Как выбрать трансформатор тока для счетчика: таблица и формулы
При организации электроснабжения предприятий, жилых и коммерческих объектов, в тех случаях, когда суммарный ток нагрузки многократно превышает возможности узла учета, или же необходимо произвести учет электроэнергии высоковольтных потребителей, устанавливаются дополнительные узлы преобразования — трансформаторы тока (ТТ) и напряжения (ТН). Они позволяют произвести линейное преобразование и осуществить учет или контроль проходящего тока с помощью обычных однофазных или трехфазных электросчетчиков, амперметров, а также организовать систему защиты линии с помощью них. В этой статье мы узнаем как выбрать трансформатор тока для счетчика электроэнергии по мощности и другим параметрам.
Разновидность устройств
При выборе трансформатора нужно учитывать его место расположение (закрытые или открытые распределительные установки, встраиваемые системы), а также конструктивные особенности исполнения (проходные, шинные, опорные, разъемные).
Проходной ТТ устанавливают в комплексных РУ и используют в качестве проходного изолятора. Опорные используют для установки на ровной поверхности. Шинный ТТ устанавливается непосредственно на токоведущие части. В роли первичной обмотки трансформатора выступает участок шины. Встроенные модели как элемент конструкции, устанавливаются в силовые трансформаторы, масляные выключатели и пр. Разъемные ТТ выполнены разборными для быстрой установки на жилы кабеля, без физического вмешательства в целостность электрических сетей.
Кроме того, разделение также проходит по типу используемой изоляции:
- литая;
пластмассовый корпус;- твердая;
- вязкая компаудная;
- маслонаполненная;
- газонаполненная;
- смешанная масло-бумажная.
И различают по спецификации и сфере применения:
- коммерческий учет и измерения;
- защита систем электроснабжения;
- измерения текущих параметров;
- контроль и фиксация действующих значений;
Также различаются трансформаторы по напряжению: для электроустановок до 1000 Вольт и выше.
Правила выбора
При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.
U ном ≥ U уст
Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.
I ном ≥ I макс.уст
В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1 (Глава 1.5).
Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:
- Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
- Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
- Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
- Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от
- При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
- Расчет параметров ТТ производится в зависимости от сечения проводника и расчетной мощности.
Пример расчета:
По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:
При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.
Напоследок советуем читателям https://samelectrik.ru просмотреть полезное видео по теме:
Надеемся, теперь вам стало понятно, как выбрать трансформаторы тока для счетчиков и какие варианты исполнения ТТ бывают. Надеемся, предоставленная информация была для вас полезной и интересной!
Наверняка вы не знаете:
Выбор трансформаторов тока для присоединения расчетных счетчиков
Для правильного выбора трансформаторов тока (ТТ) для расчетных счетчиков, нам нужно правильно выбрать коэффициент трансформации трансформатора тока, исходя из того, что расчетная нагрузка присоединения, будет работать в аварийном режиме.
Коэффициент трансформации считается завышенным, если при 25%-ной нагрузке присоединения в нормальном режиме, ток во вторичной обмотке будет меньше 10% от номинального тока подключенного счетчика – 5 А.
Для того, чтобы присоединенные приборы, работали в требуемом классе точности (напоминаю что для счетчиков коммерческого учета класс точности трансформаторов тока должен быть – 0,2; 0,2S; для технического учета – 0,5; 0,5S), необходимо чтобы, подключаемая вторичная нагрузка Zн не превышала номинальной вторичной нагрузки трансформатора тока, для данного класса точности, при этом должно выполняться условие Zн ≤ Zдоп. Подробно это рассмотрено в статье: «Выбор трансформаторов тока на напряжение 6(10) кВ».
Еще одним условием правильности выбора трансформаторов тока, является проверка трансформаторов тока на токовую ΔI и угловую погрешность δ.
Угловая погрешность учитывается только в показаниях счетчиков и ваттметров, и определяется углом δ между векторами I1 и I2.
Токовая погрешность определяется по формуле [Л1, с61]:
где:
- Kном. – коэффициент трансформации;
- I1 – ток первичной обмотки ТТ;
- I2 – ток вторичной обмотки ТТ;
Пример выбора трансформатора тока для установки расчетных счетчиков
Нужно выбрать трансформаторы тока для отходящей линии, питающей трансформатор ТМ-2500/6. Расчетный ток в нормальном режиме составляет – 240,8А, в аварийном режиме, когда трансформатор будет перегружен на 1,2, ток составит – 289А.
Выбираем ТТ с коэффициентом трансформации 300/5.
1. Рассчитываем первичный ток при 25%-ной нагрузке:
2. Рассчитываем вторичный ток при 25%-ной нагрузке:
Как видим, трансформаторы тока выбраны правильно, так как выполняется условие:
I2 > 10%*Iн.счетчика, т. е. 1 > 0,5.
Рекомендую при выборе трансформаторов тока к расчетным счетчикам использовать таблицы II.4 – II.5.
Таблица II.5 Технические данные трансформаторов тока
Таблица II.4 Выбор трансформаторов тока
Максимальная расчетная мощность, кВА | Напряжение | |||
---|---|---|---|---|
380 В | 10,5 кВ | |||
Нагрузка, А | Коэффициент трансформации, А | Нагрузка, А | Коэффициент трансформации, А | |
10 | 16 | 20/5 | — | |
15 | 23 | 30/5 | — | — |
20 | 30 | 30/5 | — | — |
25 | 38 | 40/5 | — | — |
30 | 46 | 50/5 | — | — |
35 | 53 | 50/5 (75/5) | — | — |
40 | 61 | 75/5 | — | — |
50 | 77 | 75/5 (100/5) | — | — |
60 | 91 | 100/5 | — | — |
70 | 106 | 100/5 (150/5) | — | — |
80 | 122 | 150/5 | — | — |
90 | 137 | 150/5 | — | — |
100 | 152 | 150/5 | 6 | 10/5 |
125 | 190 | 200/5 | — | — |
150 | 228 | 300/5 | — | — |
160 | 242 | 300/5 | 9 | 10/5 |
180 | — | — | 10 | 10/5 (15/5) |
200 | 304 | 300/5 | — | — |
240 | 365 | 400/5 | 13 | 15/5 |
250 | — | — | 14 | 15/5 |
300 | 456 | 600/5 | — | — |
320 | 487 | 600/5 | 19 | 20/5 |
400 | 609 | 600/5 | 23 | 30/5 |
560 | 853 | 1000/5 | 32 | 40/5 |
630 | 960 | 1000/5 | 36 | 40/5 |
750 | 1140 | 1500/5 | 43 | 50/5 |
1000 | 1520 | 1500/5 | 58 | 75/5 |
Примечание.
Учитывая необходимость подключения трансформаторов тока для питания измерительных приборов и реле, для которых нужны различные классы точности, высоковольтные трансформаторы тока выполняются с двумя вторичными обмотками.
Литература:
1. Справочник по расчету электрических сетей. И.Ф. Шаповалов. 1974г.
Поделиться в социальных сетях
Указания по расчету нагрузок трансформаторов тока
Содержание
1. Общая часть
Всем доброго времени суток! Представляю Вашему вниманию типовую работу «Указания по расчету нагрузок трансформаторов тока» №48082-э «Теплоэлектропроект».
Вторичная нагрузка на трансформаторы тока (ТТ) складывается из:
- а) сопротивления проводов — rпр;
- б) полного сопротивления реле и измерительных приборов — Zр и Zп;
- в) переходного сопротивления принимаемого равным — rпер = 0,05 Ом.
Согласно ГОСТ трансформаторы тока должны соответствовать одному из следующих классов точности: 0,5; 1; 3; 5Р; 10Р.
Класс точности 0,5 должен обеспечиваться при питании от трансформатора тока расчетных счетчиков. При питании щитовых измерительных приборов класс точности трансформаторов тока должен быть не ниже 3. При необходимости для измерения иметь более высокий класс точности трансформаторы тока должны выбираться по классу точности на ступень выше, чем соответствующий измерительный прибор.
Например: для приборов класса 1 трансформаторов тока должен обеспечивать класс 0,5; для приборов — 1,5 трансформаторов тока должен обеспечивать класс точности 1,0.
Требования к трансформаторам тока для релейной защиты рассмотрены ниже.
При расчете нагрузки на ТТ в целях упрощения допускается сопротивления элементов вторичной цепи ТТ складывать арифметически, что создает некоторый расчетный запас.
Потребление токовых обмоток релейной и измерительной аппаратуры приведено в разделе «7. Справочные данные по потреблению релейной аппаратуры». Для удобства и упрощения расчета в указанных приложениях потребление дано в Омах. Для тех приборов и реле, для которых в каталогах указано их потребление в ВА, сопротивление в Омах определяется по выражению
где:
S – потребляемая мощность по токовым цепям, ВА;
I – ток, при котором задана потребляемая мощность, А.
При расчете сопротивления проводов (кабеля) во вторичных цепях ТТ используется:
где:
- rпр — активное сопротивление проводов (жилы кабеля) от трансформатора тока до прибора или реле, Ом;
- l – длина провода (кабеля) от трансформатора тока до места установки измерительных приборов или релейной аппаратуры, м;
- S – сечение провода или жилы кабеля, мм2;
- γ –удельная проводимость, м/Ом.мм2(для меди γ = 57, для алюминия γ =34,5).
2. Определение нагрузки на трансформаторы тока для измерительных приборов
Нагрузка на ТТ для измерительных приборов складывается из сопротивлений последовательно включенных измерительной аппаратуры, соединительных проводов и переходных сопротивлений в контактных соединениях.
Величина расчетной нагрузки Zн зависит также от схемы соединения ТТ.
При расчете определяется нагрузка для наиболее загруженной фазы ТТ.
В случае включения релейной аппаратуры последовательно с измерительной в расчетную нагрузку вводится также сопротивление реле. При этом расчетная нагрузка не должна превосходить допустимую в требуемом классе точности данного ТТ для измерительных приборов.
При соединении трансформаторов тока в звезду.
При соединении трансформаторов тока в неполную звезду.
При соединении ТТ в треугольник и включении измерительных приборов последовательно с реле во всех линейных проводах.
где:
— сопротивление нагрузки, включенной в линейном проводе трансформатора тока.
При соединении трансформаторов тока в треугольник и включении измерительного прибора последовательно с прибора последовательно с реле только в одном линейном проводе (например, в фазе А).
При использовании только одного ТТ.
В выражениях (3-7) известны сопротивления измерительных приборов Zп, сопротивления реле Zр, переходное сопротивление rпер и неизвестно сопротивление проводов rпр.
Поэтому расчет нагрузки на ТТ сводится к определению сопротивления соединительных проводов rпр.
Сопротивление rпр. определяется из условия обеспечения работа ТТ в требуемом классе точности при расчетной нагрузке. Поэтому должно быть Zн < Zдоп. Принимая Zн=Zдоп и пользуясь выражениями (3-7), определяется rпр для соответствующих схем соединения:
По найденному значению rпр определяется допустимое сечение соединительных проводов, пользуясь выражением (2).
Если в результате расчета сечение S окажется меньше 2,5 мм2, то оно должно быть принято равным 2,5 мм2 из условия механической прочности проводов в токовых цепях ТТ.
3. Определение напряжения на вторичной обмотке трансформатора тока
Сопротивление нагрузки трансформатора тока для измерительных приборов и релейной защиты по условию допустимого напряжения на вторичной обмотке трансформатора тока должно быть таким, чтобы при любом возможном виде короткого замыкания в месте установки трансформаторов тока измерения или защиты и любом возможном первичном токе трансформатора тока напряжение на зажимах вторичной обмотки трансформатора тока установившемся режиме не превышало 1000 В.
Это условие считается выполненным, если при любом виде к.з.
где:
- I1- наибольший возможный первичный ток при к.з.;
- nт – номинальный коэффициент трансформации трансформатора тока;
- Zн – фактическое сопротивление вторичной нагрузки трансформатора тока с учетом сопротивления принятого провода (жилы кабеля)
Если в результате расчета оказалось, что при Zн напряжение больше 1000 В, то следует перейти на большее сечение соединительных проводов (жил кабеля) до 10 мм2 включительно.
Если при S=10 мм2 напряжение окажется больше 1000 В, то следует перейти на больший коэффициент трансформации и расчет для определения Zн должен быть повторен.
4. Определение нагрузки на трансформаторы тока для релейной защиты
Нагрузка на ТТ для релейной защиты складывается из последовательно включенных сопротивлений релейной аппаратуры , соединительных проводов и переходных сопротивлений в контактных соединениях. Величина вторичной нагрузки зависит также от схемы соединения ТТ и от вида КЗ.
Релейная защита в условиях КЗ обычно работает при больших токах, которые во много раз превышают номинальный ток ТТ. Расчетами и опытом эксплуатации установлено, что для обеспечения правильной работы релейной защиты погрешности ТТ не должны превышать предельно допустимых значений.
По ПУЭ эта погрешность, как правило, не должна быть более 10%.
В ГОСТ 7746-88 точность ТТ, используемых для релейной защиты, нормируется по их полной погрешности (ε), обусловленной током намагничивания. По условию ε < 10% построены кривые предельных кратностей ТТ.
При этом наибольшее отношение первичного тока к его номинальному значению, при котором полная погрешность при заданной вторичной нагрузке не превышает 10%, называется предельной кратностью (К10).
Согласно тому же ГОСТ заводы-поставщики ТТ обязаны гарантировать значение номинальной предельной кратности (К10н), при которой полная погрешность ТТ, работающего с номинальной вторичной нагрузкой, не превышает 10%.
Чтобы найти допустимую нагрузку по кривым предельных кратностей, необходимо предварительно определить расчетную кратность тока К.З., т. е. отношение тока КЗ в расчетной точке к минимальному току ТТ (Красч.)
5. Определение расчетной кратности (Красч.) для выбора допустимой нагрузки (Zдоп.) на трансформаторы тока по кривым предельных кратностей
Для правильного выбора допустимой нагрузки на ТТ необходимо выбрать соответствующий режим и место короткого замыкания.
Расчетным режимом является КЗ, при котором ток к.з. имеет максимальную для данного ТТ величину Iмакс. в заданном месте КЗ.
Величины Iмакс. Выбираются различно для разных типов защиты зависимости от принципа их работы.
5.1 Токовые защиты с независимой характеристикой
Для максимальной токовой защиты с независимой характеристикой Iмакс = 1,1*Ic.з., поскольку для этих защит точная работа ТТ требуется лишь при токе их срабатывания.
Расчетная кратность определяется в условиях срабатывания защиты:
где:
- 1,1 – коэффициент, учитывающий 10%-ную погрешность ТТ при срабатывании защиты;
- Iс.з. – первичный ток срабатывания защиты;
- I1н – первичный номинальный ток ТТ.
5.2 Токовые отсечки
Для токовой отсечки Iмакс = 1,1*Ic.з., поскольку для этих защит точная работа ТТ требуется лишь при токе их срабатывания.
Расчетная кратность определяется в условиях срабатывания защиты:
где: n=1,2-1,3
5.3 Максимальные токовые защиты с зависимой характеристикой
Для МТЗ с зависимой характеристикой Iмакс должен соответствовать току КЗ, при котором производится согласование по времени защит смежных элементов.
Расчетная кратность:
Iк.з.макс.- максимальный ток короткого замыкания, при котором производится согласование смежных защит;
n=1,2-1,3
5.4 Направленные токовые и дистанционные защиты
Для предотвращения излишних срабатываний, многоступенчатых защит Iмакс определяется при КЗ в конце зоны первой ступени защит или в конце линии.
Расчетная кратность:
n – коэффициент, принимается при минимальном времени действия защиты: менее 0,5 сек равным 1,4-1,5, а при времени больше 0,5 сек равным 1,2-1,3.
5.5 Дифференциальные токовые защиты
Для предотвращения срабатывания защиты от токов небаланса Iмакс определяется при наибольшем токе внешнего КЗ.
Расчетная кратность:
I1расч.- максимальный ток при внешнем коротком замыкании;
n – коэффициент, принимается при выполнении защиты на реле с БНТ равным 1, а при реле без БНТ равным 1,8-2.
5.6 Дифференциально-фазные высокочастотные защиты
Для предотвращения срабатывания защиты от токов небаланса Iмакс определяется при наибольшем токе внешнего КЗ.
Расчетная кратность:
I1расч.- максимальный ток при коротком замыкании в конце защищаемой линии;
n — принимается 1,6-1,8.
5.7 Продольные дифференциальные токовые защиты линий
Для предотвращения срабатывания защиты от токов небаланса Iмакс определяется при наибольшем токе внешнего КЗ.
Расчетная кратность:
I1расч.- максимальный ток при коротком замыкании в конце защищаемой линии;
n – принимается 1,8-2,0.
По расчетной кратности, пользуясь кривыми предельных кратностей (по данным заводов-изготовителей трансформаторов тока) находится допустимое сопротивление Zдоп для трансформаторов тока рассматриваемой защиты.
В тех случаях, когда из-за отсутствия кривых предельных кратностей при проектировании вынужденно используются кривые 10%-ных кратностей, необходимо для учета возможного их завышения по сравнению с действительно допустимыми значениями по кривым предельных кратностей полученное по выражениям (13-19) значение Красч. увеличивать в 1,25 раз.
6.Определение расчетной нагрузки Zн
Расчетная нагрузка для трансформаторов тока релейной защиты определяется по выражениям, приведенным в таблице №1. В расчете принимается Zн=Zдоп.
По значению Zн можно определить сопротивление соединительных проводов (жил кабеля) во вторичных цепях трансформаторов тока.
Таблица 1 – расчетные формулы для определения вторичной нагрузки и сопротивления соединительных проводов трансформаторов тока для релейной защиты
7.Определение сопротивления соединительных проводов
В Таблице №1 приведены расчетные выражения, для определения сопротивления соединительных проводов во вторичных цепях трансформаторов тока в зависимости от их схем соединения и от вида КЗ.
При этом сопротивление релейной аппаратуры, подключенной к трансформаторам тока, может быть найдено по Справочные данные по потреблению релейной аппаратуры или по другим заводским данным.
По найденному значению rпр определяется допустимое сечение соединительных проводов.
Если в результате расчета S окажется менее 2,5 мм2, то оно должно быть принято равным 2,5 мм2 из условия механической прочности проводов в токовых цепях ТТ, после чего определяется фактическое сопротивление проводов по выражению (2).
Если в результате расчета сечение кабеля окажется чрезмерно большое (более 10 мм2), то для его уменьшения можно рекомендовать следующие мероприятия:
1. Применить последовательное соединение двух обмоток трансформаторов тока рассматриваемой защиты. При последовательном соединении одинаковых сердечников трансформаторов тока нагрузка на каждый сердечник ТТ уменьшается в 2 раза. При последовательном соединении разных сердечников трансформаторов тока расчетная нагрузка на ТТ уменьшается, так как она распределяется между обмотками трансформаторов тока пропорционально их ЭДС.
2. Изменить схему соединения трансформаторов тока вместо неполной звезды перейти к полной звезде; вместо схемы на разность токов перейти к схеме неполной звезды и т.п.
3. Применить другой трансформатор тока, допускающий большую вторичную нагрузку.
4. Установить дополнительный комплект трансформаторов тока и перевести на него часть вторичной нагрузки.
8.Справочные данные по потреблению релейной аппаратуры
Реле тока серии РТ-40
№ п/п | Тип реле | Пределы уставок, А | Сопротивление обмотки реле, Ом | Примечание |
---|---|---|---|---|
1 | РТ40/0,2 | 0,05-0,1 0,1-0,2 | 80 | — |
2 | РТ40/0,6 | 0,15-0,3 0,3-0,6 | 8,9 2,2 | — |
3 | РТ40/2 | 0,5-1 1-2 | 0,8 0,2 | — |
4 | РТ40/6 | 1,5-3 3-6 | 0,22 0,055 | — |
5 | РТ40/10 | 2,5-5 5-10 | 0,08 0,02 | — |
6 | РТ40/20 | 5-10 10-20 | 0,02 0,005 | — |
7 | РТ40/50 | 12,5-25 25-50 | 0,0051 0,00128 | — |
8 | РТ40/100 | 25-50 50-100 | 0,00288 0,00072 | — |
9 | РТ40/200 | 50-100 100-200 | 0,0032 0,0008 | — |
10 | РТ40/Ф | 1,75-3,5 2,9-5,8 4,4-8,8 8,8-17,6 | 0,090 0,036 0,020 0,008 | — |
Реле тока серии РТ-40/1Д
№ п/п | Пределы уставок, А | Полное сопротивление, Ом | ||
---|---|---|---|---|
Фазы | ||||
А | В | С | ||
1 | 0,15 | 40 | 20 | 21 |
2 | 0,4 | 25 | 13 | 13 |
3 | 1 | 14 | 7 | 7 |
4 | 2 | 9 | 5 | 5 |
5 | 4 | 6 | 2,5 | 2,8 |
6 | 5 | 5 | 2 | 2 |
Реле тока серии РТ 40/Р-1
Зависимость величины полного сопротивления от величины подаваемого тока при питании всех трех обмоток реле
№ п/п | Пределы уставок, А | Полное сопротивление, Ом | ||
---|---|---|---|---|
Фазы | ||||
А | В | С | ||
1 | 0,15 | 40 | 20 | 21 |
2 | 0,4 | 25 | 13 | 13 |
3 | 1 | 14 | 7 | 7 |
4 | 2 | 9 | 5 | 5 |
5 | 4 | 6 | 2,5 | 2,8 |
6 | 5 | 5 | 2 | 2 |
Реле тока серии РТ 40/Р-5
Зависимость величины полного сопротивления от величины подаваемого тока при питании всех трех обмоток реле
№ п/п | Пределы уставок, А | Полное сопротивление, Ом | ||
---|---|---|---|---|
Фазы | ||||
А | В | С | ||
1 | 1 | 1,6 | 0,9 | 0,92 |
2 | 3 | 0,8 | 0,35 | 0,36 |
3 | 5 | 0,5 | 0,25 | 0,26 |
4 | 7 | 0,4 | 0,17 | 0,18 |
5 | 15 | 0,25 | 0,08 | 0,1 |
6 | 25 | 0,15 | 0,06 | 0,08 |
Реле тока серии РТ 80
№ п/п | Тип реле | Сопротивление обмотки реле при разных уставках | Примечание | |
---|---|---|---|---|
Iном, А | Z, Ом | |||
1 | РТ81/1 | 4 | 0,62 | — |
2 | РТ81/1У | 5 | 0,4 | — |
3 | РТ82/1 | 6 | 0,28 | — |
4 | РТ82/1У | 7 | 0,204 | — |
5 | РТ83/1 | 8 | 0,156 | — |
6 | РТ83/1У | |||
7 | РТ84/1 | 9 | 0,123 | — |
8 | РТ84/1У | |||
9 | РТ85/1 | 10 | 0,1 | — |
10 | РТ85/1У | |||
11 | РТ86/1 | |||
12 | РТ86/1У | |||
13 | РТ81/2 | 2 | 2,5 | — |
14 | РТ81/2У | |||
15 | РТ82/2 | 2,5 | 1,6 | — |
16 | РТ82/2У | |||
17 | РТ83/2 | 3 | 1,11 | — |
18 | РТ83/2У | 3,5 | 0,82 | — |
19 | РТ84/2 | 4 | 0,625 | — |
20 | РТ84/2У | |||
21 | РТ85/2 | 4,5 | 0,495 | — |
22 | РТ86/2 | 5 | 0,4 | — |
Реле тока серии РТ 90
№ п/п | Тип реле | Сопротивление обмотки реле при разных уставках | Примечание | |
---|---|---|---|---|
Iном, А | Z, Ом | |||
1 | РТ91/1 | 4 | 1,56 | — |
2 | РТ91/1 | 5 | 1 | — |
3 | РТ91/1У | 6 | 0,695 | — |
4 | РТ91/1У | 7 | 0,51 | — |
5 | РТ95/1 | 8 | 0,39 | — |
6 | РТ95/1У | 9 | 0,308 | — |
7 | РТ95/1У | 10 | 0,25 | — |
8 | РТ91/2 | 2 | 6,25 | — |
9 | РТ91/2 | 2,5 | 4 | — |
10 | РТ91/2У | 3 | 2,78 | — |
11 | РТ91/2У | 3,5 | 2,03 | — |
12 | РТ95/2 | 4 | 1,56 | — |
13 | РТ91/2У | 4,5 | 1,24 | — |
14 | РТ91/2У | 5 | 1 | — |
Фильтр-реле тока обратной последовательности серии РТФ
№ п/п | Тип реле | Сопротивление обмотки реле при разных уставках | Примечание | |
---|---|---|---|---|
Iном, А | Z, Ом | |||
1 | РТФ 1М | 5 | 0,22 | На фазу |
2 | РТФ 1М | 1 | 5,5 | На фазу |
3 | РТФ 7/1 | 5 | 0,8 | На фазу |
4 | РТФ 7/1 | 10 | 0,2 | На фазу |
5 | РТФ 7/2 | 5 | 0,6 | На фазу |
6 | РТФ 7/2 | 1 | 15 | На фазу |
7 | РТФ 6М | 5 | 0,4 | На фазу |
8 | РТФ 6М | 10 | 0,1 | На фазу |
Реле токовые дифференциальные
№ п/п | Тип реле | Наименование обмоток | Сопротивление обмоток, Ом | Примечание |
---|---|---|---|---|
1 | РНТ 565 | Рабочая | 0,1 | При полностью включенных витках |
Первая уравнительная | 0,1 | При полностью включенных витках | ||
Вторая уравнительная | 0,1 | При полностью включенных витках | ||
2 | РНТ 566 | Первая рабочая | 2,5 | При полностью включенных витках |
Вторая рабочая | 1,5 | При полностью включенных витках | ||
Третья рабочая | 0,25 | При полностью включенных витках | ||
3 | РНТ 566/2 | Первая рабочая | 1,5 | При полностью включенных витках |
Вторая рабочая | 0,1 | При полностью включенных витках | ||
4 | РНТ 567 | Первая рабочая | 0,05 | При полностью включенных витках |
Вторая рабочая | 0,05 | При полностью включенных витках | ||
5 | РНТ 567/2 | Первая рабочая | 0,5 | При полностью включенных витках |
Вторая рабочая | 0,5 | При полностью включенных витках |
Выбор трансформаторов тока для электросчетчика 0,4кВ
Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.
1 Номинальное напряжение трансформатора тока.
В нашем случае измерительный трансформатор должен быть на 0,66кВ.
2 Класс точности.
Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.
3 Номинальный ток вторичной обмотки.
Обычно 5А.
4 Номинальный ток первичной обмотки.
Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.
Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.
Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:
1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.
В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.
А сейчас вспомним математику и рассмотрим на примере данные требования.
Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.
Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.
140/40=3,5А – ток вторичной обмотки при номинальном токе.
5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.
Как видим 3,5А>2А – требование выполнено.
14/40=0,35А – ток вторичной обмотки при минимальном токе.
5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.
Как видим 0,35А>0,25А – требование выполнено.
140*25/100 – 35А ток при 25%-ной нагрузке.
35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.
5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.
Как видим 0,875А>0,5А – требование выполнено.
Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.
По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.
При выборе трансформаторов тока можно руководствоваться данными таблицы:
Выбор трансформаторов тока по нагрузке
Обращаю ваше внимание, там есть опечатки
Советую почитать:
Выбор трансформаторов тока
Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО — везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки.
Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока.
Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током.
Зачем нужны трансформаторы тока
Электрики, знакомые с электрооборудованием ~220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока. Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение. В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.
Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже — 1 А или 10 А).
Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.
Как выбрать трансформатор тока
Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции.
Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5. Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии.
Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии.
А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют.
Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью.
Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика — в «Правилах устройсва электроустановок» (ПУЭ).
Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют «трансформаторами с завышенным коэффициентом трансформации» и ограничивают их использование следующим образом.
1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.
Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило:
Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика.
Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии.
Расчет минимального и максимального значения коэффициента трансформации
Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.
Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети. Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции. Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.
Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.
Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.
Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом — 20/5.
Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).
Например, минимальный коэффициент трансформации — 15/5, расчетный уровень рабочего тока — 25% от максимального, ток во вторичной обмотке трансформатора — 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ — 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение — 30/5.
Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов
пусковой и номинальный ток, пример на 10 кВ
Содержание статьи:
Суммарный нагрузочный ток на линию жилого, коммерческого объекта или предприятия в некоторых случаях может превышать ее фактические возможности. Правильный расчет трансформатора тока поможет обеспечить качество линейного преобразования, контроль и защиту электросети.
Причины для установки токовых трансформаторов
Трансформатор тока РТП-58
Устройство предназначено для трансформации первичного значения тока до безопасного для сети. Трансформаторы также эксплуатируются с целью:
- разграничения низковольтной учетной аппаратуры и реле, подкинутых на вторичную обмотку, если в сети первичное высокое напряжение;
- повышения или понижения показателей напряжения;
- замера состояния электросети и параметров переменного тока;
- обеспечения безопасности ремонтных и диагностических работ;
- быстрой активации релейной защиты при коротких замыканиях;
- учета энергозатрат – с ними обычно совмещен электросчетчик.
Для измерения понадобится подключить ТТ в разрыв провода, а на вторичную отметку подсоединить вольтметр или амперметр, совмещенный с резистором.
Разновидности трансформаторов тока
Выбирать прибор, подходящий под напряжение сети или конкретные работы, необходимо на основании классификации по разным признакам.
Назначение
Существуют такие трансформаторы:
- измерительные – замеряют параметры цепи;
- защитные – предотвращают перегрузки, выход оборудования из строя;
- промежуточные – подключаются в цепь с релейной защитой, выравнивают токи в схемах дифзащиты;
- лабораторные – отличаются высокой точностью.
У лабораторных моделей больше коэффициентов преобразования.
Тип монтажа
Для частного дома и квартиры можно подобрать аппарат, монтируемый внутри или снаружи помещения. Некоторые модификации встраиваются в оборудование, а также надеваются на проходную изоляцию. Для измерения и лабораторных тестов используются переносные модели.
Конструкция первичной обмотки
Существуют шинные, одновитковые (со стержнем) и многовитковые (с катушкой, обмоткой петлевого типа и «восьмеркой») устройства.
Тип изоляции
Бывают следующие преобразователи:
- сухая изоляция – на основе литой эпоксидки, фарфора или бакелита;
- бумажно-масляная – стандартная или конденсаторная;
- газонаполненные – внутри находится неорганический элегаз с высоким пробивным напряжением;
- компаундные – внутри находится заливка из термоактивной и термопластичной смолой.
Компаунд имеет самые высокие показатели влагостойкости.
В зависимости от количества ступеней трансформации можно подобрать одноступенчатые и каскадные модели. Вся линейка имеет рабочее напряжение более 1000 В.
Класс точности
Класс точности токового трансформатора прописан в ГОСТ 7746-2001 и зависит от его назначения, а также параметров первичного тока и вторичной нагрузки:
- В условиях малого сопротивления происходит почти полное шунтирование намагниченной ветви. Прибор работает с большой погрешностью.
- При повышении сопротивления также увеличивается погрешность. Причина – функционирование устройства на участке насыщения.
- При минимальном номинале первичного тока трансформатор работает в нижней части намагниченной кривой, при максимальном – на участке насыщения.
Точный подбор трансформатора по классу точности можно произвести на основе таблицы.
Класс точности | Номинал первичного тока в % | Предел вторичной нагрузки в % |
0,1 | 5, 20, 100-200 | 25-100 |
0,2 | ||
0,2 S | 1,5, 20, 100, 120 | |
0,5 | 5, 20, 100, 120 | |
0,5 S | 1, 5, 20, 100, 120 | |
1 | 5, 20, 100-120 | |
3 | 50-120 | 50-100 |
5 | ||
10 |
Для устройств защиты класс точности также определяется по таблице.
Класс точности | Предельная погрешность | Процент предельной вторичной нагрузки | ||
тепловая | угловая | |||
мин | ср | |||
5Р | ±1 | ±60 | ±1,8 | 5 |
10Р | ±3 | Норма отсутствует | 10 |
Для энергоучета применяются модели с классом точности 0,2S – 0,5, для амперметров с минимальной чувствительностью – с 1-м или 3-м, для релейной защиты – 5P и 10Р.
Особенности выбора
В процессе выбора трансформатора тока необходимо руководствоваться базовыми параметрами:
- Номинал сетевого напряжения. Номинальный показатель должен превышать или быть равным рабочему напряжению.
- Ток первичной и вторичной обмотки. Первый показатель зависит от коэффициента трансформации, второй – зависит от того, какой счетчик.
- Коэффициент преобразования. Подбирается по нагрузке в аварийных случаях, но ПУЭ устанавливают необходимость монтажа устройств с коэффициентом, большим, чем номинальный.
- Класс точности. Зависит от целевого использования счетчика. На коммерческом предприятии оправданы приборы 0,5S, в частном доме – 1S.
Конструктивное исполнение определяется типом счетчика. Для моделей до 18 кВ подойдет однофазный или трехфазный аппарат. Если значение больше 18 кВ, используется трансформатор на одну фазу.
Подбор токового трансформатора для организации релейной защиты
Релейный токовый трансформатор отличается классом точности 10Р и 5Р. В ПУЭ установлено, что его погрешность не должна быть более 10 % по току и 7 градусов по углу. При превышении погрешности устанавливается дополнительное оборудование.
В нормальных условиях трансформаторное реле определяет тип поломки (низкое напряжение, повышенный/пониженный ток или частота). После измерения параметров и обнаружения отклонений активируется защита – сеть обесточивается.
Нюансы выбора устройств для цепи учета
К цепи учета для корректности замеров можно подключать приборы с классом точности не более 0,5(S). При наличии колебаний и аварий графики протекания тока и напряжения бывают некорректными. Несоблюдение класса точности может привести к завышению показателей счетчика.
В п. 1.5.17 ПУЭ установлено, что при завышенном коэффициенте трансформатор для цепи учета должен иметь вторичный ток:
- при максимальной нагрузке – не более 40 %;
- при минимальной нагрузке – не более 5 %;
- класс точности – от 25 до 100 % от номинала.
Коэффициент ТТ по мощности бывает от 1 до 5 % первички.
Таблица предварительного выбора трансформатора тока по мощности и току
Табличный подбор оборудования целесообразно производить после уточнения технических параметров аппарата. Если они известны, стоит выбрать ТТ по таблице, где указана мощность, нагрузка и трансформационный коэффициент.
Максимальная мощность при расчете, кВА | Сеть 380 В | |
Нагрузка, А | Коэффициент трансформации, А | |
10 | 16 | 20/5 |
15 | 23 | 30/5 |
20 | 30 | 30/5 |
25 | 38 | 40/5 |
35 | 53 | 50/5 или 75/5 |
40 | 61 | 75/5 |
50 | 77 | 75/5 или 100/5 |
Для сети с напряжением 1,5 кВ применяется аналогичная таблица.
Максимальная мощность при расчете, кВА | Сеть 1,5 кВ | |
Нагрузка, А | Коэффициент трансформации, А | |
100 | 6 | 10/5 |
160 | 9 | 10/5 |
180 | 10 | 10/5 или 15/5 |
240 | 13 | 15/5 |
При табличном способе нужно учитывать, что вторичный ток прибора не должен быть больше 110 % от номинала.
Надежность измерительных трансформаторов напряжения в сети с изолированной нейтралью
Простой измерительный аппарат предназначен для понижения номиналов напряжения, которое подается на измерители и защитные реле, подключенные к сети 6-10 кВ. Трансформатор исправно работает только в условиях заземления нейтрали.
При феррорезонансных реакциях (обрыв фазы ЛЭП, прикосновение ветвями, стекание капель росы по проводам, некорректная коммутация) существуют риски поломок трансформаторов напряжения. Частота сбоев составляет 17 и 25 Гц. В этих условиях через первичную обмотку протекает сверхток и она перегорает.
Если используется схема «Звезда-Звезда», в условиях повышения напряжения повышается индукция магнитопровода. Прибор перегорает. Предотвратить этот процесс можно при помощи:
- уменьшения показателей рабочей индукции;
- подключения в сети устройств, демпфирующих сопротивление;
- создания трехфазного устройства с общей магнитной пятистержневой системой;
- эксплуатации аппаратов, подключенный в сеть при размыкании треугольника;
- заземления нейтрали посредством реактора-токоограничителя.
Простейший вариант – использовать специальные обмотки или релейные схемы.
Расчет трансформатора тока по мощности
Токовый трансформатор ставится на 3 жилы провода, но модели с классом точности 0,5S, где одно кольцо идет на одну фазу, можно подключать к одножильному кабелю. Перед установкой прибора производится его расчет.
Пример расчета на 10 кВ
Модели на 10 кВ подходят для коммерческого учета энергии. Для вычислений можно использовать онлайн-программу – калькулятор. После ввода данных в поля и нажатия кнопки расчета появится нужная информация.
Если программы нет, рассчитать параметры устройства можно самостоятельно. Понадобится перевести трехсекундный ток термической стойкости в односекундный. Для этого используется формула I3с=I1с/1,732.
Сложность применения данного аппарата – минимальный, около 10 А, силовой ток цепи.
Трансформаторы тока, устанавливаемые на производстве или в жилом многоквартирном доме, самостоятельно не рассчитываются. Понадобится обратиться в компанию энергоснабжения для получения ТУ с моделью узла учета и типом устройства, номиналом автоматов. Это исключает сложности самостоятельных вычислений.
https://
расчет по нагрузке и назначение
Содержание статьи:
Технические решения современных домов изобилуют приборами, которые создают нагрузку на сеть. Электрические варочные панели, духовки, котлы и бойлеры лидируют в потреблении. Запросы современных индукционных плит доходят до 11000 ВА, а учётная аппаратура не подключается напрямую при 100+ А. Альтернативный выбор — использовать трансформаторы тока (ТТ) для электросчётчиков.
Устройство ТТ
Трансформатор тока
Трансформаторы преобразовывают измеряемую величину из большей в меньшую или наоборот. Действуют они с помощью электромагнитной индукции. В основе прибора находится магнитный сердечник, собранный из прямоугольных стальных рамок, а на нём закреплены витки изолированных проводов — обмотки. Входная катушка подключена к источнику и у ТТ представлена всего одним витком. В зависимости от модели трансформатора место первичной обмотки может занимать:
- намотка на сердечнике;
- зафиксированная шина с соединительным винтом, которая проходит через корпус;
- отверстие ступенчатой или прямоугольной формы, чтобы пропустить и закрепить шину при монтаже;
- круглое окно под жилу кабеля для бесконтактных соединений (бытовые реле со встроенными трансформаторами).
Конструкция ТТ
Отличие измерительных трансформаторов от силовых в том, что ток вторичной цепи остаётся постоянным вне зависимости от сопротивления потребителя — меняется напряжение. У включённого в сеть трансформатора тока нельзя размыкать вторичную обмотку. Она всегда должна быть замкнута на измерительное устройство, при его отсутствии — перемычками накоротко. Если продуцируемый ток исчезнет, напряжение достигнет значения в киловольты. Скачок спровоцирует выход из строя аппаратуры (особенно чувствительны полупроводниковые приборы), повреждение изоляции и возгорание, витковое замыкание, травмирование обслуживающего персонала. В целях безопасности заземление каждой обмотки в одной точке является обязательным.
Ключевые параметры измерительных трансформаторов
Принцип действия трансформатора тока
Номинальное напряжение определяет цепи, в которых трансформатор может функционировать. Существуют две большие группы: до 1кВ и выше. В быту распространены преобразователи класса 0,66 кВ.
Коэффициент трансформации — отношение номинального первичного и вторичного токов. На входе значения варьируются в зависимости от параметров питающей сети: 1, 2, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000. На выходе оно унифицировано под шкалу измерительных приборов 1, 2, 5. Маркировка с обозначением выглядит как дробь (50/5, 100/5, 200/5 и т. д.).
Класс точности указывает на максимальную допустимую погрешность в учёте энергии в процентах. Наиболее точные приборы используются в коммерческих целях:
Символ s указывает на то, что учёт возможен в пределах минимального деления. Для других моделей это слепая зона.
В измерительных цепях разной направленности:
Релейная защита: 10Р.
Если количество обмоток больше одной, для каждой класс точности определяется отдельно. До 1000 В принято соединять простые ТТ последовательно, а выше 1000 В это накладно, поэтому устанавливается один преобразователь с несколькими обмотками. Например, первая может быть на цепь защиты — 10Р, вторая 0,5, третья — 0,5s.
При несоблюдении номинальной мощности нагрузки, указанной в характеристиках трансформатора (5 ВА, 10 ВА, 15 ВА, 30 ВА и т. д.) класс точности падает относительно заявленного.
Оборудование учётного узла
Вводной автоматический выключатель
Для учётного шкафа узла свыше 100 А определен минимальный комплект оборудования.
Вводной автоматический выключатель, через который силовая линия заходит во внутреннюю сеть. От его нижней части до трансформаторов доступ для неквалифицированного персонала закрыт по нормам. Простой вариант защиты представлен оргстеклом, зафиксированным опломбированными шпильками.
Трансформаторы тока. Коэффициент трансформации зависит от мощности, которая выделена пользователю сети. Расчёт производят сотрудники Энергосбыта и предоставляют ТУ (технические условия).
Однофазный счётчик не предполагает использование преобразователей. В трёхфазных сетях распределение нагрузки может быть неравномерно, поэтому учёт ведётся по каждой фазе отдельно. Выбирать все 3 ТТ необходимо от одного производителя, с одинаковым набором свойств.
Технические паспорта нужно сохранить до регистрации узла. Проверяющий не примет трансформатор, после выпуска которого прошло больше года. Для пломбы на корпусе устройства присутствует специальная заглушка с винтом. Под ней может находиться вторая пара клемм для заземления и крепление для сети напряжения.
Испытательная коробка переходная
Колодка клеммная измерительная ККИ (испытательная панель) состоит из 2 секторов. Токовый имеет 7 пар клемм. 1 — заземление. К 6 остальным подходят провода от вторичных обмоток ТТ. Между ними можно установить попарные перемычки для замыкания сети перед отключением учётного устройства. В сектор напряжения заходят кабеля фаз A, B, C и нулевой проводник N. Ползунковые перемычки позволяют размыкать цепь при помощи отвёртки.
Счётчики могут быть электромеханические (дисковые), электронные (с ЖК дисплеем, дистанционным управлением), комбинированные. Энергосбыт предписывает требования к прибору в ТУ индивидуально. Схема подключения каждой модели находится на крышке или в прилагаемом паспорте.
Счетчики электроэнергии
Универсальный счётчик имеет 10 клемм, сгруппированных по 3 на каждую фазу, последняя — ноль. Первая, третья клемма — выход с вторичной обмотки трансформатора И1, И2; вторая — фазный провод.
Производители выпускают похожие счётчики прямого и нет подключения. При подборе нужно внимательно изучить маркировку. На фазном счётчике вместо максимально допустимого значения тока указан коэффициент трансформации (например: 5(7,5), 3X150/5 А)
Провода используют жёсткие, сечение 2,5+ мм2, формируя кольца для подключения. Возможны мягкие с изолированными наконечниками. В счётчике жила зажимается двумя винтами.
Патрон с электролампой через клавишный выключатель от конденсата в щитах наружной установки.
Бокс с окошками под табло учётного прибора и рычаги автоматов.
Комплектация дополняется защитной автоматикой в соответствии с проектом электросети.
Чтобы подобрать трансформатор для трёхфазного счётчика, следует составить желаемый план разводки электросети, утвердить его с региональным представителем Энергосбыта и получить технические условия. Выбирать модель следует строго по указанным в документе характеристикам.