Site Loader

Содержание

Трёхфазная система электроснабжения — это… Что такое Трёхфазная система электроснабжения?

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС.

В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В) Россия, ЕС (ниже 1000 В) Германия Дания
А L1 L1 R
B L2 L2 S
C L3 L3 T
Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда» Векторная диаграмма фазных токов. Симметричный режим. Графическое представление зависимости фазных токов от времени

Преимущества

Возможная схема разводки трёхфазной сети в многоквартирных жилых домах
  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звезда


Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах. Как и требуют современные стандарты, монтаж происходит на DIN-рейку.

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или

нейтралью. Концы фаз обмоток приёмника (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и приёмника, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Шины для раздачи нулевых проводов и проводов заземления при подключении звездой. Одно из преимуществ подключения звездой — экономия на нулевом проводе, поскольку от генератора до точки разделения нулевых проводов вблизи потребителя, требуется только один провод.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Если сопротивления Z

a, Zb, Zc приёмника равны между собой, то такую нагрузку называют симметричной.

Соотношение между линейными и фазными токами и напряжениями.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Последствия отгорания (обрыва) нулевого провода в трехфазных сетях

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно.

При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый «перекос фаз», в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной вывода из строя бытовой электроники в квартирных домах. Так как сопротивление потребителя остаётся константой, то, согласно закону Ома, при возрастании напряжения сила тока, проходящего через потребительское устройство, окажется гораздо больше максимально допустимого значения, что и вызовет сгорание и/или выход из строя питаемого электрооборудования. Пониженное напряжение также может послужить причиной выхода из строя техники. Иногда отгорание (обрыв) нулевого провода на подстанции может явиться причиной пожара в квартирах.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пика синусоиды питающего напряжения, в момент заряда конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники.

Существующие установки компенсации реактивной мощности не способны решить данную проблему, так как снижение коэффициента мощности в сетях с преобладанием импульсных источников питания не связано с внесением реактивной составляющей, а обусловлено нелинейностью потребления тока. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания.

Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ 13109-97, ОСТ 45.188-2001.


Треугольник


Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Распространённые стандарты напряжений

РФ и СНГ Страны ЕС Япония США
Напряжение

(фазное/линейное)

220/380 230/400 120/208 (140/240)/(230/400)
Частота 50 Гц 50 Гц 50/60Гц 60 Гц

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами.

Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Фазный проводник 1 Фазный проводник 2 Фазный проводник 3 Нейтральный проводник Защитный проводник
США (120/208В)[2] Чёрный Красный Голубой Белый или серый Зелёный
США (277/480В) Оранжевый Коричневый Жёлтый Белый или серый Зелёный
Канада Красный Чёрный Голубой Белый Зелёный
Канада (Изолированные трёхфазные установки) Оранжевый Коричневый Жёлтый Белый Зелёный
Великобритания (с апреля 2006) Красный (Коричневый) Жёлтый (ранее Белый) (Чёрный) Голубой (Серый) Чёрный (Голубой) Зелёно-жёлтый
Европа (с апреля 2004) Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Европа (до апреля 2004, в зависимости от страны) Коричневый или Чёрный Чёрный или Коричневый Чёрный или Коричневый Голубой Зелёно-жёлтый
Европа (Обозначение шин) Жёлтый Коричневый Красный
Россия (СССР)[3] Жёлтый Зелёный Красный Голубой Зелёно-жёлтый (на старых установках — Черный)
Россия (с 1 января 2011 г. )[4] Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Австралия и Новая Зеландия Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Южная Африка Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Малайзия Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Индия Красный Жёлтый Голубой Чёрный Зелёный
Трёхфазная двухцепная линия электропередачи

См. также

Примечания

  1. Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
  2. С 1975 года Национальный Электрический Кодекс (США) не регламентируют цветовое обозначение фазных проводов. Приведённые в таблице цвета являются общепринятыми в эксплуатации.
  3. Согласно ПУЭ при переменном трёхфазном токе: шины фазы А обозначают жёлтым цветом, фазы В — зелёным, фазы С — красным цветами (по алфавитному порядку начальных букв в названии цветов: Ж, З, К).
  4. Согласно ГОСТ Р 50462-2009: Базовые принципы и принципы безопасности для интерфейса «человек-машина», выполнение и идентификация. Идентификация проводников посредством цветов и буквенно-цифровых обозначений.

Ссылки

Трёхфазная система электроснабжения — это… Что такое Трёхфазная система электроснабжения?

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В) Россия, ЕС (ниже 1000 В) Германия Дания
А L1 L1 R
B L2 L2 S
C L3 L3 T
Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда» Векторная диаграмма фазных токов. Симметричный режим. Графическое представление зависимости фазных токов от времени

Преимущества

Возможная схема разводки трёхфазной сети в многоквартирных жилых домах
  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звезда


Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах. Как и требуют современные стандарты, монтаж происходит на DIN-рейку.

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток приёмника (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и приёмника, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Шины для раздачи нулевых проводов и проводов заземления при подключении звездой. Одно из преимуществ подключения звездой — экономия на нулевом проводе, поскольку от генератора до точки разделения нулевых проводов вблизи потребителя, требуется только один провод.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Если сопротивления Za, Zb, Zc приёмника равны между собой, то такую нагрузку называют симметричной.

Соотношение между линейными и фазными токами и напряжениями.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Последствия отгорания (обрыва) нулевого провода в трехфазных сетях

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый «перекос фаз», в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной вывода из строя бытовой электроники в квартирных домах. Так как сопротивление потребителя остаётся константой, то, согласно закону Ома, при возрастании напряжения сила тока, проходящего через потребительское устройство, окажется гораздо больше максимально допустимого значения, что и вызовет сгорание и/или выход из строя питаемого электрооборудования. Пониженное напряжение также может послужить причиной выхода из строя техники. Иногда отгорание (обрыв) нулевого провода на подстанции может явиться причиной пожара в квартирах.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пика синусоиды питающего напряжения, в момент заряда конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники.
Существующие установки компенсации реактивной мощности не способны решить данную проблему, так как снижение коэффициента мощности в сетях с преобладанием импульсных источников питания не связано с внесением реактивной составляющей, а обусловлено нелинейностью потребления тока. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания.
Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ 13109-97, ОСТ 45.188-2001.


Треугольник


Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Распространённые стандарты напряжений

РФ и СНГ Страны ЕС Япония США
Напряжение

(фазное/линейное)

220/380 230/400 120/208 (140/240)/(230/400)
Частота 50 Гц 50 Гц 50/60Гц 60 Гц

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Фазный проводник 1 Фазный проводник 2 Фазный проводник 3 Нейтральный проводник Защитный проводник
США (120/208В)[2] Чёрный Красный Голубой Белый или серый Зелёный
США (277/480В) Оранжевый Коричневый Жёлтый Белый или серый Зелёный
Канада Красный Чёрный Голубой Белый Зелёный
Канада (Изолированные трёхфазные установки) Оранжевый Коричневый Жёлтый Белый Зелёный
Великобритания (с апреля 2006) Красный (Коричневый) Жёлтый (ранее Белый) (Чёрный) Голубой (Серый) Чёрный (Голубой) Зелёно-жёлтый
Европа (с апреля 2004) Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Европа (до апреля 2004, в зависимости от страны) Коричневый или Чёрный Чёрный или Коричневый Чёрный или Коричневый Голубой Зелёно-жёлтый
Европа (Обозначение шин) Жёлтый Коричневый Красный
Россия (СССР)[3] Жёлтый Зелёный Красный Голубой Зелёно-жёлтый (на старых установках — Черный)
Россия (с 1 января 2011 г. )[4] Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Австралия и Новая Зеландия Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Южная Африка Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Малайзия Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Индия Красный Жёлтый Голубой Чёрный Зелёный
Трёхфазная двухцепная линия электропередачи

См. также

Примечания

  1. Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
  2. С 1975 года Национальный Электрический Кодекс (США) не регламентируют цветовое обозначение фазных проводов. Приведённые в таблице цвета являются общепринятыми в эксплуатации.
  3. Согласно ПУЭ при переменном трёхфазном токе: шины фазы А обозначают жёлтым цветом, фазы В — зелёным, фазы С — красным цветами (по алфавитному порядку начальных букв в названии цветов: Ж, З, К).
  4. Согласно ГОСТ Р 50462-2009: Базовые принципы и принципы безопасности для интерфейса «человек-машина», выполнение и идентификация. Идентификация проводников посредством цветов и буквенно-цифровых обозначений.

Ссылки

Трёхфазная система электроснабжения — это… Что такое Трёхфазная система электроснабжения?

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В) Россия, ЕС (ниже 1000 В) Германия Дания
А L1 L1 R
B L2 L2 S
C L3 L3 T
Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда» Векторная диаграмма фазных токов. Симметричный режим. Графическое представление зависимости фазных токов от времени

Преимущества

Возможная схема разводки трёхфазной сети в многоквартирных жилых домах
  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звезда


Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах. Как и требуют современные стандарты, монтаж происходит на DIN-рейку.

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток приёмника (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и приёмника, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Шины для раздачи нулевых проводов и проводов заземления при подключении звездой. Одно из преимуществ подключения звездой — экономия на нулевом проводе, поскольку от генератора до точки разделения нулевых проводов вблизи потребителя, требуется только один провод.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Если сопротивления Za, Zb, Zc приёмника равны между собой, то такую нагрузку называют симметричной.

Соотношение между линейными и фазными токами и напряжениями.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Последствия отгорания (обрыва) нулевого провода в трехфазных сетях

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый «перекос фаз», в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной вывода из строя бытовой электроники в квартирных домах. Так как сопротивление потребителя остаётся константой, то, согласно закону Ома, при возрастании напряжения сила тока, проходящего через потребительское устройство, окажется гораздо больше максимально допустимого значения, что и вызовет сгорание и/или выход из строя питаемого электрооборудования. Пониженное напряжение также может послужить причиной выхода из строя техники. Иногда отгорание (обрыв) нулевого провода на подстанции может явиться причиной пожара в квартирах.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пика синусоиды питающего напряжения, в момент заряда конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники.
Существующие установки компенсации реактивной мощности не способны решить данную проблему, так как снижение коэффициента мощности в сетях с преобладанием импульсных источников питания не связано с внесением реактивной составляющей, а обусловлено нелинейностью потребления тока. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания.
Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ 13109-97, ОСТ 45.188-2001.


Треугольник


Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Распространённые стандарты напряжений

РФ и СНГ Страны ЕС Япония США
Напряжение

(фазное/линейное)

220/380 230/400 120/208 (140/240)/(230/400)
Частота 50 Гц 50 Гц 50/60Гц 60 Гц

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Фазный проводник 1 Фазный проводник 2 Фазный проводник 3 Нейтральный проводник Защитный проводник
США (120/208В)[2] Чёрный Красный Голубой Белый или серый Зелёный
США (277/480В) Оранжевый Коричневый Жёлтый Белый или серый Зелёный
Канада Красный Чёрный Голубой Белый Зелёный
Канада (Изолированные трёхфазные установки) Оранжевый Коричневый Жёлтый Белый Зелёный
Великобритания (с апреля 2006) Красный (Коричневый) Жёлтый (ранее Белый) (Чёрный) Голубой (Серый) Чёрный (Голубой) Зелёно-жёлтый
Европа (с апреля 2004) Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Европа (до апреля 2004, в зависимости от страны) Коричневый или Чёрный Чёрный или Коричневый Чёрный или Коричневый Голубой Зелёно-жёлтый
Европа (Обозначение шин) Жёлтый Коричневый Красный
Россия (СССР)[3] Жёлтый Зелёный Красный Голубой Зелёно-жёлтый (на старых установках — Черный)
Россия (с 1 января 2011 г. )[4] Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Австралия и Новая Зеландия Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Южная Африка Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Малайзия Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Индия Красный Жёлтый Голубой Чёрный Зелёный
Трёхфазная двухцепная линия электропередачи

См. также

Примечания

  1. Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
  2. С 1975 года Национальный Электрический Кодекс (США) не регламентируют цветовое обозначение фазных проводов. Приведённые в таблице цвета являются общепринятыми в эксплуатации.
  3. Согласно ПУЭ при переменном трёхфазном токе: шины фазы А обозначают жёлтым цветом, фазы В — зелёным, фазы С — красным цветами (по алфавитному порядку начальных букв в названии цветов: Ж, З, К).
  4. Согласно ГОСТ Р 50462-2009: Базовые принципы и принципы безопасности для интерфейса «человек-машина», выполнение и идентификация. Идентификация проводников посредством цветов и буквенно-цифровых обозначений.

Ссылки

Трёхфазная система электроснабжения — это… Что такое Трёхфазная система электроснабжения?

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В) Россия, ЕС (ниже 1000 В) Германия Дания
А L1 L1 R
B L2 L2 S
C L3 L3 T
Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда» Векторная диаграмма фазных токов. Симметричный режим. Графическое представление зависимости фазных токов от времени

Преимущества

Возможная схема разводки трёхфазной сети в многоквартирных жилых домах
  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звезда


Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах. Как и требуют современные стандарты, монтаж происходит на DIN-рейку.

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток приёмника (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и приёмника, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Шины для раздачи нулевых проводов и проводов заземления при подключении звездой. Одно из преимуществ подключения звездой — экономия на нулевом проводе, поскольку от генератора до точки разделения нулевых проводов вблизи потребителя, требуется только один провод.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Если сопротивления Za, Zb, Zc приёмника равны между собой, то такую нагрузку называют симметричной.

Соотношение между линейными и фазными токами и напряжениями.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Последствия отгорания (обрыва) нулевого провода в трехфазных сетях

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый «перекос фаз», в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной вывода из строя бытовой электроники в квартирных домах. Так как сопротивление потребителя остаётся константой, то, согласно закону Ома, при возрастании напряжения сила тока, проходящего через потребительское устройство, окажется гораздо больше максимально допустимого значения, что и вызовет сгорание и/или выход из строя питаемого электрооборудования. Пониженное напряжение также может послужить причиной выхода из строя техники. Иногда отгорание (обрыв) нулевого провода на подстанции может явиться причиной пожара в квартирах.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пика синусоиды питающего напряжения, в момент заряда конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники.
Существующие установки компенсации реактивной мощности не способны решить данную проблему, так как снижение коэффициента мощности в сетях с преобладанием импульсных источников питания не связано с внесением реактивной составляющей, а обусловлено нелинейностью потребления тока. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания.
Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ 13109-97, ОСТ 45.188-2001.


Треугольник


Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Распространённые стандарты напряжений

РФ и СНГ Страны ЕС Япония США
Напряжение

(фазное/линейное)

220/380 230/400 120/208 (140/240)/(230/400)
Частота 50 Гц 50 Гц 50/60Гц 60 Гц

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Фазный проводник 1 Фазный проводник 2 Фазный проводник 3 Нейтральный проводник Защитный проводник
США (120/208В)[2] Чёрный Красный Голубой Белый или серый Зелёный
США (277/480В) Оранжевый Коричневый Жёлтый Белый или серый Зелёный
Канада Красный Чёрный Голубой Белый Зелёный
Канада (Изолированные трёхфазные установки) Оранжевый Коричневый Жёлтый Белый Зелёный
Великобритания (с апреля 2006) Красный (Коричневый) Жёлтый (ранее Белый) (Чёрный) Голубой (Серый) Чёрный (Голубой) Зелёно-жёлтый
Европа (с апреля 2004) Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Европа (до апреля 2004, в зависимости от страны) Коричневый или Чёрный Чёрный или Коричневый Чёрный или Коричневый Голубой Зелёно-жёлтый
Европа (Обозначение шин) Жёлтый Коричневый Красный
Россия (СССР)[3] Жёлтый Зелёный Красный Голубой Зелёно-жёлтый (на старых установках — Черный)
Россия (с 1 января 2011 г. )[4] Коричневый Чёрный Серый Голубой Зелёно-жёлтый
Австралия и Новая Зеландия Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Южная Африка Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Малайзия Красный Жёлтый Голубой Чёрный Зелёно-жёлтый (на старых установках — Зелёный)
Индия Красный Жёлтый Голубой Чёрный Зелёный
Трёхфазная двухцепная линия электропередачи

См. также

Примечания

  1. Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
  2. С 1975 года Национальный Электрический Кодекс (США) не регламентируют цветовое обозначение фазных проводов. Приведённые в таблице цвета являются общепринятыми в эксплуатации.
  3. Согласно ПУЭ при переменном трёхфазном токе: шины фазы А обозначают жёлтым цветом, фазы В — зелёным, фазы С — красным цветами (по алфавитному порядку начальных букв в названии цветов: Ж, З, К).
  4. Согласно ГОСТ Р 50462-2009: Базовые принципы и принципы безопасности для интерфейса «человек-машина», выполнение и идентификация. Идентификация проводников посредством цветов и буквенно-цифровых обозначений.

Ссылки

Трехфазные симметричные цепи в электротехнике (ТОЭ)

Содержание:

Трехфазные симметричные цепи:

Основными приемниками электрической энергии как по количеству, так и по установленной мощности являются электродвигатели, применяемые для приведения в движение рабочих машин. Трехфазные асинхронные двигатели — наиболее простые, надежные и дешевые. Повсеместное применение их обусловило бурное развитие трехфазных систем — производства, передачи и распределения электрической энергии. Для этой цели применяются трехфазные генераторы, трансформаторы, линии передачи, распределительные сети.

Общие сведения о трехфазных системах

Многофазная система электрических цепей представляет собой совокупность электрических цепей, в которых действуют синусоидальные э. д. с. одинаковой частоты, сдвинутые относительно друг друга по фазе и создаваемые одним источником энергии. Соответствующая этому определению система из трех цепей называется трехфазной.

Трехфазная система э. д .с.

В трехфазном генераторе, в котором имеются три самостоятельные обмотки, сдвинутые относительно друг друга в пространстве на 120°, образуется трехфазная симметричная система э. д .с. Схематично это показано на рис. 20.1 применительно к генератору с одной парой полюсов на статоре и обмотками на роторе. Однако нужно заметить, что в реальных генераторах обмотка переменного тока неподвижна (расположена на статоре), а магнитные полюса вращаются (расположены на роторе). Такая конструкция генератора лучше, а принцип его работы не меняется.

Если число витков в обмотках одинаково, то при вращении ротора во всех обмотках наводятся э. д. с. одинаковой величины. Начальные фазы этих э. д. с. сдвинуты относительно друг друга на 120° в соответствии с пространственным расположением обмоток.

Трехфазная симметричная система э. д. с. — это совокупность трех э. д. с., имеющих одинаковую частоту и амплитуду, сдвинутых по фазе относительно друг друга на углы 120°.

Признаком нессимметрии трехфазной системы э. д. с. является неравенство амплитуд или неравенство углов сдвига фаз между каждой парой э. д. с.
На рис. 20.1 обмотки показаны в начальном положении (t = 0). При вращении ротора против часовой стрелки уравнения э. д. с. можно записать в следующем виде:


Рис. 20.2. Графики и векторная диаграмма симметричной системы э. д. с.

Несвязанная трехфазная система электрических цепей

На схемах замещения обмотки трехфазного генератора обозначают, как показано на рис. 20.3, а, и условно принимают направление э. д .с. от конца к началу обмотки положительным.

Если каждую обмотку трехфазного генератора соединить со своим приемником, образуются три независимые цепи, каждая со своим током. Одна такая цепь с ее элементами (обмотка генератора, приемник, соединительные провода) в практике называется фазой. Термин «фаза»  употреблен в своем подлинном значении, которое остается в силе и для трехфазных цепей.
В несвязанной трехфазной системе генератор с приемником энергии соединяется шестью проводами. Большое число соединительных проводов — основной недостаток несвязанных систем, которые поэтому и не применяются. Сокращение числа соединительных проводов достигается в связанных системах, где обмотки генератора, как и отдельные фазы приемника, электрически связаны между собой и образуют трехфазные цепи.

Рис. 20.3. Несвязанная трехфазная система электрических цепей

Для этой цели выдающимся русским ученым М. О. Доливо-Добровольским (1862—1919) предложены две схемы соединения: звездой и треугольником, которые применяются и в настоящее время.

Трехфазная цепь называется симметричной, если комплексы сопротивлений всех ее фаз одинаковы. Когда в такой цепи действует симметричная система э. д. с., то токи в фазах равны по величине и сдвинуты по фазе на угол 120°, т. е. получается симметричная трехфазная система токов (рис. 20.3, б).

Нужно отметить, что приемник электрической энергии (электродвигатели, электролампы и т. п.) с генераторами, установленными на электростанциях, обычно непосредственно не связаны.

На пути электроэнергии от генератора к приемникам установлены трансформаторы, с помощью которых в электрической сети неоднократно изменяется напряжение. Для указанных приемников источником электрической энергии чаще всего служат трехфазные трансформаторы, которые по отношению к генераторам сами являются приемниками энергии. Поэтому далее все рассуждения будем относить к -трехфазному источнику, подразумевая при этом генератор или трансформатор.

Соединение звездой при симметричной нагрузке

На рис. 20.4 показана связанная система при соединении фаз источника энергии и приемника звездой. Такую систему легко получить из несвязанной системы.

Рис. 20.4. Связанные трехфазные системы электрических цепей при соединении звездой

Концы обмоток источника X, Y, Z соединяются в общую точку N, называемую нулевой точкой или нейтралью. Провода, соединяющие начала А, В и С обмоток источника с приемником (линейные провода), сохраняются; три провода, присоединенные к концам обмоток, заменяются одним. Благодаря этому в приемнике также образуется нулевая точка N’ (нейтраль). Нулевые точки источника энергии и приемника могут быть связаны проводом, который называется нулевым или нейтральным (рис. 20.4, а). В этом случае получается связанная четырехпроводная трехфазная система электрических цепей.
Далее будет показано, что в симметричных трехфазных цепях можно отказаться от нулевого провода, так как ток в нем равен нулю. В этом случае связь между источником и приемником, соединенными звездой, можно осуществлять по трехпроводной схеме (рис. 20.4, б).

Фазные напряжения

Разность потенциалов между линейными зажимами и нейтралью называется фазным напряжением (, , ).

Фазные напряжения источника есть напряжения между началами и концами фаз, они отличаются от э. д. с. на величину падения напряжения в обмотках. Если сопротивлением обмоток можно пренебречь, то фазные напряжения источника равны соответствующим э. д. с. В симметричной системе они изображаются, так же как и э. д. с., тремя равными по величине векторами, сдвинутыми по фазе на 120° (рис. 20.5, а).

Рис. 20.5. Векторные диаграммы напряжений при соединении обмоток источника звездой

В четырехпроводной и симметричной трехпроводной цепях фазные напряжения в приемнике меньше, чем в источнике, на величину падения напряжения в соединительных проводах. Если сопротивлением проводов можно пренебречь, то фазные напряжения в приемнике считаются такими же, как в источнике.

Линейные напряжения

Разность потенциалов между каждой парой линейных проводов называется линейным напряжением (, , ).

Если принять потенциал нулевой точки N источника энергии равным нулю, то потенциалы его линейных зажимов:
   
Линейные напряжения:



Переходя к действующим величинам, напишем выражения в комплексной форме:

Потенциалы линейных зажимов (или линейных проводов) в каждое мгновение отличаются друг от друга из-за наличия сдвига фаз между фазными напряжениями. Следовательно, линейные напряжения не равны нулю. Их можно определить аналитически по уравнениям (20.3) или графически с помощью векторной диаграммы рис. 20.5.

Из векторной диаграммы видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: равны по величине и сдвинуты относительно друг друга на 120°. Вместе с тем при прямой последовательности фаз звезда векторов линейных напряжений опережает на 30° звезду векторов фазных напряжений.

Векторную диаграмму удобно выполнить топографической, тогда каждой точке цепи соответствует определенная точка на диаграмме (рис. 20.5, б). Вектор, проведенный между двумя точками топографической диаграммы, выражает по величине и фазе напряжение между одноименными точками цепи.
Действующая величина линейных напряжений легко определяется по векторной диаграмме из треугольника, образованного векторами двух фазных и одного линейного напряжения, например ANB:

Обозначая все фазные напряжения Uф, а линейные напряжения Uл получим общее соотношение между линейными и фазными напряжениями в симметричной системе

Фазные и линейные токи

В связанной системе (см. рис. 20.4, а), так же как и в несвязанной, каждая фаза представляет собой замкнутую цепь.

В соответствии с положительным направлением э. д. с. в обмотках источника положительное направление токов в линейных проводах — от источника к приемнику, а в нулевом проводе — от приемника к источнику.

В трехфазных цепях различают фазные и линейные токи.
Токи в фазах источника и приемника называют фазными (на рис. 20.4 i’A, i’B, i’С; общее обозначение iф). Токи в линейных проводах называют линейными (iA, iB, iС; общее обозначение iл).

При соединении звездой в точках перехода из источника в линию и из линии в приемник нет разветвлений, поэтому фазные и линейные токи одинаковы между собой в каждой фазе:

Задача 20.3.

В каждой фазе трехфазного генератора наводится э. д. с. Е = 127 В. Начертить схему, построить векторную диаграмму и определить линейные напряжения при холостом ходе, если в общую точку соединены зажимы: а) X, Y, Z; б) X, Y, C; в) X, B, Z; г) X, B, C; д)A, B, C. Буквами A, B, C обозначены начала, а X, Y, Z — концы обмоток.

Рис. 20.6. К задаче 20.3

Рис. 20.7. К задаче 20.3

Решение. Схема генератора и векторная диаграмма при соединении в общую точку зажимов X, Y, Z показаны на рис. 20.6. Из векторной диаграммы видно, что линейные напряжения одинаковы:

При соединении в общую точку зажимов X, Y, C (рис. 20.7) фаза С включена началом в нулевой точке, поэтому вектор фазного напряжения этой фазы изображен на векторной диаграмме в положении, повернутом на 180° к нормальному, и обозначен UZ. Из векторной диаграммы следует: UAB = 220 В; UBZ = 127; UZA = 127 В.

Соединение треугольником при симметричной нагрузке

При соединении треугольником из трех обмоток источника образуется замкнутый на себя контур (рис. 20.8, а). Точно так же замкнутый контур создается из трех фаз приемника.

Общие точки двух фаз источника и двух фаз приемника соединяются между собой линейными проводами. Так образуется связанная трехфазная трехпроводная система, в которой каждая обмотка источника соединена с соответствующей фазой приемника парой линейных проводов, каждый из которых обеспечивает такую связь в двух смежных фазах.

Рис. 20.8. Связанная трехфазная система электрических цепей при соединении треугольником

Фазные и линейные напряжения

Соединение нескольких обмоток источника в замкнутый контур возможно лишь в том случае, если сумма всех э. д. с. этого контура равна нулю.
Это требование выполняется при таком порядке соединения, когда конец предыдущей обмотки соединяется с началом следующей. Например, конец X фазы А соединен с началом фазы В в общей точке ХВ, конец Y фазы В соединен с началом фазы С в общей точке YС и конец Z фазы С соединен с началом фазы А в общей точке ZА.

Симметричная система э. д. с., действующих в контуре, имеет сумму, равную нулю (рис. 20.8, б):

В этом случае при холостом ходе источника ток в его обмотках отсутствует.
При несимметрии системы э. д. с. их сумма не равна нулю, поэтому уже при холостом ходе в обмотках источника образуется ток, который может быть большим даже при малой несимметрии, так как сопротивление обмоток незначительно.


Рис. 20.9. Неправильное соединение треугольником обмоток источника


Рис. 20.10. Векторные диаграммы напряжений при соединении обмоток источника треугольником.

При неправильном включении обмоток, когда две соседние фазы соединены началами или концами (рис. 20.9), сумма э. д. с. в контуре равна удвоенной величине э. д. с. фазы.
Из схемы соединения треугольником видно, что фазные и линейные напряжения совпадают, так как конец одной фазы соединен с началом другой:

Векторную диаграмму напряжений можно построить в виде звезды или в виде замкнутого треугольника векторов (рис. 20.10). В последнем случае диаграмма является топографической.

Фазные и линейные токи

Каждая фаза приемника присоединении треугольником находится под линейным напряжением. Этим обусловлено наличие в приемнике фазных токов iAB, iBC, iСA, положительное направление которых на схеме рис. 20.8 выбрано соответственно положительному направлению э. д. с. в фазах источника.

Точки А’, В’, С’ приемника, так же как и точки А, В, С источника, являются электрическими узлами, поэтому фазные токи отличаются от линейных iA, iB, iС. Для узловых точек А, В, С можно написать уравнения в комплексной форме по первому закону Кирхгофа:

При симметричной нагрузке токи во всех фазах одинаковы. Звезда векторов линейных токов сдвинута относительно звезды фазных токов на 30° против вращения векторов, если последовательность фаз — прямая (рис. 20.11, а).
Действующая величина линейных токов определяется по векторной диаграмме из равнобедренного треугольника, образованного векторами двух фазных и одного линейного токов, например из треугольника ANC (рис. 20.11, б):

Рис. 20.11. Векторные диаграммы токов при соединении приемников треугольником

Обозначив все фазные токи Iф, а линейные токи Iл, получим общее соотношение между линейными и фазными токами в симметричной цепи:

Расчет симметричных трехфазных цепей

Формулы (20. 4) и (20.8), как уже отмечено, справедливы только для симметричных систем напряжений и токов.

Трехфазные электродвигатели имеют три одинаковые фазы обмотки, и создаваемая ими электрическая нагрузка симметрична. Нессимметрию создают однофазные приемники, например лампы электрического освещения и другие бытовые электроприемники. Если при проектировании осветительную нагрузку разделить между фазами поровну, то в процессе эксплуатации нагрузка, как правило, будет несимметричной из-за неодновременности включения ламп.

При большом числе однофазных приемников нессимметрия нагрузки, связанная с неодновременностью их включения, невелика, поэтому линии с напряжением 3; 6 кВ и выше, предназначенные для электроснабжения промышленных предприятий или определенного района (фидерные линии), выполняют трехпроводными независимо от схемы соединения групп приемников (звездой или треугольником).

Цель расчета состоит в определении токов в фазах приемника и проводах линии, а также мощности приемника в целом и в каждой фазе. Может быть поставлена и обратная задача.

Соединение звездой

В симметричной цепи комплексы сопротивлений фаз приемника одинаковы и между зажимами приемника действует симметричная система линейных напряжений при любой схеме соединения источника (звездой или треугольником).

Поэтому на расчетной схеме источник (генератор или трансформатор) не показывают и говорят, что приемник включен в трехфазную сеть (см. рис. 21.3, о). (20.8)
В симметричной цепи достаточно провести расчет одной фазы, так как токи и мощности во всех фазах одинаковы.
При известном линейном напряжении Uл фазное напряжение

Фазный ток, равный линейному,

Соединение треугольником

При соединении треугольником фазное напряжение 
Ток в фазе

Линейный ток

Определение мощности

Мощность в каждой фазе трехфазной цепи определяется теми же формулами, которые применялись при расчете однофазных цепей.
При симметричной нагрузке фазные напряжения, токи и углы сдвига фаз между ними в каждой фазе одинаковы, поэтому при определении мощности цепи можно написать общие выражения:

Учитывая, что при соединении звездой
   
а при соединении треугольником
    
мощности можно определять через линейные величины напряжений и токов:

При решении задач символическим методом мощность определяется, так же как и в однофазных цепях, произведением соответствующих комплекса напряжения и сопряженного комплекса тока.
 

Задача 20.9.

К трехфазному трансформатору с линейным напряжением на вторичной обмотке 380 В включены звездой электрические лампы мощностью 40 Вт каждая (по 100 шт. в фазе) и трехфазный двигатель мощностью 10 кВт, имеющий к. п. д. 85%,
Пренебрегая сопротивлением проводов, определить токи в линии.
Решение. Заданная нагрузка симметрична, так как в каждой фазе включены одинаковые по величине и характеру приемники: осветительная нагрузка  и одна фаза двигателя.


Рис. 20.12. К задаче 20.9

Расчет можно вести на одну фазу:

Ток осветительной нагрузки

Ток в фазе двигателя

Для нахождения тока в линии нужно сложить токи ламп и двигателя. Эти токи по фазе не совпадают, поэтому разложим их на активные и реактивные составляющие и сложим одноименные составляющие.
Ток в лампах совпадает по фазе с напряжением, поэтому реактивный ток ламп I = 0, активный ток I = I0 = 18,2 А.
Активный ток в фазе двигателя

Реактивный ток в фазе двигателя

Общий активный ток. в линии

Общий реактивный ток в линии

Ток в линии

 

Задача 20.12.

Приемник электрической энергии, соединенный треугольником, имеет активное сопротивление R = 12 Ом и емкость С = 199 мкФ. Определить: токи в фазах приемника и в линии, с помощью которой приемник подключен к сети с линейным напряжением U = 220 В и частотой f = 50 Гц; активную, реактивную и полную мощности приемника.
Решение.
Емкостное сопротивление фазы приемника

Полное сопротивление фазы приемника

Фазное напряжение приемника

Фазный ток

Линейный ток

Мощность приемника:
активная

реактивная

полная

Симметричный режим работы трехфазной цепи

Расчет трехфазной цепи, так же как и расчет всякой сложной цепи, ведется обычно в комплексной форме. Ввиду того что фазные э. д. с. генератора сдвинуты друг относительно друга на 120°, для краткости математической записи применяется фазовый оператор — комплексная величина

Умножение вектора на оператор а означает поворот вектора на 120° в положительном направлении (против хода часовой стрелки).

Соответственно умножение вектора на множитель а2 означает поворот вектора на, 240° в положительном направлении или, что то же, поворот его на 120° в отрицательном направлении.

Очевидно,

Если э. д. с. фазы А равна то э. д. с. фаз В и С равны соответственно:

В простейшем случае симметричного режима работы трехфазной цепи, когда генератор и нагрузка соединены звездой (рис. 12-9, а), векторная диаграмма э. д. с. и токов имеет вид, показанный на рис. 12-9, б.

Ток в каждой фазе отстает от э. д. с. той же фазы на

угол где r и х — активное и реактивное сопротивления фаз.

* Кроме того, применяется понятие «фазное напряжение в данном сечении» трехфазной цепи по отношению к какой-либо точке, принимаемой за нуль, например земле, нулевой точке генератора или искусственной нулевой точке. 

Ток в фазе А находят так же, как в однофазной цепи, потому что нейтральные точки генератора и нагрузки в симметричном режиме могут быть соединены как имеющие одинаковые потенциалы:


Соответственно токи в фазах В и С через ток

Наличие нейтрального провода «не вносит при симметричном режиме никаких изменений, так как сумма токов трех фаз равна нулю и ток в нем отсутствует:

Таким образом, при симметричном режиме работы трехфазной цепи задача сводится к расчету одной из фаз

аналогично расчету однофазной цепи. При этом сопротивление обратного (нейтрального) провода не учитывается, так как ток в нем и соответственно падение напряжения на нем отсутствуют.

По мере удаления от генератора фазные напряжения, определяемые падениями напряжения до нейтральной точки нагрузки, изменяются по модулю (обычно убывают) и по фазе. Линейные напряжения определяются как разности соответствующих фазных напряжений, например: В любом месте трехфазной линии при симметричном режиме соблюдается следующее соотношение между модулями линейных и фазных напряжений:

Действительно,

т. e. опережает по фазе а на 30°, причем модуль раз превышает

В случае соединения треугольником линейные токи определяются в соответствии с первым законом Кирхгофа как разности фазных токов и при симметричном режиме соблюдается соотношение

Соединение фаз генератора или нагрузки треугольником должно быть для расчета заменено эквивалентным соединением фаз звездой; вследствие этого расчет трехфазной цепи с соединением фаз треугольником приводится в конечном итоге к расчету эквивалентной трехфазной цепи с соединением фаз звездой.

Между сопротивлениями сторон треугольника и лучей звезды имеет место соотношение вытекающее из формул преобразования треугольника сопротивлений в эквивалентную звезду. Это соотношение справедливо как для сопротивлений симметричной трехфазной нагрузки, так и для сопротивлений симметричного .трехфазного • генератора. При этом фазные э. д. с. эквивалентного генератора, соединенного звездой, берутся в раз меньшими фазных э. д. с. заданного генератора, соединенного треугольником (кроме того, они должны быть сдвинуты на угол 30°). Это легко усмотреть из векторной потенциальной диаграммы напряжений генератора.

Активная мощность симметричной трехфазной нагрузки равна:

Ввиду того что при соединении нагрузки звездой а при соединении нагрузки треугольникомактивная мощность трехфазной цепи независимо от вида соединения выражается через линейные напряжения и ток следующим образом:

здесь — угол сдвига фазного тока относительно одноименного фазного напряжения.

Аналогичным образом для реактивной и полной мощностей симметричной трехфазной нагрузки имеем:

Приведенные выражения не означают, что при пересоединении нагрузки со звезды на треугольник (или наоборот) активная и реактивная мощности не изменяются. При пересоединении нагрузки со звезды на треугольник при заданном линейном напряжении фазные токи возрастут в раз, в линейный ток — в 3 раза и поэтому мощность возрастет в 3 раза.

Если нейтральная точка симметричной трехфазной нагрузки выведена, то измерение активной мощности может быть осуществлено одним ваттметром, включенным по схеме рис. 12-10, а (одноименные или так называемые генераторные выводы последовательной и параллельной цепей ваттметра отмечены на рис. 12-10, а звездочками). Утроенное показание ваттметра равно суммарной активной мощности трех фаз.

Если нейтральная точка не выведена или нагрузка соединена треугольником, то можно воспользоваться схемой рис. 12-10, б, где параллельная цепь ваттметра и два добавочных активных сопротивления равные по величине сопротивлению параллельной цепи ваттметра, образуют искусственную нейтральную точку

* Следует заметить, что здесь применим только электродинамический или ферродинамический ваттметр, сопротивление параллельной цепи которого является чисто активным. Индукционный ваттметр неприменим по той причине, что сопротивление параллельной цепи такого ваттметра имеет реактивное сопротивление; для создания искусственной нейтральной точки в этом случае потребовались бы реактивные добавочные сопротивления.

Для получения суммарной мощности, как и в предыдущем случае, показание ваттметра утраивается.

На рис. 12-11 показан способ измерения реактивной мощности в симметричной трехфазной цепи при помощи одного ваттметра: последовательная цепь ваттметра включена в фазу А, а параллельная — между фазами В и С, причем генераторные выводы ваттметра присоединены к фазам А и В.

Показание ваттметра в этом случае равно:

Для получения суммарной реактивной мощности показание умножается на

Разделив активную мощность на полную мощность, получим:

 .
Пример 12-1. Определить ток в генераторе при симметричном режиме работы трехфазной цепи, представленной на рис, 12-12, а.

Сопротивления соединенные треугольником, заменяются эквивалентной звездой из сопротивлений

При симметричном режиме нейтральные точки генератора и нагрузки, как было указано выше, могут быть объединены. Тогда режим работы каждой фазы, например фазы А, может быть рассмотрен в однофазной расчетной схеме (рис, 12-12, б),

Результирующее сопротивление цепи одной фазы равно:


Искомый ток в фазе А

25. Получение трехфазной системы ЭДС.

Трехфазными генераторами называются генераторы переменного тока, одновременно вырабатывающие несколько ЭДС одинаковой частоты, но с различными начальными фазами. Совокупность таких ЭДС называется трехфазной системой ЭДС.

Многофазными цепями называются цепи переменного тока, в которых действуют многофазные системы ЭДС. Любая из цепей многофазной системы, где действует одна ЭДС, называется фазой. Наибольшее распространение получили трехфазные системы.

Трехфазные системы имеют ряд преимуществ перед другими системами (однофазными и многофазными):

— они позволяют легко получить  вращающееся  магнитное поле (на этом основан принцип работы разных двигателей переменного тока).

— трехфазные системы наиболее экономичны, имеют высокий КПД.

— конструкция трехфазных двигателей, генераторов и трансформаторов наиболее проста, что обеспечивает их высокую надежность.

— один трехфазный генератор позволяет получать два различных (по величине) напряжения.

Современные электрические системы, состоящие из генераторов, электростанций, трансформаторов, линий передачи электроэнергии и распределительных сетей, представляют собой в подавляющем числе случаев трехфазные системы переменного тока.

Трехфазная система электрических цепей представляет собой совокупность электрических цепей, в которых действуют три синусоидальные ЭДС одной и той же частоты, сдвинутые друг относительно друга по фазе и создаваемые общим источником энергии. Каждая из цепей, входящих в трехфазную цепь, принято называть фазой. В данном случае не следует путать понятие фазы в многофазной системе с понятием начальной фазы синусоидальной величины.

В зависимости от числа фаз цепи бывают однофазные, двухфазные, трехфазные, шестифазные и т.д. Трехфазные цепи более экономичны чем однофазные.

Трехфазная цепь включает в себя источник (генератор) трехфазной ЭДС, проводники, потребители (приемники) трехфазной электрической энергии.

 

Трехфазные системы | CyberPower

Трехфазные системы

Трехфазный ИБП для обеспечения параллельного резервирования питания для критически важных потребителей

Сравнение продуктов