Трассировка печатных плат | А-КОНТРАКТ
Трассировка печатной платы — разработка топологии электрических соединений между посадочными местами электронных компонентов, устанавливаемых на печатную плату.
Трассировка печатных плат выполняется после того, как разработана схемотехника изделия, подобрана комплектация и выбран конструктив для установки ПП.
Технические специалисты А-КОНТРАКТ выполнят корректную трассировку Вашей печатной платы на основе разработанной принципиальной электрической схемы будущего изделия.
Для осуществления работ по трассировке печатной платы необходимы следующие входные данные:
1. Принципиальная электрическая схема. Схема может быть предоставлена в одном из перечисленных видов:
- предпочтительно — в системе автоматического проектирования (PCAD, ORCAD, Protel)
- чертеж в электронном виде
- чертеж на бумаге
2. Спецификация — список ЭК для монтажа на печатную плату, BOM. Спецификация может быть предоставлена в одном из перечисленных видов:
- предпочтительно — в электронном виде (Word, Excel)
- в бумажном виде
3. Габаритный чертеж печатной платы с указанием размеров контура ПП, а также с указанием крепежных отверстий, разъемов, радиаторов и других элементов, расположение которых должно быть фиксированным. Чертёж может быть предоставлен в одном из перечисленных видов:
- предпочтительно — в системе автоматического проектирования (PCAD, ORCAD, Protel)
- в бумажном виде
- в виде чертежа в электронном виде
4. Техническое задание должно содержать информацию о требованиях и пожеланиях по расположению ЭК на плате, трассировке цепей, ширине проводников, волновому сопротивлению, если необходимо и т.д.
Этапы выполнения работ по трассировке печатной платы:
- Создание библиотеки ЭК, которые предполагается использовать в данном изделии. Библиотека компонентов подбирается с учётом технологических особенностей дальнейшего монтажа.
- Создание списка цепей (netlist)
- Упаковка компонентов на плату
- Компоновка (предварительное размещение) компонентов на ПП
- Согласование компоновки платы
- Создание и согласование проекта разводки всех цепей на печатной плате
- Создание и согласование проекта трассировки
- Внесение корректировок, при необходимости
- Утверждение окончательного варианта трассировки
- Передача заказчику всей технической документации по проекту
А-КОНТРАКТ также может выполнить последующее производство печатных плат и их монтаж по составленному проекту.
Проектирование и трассировка печатных плат
Наши конструктора в короткие сроки выполнят проектирование печатной платы любой сложности по вашему техническому заданию. Конструкторское бюро компании «Эльтроникс» имеет многолетний опыт работы в различных областях электроники, что позволяет нам осуществлять разработку и проектирование печатных плат любой сложности для различных областей применения. Все специалисты конструкторского бюро работают с соблюдением требований отечественных и международных стандартов ГОСТ и IPC.
По результатам разработки и проектирования Заказчик получает:
-
проект печатной платы
-
файлы для изготовления печатной платы
-
в случае необходимости, по дополнительному запросу, комплект конструкторской документации в соответствии с единой системой конструкторской документации (ЕСКД):
-
схема электрическая принципиальная;
-
чертежи слоев;
-
сборочный чертеж;
-
спецификация;
-
перечень элементов.
Конструкторская документация на проектирование передается Заказчику в бумажном и электронном виде.
По желанию Заказчика мы изготавливаем опытные образцы печатных плат.
По запросу Заказчика осуществляется:
-
3D моделирование
-
Тепловой анализ -
Анализ целостности сигналов
Исходные данные для разработки и проектирования печатной платы можно предоставить по электронной почте [email protected], на диске (дискете, флеш-накопителе), на бумажном носителе. Необходимо предоставить техническое задание, содержащее в свободной форме, следующие пункты:
-
Название проекта.
-
Принципиальная схема, возможно предоставление образца или чертежа печатной платы.
-
Требования к габаритным размерам платы, с указанием крепежных отверстий с необходимым расположением (если такие имеются). При специфической форме платы, необходим чертеж или эскиз печатной платы.
-
Толщина печатной платы.
-
Количество слоев трассировки.
-
Наличие маски и маркировки.
-
Перечень элементов или спецификация с указанием типов корпусов всех элементов. Для редких или нестандартных компонентов желательно предоставить описание компонента производителем — datasheet.
-
-
Технологические возможности производства, где будет размещаться заказ на изготовление печатных плат.
-
Название (децимальный номер платы) и другие желаемые тексты на плате.
-
Перечень конструкторских документов, которые Вы хотите получить.
Сроки и стоимость проектирования зависят от сложности печатной платы и согласуются с Заказчиком индивидуально.
Создание печатных плат для мелкосерийного производства / Habr
На Хабре много статей по настройке и сопровождению IP телефонии и сопутствующего оборудования. Встречаются статьи и по разработке печатных плат. Есть статьи и о том, как самому сделать печатную плату при помощи ЛУТ технологии. Например, «ЛУТ на виниле или домашняя Arduino Mini». Есть описание разных систем проектирования печатных плат: Cadence, Eagle , DipTrace или описание отдельных процессов при разработке печатных плат, таких как передача информаци из Altium в AutoCAD.За основу была взята плата ЦПУ с кодовым названием «G20».
Данная плата в последствии стала основной для многих разработок фирмы. Она будет использоваться с пристегнутыми платами в разных конфигурациях. Несколько разработчиков работает над проектами для этих плат, каждый ведет свою плату-надстройку и основную.
Когда-то давно, еще до меня, в моей фирме разработали замечательную плату, благодаря продуманной конструкции, послужившую коркой для многих устройств фирмы. Выбор остановили на процессоре Atmel ARM9 G20, в качестве ПЛИС (программируемая логическая интегральная схема, FPGA в англ. литертуре) для связи с другими платами используется Cyclone III от Altera. Cвязь между ПЛИС и ЦПУ — по параллельной шине, которая совместима с шиной памяти процессора.
Процессор работает на частоте 400 МГц, на плате установлена память две микросхемы SRAM 512Mбит через 32 разрядную шину. Также на плате установлен fast ethernet 10/100 и 2 host USB, которые могут использоваться как для загрузки программы, так и для подключения к Wi-Fi, сетевого адаптера и прочих устройств. Так же в схему заложена микросхема PRI, обеспечивающая поток Е1/Т1 на случай подключения к телефонной сети.
На плате установлены разъёмы для подсоединения вспомогательных плат. Одна плата может быть подсоединена сверху (в виде мезонина), и две по бокам. Разъёмы двухрядные с шагом 2,54 мм, с пайкой в отверстие. Их плюсом является доступность, как по цене, так и по наличию в магазине, на базаре, в закромах. Тоже касается и ответных частей. Минус — они большие, за счет большого шага между контактами у них меньше соединительных линий, компоненты с монтажом в отверстия занимают место для трассировки во всех слоях платы, а разъёмы для верхней платы разграничивают плату на три части. Монтаж в отверстия позволяет ставить разъём как вверх так и вниз. Хотя на практике все платы ставятся поверх основной.
Для этой платы были разработаны несколько типов плат субмодулей, которые конструктивно можно назвать мезонинами. Так же платы могут посредством переходников присоединятся по бокам от платы.
Одним из таких модулей является плата GSM на четыре или восемь каналов. Съёмный мезонин позволил разработать платы на различных GSM модулях от разных фирм и выпустить платы на несколько диапазонов (GSM, UMTS, WCDMA). А так же устанавливать платы для традиционной телефонии и создания мини АТС с расширенными функциями. Есть версия с SIM банком на 100 SIM карточек.
Разнесение функций на несколько плат позволило отлаживать платы отдельно друг от друга и впоследствии выпустить усовершенствованные модели мезонинов.
Так же плата служит для отладки и тестирования отдельных программных модулей для будущих систем. К её контактам можно подключить EvBoard и начать отладку до изготовления собственной платы.
Со временем возможностей основной платы перестало хватать и решено было разрабатывать новую плату взамен существующей. Использование параллельной шины накладывало свои ограничения на скорость обмена и количество одновременно нагружаемых плат. Это позволило составить требования к новой плате.
Плата должна иметь больше оперативной памяти, раздельную шину между памятью и ПЛИС, возможность использования быстрых последовательных каналов для связи с платами, по возможности наличие PCIe. На этапе выбора компонентов добавились дополнительные требования: встроенный программатор для ПЛИС, два разъёма Ethernet, USB-hub, HDMI, совместимость со старыми платами. Часть интерфейсов была заложена ввиде отдельных разъёмов для подключения устройств при помощи шлейфа.
После анализа доступных процессоров выбор пал на iMX6 от Freescale. По сравнению с конкурентами на него была открыта вся документация, у него была вменяемая документация и рекомендации доступные без длительного подписания NDA, пригодный к «простой» пайке BGA корпус, «нормальная» шина памяти, поддержка плавающей запятой и ряд других преимуществ. За ядро ARM Cortex-A9, поддержку плавающей запятой и другие плюшки, голосовал не я. Таким образом, получили компромисс современных мобильных технологий и возможностей нашего производства.
Схему взяли от одного из отладочных комплектов и переработали под свои нужды.
Выбор соединительных разъёмов для боковых плат тоже являются компромиссом между желанием получить много сигналов параллельных и последовательных и ценой на разъёмы. Цена за пару которых может переваливать за 60 у.е. Решено было остановится на торцевом разъёме PCIe. В будущем это позволит сэкономить на одном разъёме в паре плат. При этом разъём удовлетворит как передаче быстрых сигналов до 3.125 ГГц, которые присутствуют в Cyclone GX.
Так как у нас нет необходимости использовать E-Ink дисплей, то на параллельную шину процессора повесили ПЛИС, дополнительно соединили PCIe шину процессора и гигабитную шину ПЛИС через высокоскоростной ключ. Теперь у нас процессор может отдавать PCIe либо в ПЛИС, либо на один из боковых разъёмов. Помимо PCIe x1 с процессора на разъёмы выведены 4 гигабитных канала на каждую сторону. В дальнейшем планируется использовать их для “быстрых” соединений.
3D моделирование внутри пакета проектирования позволяет «не закрыть» важные разъёмы другими платами.
Дальше нужно было уместить все в нужные нам размеры платы, но при этом оставить возможность доработки платы на месте для случая «это паяем, это не паяем». Такой подход позволяет делать сложную плату у контрактного производителя, а у себя допаивать интерфейсы под заказчика. В итоге заказчик не платит за то, чем нем пользуется. Эти ограничения не позволяют сделать все миниатюрным в размере 0201 и разместить максимально близко друг к другу. К тому же иногда приходится выводить сигналы наружу для возможности запаять перемычку. Это плата за универсальность.
Приходится искать другие пути по минимизации занимаемой площади.
Так, например, конденсаторы одного номинала и напряжения могут занимать больше места по высоте или по площади. Многие микросхемы выпускаются в разных типах корпусов и могут при одинаковой функциональности существенно экономить место.
Можно оценть различия SOIC и QFN корпусов DC-DC преобразователей. По сравнению с ними корпуса DDPAK и TO220 просто гиганты.
У Texas Instruments есть различные типы step-down DC-DC. Но современные преобразователи способны работать на более высоких частотах и требуют меньшей величины индуктивности. Если величина тока 1-2 А, то можно найти индуктивности и 12 … 18 мкГн в приемлемых по размерам корпусам. А если нужно обеспечить ток 5 А и более, то размеры индуктивности становятся слишком большими. Выбор другого преобразователя позволит перейти к индуктивностям 1 … 2 мкГн и вписаться в габаритные показатели. Причем не только по площади и высоте, но и по весу компонентов.
При проектирование печатной платы необходимо учитывать влияние компонентов друг на друга и стараться отделять чувствительные к помехам цепи от источников помех. Которыми, кстати, являются импульсные DC-DC преобразователи. Поэтому применение экранированных индуктивностей, схем компенсации и размещение источников вторичного питания подальше от чувствительных цепей может спасти кучу нервов в дальнейшем. Когда невозможно разнести элементы на плате, приходится ухищряться разными способами ограничивая влияние сигналов внутри платы.
Здесь показана область земляного слоя вблизи ВЧ разъёмов внутри слоя питания на плате PCI GSM шлюза.
Вырез на внутреннем слое земли для уменьшения взаимного влияния цифровых и ВЧ шумов на плате PCI GSM шлюза.
Стоит заметить, что трассировка печатной платы для производства ЛУТом и для производства на заводе отличается.
Так же будем иметь различия в требованиях монтажа компонентов.
При малых партиях или единичном производстве прототипов требования монтажников могут быть вроде: «мне нужна плата и компоненты, если есть трафарет для монтажа SMD компонентов — давайте». Часто достаточно карты монтажа компонентов, где иногда разным цветом указано, какие компоненты куда ставить, а иногда просто указаны позиционные обозначения. Без указания точных координат. Ниже представлен кусок такого сборочного чертежа.
Если мы собираемся делать сложные платы или простые, но большого объёма, то стоит обратить внимание на серьезных контрактных сборщиков. У них есть оборудование как для монтажа, так и для проверки собранных плат. У них и требований больше. К качеству печатных плат, трафарету, компонентам и даже трассировке.
На печатных платах могут потребоваться технологические зоны по краям для движения платы по конвейеру. Их размеры зависят от производителя и для наших производителей достаточно 3 … 5 мм. Если на краю платы компоненты не монтируются, то технологические зоны можно не использовать. Плата будет перемещаться по конвейеру, опираясь на свои края. Если плата имеет неровные контуры, то для нормального движения по конвейеру нужно будет выровнять контуры при помощи технологических зон.
Так же может потребоваться дополнительная оснастка для нанесения паяльной пасты. Для проектов с элементами поверхностного монтажа обычно это трафарет. Если планируете делать большую партию плат или плата будет не единичной, то лучше сразу доработать библиотечные компоненты “под производство”.
Под термином “под производство” я имею ввиду как монтажное производство так и производство самих плат.
Для монтажников важно, чтоб все компоненты имели правильные посадочные места.
Посадочное место под компонент обычно чуть больше чем припаиваемый элемент, чтоб оставались зазоры на случай неточностей позиционирования. Но и слишком большими их делать не стоит. На больших площадках мелкий компонент может увести в сторону и получим брак монтажа. К тому же на большой площадке может быть слишком много паяльной пасты и при расплавлении выкипающий флюс поднимет компонент боком. Если же контактная площадка большая, а отверстие под трафарет уменьшить, то припой может растечься по площадке и не достанет до ножки компонента.
Для компонентов с шагом между выводами менее 0,5 мм рекомендуют делать открытие в трафарете под паяльную пасту меньше контактной площадки, чтоб паяльная паста не выдавливалась установленным на нее компонентом и при оплавлении не образовывались короткие замыкания и перемычки.
На рисунке красным показана граница открытия паяльной маски, сиреневым — контактная площадка, черным — открытие в трафарете под паяльную пасту.
Сейчас очень много компонентов выпускаются во все меньших и меньших по размеру корпусах и, несмотря на повышающуюся эффективность, перед разработчиками стоит задача отводить тепло от микросхем. Так, если размеры корпуса малы, то через крышку отвести необходимое количество тепла не получается и придумали «ход конем» — припаивать донышко микросхемы к плате, а уже плата отводит тепло через слои меди.
На практике у меня была возможность убедится в эффективности такого метода охлаждения, когда в микросхемах с не припаянным брюшком включалась термозащита от перегрева, и когда после припайки температура микросхем снизилась, а платы повысилась и даже стали греться разъёмы, так как сброс тепла происходил на земляной слой, к которому были припаяны и корпуса разъёмов.
Так вот, нужно внимательно читать рекомендации к проектированию посадочных мест для таких микросхем, так как у некоторых из них нет другого контакта с землей, кроме «брюшка». И если не положить под контакт паяльную пасту, то электрически микросхема не будет подсоединена к земле. Для микросхем с небольшим количеством ножек термопад под корпусом небольшой величины, а у больших микросхем нужно быть осторожным. Производители указывают в рекомендациях какую контактную площадку и какое отверстие в трафарете под паяльную пасту нужно делать. Иногда в документации указывается просто 60 — 70% от площади термопада, а иногда даются рекомендации на разделение большого окна в трафарете на несколько маленьких, тогда при нанесении паяльной пасты она не будет выдавливаться шпателем из больших отверстий. Так же рекомендуют поступать и с большими контактными площадками под другие компоненты, например, для больших индуктивностей.
Для того чтоб система установки компонентов смогла правильно установить компонент, ей нужна точка отсчёта на плате и координаты установки компонентов с углом поворота. Подробнее об этом можно почитать поискав информацию о реперных знаках на печатных платах или PCB fiducials. Файл с координатми готовится в программе проектирования печатной платы автоматически.
У меня на выходе получается подобный файл c табуляциями.
Заголовок:
$HEADER$
BOARD_TYPE PCB_DESIGN
UNITS MM
$END HEADER
Часть с компонентами:
$PART_SECTION_BEGIN$
R303 RC0402FR-0768KL 270.00 120.30 39.10 BOTTOM YES
C580 CC0402-KR-X5R-5BB-104 180.00 38.40 88.50 BOTTOM YES
VT3 NDS331N 90.00 56.80 26.40 TOP NO
…
C282 CC0402-KR-X5R-7BB-104 180.00 128.10 26.20 BOTTOM YES
VS2 BZT52C-3V3 90.00 71.40 27.10 BOTTOM YES
U23 MCIMX6Q4AVT08AC 0.00 106.00 45.90 TOP NO
$PART_SECTION_END$
Координаты с репеерными знаками:
$FIDUCIAL_SECTION_BEGIN$
BOARD 42.50 8.00 BOTTOM
BOARD 177.00 8.00 BOTTOM
BOARD 183.40 113.50 BOTTOM
BOARD 183.40 113.50 TOP
BOARD 177.00 8.00 TOP
BOARD 42.50 8.00 TOP
U23 94.50 57.40 TOP
U23 117.50 34.40 TOP
U10 22.70 87.00 TOP
U10 38.70 109.00 TOP
U18 52.50 69.50 TOP
U18 81.50 98.50 TOP
$FIDUCIAL_SECTION_END$
Для плат малого размера требуется объедение мелких плат в групповую заготовку или панель. Это требование есть как у производителей подложек печатных плат, так и у монтажников. На монтаж отдаются координаты компонентов для одной платы, шаг плат в заготовке и угол поворота платы в заготовке.
Поворачивать платы в основном приходится для уменьшения площади заготовки при кривом контуре платы. Но и прямоугольные платы могут быть повёрнуты в панели. Однажды на монтажном производстве потребовали увеличить технологический отступ с 5 до 30 мм для одной стороны платы, так как там очень близко к краю плату необходимо было поставить компоненты с мелким шагом. При объединении плат в панель проблемный край плат был развернут в середину панели и технологический отступ остался со всех сторон 5 мм. Это позволило уже на производстве печатной платы разместить две панели на одном большом листе стеклотекстолита. При этом заказчик платы не переплачивал за отходы плат.
Панель для изготовления плат газового счётчика.
После монтажа панели платы могут быть разъединены на монтажном производстве, либо легко отделены у нас. Далее идёт проверка, прошивка, настройка, корпусирование и предпродажная подготовка.
Это не все этапы подготовки плат и устройств к производству. Можно добавить еще минимизацию списка компонентов, проверку на технологичность, разработку корпуса и размещение компонентов на плате и другие операции, но я постарался описать те действия, которые мне приходилось делать.
P.S. Для новой платы фото еще нет, так как она еще не приехала. На основе схемы новой платы сейчас делается плата в габаритах старой и без лишних наворотов в виде дисплея дорогой ПЛИС и прочего.
Маленькие секреты трассировки плат с операционными и инструментальными усилителями
При проектировании плат
Ничто не обходится так дёшево,
И не ценится так высоко,
Как правильная трассировка.
В век интернета вещей и доступности изготовления печатных плат, причём не только по ЛУТ технологии, их проектированием часто занимаются люди, вся деятельность которых связана с цифровой техникой.
Даже при трассировке простой цифровой платы существуют негласные правила, которым я всегда следую в своих проектах, а в случае разработки измерительных устройств с цифроаналоговыми участками схем это просто необходимо.
В данной статье я хочу обратить начинающих проектировщиков на ряд элементарных приёмов, которые следует соблюдать чтобы получить устойчиво работающую схему и снизить погрешность измерения или минимизировать коэффициент искажений звукового тракта. Для наглядности информация изложена в виде рассмотрения двух примеров.
Рекомендации очень просты и многим известны, тем не менее, как показала моя практика, далеко не всегда даже специалисты с опытом их придерживаются.
Пример номер два. Трассировка простой схемы операционного усилителя
Рис. 1. Схема усилителя на ОУ
Для начала рассмотрим простейший пример. Всего несколько резисторов и конденсаторов — неинвертирующий усилитель с коэффициентом усиления по напряжению 2. Поставим себе задачу оптимизировать трассировку по площади и рассмотрим два варианта. Плата в обоих случаях двухслойная, верхний сигнальный слой красный, нижний синий. Правый вариант не только несколько меньший по площади, главное в нём ниже вероятность возникновение паразитных связей.
Рис. 2. Два варианта трассировки платы усилителя на ОУ
Во первых, обратите на то, как установлен блокировочный конденсатор С2 на правой части рисунка — на минимальном расстоянии от вывода питания. Во вторых, приходящее с источника отрицательное напряжение сначала попадает на конденсатор и лишь оттуда на вывод питания ОУ. Этот простой приём значительно увеличивает эффективность работы блокировочного конденсатора. Похожим образом я поступил и с конденсатором С1. Кстати, если вы применяете несколько блокировочных конденсаторов, например тантал большой ёмкости и керамический меньшей, то конденсатор меньшей ёмкости должен располагаться ближе к выводу питания, так как он имеет меньшую паразитную индуктивность и лучше подавляет высокочастотные помехи.
Небольшой оффтопик, прямо не относящейся к теме сегодняшней статьи Настоятельно советую применять этот же приём при подаче питания и на другие типы микросхем, особенно АЦП, ЦАП и многочисленные выводы питания микроконтроллеров. Если вы используете встроенные аналоговые модули микроконтроллера — ADC, DAC, компараторы, источники опорного напряжен не поленитесь заглянуть в даташит и посмотреть какие блокировочные конденсаторы в каком количестве и куда необходимо ставить. Не помешает цепь развязки в виде фильтра или хотя бы сопротивления между основным цифровым питанием микроконтроллера и аналоговым. Аналоговую землю лучше размещать отдельным полигоном или экранным слоем, и соединять с основной землёй в одной точке, в некоторых случаях полезно через фильтр
Элементы цепи обратной связи должны быть расположены как можно ближе к неинвертирующему входу, что минимизирует возможность наводок на высокоомную входную цепь.
Вместо отдельных проводников земли использована заливка землёй нижнего слоя платы экранный слой, что снижает паразитные наводки. В конце ещё одна рекомендация — не стоит оставлять изгибы проводников под прямым углом — сглаживайте их насколько возможно, это уменьшает длину проводников, вероятность наводок и отражений сигнала.
Переходим к более серьёзному и интересному случаю из области измерений, где трассировка бывает архи важна.
Пример номер один. Трассировка монитора тока потребления на инструментальном усилителе
Рис. 3. Схема монитора тока с использованием инструментального ОУ
На рисунке представлена схема измерителя потребляемого тока. Измерительным элементом служит сопротивление шунта включенное в цепь питания. Нагрузка на которой измеряется ток — Rload. Измеряемое напряжение снимается с сопротивления Rshunt и фильтруется с помощью симметричной цепи на элементах R1,R2,C1-C3. Микросхема U2 служит для подачи опорного напряжения. R4, C5 — выходной фильтр.
При трассировке разумеется необходимо соблюдать все рекомендации которые были даны выше.
Рис. 4. Два варианта трассировки платы усилителя на инструментальном ОУ
Разберём недочёты, которые имеет левая схема:
- Поскольку мы имеем дифференциальный вход, необходимо выполнить две его сигнальные цепи как можно более симметричными. Проводники сигнальных линий должны иметь одинаковую длину и располагаться близко друг к другу. В идеале на одинаковом расстоянии друг от друга;
- Резистор задающий усиление инструментального усилителя должен располагаться как можно ближе к выводам микросхемы. Даже небольшая паразитная ёмкость между проводниками которые идут к нему на левом рисунке может привести к потере устойчивости инструментального усилителя. Вообще цепи обратной связи должны быть как можно более короткими;
- Микросхему повторителя опорного источника необходимо располагать как можно ближе к входу опорного напряжения инструментального усилителя.
Соблюдая очень простые правила вы облегчаете себе жизнь. В одних случаях они просто не приносят вреда, в других могут существенным образом улучшить как устойчивость работы схемы в целом, так и точность измерений.
Не держите на стене заряженное ружьё. Однажды оно обязательно выстрелит и выберет для этого самый неудобный момент.
При подготовки статьи использованы материалы блога специалистов TI
Общие вопросы трассировки печатных плат
Перед тем как приступить к этапу трассировки необходимо загрузить список цепей и проект библиотеки с посадочными местами в редактор печатных плат, сформировать контур печатной платы, выполнить компоновку. Кроме того, важным этапом предшествующим компоновке и трассировке является настройка редактора печатных плат. Далее рассмотрим этот вопрос подробнее на примере САПР Altium Designer.
Прежде всего, необходимо определить правила проектирования печатных плат. На рисунке 1 приведены все доступные правила проектирования.
Рисунок 1
Как правило, конструктор применяет те из них, которые оказывают влияние на интерактивную трассировку, которая применяется как эффективный метод реализации топологии. Именно интерактивная трассировка, по сравнению с ручной трассировкой, позволяет в режиме «реального времени» отслеживать прокладку печатных проводников в соответствии с заданными настройками в редакторе правил проектирования. Следует отметить, что правила проектирования печатных плат должны соответствовать определенному классу точности печатной платы, требованиям технического задания, а также технологическим требованиям предприятия-изготовителя, на котором будет реализована спроектированная печатная плата.
В первой группе — Electrical (электрические), расположены правила, учитывающие электрическое соединение компонентов. Для интерактивной трассировки для этой группы представляет интерес правило Clearance (Зазоры) – см. рисунок 2. Здесь задаются минимально допустимые зазоры для заданного класса точности между конструктивными элементами печатной платы. Так для простой (simple) настройки это: зазоры между проводниками (Track to Track), зазоры между планарной контактной площадкой и проводником (SMD Pad to Track), зазоры между планарной контактной площадкой сквозного отверстия и проводником (TH Pad to Track), зазоры между сквозным отверстием и проводником (Via to Track) и так далее.
Рисунок 2
Во второй группе — Routing , расположены правила, которые в большей степени учитываются при интерактивной трассировке. Это, прежде всего, настройка правил для ширины печатного проводника — Width (см. рисунок 3). Здесь задаются минимальное, максимальное и рекомендованное значения. При интерактивной трассировке автоматически берется рекомендованное значение, тем не менее, в процессе трассировки можно переключаться на другую ширину печатного проводника из заданного в правилах диапазона.
Рисунок 3
Также необходимо настроить стиль переходных отверстий – Routing Via Style (см. рисунок 4). Здесь, аналогично правилам Width, задаются минимальное, максимальное и рекомендованное значения диаметра отверстия и его контактной площадки.
Рисунок 4
Кроме того, необходимо настроить правило для угла изгиба проводников Routing Corners (см. рисунок 5).
Рисунок 5
Если в проекте имеются дифференциальные цепи, то следует задать правила проектирования и для них в подгруппе Differential Pairs Routing (см. рисунок 6).
Рисунок 6
После настройки правил проектирования можно приступить к компоновке электронных компонентов в пределах контура (габаритов печатной платы), а затем к трассировке.
Как правило, в списке цепей, загруженных в редактор печатных плат, могут присутствовать: сигнальные цепи, цепи питания (VCC), аналоговой «земли» (AGND), цифровой «земли» (DGND), дифференциальные цепи, DDR-цепи. Рекомендуется сначала осуществлять трассировку сложных цепей, таких как дифференциальные цепи, DDR-цепи. Далее следует трассировать сигнальные цепи, а затем цепи питания и земли, которым отводятся отдельные слои (как правило, внутренние), выполненные в виде медных полигонов.
Ниже приводится перечень рекомендаций по трассировке печатных плат:
- Принцип минимизации длины соединений. Сигнальные проводники выполняйте максимально короткими.
- При переходе со слоя на слой, размещайте горизонтальные проводники на одной стороне печатной платы, а вертикальные на другой, либо соблюдайте этот принцип в местах пересечения проводников угол пересечения 90 градусов, проводники на верхней стороне печатной платы не должны выполняться параллельно проводникам на противоположной стороне).
- Ширину печатного проводника выполняют в зависимости от протекающего тока. Для слаботочных аналоговых и цифровых цепей их выполняют, как правило, шириной 0,25 мм, что соответствует 3 классу точности печатных плат. Для цепей, по которым течет ток больше 0,3 А, ширину проводников следует увеличить. При выборе ширины сигнального печатного проводника используют правило 3/4: ширина проводника, подключаемого к контактной площадке не должна превышать ширину контактной площадки умноженную на 0,75. Для силовых цепей правило 3/4 можно не применять и использовать большую ширину печатного проводника.
- Правильно располагайте переходные отверстия относительно контактных площадок и печатные проводники
между контактными площадками (см. рисунок 7).
Рисунок 7
- Соединения между контактными площадками микросхем должны трассироваться вне зоны пайки.
В противном случае неправильная трассировка приведет к некачественному контакту (см. рисунок 8).
Рисунок 8
- Правильно подсоединяйте печатные проводники к контактным площадкам SMD-компонентов
с учетом пайки с целью избежать поворота этого компонента. Стрелками на рисунке показано направление миграции припоя,
слева предпочтительный вариант, справа вариант, который может привести к повороту компонента (см. рисунок 9).
Рисунок 9
- При трассировке включите шаг сетки, совпадающий с шагом расположения компонентов (как правило, с шагом микросхем) – 1,27 мм, 0,635 мм. Для компонентов с другим шагом сетки следует либо уменьшить шаг сетки, либо отключить привязку к сетке.
- При смене направления проводника следует применять угол изгиба 45 градусов или в виде дуги,
так как при повороте в 90 градусов ток распределяется неравномерно (как следствие, перегрев проводника),
кроме того на высоких частотах это приведет к тому, что данная часть схемы будет работать как антенна (см. рисунок 10).
Рисунок 10
- Если печатная плата многослойная, то выполняйте цепи питания и земли в виде полигонов (заливка медью желательно по всей площади печатной платы) и размещайте каждую из этих цепей на отдельном внутреннем слое друг относительно друга. Если печатная плата двусторонняя, то свободное пространство печатной платы, как на верхней стороне (Top), так и на нижней (Bottom), выполнить в виде полигона, подключенного к цепи земли (GND). Цепи питания развести широкими максимально прямолинейными проводниками без образования лишних перегибов и минимизацией количества сквозных отверстий между слоем Top и Bottom.
- Для печатных плат с более чем четырьмя слоями следует располагать высокоскоростные сигнальные проводники между полигонами земли и питания, а низкочастотным отводить внешние слои.
- Следует разделять земли на аналоговую (AGND) и цифровую части (DGND) для подавления шума.
При этом нельзя допускать перекрытий аналоговых и цифровых полигонов. Однако разделение не означает электрической изоляции
аналоговой от цифровой земли, они должны соединяться вместе в узле с низким импедансом. Данный узел, будет являться выводом
заземления для систем с питанием от сетевого переменного напряжения или общим выводом для систем с питанием от постоянного напряжения.
Все сигнальные токи и токи питания в этой схеме должны возвращаться к этой земле в одну точку, которая будет служить системной землей.
При этом точка соединения должна располагаться максимально близко к месту входа тока питания на плату. Здесь возможны три случая:
— одноточечное соединение для печатных плат, работающих в диапазоне частот от 1 Гц до 10 МГц (последовательное соединение увеличивает импеданс земли) и при максимальной длине печатного проводника равной 1/20 длины волны;
— многоточечное соединение рекомендуется применять на высоких частотах, так как такое соединение имеет меньший импеданс по сравнению с одноточечным соединением. При этом следует учитывать, что если имеются на печатной плате функциональные узлы и высокочастотные и низкочастотные, то ближе к земле располагают высокочастотные узлы, а низкочастотные располагают ближе к линии питания;
— комбинированное соединение рекомендуется применять, если на печатной плате имеется цифрой, аналоговый или силовой функциональные узлы.
- Шины питания и земли должны находиться под одним потенциалом по переменному току, что подразумевает использование конденсаторов развязки и распределенной емкости. Следует отметить, что развязывающие конденсаторы допустимо использовать на частотах более низких, чем частота их собственного резонанса, до тех пор, пока их импеданс на этих частотах остается достаточно низким.
- Располагайте шины и полигоны аналогового питания над полигоном аналоговой земли (аналогично для шин цифрового питания). Аналоговые сигнальные проводники располагайте над/под аналоговой землёй (AGND), следите, чтобы аналоговые сигнальные проводники пересекали только аналоговые проводники.
- Правильно разделяйте контактные площадки от полигонов. Контактные площадки,
которые соединяются полигоном необходимо отделять термобарьером, который позволяет предотвратить
неравномерный прогрев площадки при пайке (см. рисунок 11).
Рисунок 11
- На высоких частотах (ГГц) полигоны в многослойной печатной плате нужно соединять в нескольких местах
сквозными отверстиями по принципу "клетка Фарадея" (см. рисунок 12).
Рисунок 12
- Не забывайте использовать термобарьеры для пайки для штыревых компонентов и SMD-компонентов,
подключенных к полигону залитому медью. Термобарьеры позволяют улучшить технологичность платы для процесса монтажа,
в особенности для пайки «волной припоя» (см. рисунок 13).
Рисунок 13
- Полигоны необходимо размещать с обеих сторон печатной платы равномерно. Здесь следует различать сплошную заливку при реализации полигона и в виде сетки. Сплошная заливка может привести к деформации печатной платы при неравномерном их распределении, но позволяет получить меньший импеданс, по сравнению с заливкой в виде сетки. При заливке в виде сетки следует применять шаг не более 13 мм.
- При реализации полигонов могут образовываться изолированные медные участки, которые на высоких частотах могут создавать помехи. В связи с этим такие участки должны быть удалены.
После того как трассировка печатной платы выполнена, необходимо проверить корректность трассировки согласно правилам проектирования, заданных в настройках правил проектирования. Для этого необходимо просто запустить модуль проверки правил DRC (design rule checker). Если ошибок не обнаружено, то этап трассировки печатной платы можно считать завершенным. Дополнительно о трассировке печатных плат вы можете прочитать в статье, перейдя по ссылке Основы трассировки печатных плат. Высокоскоростной дизайн. Часть 1.
Трассировка печатных плат — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 февраля 2016; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 февраля 2016; проверки требуют 2 правки. У этого термина существуют и другие значения, см. Трассировка.Трассиро́вка печатных плат — один из этапов проектирования радиоэлектронной аппаратуры (РЭА), заключающийся в определении мест расположения проводников на печатной плате вручную или с использованием одной из САПР, предназначенной для проектирования печатных плат.
Существует три способа трассировки:
- ручная трассировка, при которой человек самостоятельно, используя определённые программные инструменты, наносит рисунок проводников на чертёж платы;
- автоматическая трассировка, при которой программа самостоятельно прокладывает проводники на чертеже платы, используя ограничения, наложенные разработчиком. Разработчик контролирует результат, при необходимости корректирует исходные параметры задачи и повторяет трассировку. Корректировка включает изменение расположения компонентов, предварительную отрисовку цепей вручную и т. п. На данный момент все современные системы проектирования имеют сложные и эффективные системы автоматической трассировки;
- интерактивная трассировка, при которой программа (автоматика) делает черновую работу по отрисовке цепи и контролю правил трассировки, а человек указывает программе (роботу) последовательность действий на сложных участках трассировки, контролирует результат её работы шаг за шагом. Интерактивная трассировка печатных плат может использоваться как для полностью ручной трассировки, так и для доработок печатной платы после автоматической трассировки.
Трассировка соединений является, как правило, заключительным этапом конструкторского проектирования радиоэлектронной аппаратуры (РЭА) и состоит в определении линий, соединяющих эквипотенциальные контакты элементов, и компонентов, составляющих проектируемое устройство.
Задача трассировки — одна из наиболее трудоёмких задач, возникающих при автоматизации проектирования РЭА. Сложность объясняется, в частности многообразием способов конструктивно-технологической реализации соединений, для каждого из которых при алгоритмическом решении задачи применяются специфические критерии оптимизации и ограничения. С математической точки зрения трассировка — задача выбора оптимального решения из огромного числа вариантов.
Одновременная оптимизация всех соединений при трассировке за счёт перебора всех вариантов в настоящее время невозможна. Поэтому разрабатываются в основном локально оптимальные методы трассировки, когда трасса оптимальна лишь на данном шаге при наличии ранее проведённых соединений.
Основная задача трассировки формулируется следующим образом: по заданной схеме соединений проложить необходимые проводники на плоскости (плате, кристалле и т. д.), чтобы реализовать заданные технические соединения с учётом заранее заданных ограничений. Основными являются ограничения на ширину проводников и минимальные расстояния между ними.
Исходной информацией для решения задачи трассировки соединений обычно являются список цепей, параметры конструкции элементов и коммутационного поля, а также данные по размещению элементов. Критериями трассировки могут быть процент реализованных соединений, суммарная длина проводников, число пересечений проводников, число монтажных слоёв, число межслойных переходов, равномерность распределения проводников, минимальная область трассировки и т. д. Часто эти критерии являются взаимоисключающими, поэтому оценка качества трассировки ведётся по доминирующему критерию при выполнении ограничений по другим критериям либо применяют аддитивную или мультипликативную форму оценочной функции, например, следующего вида:
F=∑i=1pλifi,{\displaystyle F=\sum _{i=1}^{p}\lambda _{i}f_{i},}
где:
- F{\displaystyle F} — аддитивный критерий;
- λi{\displaystyle \lambda _{i}} — весовой коэффициент;
- fi{\displaystyle f_{i}} — частный критерий;
- p{\displaystyle p} — число частных критериев.
Известные алгоритмы трассировки печатных плат можно условно разбить на три большие группы:
- волновые алгоритмы, основанные на идеях Ли и разработанные Ю. Л. Зиманом и Г. Г. Рябовым. Получили широкое распространение в существующих САПР, поскольку позволяют легко учитывать технологическую специфику печатного монтажа со своей совокупностью конструктивных ограничений. Гарантируют построение трассы, если путь для неё существует;
- ортогональные алгоритмы, обладающие большим быстродействием, чем алгоритмы первой группы. Для реализации на ЭВМ требуют в 75-100 раз меньше вычислений по сравнению с волновыми алгоритмами. Применяются при проектировании печатных плат со сквозными металлизированными отверстиями. Недостатки этой группы алгоритмов связаны с получением большого числа переходов со слоя на слой, отсутствием 100%-ой гарантии проведения трасс, большим числом параллельно идущих проводников;
- алгоритмы эвристического типа. Частично основаны на эвристическом приёме поиска пути в лабиринте, при котором каждое соединение проводится по кратчайшему пути, обходя встречающиеся на пути препятствия.