных трансформатора, где каждый трансформатор имеет свою обмотку, а затем их объединить, как показано на рисунке где у них есть общий стержень, не имеющий обмоток то получится устройство трехфазного трансформатора. Принцип действия в том, что три стержня здесь объединены в общий «нуль». Через этот общий «0» будут проходить общие магнитные потоки, которые равные по величине, но по фазе сдвинутые на 1/3 периода, то сумма потоков будет равна «нулю» в произвольный момент времени. Если магнитный поток (Фа + Фb + Фс= 0), то общий стержень становиться ненужным.
Конструкция трехфазного трансформатора имеет всего три стержня расположенных в одной плоскости.Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции. При подключении к сети первичной обмотки, в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе. … Ф — максимальное значение основного магнитного потока, Вб; W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.
Обмотки трехфазного трансформатора располагаются на каждом из стержней и включают для каждой фазы свои обмотки высшего и низшего напряжения. Ярмо сверху и снизу объединяет стержни трансформаторов.
Обмотки однофазных трансформаторов не чем не отличаются конструктивно от трех фазных.
Первичные обмотки трансформатора называются обмотками высшего напряжения (ВН) и обозначаются заглавными буквами, а вторичные обмотки называются обмтками низшего напряжения (НН) и обозначаются малыми буквами.
Детальный принцип работы 3- фазного трансформатора
Трехфазный ток можно трансформировать тремя совершенно отдельными однофазными трансформаторами. В этом случае обмотки всех трех фаз магнитно не связаны друг с другом: каждая фаза имеет свою магнитную цепь. Но тот же трехфазный ток можно трансформировать и одним трехфазным трансформатором, у которого обмотки всех трех фаз магнитно связаны между собою, так как имеют общую магнитную цепь.
Чтобы уяснить себе принцип действия и устройства трехфазного трансформатора, представим себе три однофазных трансформатора, приставленных один к другому так, что три стержня их образуют один общий центральный стержень (рис. 1). На каждом из остальных трех стержней наложены первичные и вторичные обмотки (на рис. 1 вторичные обмотки не изображены).
Предположим, что первичные катушки всех стержней трансформатора совершенно одинаковы и намотаны в одном направлении (на рис. 1 первичные катушки намотаны по часовой стрелке, если смотреть на них сверху). Соединим все верхние концы катушек в нейтраль О, а нижние концы катушек подведем к трем зажимам трехфазной сети.
рис 1Токи в катушках трансформатора создадут переменные во времени магнитные потоки, которые будут замыкаться каждый в своей магнитной цепи. В центральном составном стержне магнитные потоки сложатся и в сумме дадут ноль, ибо эти потоки создаются симметричными трехфазными токами, относительно которых мы знаем, что сумма мгновенных значений их равна нулю в любой момент времени.
Например, если бы в катушке АХ ток I, был наибольший и проходил в указанном на рис. 1 направлении, то магнитный поток был бы равен наибольшему своему значению Ф и был направлен в центральном составном стержне сверху вниз. В двух других катушках BY и CZтоки I2 и I3 в тот же момент времени равны половине наибольшего тока и имеют обратное направление по отношению к току в катушке АХ (таково свойство трехфазных токов). По этой причине в стержнях катушек BY и CZ магнитные по токи будут равны половине наибольшего потока и в центральном составном стержне будут иметь обратное направление по отношению к потоку катушки АХ. Сумма потоков в рассматриваемый момент равна нулю. То же самое имеет место и для любого другого момента.
Отсутствие потока в центральном стержне не означает отсутствия потоков в остальных стержнях. Если бы мы уничтожили центральный стержень, а верхние и нижние ярма соединили в общие ярма (см. рис. 2), то поток катушки АХ нашел бы себе путь через сердечники катушек BY и CZ, причем магнитодвижущие силы этих катушек сложились бы с магнитодвижущей силой катушки АХ. В таком случае мы получили бы трехфазный трансформатор с общей магнитною цепью всех трех фаз.
Рисунок 2.Так как токи в катушках смещены по фазе на 1/3 периода, то и создаваемые ими магнитные потоки также смещены во времени на 1/3 периода, т. е. наибольшие значения магнитных потоков в стержнях катушек следуют друг за другом через 1/3 периода.
Следствием сдвига по фазе магнитных потоков в сердечниках на 1/3 периода является такой же сдвиг по фазе и электродвижущих сил, индуктируемых как в первичных, так и во вторичных катушках, наложенных на стержнях. Электродвижущие силы первичных катушек почти уравновешивают приложенное трехфазное напряжение. Электродвижущие силы вторичных катушек при правильном соединении концов катушек дают трехфазное вторичное напряжение, которое подается во вторичную цепь.
Как обозначаются начала первичной обмотки трехфазного трансформатора
Все начала первичных обмоток трехфазного трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с. Концы обмоток обозначаются соответственно: X, У, Z и х, у, z. Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.
А, В, С – обозначают начало обмоток высшего напряжения, а буквы X, Y и Z означают конец этих обмоток.
Трансформаторы с «нулевой точкой» имеют выведенный конце под клемму обозначенный большой буквой О.
Аналогично обозначают концы обмоток низшего напряжения, но используют для этого строчные буквы х, у, z – это конец фазных обмоток, а, в, с их начало.
Звезда и треугольник – это основные способы соединения обмоток 3 -х фазного трансформатора.
Соединяя свободные выводы трех обмоток между собой их начала, или концы образуют нейтральную точку. Остальные свободные зажимы подключаются к трехфазной нагрузке или входному напряжению, идущему на трансформатор от линии электропередач.
Соединение обмоток трансформатора в звездуСоединение обмоток в треугольник происходит по принципу последовательного подключения, когда конец одной обмотки соединяется с началом другой, а конец второй обмотки соединяется с началом третей обмотки.
соединение в треугольникТочки соединения обмоток подключаются внешние устройства. Обозначение выводов трехфазного трансформатора и их схемы подключения.
∆ — соединение обмоток трансформатора треугольником.
Y – соединение обмоток трансформатора звездой.
обозначение трехфазных трансформаторовСоединение обмоток под чертой указывает на обмотки низшего напряжения, а над чертой высшего напряжения.
Цифра – указывает на угол между векторами ЭДС с 30° градусами угловых единиц.
Расшифровка обозначение указывает, что обмотки высшего в первом случае соединены звездой, низшего напряжения так же звездой. При этом обмотки низшего напряжения имеют подключенную «0» точку.
Сколько стержней должен иметь магнитопровод трехфазного трансформатора?
Трехфазные трансформаторы используются для питания трехфазных или двухфазных сетей, имеющих либо общий трехфазный магнитопровод, либо два или три отдельных магнитопровода стержневого типа.
По способу сборки в современных конструкциях как для однофазных, так и для трехфазных магнитопроводов преимущественное распространение получили шихтованные типы, как более надежные в эксплуатации, удобные в производстве, требующие менее сложного оборудования и приспособлений для сборки.
Где применяется трехфазный трансформатор
Трёхфазный трансформатор используется для преобразования напряжения и применяется как устройство в сфере электрификации промышленных предприятий и жилых помещений. Кроме того, 3 фазные трансформаторы незаменимы на судах, так как с их помощью осуществляется питание приборов различного номинала.
Видео: Принцип работы трансформатора
Трансформаторы могут получать переменный ток с одним напряжением и выдавать его с другим. Таким образом, они служат для повышения эффективности передачи электроэнергии на большие расстояния. В данном видео мы рассмотрим принцип работы и конструкцию простейшего устройства трехфазного трансформатора.
Видео: Что такое звезда и треугольник в трансформаторе
Трёхфазный трансформатор: особенности и конструкция
Трехфазный трансформатор – трансформатор, предназначенный целям гальванической развязки цепей трех фаз с одновременным изменением амплитуды напряжения. Три фазы, это общеизвестно, ввел Доливо-Добровольский, но патент на изобретение получить не смог, потому что опережен на годы Николой Теслой.
Благодарности
Вспомним замечательного автора СССР довоенных времен – Холуянова Федора Ивановича. Упрощенный рассказ приятнее слуху неподготовленного читателя, нежели лучший современный очерк о трехфазных трансформаторах.
Определения
Силовой трехфазный трансформатор средней мощности – не более 33,3 МВА с полным сопротивлением короткого замыкания не выше 25 – 0,3N/W%. N – номинальная мощность трансформатора (МВА), W – число стержней сердечника.
Большой силовой трехфазный трансформатор – мощность до 100 МВА, импедансом выше, определенного формулой, указанной для предыдущего класса изделий.
Распределительный трехфазный трансформатор – понижающий, мощностью до 2,5 МВА, с раздельными обмотками и охлаждением типа ON.
Строение
Авторы предлагают начинать рассмотрение трехфазного трансформатора с упрощения. Предполагается, читатели знакомы с цепями 220 вольт. Знают, как работает трансформатор.
Краткое описание работы однофазного трансформатора
Начать нужно с простой вещи: катушка индуктивности вокруг себя создает вихревое магнитное поле. Тянется вдоль оси, выходит наружу на северном полюсе. На рисунке показаны два витка проволоки. Ток идет с плюса на минус, направление линий напряженности магнитного поля определяется правилом «буравчика». Траектория загибается, в результате соседний виток (целый соленоид) охватывается некачественно.
Требуется по мере возможности полнее передать магнитный поток, обеспечивая гальваническую развязку (по току). При трансформации легко варьируется выходное напряжение. Используется при передаче электроэнергии потребителям.
Окончательно транспортировать поле вторичной обмотку способен сердечник из ферромагнитного сплава. Внутри материала напряженность магнитной индукции многократно возрастает. Обеспечивается плотное потокосцепление, ЭДС, наведенная на выходе, обретает громадную величину. Сердечник линии напряженности поля пронизывают вдоль оси. Получается описанный выше эффект.
Конструкция трехфазного трансформатора
Проще рассмотреть трехфазный трансформатор, представив тремя однофазными. Скрин показывает образчик стержневого типа. Подобно «броневому» (название принадлежит авторам) означает: обмотки надеты на стержни. Объединяются, замыкая линии магнитного поля ярмами. Слово стержень не предполагает наличия круглого сечения. Вероятно, присутствовало прежде, современными трансформаторами практикуются иные форы.
Сердечник изготавливается шихтованным, по определению не круглый. Сложно технологически. Трансформатор, снабженный круглым сердечником, круглый? Да, виток, охватывающий квадрат, по площади уступает круглому, аналогичной длины жилы. Очевидный факт, коэффициент использования материалов современного трансформатора чужд совершенству. Сердечник прямоугольный, ярма, легче компоновать пластинки шихты.
Трехфазный трансформатор рекомендуется представить тремя стержневыми, составленными бок к боку с образованием единого центрального не используемого стержня.
Поскольку фазы сдвинуты равномерно на угол 120 градусов друг относительно друга, геометрическая сумма векторов будет равна нулю. Если составить сердечники однофазных трансформаторов, магнитный поток по центральной части не пойдет. Выступает базисом работа цепей с изолированной нейтралью. Средний стержень не несет магнитного потока, следовательно, может быть выкинут из конструкции. Оставшаяся часть компонуется так:
- Катушки располагаются на параллельных стержнях.
- Первичная, вторичная обмотки фаз лежат на едином стержне.
- Сердечник замкнут ярмами.
- Согласно симметричности фаз различают две конструкции:
- Вид сверху – равносторонний треугольник. Симметричность фаз.
- Вид сверху – единая линия. Асимметричность фаз.
Симметричность фаз означает: входы равноправны. Если стержни выстроены в ряд, расстояние вдоль ярма меж крайними больше, нежели меж двумя другими парами. Магнитный поток станет смещаться по фазе, сигнал будет искажен. Сопротивление сердечника асимметрично для поля. Вызывает неравенство токов в холостом режиме. Эффект усиливается некачественной сборкой, плохой насыщенностью железа ярма.
Броневые трехфазные трансформаторы фактически поставленные друг на друга, охваченные единым сердечником однофазные. Асимметрия фаз отсутствует, первичная, вторичная обмотки лежат на одном стержне. Поскольку на центральных ярмах поток удваивается, сечение сердечника области должно сообразно увеличиваться.
Обмотка первичная разделена пополам, охватывает вторичную с обеих сторон, как показано рисунком (первичная – I, вторичная – II). У броневых трансформаторов одно неоспоримое преимущество – малые токи холостого хода. Считается, обусловлено коротким ходом напряженности поля внутри сердечника. Недостатков целых три:
- Больший вес при прежнем передаточном коэффициенте, аналогичной мощности.
- Обмотки сложно ремонтировать, поскольку со всех сторон окружены броней.
- Условия охлаждения хуже, хотя номинально объем больше. Сердечник нагревается, работая, перемагничиванием, сравнительно малыми вихревыми токами.
Сердечники
Шихтованные сердечники набираются листами стали. Меньше толщина пластин, ниже будут потери на вихревые токи, сборка более кропотливая. Слои разделяются лаковым покрытием для взаимной изоляции. Препятствуя возникновению вихревых токов. Требования, предъявляемые к стали, достаточно типичные:
- Большое значение магнитной проницаемости обеспечивает усиление в десятки тысяч раз индукции поля. Следовательно, первое необходимое условие для работы трансформатора.
- Большое удельное сопротивление обеспечивается примесями кремния (по весу – до 4%). В результате потери снижаются до 50% у сильно-легированных образцов.
- Малая коэрцитивная сила, обусловливающая низкие потери на перемагничивание (узкая петля гистерезиса).
Давно замечено: площадь квадрата составляет 0,88 окружности. Следовательно, наиболее благоприятной станет выбранная кривая. Нерационально усложнять процесс производства, на практике поступают по-другому: трансформаторы малой мощности снабжены квадратными стержнями, средней – крестовидной (см. рис.), большой – круглой. Цель оправдывает средства, если подстанции перестанут беречь энергию, потери станут огромными. Скромный транзисторный приемник обходится малым. Экономия – потери невелики. Прямоугольный сердечник обеспечивает наивыгоднейшие условия теплоотвода, поскольку характеризуется большим объемом.
Иногда по углам располагают вставки диэлектрика, удерживающие обмотку вдоль нужной кривой. В масляных трансформаторах сердечник иногда снабжается щелями. Предполагается, циркулируя в ходах, жидкость станет охлаждать обмотку, сталь. Каналы оборудуются вдоль пластин, поперек. Второй случай продуктивнее по простой причине. Торцы пластин не покрываются лаком, поскольку в направлении токи Фуко (вихревые) не возникают, металл быстрее отдает тепло, распространяемое вдоль пластины. Первый способ проще обеспечить с точки зрения технологического процесса производства.
Провод плохо ложится прямой гранью сердечника, выгибается кнаружи, на углах трескается лаковая изоляция. Накладывает ограничения на процесс сборки. В процессе эксплуатации неизбежны тепловые вариации геометрических размеров, со временем усугубляет названные эффекты. Следовательно, прямоугольная катушка имеет меньшую механическую прочность. Вправду сказать, круглый стержень за счет более толстой намотки увеличивает объем ярма, применяют из-за частых отказов мощных трехфазных трансформаторов иной конструкции.
Несмотря на преимущества конструкций с симметричными фазами, чаще стержни ставятся рядком по очевидным причинам: упрощается технологический процесс. Если сердечник стержневой, сборка внахлест используется только для маломощных образцов, в других случаях ярмо идет встык. У броневых наоборот – маломощные впритык, прочие — внахлест.
Обмотка
В силовых трансформаторах обмотки концентрические, располагаются одна в другой, имеют общую ось. Чередующиеся обмотки показаны на рисунке выше, для сбыта широким массам радиолюбителей не выпускаются. При расчете внимание уделяют вычислению следующих параметров:
- Механическая прочность (см. выше), включая режим короткого замыкания.
- Электрическая прочность жил, изоляции.
- Температурные режимы работы (включая, максимальный).
Обмотка выполняется круглым, прямоугольным (иногда транспонированным) проводом. Разделение единой жилы на ряд жил выполняется, дополняя меру шихтования сердечника. Позволит уменьшить токи Фуко. При требуемом диаметре проволоки более 3,5 мм заменяют прямоугольной (ТК 16.К71 – 108 – 94). Слишком велики становятся просветы меж проводами. Круглое сечение наделено преимуществом: легче изготавливается, чаще встречается в обиходе. Прямоугольная проволока используется по большей части для намотки катушек. Следовательно, изготавливать невыгодно, процесс обходится дороже.
Прямоугольный проводник размером более 8х25 мм транспонируется. Медь под обмотку берется электротехническая, чистотой не менее 99,95%. Из-за дороговизны часто заменяется рафинированным алюминием. Металл характеризуется меньшим пределом прочности на растяжение, меньшей пластичностью, большим удельным сопротивлением. Изоляция провода изготавливается из телефонной, трансформаторной бумаги. Встречается лаковая:
- ПБУ, прямоугольный медный провод с изоляцией из трансформаторной бумаги.
- ПБ, медный прямоугольный провод с изоляцией из телефонной бумаги.
- ПТБУ, транспонированный медный провод с бумажной изоляцией.
- ПТБ, транспонированный медный провод с общей бумажной изоляцией.
Виды намотки
- Винтовая обмотка идет спирально с каналами охлаждения маслом. В силовых трехфазных трансформаторах применяются для низких напряжений. Между слоями ставится прокладка.
- Непрерывная обмотка получила название за способ: одним куском медного провода наматывается множество обмоток. Часто внешний виток кладут первым, после выполняется перекладка.
- Переплетенная обмотка, благодаря переплетению соседних витков характеризуется большой механической прочностью.
- Цилиндрическая слоевая обмотка напоминает винтовую, витки кладутся впритык без промежуточных каналов для охлаждения.
- Дисковая катушечная обмотка схожа с непрерывной, отличие ограничено дополнительной изоляцией, накладываемой отдельно для каждой катушки. Отличается большой механической прочностью.
Трехфазные трансформаторы
Это система, объединяющая три источника переменного тока, ЭДС которых сдвинуты друг относительно друга на 120°.Трансформирование трехфазного тока можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу. Обмотки первичной и вторичной цепей соединяются одним из способов: «звезда», «треугольник», «зигзаг». Рассмотрим способ соединения «звезда». На рисунке изображена векторная диаграмма напряжений и условное обозначение схемы соединения обмоток трансформатора.
Точка на схеме трансформатора обозначает конец вектора ЭДС или начало обмотки. При соединении звездой линейные (Iл) и фазные токи (Iф) одинаковы, потому что для тока, проходящего через фазную обмотку, нет иного пути, кроме линейного провода. Линейные напряжения (Uл) больше фазных (Uф) в раза.
Соединение в звезду выполняется с нулевым выводом или без него, что является достоинством схемы соединения
Соединение в «треугольник»:
При соединении треугольником Uл = Uф, потому что каждые два линейных провода присоединены к началу и концу одной из фазных обмоток, а все фазные обмотки одинаковы. Линейные токи Iл = Iф. Мощности при соединениях звездой и треугольником определяются выражениями:
Полная
активная
реактивная
где — угол сдвига фаз между напряжением и током.
Соединение вторичных обмоток трансформатора в зигзаг
Соединение зигзагом применяют чтобы нагрузку вторичных обмоток распределить более равномерно между фазами первичной сети, а также для расщепления фаз при создании многопульсных выпрямителей и в других случаях. Для соединения зигзагом вторичная обмотка каждой фазы составляется из двух половин: одна половина расположена на одном стержне, другая — на другом. Конец полуобмотк, например х1 соединен с концом y2 и т.д. Начала полуобмоток а2, в2 и с2 соединены и образуют нейтраль. К началам а1, в1, с1 присоединяют линейные провода вторичной сети. При таком соединении э.д.с. обмоток, расположенных на разных стержнях, сдвинуты на угол 1200.
Вектор E3 является суммой двух векторов e»3 и e»1 . Вектор e»1 параллелен e’1 и противоположен по направлению. Вектор e’3 совпадает с направлением фазы с. Угол поворота j вектора ЭДС вторичной цепи по отношению к первичной зависит от соотношения витков W21/W22.
Конструкция трехфазных трансформаторов
Трехфазные трансформаторы изготавливаются в виде отдельных однофазных трансформаторов, объединенных в группу при повышенной мощности (свыше 60000 кВА). Такой тип получил название — трансформатор с раздельной магнитной системой. Трансформатор, у которого обмотки расположены на трех стержнях, называется трансформатором с объединенной магнитной системой.
В трехстержневом трансформаторе вследствие магнитной несимметрии магнитопровода, намагничивающие токи отдельных фазных обмоток не равны: намагничивающие токи крайних фаз (IОА и IОС) больше тока средней фазы (IОВ).
Для уменьшения магнитной несимметрии трехстержневого манитопровода, т.е. уменьшения магнитного сопротивления потокам крайних фаз, сечение ярма делают больше.
Коэффициент трансформации n
Автотрансформатор – трансформатор, имеющий непосредственную связь между обмотками.
Суммарное напряжение второй обмотки складывается из 2х участков.
Такой трансформатор повышающий.
С
.
.
. .
праведливы уравнения равновесия ЭДС для первичной и вторичной обмоток, а также уравнения равновесия магнитодвижущей силы:U
.
.
. .
1=-E1+I1R1U2=-E2+I2R2
и
. . . . . .
лиI1W1= I0W1- I2W2 или I1= I0-n21I2
Номинальная мощность трансформатора:
SH=UвнIвн=(U1+U2)I2=U1I2+U2I2
Достоинства автотрансформатора заключатся в том что чем ближе коэффициент трансформации к 1, тем меньше доля ЭМ мощности в номинальной мощности автотрансформатора и его габариты и масса по сравнению с обычным трансформатором той же мощности. Понятно, что при тех же ЭМ нагрузках потери в автотрансформаторе будут меньше чем в обычном. Меньшими будут и изменения напряжения на нагрузке при изменении через нее тока.
Недостатки: В системах электропитания аппаратуры телекоммуникаций, где для нормальной работы оборудования необходимо заземлять один из полюсов нагрузки, невозможно из-за гальванической связи между обмотками.
Выпрямительные устройства структурная схема, классификация, основные параметры. Однофазные схемы выпрямления: однополупериодная и двухполупериодная со средней точкой трансформатора. Принцип действия, кривые напряжения и тока, основные расчетные соотношения.
Выпрямительным устройством называется статический преобразователь напряжения переменного тока в постоянный. В общем случае выпрямитель, работающий на нагрузку RH , состоит из трансформатора Т, выпрямителя (вентилей) ВЗ и сглаживающего фильтра СФ. Структурная схема:
Как видно из структурной схемы любое выпрямительное устройство может быть охарактеризовано внешними электрическими параметрами.
По входу:
[В]; ; f[гЦ]
[В]; ; f[гЦ]
— амплитуды. (1)
мощность (2)
По выходу:
[А]
[Вт] (4)
— коэффициент пульсации (5)
В дополнение к характеристикам по входу и выходу каждое ВУ характеризуется КПД:
(6)
ВУ, построенные на неуправляемых вентилях, классифицируются по следующим признакам:
характеру нагрузки – работающие на активную, емкостную и индуктивную нагрузки;
режиму работы нагрузки – работающие на непрерывную и импульсную нагрузки;
числу фаз питающей сети – однофазные и трехфазные;
числу фаз вторичной обмотки трансформатора – однофазные и многофазные;
числу используемых полупериодов напряжения – одно- и двухпоупериодные;
по тому, сколько раз за период работает каждая фаза вторичной обмотки трансформатора, — однотактные и двухтактные.
Простейшей схемой выпрямителя является однофазная однополупериодная схема. Трансформатор играет двойную роль: он служит для подачи на вход выпрямителя ЭДС , соответствующей заданной величине выпрямленного напряжения и ообеспечивает гальваническую развязку цепи нагрузки и питающей сети. Параметры, относящиеся к цепи постоянного тока, то есть к выходной цепи выпрямителя, принято обозначать с индексом (от английского слова direct – прямой): – сопротивление нагрузки; – мгновенное значение выпрямленного напряжения; – мгновенное значение выпрямленного тока.
Благодаря односторонней проводимости вентиля ток в цепи нагрузки будет протекать только в течение одной половины периода напряжения на вторичной обмотке трансформатора, что определяет и название этой схемы. Соотношения между основными параметрами найдем при следующих допущениях:
Активным и индуктивным сопротивлением обмоток трансформатора пренебрегаем;
Нагрузка имеет чисто активный характер;
Вентиль VD идеальный;
Током намагничивания трансформатора пренебрегаем;
ЭДС обмотки трансформатора синусоидальна: , где – действующее значение ЭДС; ; .
Максимальное значение обратного напряжения на вентиле
. |
Величины средних значений выпрямленных напряжения и тока:
U0 = U2m/π , I0 = I2m/π
Действующее значение напряжения и точка вторичной обмотки соответственно
Ud = U2m/√2 = 2,22U0
I0 = 1,57 I0
Коэффициент формы кривой точка тока вторичной обмотки
Kf = I2 / I0
Действующее значение тока первичной обмотки трансформатора
I1 = 1,21I0n
Коэффициент пульсаций, равный отношению амплитуды низшей (основной) гармоники пульсаций к среднему значению выпрямленного напряжения равен:
. |
Расчетная мощность трансформатора
ST = (S1 + S2)/2, S2 = U2I2
Двухполупериодная схема выпрямления со средней точкой |
Эта схема представляет собой два однополупериодных выпрямителя, работающих на общую нагрузку и питающихся от находящихся в противофазе ЭДС (рис. 2.25, а) , и .
рис. 2.25
Для создания этих ЭДС в схеме является обязательным наличие трансформатора с двумя полуобмотками на вторичной стороне, имеющими среднюю точку.
На рис. 2.25, б, в, г, д представлены временные диаграммы для двухполупериодной схемы выпрямителя со средней точкой.
Постоянные составляющие выпрямленного напряжения и тока:
U0 = 2U2m/π, I0 = 2I2m/π
Действующее значение напряжения вторичной обмотки, и напряжения и тока первичной обмотки:
U2 = U2m/√2; U1 = U2/n = 1,11U0/n, I1 = 1,11I0n,
n = U2 / U1 — коэф. трансформации
Коэф. пульсации и частота пульсации:
Kп1 = U1m~/ U0 = 0,67 ; fп1 = 2fc
Трехфазные трансформаторы
Трехфазные сети широко распространены в энергетике и используются для производства и передачи электрической энергии. Трехфазные системы были разработаны русским электриком М.О.Доливо-Добровольским (1862 – 1919 гг.) и представляют собой систему из трёх источников переменного тока, ЭДС которых сдвинуты друг относительно друга на угол 120°.
Это трёхпроводная и четырёхпроводная линии. Напряжение каждого генератора – фазное напряжение, а напряжение между фазами — линейное напряжение.
На рисунке изображены временные зависимости для фазных и линейных ЭДС трехфазной системы напряжений.
Трансформирование трехфазного тока можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу (так называемый групповой трансформатор) или трёхфазным трансформатором. Обмотки первичной и вторичной цепей соединяются одним из способов: ”звезда” — Y, “треугольник” — ∆ , “зигзаг” — Z.
Обмотки трехфазных трансформаторов принято соединять по следующим схемам: звезда; звезда с нулевым выводом; треугольник; зигзаг с нулевым выводом. Схемы соединения обмоток трансформатора обозначают дробью, в числителе которой указана схема соединения обмоток ВН (высшего напряжения), а в знаменателе — обмоток НН (низшего напряжения). Например, Y/Δ означает, что обмотки ВН соединены в звезду, а обмотки НН — в треугольник.
Соединение в зигзаг применяют только в трансформаторах специального назначения, например для выпрямителей. При соединении в зигзаг каждую фазу обмотки НН делят на две части, располагая их на разных стержнях. Указанные части обмоток соединяют так, чтобы конец одной части фазной обмотки был присоединен к концу другой части этой же обмотки, расположенной на другом стержне. Зигзаг называют равноплечным, если части обмоток, располагаемые на разных стержнях и соединяемые последовательно, одинаковы, и неравноплечными, если эти части неодинаковы. При соединении в зигзаг ЭДС отдельных частей обмоток геометрически вычитаются.
Выводы обмоток трансформаторов принято обозначать следующим образом: обмотки ВН — начало обмоток А, В, С, соответствующие концы X, Y, Z; обмотки НН — начала обмоток а, b, с, соответствующие концы х, у, z.
При соединении обмоток звездой линейное напряжение больше фазного в раз, а при соединении обмоток треугольником линейное напряжение равно фазному (Uл = Uф ).
Отношение линейных напряжений трехфазного трансформатора определяется следующим образом:
Схема соединения обмоток | Y/Y | Δ/Y | Δ/Δ | Y/Δ |
Отношение линейных напряжений | w1/w2 | w1/(w2) | w1/w2 | w1/w2 |
Видно, что отношение линейных напряжений в трехфазном трансформаторе определяется не только отношением чисел витков фазных обмоток, но и схемой их соединения.
Рассмотрим способ соединения “звезда”.
На рисунке изображена векторная диаграмма напряжений и условное обозначение схемы соединения обмоток трансформатора.
Точка на схеме трансформатора обозначает конец вектора ЭДС или начало обмотки.
При соединении звездой линейные (Iл) и фазные токи (Iф) одинаковы, потому что для тока, проходящего через фазную обмотку, нет иного пути, кроме линейного провода. Линейные напряжения (Uл) больше фазных (Uф) в раза.
Соединение в звезду выполняется с нулевым выводом или без него, что является достоинством схемы соединения
Соединение в “треугольник”:
При соединении треугольником Uл = Uф,потому что каждыедва линейных провода присоединены к началу и концу одной из фазных обмоток, а все фазные обмотки одинаковы. Линейные токи Iл = Iф.
Мощность трёхфазной системы не зависит от схемы соединения (звездой или треугольником) иопределяется выражениями:
Полная
активная [Вт]
реактивная [ВАР]
где j — угол сдвига фаз между напряжением и током.
Группы соединения обмоток трехфазного трансформатора
При определении группы соединения обмоток трансформатора пользуются циферблатом часов. Линейный вектор обмотки высшего напряжения (ВН) соответствует минутной стрелке циферблата часов и устанавливается на цифру 12, часовая стрелка соответствует линейному вектору ЭДС обмотки низкого напряжения (НН) и ее поворот по отношению к обмотке ВН определяет номер группы и угол поворота = n*300, где n – группа.
Определим группу соединения обмоток трансформатора соединения “звезда-звезда”. Для построения диаграммы условно объединяют одноименные выводы обмоток первичной (С) и вторичной (с) цепей трансформатора. Из построения видно, что номер группы соединения равен
n = 180°/30° = 6 .
Определим группу соединения обмоток трансформатора для соединения “звезда-треугольник”. Для построения диаграммы условно объединяем одноименные выводы обмоток первичной (а) и вторичной (А) цепей трансформатора. Из построения видно, что номер группы соединения равен n = j/30° =30°/30° = 1 .
Соединение вторичных обмоток трансформатора в зигзаг
Соединение зигзагом применяют для того, чтобы нагрузку вторичных обмоток распределить более равномерно между фазами первичной сети, а также для расщепления фаз при создании многопульсных выпрямителей и в других случаях.
Для соединения зигзагом вторичная обмотка каждой фазы составляется из двух половин: одна половина расположена на одном стержне, другая – на другом. При таком соединении э.д.с. обмоток, расположенных на разных стержнях сдвинуты на угол 1200. .
Угол поворота вектора ЭДС вторичной цепи по отношению к первичной зависит от соотношения витков W21/W22.
Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
Из уравнений токов третьей гармоники в трехфазной системе
iA3=I3maxsin3ωt
iB3=I3maxsin(3ωt-1200)
iC3=I3maxsin(3ωt+1200)
видно, что эти токи в любой момент времени совпадают по фазе, т. е. имеют одинаковое направление. Этот же вывод распространяется на все высшие гармоники тока, кратные трем, — 3, 9, 15 и т.д. Это обстоятельство оказывает существенное влияние на процессы, сопровождающие намагничивание сердечников при трансформировании трехфазного тока.
Рассмотрим особенности режима холостого хода трехфазных трансформаторов для некоторых схем соединении обмоток.
Соединение Y/Yo. Если напряжение подводится со стороны обмоток, соединенных звездой без нулевого вывода, то токи третьей гармоники (и кратные трем — 9, 15 и т. д.), совпадая по фазе во всех трех фазах, будут равны нулю. Объясняется это отсутствием нулевого провода, а следовательно, отсутствием выхода из нулевой точки. В итоге токи третьей и гармоник кратных трём будут взаимно компенсироваться и намагничивающий ток трансформатора окажется синусоидальным, но магнитный поток в магнитопроводе окажется несинусоидальным (уплощенным) с явно выраженным потоком третьей гармоники Ф3 .
Потоки третьей гармоники не могут замкнуться в трехстержневом магнитопроводе, так как они совпадают по фазе. Эти потоки замыкаются через воздух (масло) и металлические стенки бака. Большое магнитное сопротивление потоку Ф3 ослабляет его величину, поэтому наводимые потоками Ф3 в фазных обмотках ЭДС третьей гармоники невелики и обычно их амплитуда не превышает 5…7% от амплитуды основной гармоники. На практике поток Ф3 учитывают лишь с точки зрения потерь от вихревых токов, индуцируемых этим потоком в стенках бака. Например, при индукции в стержне магнитопровода порядка 1,4 Тл потери от вихревых токов в баке составляют около 10% от потерь в магнитопроводе, а при индукции 1,6 Тл эти потери возрастают до 50 …65%.
В случае трансформаторной группы, состоящей из трех однофазных трансформаторов, магнитопроводы отдельных фаз магнитно не связаны, поэтому магнитные потоки третьей гармоники всех трех фаз беспрепятственно замыкаются (поток каждой фазы замыкается в своем магнитопроводе). При этом значение потока Ф3 может достигать 15 … 20% от Ф1.
Несинусоидальный магнитный поток Ф, содержащий кроме основной гармоники Ф1 еще и третью Ф3, наводит в фазных обмотках несинусоидальную ЭДС.
Повышенная частота 3ω магнитного потока Ф3 приводит к появлению значительной ЭДС е3, резко увеличивающей амплитудное значение фазной ЭДС обмотки при том же ее действующем значении, что создает неблагоприятные условия для электрической изоляции обмоток.
Амплитуда ЭДС третьей гармоники в трансформаторной группе может достигать 45—65% от амплитуды основной гармоники. Однако следует отметить, что линейные ЭДС (напряжения) остаются синусоидальными и не содержат третьей гармоники, так как при соединении обмоток звездой фазные ЭДС e3A, e3B и е3С, совпадая по фазе, не создают линейной ЭДС. Объясняется это тем, что линейная ЭДС при соединении обмоток звездой определяется разностью фазных ЭДС. Так, для основной гармоники линейная ЭДС.
Если первичная обмотка трансформатора является обмоткой НН и ее нулевой вывод присоединен к нулевому выводу генератора, то намагничивающие токи фаз содержат третьи гармоники. Эти токи совпадают по фазе, а поэтому все они направлены либо от трансформатора к генератору, либо наоборот. В нулевом проводе будет протекать ток, равный 3i3. При этом магнитный поток трансформатора, а следовательно, и ЭДС в фазах будут синусоидальны.
Соединения, при которых обмотки какой-либо стороны трансформатора (НН или ВН) соединены в треугольник. Эти схемы соединения наиболее желательны, так как они лишены недостатков, рассмотренных ранее схем.
Допустим, что в треугольник соединены первичные обмотки трансформатора. Тогда ток третьей гармоники беспрепятственно замыкается в замкнутом контуре фазных обмоток, соединенных в треугольник. Но если намагничивающий ток содержит третью гармонику, то магнитные потоки в стержнях, а следовательно, и ЭДС в фазах практически синусоидальны.
Если же вторичные обмотки трансформатора соединены в треугольник, а первичные — в звезду, то ЭДС третьей гармоники, наведенные во вторичных обмотках, создают в замкнутом контуре треугольника ток третьей гармоники. Этот ток создает в магнитопроводе магнитные потоки третьей гармоники Ф23, направленные встречно потокам третьей гармоники от намагничивающего тока Ф13 (по правилу Ленца). В итоге результирующий поток третьей гармоники Фрез3=Ф13+Ф23 значительно ослабляется и практически не влияет на свойства трансформаторов.