Трехфазный двухобмоточный трансформатор — Большая Энциклопедия Нефти и Газа, статья, страница 1
Трехфазный двухобмоточный трансформатор
Cтраница 1
Трехфазные двухобмоточные трансформаторы, перечисленные в настоящем разделе, предназначены для работы в отапливаемых помещениях с относительной влажностью ноздуха не более 65 % и с температурой не оыше 35 С. [1]
В трехфазных двухобмоточных трансформаторах начала и концы обмоток обозначают соответственно буквами А, В, С; а, Ь, с и X, Y, Z; х, у, г. Большие буквы относятся к высшему напряжению, а малые — к обмоткам низшего напряжения. [2]
Итак, трехфазный двухобмоточный трансформатор ( рис. 8.17, д) имеет один трехстержневой магнитопровод с двумя обмотками на каждом из стержней. Каждая фаза трехстержне-вого трансформатора представляет собой по существу однофазный трансформатор. Поэтому анализ работы и расчет трехфазных трансформаторов при равномерной нагрузке каждой фазы аналогичны однофазным и схема замещения изображается для одной фазы. [3]
Как устроен силовой трехфазный двухобмоточный трансформатор. [4]
Предусматривается выпуск трехфазных двухобмоточных трансформаторов с РПН мощностью 2 5 — 125 MB А класса ПО кВ и 16 0 — 63 MB-А класса 150 кВ; трехобмоточных трансформаторов мощностью 6 3 — 80 MB-А класса ПО кВ и 16 0 — 63 MB-А класса 150 кВ с РПН на обмотке ВН и ПБВ на обмотке СН; двухобмоточных трансформаторов класса 110 кВ мощностью 80 MB-А с ПБВ, а также двухобмоточных трансформаторов мощностью 125, 200 и 400 MB-А класса ПО кВ, не имеющих ответвлений для регулирования. [6]
На подстанциях обычно устанавливают трехфазные двухобмоточные трансформаторы или автотрансформаторы. Установка трехобмоточных трансформаторов, так же как и на электростанциях, требует специальных обоснований. [7]
Во всех остальных случаях трехфазные двухобмоточные трансформаторы изготовляют с обмотками, соединенными по схемам К / А 11 или Ко / Д-11. Последнее из этих соединений применяют в тех случаях, когда нейтраль обмотки высшего напряжения должна быть заземлена. [8]
Обмотки ВН и НН трехфазных двухобмоточных трансформаторов соединяют по схеме звезда или треугольник с соответствующим обозначением. [10]
Для проверки группы соединения трехфазного двухобмоточного трансформатора источник постоянного тока последовательно подключается к выводам А-В, В-С, А-С обмотки ВН и проверяется отклонение стрелки гальванометра на фазах а-в, в-с, а-с. При этом производится девять измерений. [12]
Все изложенное относится к трехфазному двухобмоточному трансформатору, у которого на каждом стержне две обмотки — первичная и вторичная. Однако во многих случаях это оказывается недостаточным. Например, трансформатор мощностью 20 мва с первичным напряжением 110 кв должен часть мощности отдать рядом расположенному заводу, а часть передать в более отдаленный промышленный район. [13]
Все изложенное относится к трехфазному двухобмоточному трансформатору, у которого на каждом стержне две обмотки — первичная и вторичная. Однако во многих случаях это оказывается недостаточным. Например, трансформатор мощностью 40 MB-А с первичным напряжением 110 кВ должен часть мощности отдать рядом расположенному заводу, а часть передать в более отдаленный промышленный район. [14]
Страницы: 1 2 3 4
Трехобмоточные трансформаторы | Схемы конструкций и назначение основных элементов трансформатора
Страница 2 из 11
Трехобмоточные трансформаторы применяют в основном в качестве понижающих трансформаторов мощностью до 100 MB А с высшим напряжением до 220 кВ. Мощности обмоток высшего, среднего и низшего напряжений составляют соответственно 100/100/100, 100/100/67 и 100/67/100% от номинальной мощности трансформатора. Сумма нагрузок обмоток среднего и низшего напряжений не должна превышать номинальной мощности трансформатора.
Рис. 2.7. Размещение обмоток (а) и схема замещения (б) трехфазного трансформатора с расщепленной обмоткой низшего напряжения
Разновидностью трехобмоточного трансформатора является трехфазный трансформатор с расщепленной обмоткой низшего напряжения. В таком трансформаторе (рис. 2.7, а) обмотка низшего напряжения каждой фазы выполняется из двух частей (ветвей), расположенных симметрично по отношению к обмотке высшего напряжения. Номинальные напряжения ветвей обмотки одинаковы. Мощность каждой обмотки низшего напряжения составляет часть номинальной мощности трансформатора (при двух ветвях — 1/2, при трех ветвях — 1/3). В трехфазных трансформаторах обе части расщепленной обмотки размещены на общем стержне соответствующей фазы одна над другой, а в однофазных трансформаторах части обмотки размещены на разных стержнях. Каждая ветвь расщепленной обмотки имеет самостоятельные выводы. Допускается любое распределение нагрузки между ветвями расщепленной обмотки, например при двух ветвях одна ветвь может быть полностью нагружена, а вторая отключена, или обе ветви нагружены полностью.
Для однофазных трансформаторов коэффициент расщепления 4, а для трехфазных трансформаторов кр -3,5.
Автотрансформатор представляет собой многообмоточный трансформатор, у которого две обмотки связаны электрически. В энергосистемах применение получили трехобмоточные автотрансформаторы — трехфазные и группы из однофазных. Их широко используют по соображениям экономического порядка вместо обычных трансформаторов для соединения эффективнозаземленных сетей с напряжением 110 кВ и выше при отношении номинальных напряжений, не превышающем 4.
Обмотка А—Ат называется последовательной, а обмотка Ат—X— общей. Вывод А является выводом высшего напряжения, вывод Ат — выводом среднего напряжения. Обмотки трехфазных автотрансформаторов (или групп из трех однофазных автотрансформаторов) соединяют в звезду с заземленной нейтралью
Рис. 2.8. Принципиальная схема двухобмоточного автотрансформатора
Обозначим общее число витков в обеих обмотках автотрансформатора через ги1, а число витков в общей обмотке через ги2. Тогда число витков в последовательной обмотке будет wx — w2. Отношение п – w1/w2 представляет собой коэффициент трансформации автотрансформатора.
Последовательную и общую обмотки рассматривают как первичную и вторичную обмотки трансформатора.
Проходная мощность для схемы, показанной на рис. 2.8,
S=UBIB=UCIC.
Сумма трансформаторной и электрической мощностей равна проходной мощности автотрансформатора:
S= STP + 5ЭЛ = (UB — с7с)/в + UJB = UJB.
Отношение трансформаторной мощности к проходной, называется
Под номинальной мощностью автотрансформатора понимают его проходную мощность при номинальных условиях. Соответствующую номинальной мощности трансформаторную (электромагнитную) мощность называют типовой мощностью. Размеры и масса автотрансформатора определяются не проходной, а трансформаторной мощностью. Чем ближе к единице отношение UJUB, тем меньше трансформаторная мощность при заданной проходной мощности. Следовательно, замена трансформатора соответствующим автотрансформатором становится все выгоднее.
Преимущества автотрансформаторов перед трансформаторами той же проходной мощности заключаются в следующем:
для изготовления автотрансформатора требуется меньше меди, стали и изоляционных материалов, поэтому стоимость автотрансформатора меньше;
потери мощности в автотрансформаторе меньше, а его КПД выше;
габаритные размеры автотрансформатора меньше, что позволяет строить их большей проходной мощности и облегчает транспортировку.
Перечисленные преимущества автотрансформаторов тем заметнее, чем меньше разность высшего и среднего напряжений.
Все сказанное ранее относится к двухобмоточным автотрансформаторам.
Город | Регион/Область | Срок доставки |
---|---|---|
Майкоп | Республика Адыгея | 3-4 дней |
Уфа | Республика Башкортостан | 1-3 дней |
Улан-Удэ | Республика Бурятия | 5-15 дней |
Горно-Алтайск | Республика Алтай | 1-2 дней |
Минск — Козлова | Минск | 1-2 дней |
Назрань | Республика Ингушетия | 1-2 дней |
Нальчик | Кабардино-Балкарская Республика | 1-2 дней |
Элиста | Республика Калмыкия | 1-2 дней |
Черкесск | Республика Карачаево-Черкессия | 1-2 дней |
Петрозаводск | Республика Карелия | 1-2 дней |
Сыктывкар | Республика Коми | 1-2 дней |
Йошкар-Ола | Республика Марий Эл | 1-2 дней |
Саранск | Республика Мордовия | 1-2 дней |
Якутск | Республика Саха (Якутия) | 1-2 дней |
Владикавказ | Республика Северная Осетия-Алания | 1-2 дней |
Казань | Республика Татарстан | 5-7 дней |
Кызыл | Республика Тыва | 5-7 дней |
Ижевск | Удмуртская Республика | 5-7 дней |
Абакан | Республика Хакасия | 5-7 дней |
Чебоксары | Чувашская Республика | 5-7 дней |
Барнаул | Алтайский край | 5-7 дней |
Краснодар | Краснодарский край | 5-7 дней |
Красноярск | Красноярский край | 5-7 дней |
Владивосток | Приморский край | 5-7 дней |
Ставрополь | Ставропольский край | 5-7 дней |
Хабаровск | Хабаровский край | 7-12 дней |
Благовещенск | Амурская область | 7-12 дней |
Архангельск | Архангельская область | 7-12 дней |
Астрахань | Астраханская область | 7-12 дней |
Белгород | Белгородская область | 7-12 дней |
Брянск | Брянская область | 7-12 дней |
Владимир | Владимирская область | 7-12 дней |
Волгоград | Волгоградская область | 7-12 дней |
Вологда | Вологодская область | 7-12 дней |
Воронеж | Воронежская область | 7-12 дней |
Иваново | Ивановская область | 7-12 дней |
Иркутск | Иркутская область | 7-12 дней |
Калининград | Калиниградская область | 7-12 дней |
Калуга | Калужская область | 4-7 дней |
Петропавловск-Камчатский | Камчатская область | 4-7 дней |
Кемерово | Кемеровская область | 4-7 дней |
Киров | Кировская область | 4-7 дней |
Кострома | Костромская область | 4-7 дней |
Курган | Курганская область | 4-7 дней |
Курск | Курская область | 1-3 дней |
Санкт-Петербург | Ленинградская область | 1-3 дней |
Липецк | Липецкая область | 1-3 дней |
Магадан | Магаданская область | 1-3 дней |
Москва | Московская область | 1-3 дней |
Мурманск | Мурманская область | 1-3 дней |
Нижний Новгород | Нижегородская область | 1-3 дней |
Новгород | Новгородская область | 1-3 дней |
Новосибирск | Новосибирская область | 1-3 дней |
Омск | Омская область | 1-3 дней |
Оренбург | Оренбургская область | 1-3 дней |
Орел | Орловская область | 1-3 дней |
Пенза | Пензенская область | 1-3 дней |
Пермь | Пермская область | 1-3 дней |
Псков | Псковская область | 1-3 дней |
Ростов-на-Дону | Ростовская область | 1-3 дней |
Рязань | Рязанская область | 1-3 дней |
Самара | Самарская область | 1-3 дней |
Саратов | Саратовская область | 1-3 дней |
Южно-Сахалинск | Сахалинская область | 1-3 дней |
Екатеринбург | Свердловская область | 1-3 дней |
Смоленск | Смоленская область | 1-2 дней |
Тамбов | Тамбовская область | 1-2 дней |
Тверь | Тверская область | 1-2 дней |
Томск | Томская область | 1-2 дней |
Тула | Тульская область | 1-2 дней |
Тюмень | Тюменская область | 1-2 дней |
Ульяновск | Ульяновская область | 1-2 дней |
Челябинск | Челябинская область | 1-2 дней |
Чита | Читинская область | 1-2 дней |
Ярославль | Ярославская область | 1-2 дней |
Москва | г. Москва | 1-2 дней |
Санкт-Петербург | г. Санкт-Петербург | 1-2 дней |
Биробиджан | Еврейская автономная область | 1-2 дней |
пгт Агинское | Агинский Бурятский авт. округ | 1-2 дней |
Кудымкар | Коми-Пермяцкий автономный округ | 1-2 дней |
пгт Палана | Корякский автономный округ | 1-2 дней |
Нарьян-Мар | Ненецкий автономный округ | 1-2 дней |
Дудинка | Таймырский (Долгано-Ненецкий) автономный округ | 1-2 дней |
пгт Усть-Ордынский | Усть-Ордынский Бурятский автономный округ | 1-2 дней |
Ханты-Мансийск | Ханты-Мансийский автономный округ | 1-2 дней |
Анадырь | Чукотский автономный округ | 1-2 дней |
пгт Тура | Эвенкийский автономный округ | 1-2 дней |
Салехард | Ямало-Ненецкий автономный округ | 1-2 дней |
Грозный | Чеченская Республика | 1-2 дней |
Трехфазные трансформаторы. Автотрансформаторы. Измерительные трансформаторы тока и напряжения
- Подробности
- Категория: Электротехника и электроника
ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ
Трехфазный трансформатор состоит из трех однофазных, магнитопроводы которых объединены в один общий трехстержневой (рис. 8.17, д).
Действительно, если три однофазных двухобмоточных трансформатора расположить, как изображено на рис. 8.17, а, а их первичные обмотки соединить звездой (рис. 8.17, б) и подключить к трехфазной сети, то в них возникнут токи холостого хода. Токи будут иметь одинаковое значение, но будут сдвинуты относительно друг друга на 120° (рис. 8.17, в). Магнитные потоки, создаваемые токами, также будут сдвинуты на 120°. Сумма магнитных потоков, так же как и токов, будет равна нулю. Если объединить три стержня ABC однофазных трансформаторов в один, то в этом стержне магнитного потока не будет и надобность в нем отпадает. В результате образуется трехфазный трансформатор (рис. 8.17, г). Однако изготовление такого трансформатора технически и технологически затруднено. Действительно, гораздо удобнее расположить стержни магнитопровода в одной плоскости, как изображено на рис. 8.17, д. По существу ничего не изменится. Однако при этом немного уменьшится длина магнитопровода для среднего стержня В. Это несколько нарушит симметрию магнитопровода трансформатора и приведет к тому, что намагничивающий ток (ток холостого хода) обмотки среднего стержня В будет несколько меньше, чем обмоток стержней А и С. Однако асимметрия не имеет практического значения.
Рис. 8.17.
К пояснению образования трехфазного трансформатора
Итак, трехфазный двухобмоточный трансформатор (рис. 8.17, д) имеет один трехстержневой магнитопровод с двумя обмотками на каждом из стержней. Каждая фаза трехстержневого трансформатора представляет собой по существу однофазный трансформатор. Поэтому анализ работы и расчет трехфазных трансформаторов при равномерной нагрузке каждой фазы аналогичны однофазным и схема замещения изображается для одной фазы.
Начала и концы первичных обмоток обозначаются большими буквами — соответственно АХ,BY, CZ, вторичных обмоток — малыми буквами ах, by, cz. Фазы вторичных обмоток, так же как и первичных, могут быть соединены звездой или треугольником.
АВТОТРАНСФОРМАТОРЫ
Автотрансформатор — однообмоточный трансформатор. От двухобмоточного отличается тем, что вторичная обмотка является частью первичной и, естественно, обмотки имеют не только магнитную, но и гальваническую связь. Автотрансформаторы бывают однофазные и трехфазные. На рис. 8.21 изображена схема однофазного автотрансформатора. В автотрансформаторе электрическая энергия из первичной цепи во вторичную передается и через гальваническую связь, и посредством переменного магнитного потока. Автотрансформатор целесообразно применять при малых коэффициентах трансформации (n ≤ 2). При малых коэффициентах трансформации на изготовление обмотки требуется значительно меньше (по массе) провода, чем на изготовление двухобмоточного трансформатора (при n = 2 примерно в 2 раза). При этом несколько снижается масса магнитопровода. По этой причине автотрансформатор значительно дешевле, меньше весит и имеет больший КПД, чем двухобмоточный. Однако автотрансформатор нельзя применять там, где по условиям техники безопасности или другим причинам недопустима гальваническая связь между первичной и вторичной обмотками.
Рис. 8.21. Схема автотрансформатора
Автотрансформатор часто используется в лабораторной практике, при проведении всякого рода экспериментальных исследований, в качестве регулятора напряжения. Такой автотрансформатор имеет подвижный скользящий контакт а (рис. 8.21), который касается обмотки, для чего последняя лишена изоляции по ходу подвижного скользящего контакта.
ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ
Для расширения пределов измерения измерительных приборов в цепях переменного тока высокого напряжения используются трансформаторы напряжения и трансформаторы тока. Расширение пределов измерения с помощью добавочных резисторов и шунтов в этих цепях неприемлемо по той причине, что обмотки измерительных приборов находились бы под высоким напряжением и эксплуатация их представляла бы большую опасность для обслуживающего персонала. Возникли бы большие трудности по выполнению надежной изоляции измерительных приборов.
Для защиты высоковольтных сетей и оборудования используются всякого рода реле защиты, которые включаются в сеть так же, как и измерительные приборы,— с помощью трансформаторов тока и напряжения.
При использовании измерительных трансформаторов измерительные приборы и реле подключаются к вторичной обмотке измерительного трансформатора, надежно изолированной от первичной высоковольтной обмотки. Вторичные обмотки выполняются на малые напряжения, не опасные для обслуживающего персонала. Расширение пределов измерения амперметров при использовании шунтов в цепях переменного тока приводит к существенным погрешностям из-за индуктивностей обмотки амперметра и шунта. По этой причине для расширения пределов измерения амперметров всегда используются трансформаторы тока независимо от значения напряжения измеряемой цепи.
Если трансформатор напряжения выполнен как обычный трансформатор, то возникают значительные погрешности измерения из-за того, что U1 ≠ E1 и U2 ≠ Е2 по причине падения напряжения в его обмотках. Для повышения точности измерения необходимо уменьшить падение напряжения в обмотках трансформатора.
Повышение точности измерений сводится к уменьшению тока холостого хода трансформатора.
Реактивная составляющая тока холостого хода Iр определяется из уравнения Ipw1 = Hстlст + H0l0. Ее уменьшение достигается тем, что магнитопровод выполняется из высококачественной электротехнической стали с высокой магнитной проницаемостью μаст . Кроме того, трансформатор рассчитывается для работы с малым значением амплитуды магнитной индукцииВm — около 0,4 — 0,8 Тл. Все это существенно снижает напряженность магнитного поля в сталиНст = В/μаст и в воздушном зазоре Н0 = В/μ0 магнитопровода и, естественно, снижает реактивную составляющую тока холостого хода. С той же целью магнитопровод трансформатора выполняется с минимальным значением воздушного зазора, что достигается высококачественной обработкой пластин и сборкой магнитопровода. Активная составляющая Iа обусловлена потерями в стали магнитопровода. Ее уменьшение достигается тем, что для магнитопровода используется сталь с малыми значениями удельных потерь ΔP10, ΔP15 и, как уже было сказано, трансформатор работает при малых значениях Вm .
При выполнении указанных выше условий вторичное напряжение трансформатора пропорционально первичному:
U2 = U1 w2 = U1 .
w1 КU
Однако абсолютной точности получить невозможно, и трансформаторы напряжения имеют определенную погрешность, так же как и измерительные приборы. По точности измерений трансформаторы делятся на классы точности: 0,2; 0,5; 1 и 3.
Необходимо отметить, что при определении цены деления измерительных приборов под коэффициентом трансформации измерительных трансформаторов понимают отношения:
для трансформатора напряжения — номинальных значений напряжений первичной и вторичной обмоток
КU = U1н = w1 = n;
U2н w2
для трансформатора тока — номинальных значений токов
первичной и вторичной обмоток
kI = I1н = w2 = 1
I2н w1 n
Цена деления амперметра
С’A = CAkI = CA w2 = CA I1н .
w1 I2н
где СА — цена деления амперметра; С’A — цена деления амперметра с трансформатором тока.
Цена деления вольтметра
С’B = СBkU = СB w1 = CB U1н .
w2 U2н
где СB — цена деления вольтметра; С’B — цена деления вольтметра с трансформатором напряжения.
Цена деления ваттметра
С’Вт = СВтkIkU = СВт I1н U1н
I2н U2н
где СВт — цена деления ваттметра; С’Вт — цена деления ваттметра с трансформаторами тока и напряжения.
Смотрите также:
Трехобмоточный трансформатор: описание, схемы, мощность, обмотки
Автор otransformatore На чтение 7 мин Опубликовано
Обычный трансформатор преобразовывает первичное напряжение U1 во вторичное U2. Нередко одного выходного напряжения для питания электроприемников бывает недостаточно. Задача создания третьего среднего напряжения СН (U3), наряду с высоким напряжением ВН (U1) и трансформируемым низким (U2), решается установкой трехобмоточного трансформатора с дополнительной третьей обмоткой на магнитопроводе. Этот электрический аппарат заменяет собой два двухобмоточных трансформатора.
Общее описание и назначение
Если взять двухобмоточный трансформатор и на стержень намотать проводом витки дополнительной катушки индуктивности, наводимое в ней напряжение будет пропорционально числу витков. В зависимости от исполнения вторичные катушки могут быть одинаковой или разной мощности.
Cхема 3-х обмоточного трансформатора
Существуют 2 вида трансформаторов подобного типа:
- с 1-й первичной и 2-мя вторичными обмотками – самый распространенный вид;
- с 2-мя первичными и 1-ой вторичной обмоткой – этот вид задействован в трансформаторных группах электростанций.
Условное обозначение 3-х обмоточного трансформатора
Номинальной мощностью 3-х обмоточного аппарата считается параметр самой мощной его катушки, которой в данном типе электрических устройств является обмотка ВН. Размещение силового 3-х обмоточного устройства с невысокой мощностью любой из обмоток в электрических цепях экономически не оправдано. Поэтому мощности вторичных катушек ВН, СН и НН аппарата в процентах от Pном обычно составляют:
- 100;100;100%;
- 100;100;66,7%;
- 100;66,7;100%;
- 100;66,7;66,7%.
Конструкция и принцип действия
Конструктивно первичную катушку 3-х обмоточного силового трансформатора обычно располагают в середине между двумя вторичными, чтобы ослабить влияние обмоток между собой. Если нулевой вывод заземляется, то она называется «глухозаземленной», в ином случае именуют «обмоткой с изолированной нейтралью».
Вторичную катушку с более низким напряжением (НН) размещают ближе к стержню устройства.
При подобном расположении напряжение КЗ между обмотками ВН и СН минимально. Это позволяет снизить потери мощности при передаче в сеть СН. Одновременно значение напряжения КЗ между ВН и НН относительно большое, что ограничивает силу тока короткого замыкания в сети НН низшего напряжения.
3-х обмоточные преобразователи переменного напряжения нашли широкое применение в силовой энергетике. В маркировке изделий они обозначаются третьей буквой «Т» в буквенно-цифровом коде. Очень часто требуется иметь третье более низкое, чем U2 значение для подачи менее мощным электроприемникам или, расположенным вблизи подстанций, потребителям электроэнергии.
Стандартными условиями эксплуатации изделий считается температура не выше 35ºС и влажность воздуха ≤65%, обеспечиваемые в отапливаемом помещении. Товарные позиции этого типа изготовляются как для нужд народного хозяйства, так и экспортируются в страны с умеренным/ тропическим климатом.
На понижающих подстанциях для раздельного питания электрических сетей в радиусе 10–15 км задействуют электротехнические изделия с выходными параметрами 6–10 кВ, а в радиусе до 50-60 км применяют 35 кВ трансформаторы. 3-х обмоточные преобразователи только с более низким значением параметров используется в измерительной технике и радиотехнике, автоматике и средствах релейной защиты.
Разновидности
Однофазный
Однофазные трехобмоточные трансформаторы для силовых линий обычно изготавливают мощностью 5000–40000 кВт с напряжением обмоток:
- ВН – с значениями 110–121 кВ;
- CН – от 34,5 до 38,5 кВ;
- НН – в диапазоне 3,15–15,7 кВ.
Типовой однофазный 3-х обмоточный преобразователь, например, классов напряжения 15, 20, 24 и 35 кВ предназначен для встраивания в пофазно-экранированные токопроводы сетей 50/60Гц. Конструкция изделия включает следующие составные части и комплектующие:
- бак с крышкой из немагнитной стали, задвижкой и пробкой, заполненный трансформаторным маслом;
- магнитопровод из электротехнической стали;
- активную часть, состоящую из обмоток, изоляции и крепежных элементов;
- плоского контакта на крышке бака первичного вводного напряжения;
- заземляющего ввода первичной обмотки и вводов вторичной обмотки на боковой стенке бака.
Электрические аппараты большой мощности (≤40000 кВа), рассчитанные на работу в интервале 110–121 кВ дополнительно могут оснащаться:
- выхлопной трубой для защиты бака от разрыва парами масла и газовым реле, отключающим подачу электропитания при внутривитковом замыкании в трансформаторе;
- расширителя с воздухоосушителем и термосифонным фильтром для поддержания требуемого уровня масла и предотвращения попадания влаги из атмосферы;
- системами естественной/принудительной циркуляции воздуха или масла.
Экономическая эффективность применения изделия состоит в том, что при 3-х обмоточном исполнении первичный ток равен не арифметической, а геометрической сумме приведенных вторичных токов. Трехобмоточные (многообмоточные) аппараты целесообразно применять вместо двухобмоточных в том случае, если нагрузки ЛЭП/обслуживаемых электрических сетей соизмеримы, то есть отличаются друг от друга не более чем в 5 раз.
Трехфазный
В трехфазных преобразователях переменного напряжения на каждую трансформируемую фазу приходится 3 обмотки. В таком трансформаторе с общим магнитопроводом обмоток рабочие процессы протекают для каждой фазы аналогично, только со сдвигом во времени. На первичные обмотки поступает переменное фазное напряжение, вторичные обмотки соединены с нагрузкой. Поэтому для описания работы электрического аппарата исследуется только одна рабочая фаза.
Трехфазные 3-х обмоточные преобразователи для силовых линий обычно изготавливают мощностью 5600–31500 кВт и напряжениями катушек аналогичным тем, которые используются в однофазных аппаратах. Трансформаторы получили наибольшее распространение на электрических подстанциях. По сравнению с группой однофазных трансформаторов при той же мощности они позволяют экономить 12–15% электроэнергии и 20–25% активных материалов в стоимостном выражении. Это конкурентное преимущество изделий подобного типа учитывается при изготовлении аппаратов массовых серий.
Схемы замещения
Схема замещения 3-х обмоточного трансформатора представлена ввиде трехлучевой звезды, состоящей из активных R и реактивных X сопротивлений обмоток. Все сопротивления в схеме приведены к напряжению высшей обмотки. На первичные зажимы подключена ветвь намагничивания (на схеме она соединена с корпусом), состоящая из B – активной и G – реактивной проводимости.
Проводимость В возникает ввиду потерь в стали части мощности на перемагничивание и вихревые токи, G отражает мощность намагничивания. За номинальную Pном катушек трансформатора принимается мощность его первичной обмотки. Мощность обмоток трансформатора СН и НН и коэффициент трансформации выбирается под потребности конкретного объекта энергопотребления. Электрический аппарат рассчитывается на соответствующую мощность (диаметр и количество витков, электрическую прочность изоляции, размер и материал магнитопровода). С учетом нагрева при работе выбирается соответствующая модель.
Проведение опытов короткого замыкания
Чтобы определить значения параметров этой схемы, необходимо провести 1 опыт холостого хода и 3 опыта с коротким замыканием. Если первый опыт необходим для определения B и G и не отличается от опыта двухобмоточного аналога, то опыты короткого замыкания проводятся с целью определения паспортных данных напряжения короткого замыкания U к и потерь активной мощности ∆Р к на соответствующих катушках трансформатора в режиме короткого замыкания:
- U к вн, ∆Р к вн – закорочивается обмотка НН и подается питание на обмотку ВН;
- U к сн, ∆Р к сн – коротится обмотка НН и питание подается со стороны обмотки СН;
- U к вс, ∆Р к вс – накоротко замыкаются клеммы катушки СН и запитывается обмотка ВН.
В результате решения системы уравнений выводится значение U к каждой из обмоток:
При определении ∆Р к следует учитывать значение активной мощности, содержащееся в справочнике для конкретной модели трансформатора. Обычно приводится параметр для самой мощной обмотки. Очень часто в источниках дается одно значение ∆Рк, определенное из опыта КЗ, выполненного для наиболее мощных обмоток, обычно ∆Рк вс. Потери мощности в каждой катушке определяются с учетом соотношения номинальных мощностей обмоток S ном %, выраженных в процентах. Потери активной мощности ∆Рк в обмотках СН и НН рассчитываются из пропорций:
При соотношениях всех мощностей обмоток 100 %:
∆Рк в = ∆Рк с = ∆Рк н = 0,5 ∆Рк вс,
Если соотношение 100 %, 100 %, 66,7 %, то:
- ∆Рк в = ∆Рк с = 0,5 ∆Рк вс;
- ∆Рк н = 1,5 ∆Рк в.
Применять вычисления придется только для электрических аппаратов, производимых ранее. Они могли иметь мощность обмоток НН и СН в полтора раза меньше, чем мощность катушки ВН.
В последние годы отечественные производители выпускают трехобмоточные трансформаторы с одинаковой мощностью обмоток 100%.
Ремонт силовых трансформаторов
Конструкция основных частей силового трансформатора
Силовой трансформатор представляет собой статический (не имеющий вращающихся частей) аппарат, при помощи которого переменный ток одного напряжения превращают в переменный ток другого напряжения.
Силовой трехфазный масляный трансформатор
Силовой трехфазный масляный трансформатор: 1 — корпус бака, 2 — циркуляционные трубы, 3 — крышка, 4 — термометр, 5 — подъемное кольцо, 6 — переключатель регулирования напряжения, 7 — ввод обмоток НН, 8 — ввод обмоток ВН, 9 — пробка отверстия для заливки масла, 10 — маслоуказатель, 11 — пробка расширителя, 12 — расширитель, 13 — патрубок, соединяющий расширитель с баком, 14 — горизонтальная прессующая шпилька, 15 — вертикальная подъемная шпилька, 16 — магнитопровод, 17 — обмотка НН, 18 — обмотка ВН, 19 — маслоспускная пробка, 20 — ярмовая балка, 21 — вертикальная стяжная шпилька, 22 — катки.
Все силовые трансформаторы имеют принципиально одинаковое устройство и различаются по конструкции отдельных деталей и сборочных единиц, габаритным размерам, наличию или отсутствию отдельных устройств и приборов (расширителей, радиаторов, газовых реле и т. д.).
Рассмотрим конструкции основных частей и отдельных деталей трехфазных двухобмоточных трансформаторов.
«Ремонт электрооборудования промышленных предприятий»,
В.Б.Атабеков
Газовое реле устанавливают на трансформаторах мощностью 560 ква и выше в разрыве трубы, соединяющей расширитель с баком. Оно служит для сигнализации и отключения силового трансформатора при возникновении в нем внутренних…
Ремонт обмоток и магнитопровода (лакирование пластин)Для лакирования пластин на ремонтных предприятиях применяют лакировальные станки, а для их сушки и запечки пленки — специальные печи. Лакировальный станок Лакировальный станок: 1 — верхний бачок, 2 — запорный…
Демпферы служат для предохранения отвода от обрыва при перемещении сердечника внутри бака во время транспортировки, а также для компенсации, отклонений по высоте бака. Демпферы из медной ленты на отводах Демпферы…
Дефектация и разборка трансформаторовПоступивший в ремонт трансформатор тщательно осматривают, чтобы выявить все дефекты. Этот процесс является первой стадией ремонта и называется дефектацией трансформатора. Рабочий, производящий дефектацию, должен хорошо знать не только признаки неисправностей…
Ремонт обмоток и магнитопровода (конвейерная печь)Конвейерная печь подогревается комплектом нагревателей, намотанных в виде спиралей из нихромовой проволоки диаметром 2,5 мм и выше. Нагревательные элементы рассчитывают в зависимости от сечения имеющейся в наличии нихромовой проволоки по…
Установка крышки и опускание сердечника в бакПри сборке трансформаторов мощностью до 50ква (без расширителей), вводы которых расположены на стенках бака, сначала опускают сердечник в бак, устанавливают вводы, присоединяют отводы обмоток к ним и переключателю, а затем…
Последовательность разборки трансформатораПоследовательность разборки трансформатора зависит от его конструкции. При полной разборке трансформатора с расширителем сливают масло до уровня ниже уплотняющей прокладки крышки трансформатора и снимают расширитель, предварительно отсоединив его от крышки….
Ремонт обмоток и магнитопровода (восстановление межлистовой изоляции)В ремонтных условиях восстановление межлистовой изоляции пластин магнитопровода путем удаления старой изоляции и нанесения новой требует значительного времени и больших затрат труда, поэтому при ремонте силовых трансформаторов мощностью до 1000…
Установка крышки и опускание сердечника в бак (проверка прочности изоляции бака)Между крышкой и рамой бака устанавливают уплотняющую прокладку из маслостойкой листовой резины толщиной 6 — 12 мм. На концах прокладки в месте стыка делают косой срез. Герметизация бака Герметизация бака…
Условия разборки трансформатораРазборку трансформатора, осмотр и дефектацию его внутренних деталей производят в закрытом, сухом и приспособленном для этого помещении. Трансформатор может быть вскрыт при условии, если температура окружающего воздуха ниже или, в…
Ремонт обмоток и магнитопровода (измерение сопротивления изоляции)Окончив сборку и шихтовку отремонтированного магнитопровода, измеряют сопротивление его межлистовой изоляции методом амперметра — вольтметра, пользуясь схемой, питаемой аккумуляторной батареей напряжением 12 или 24 в. В схеме используют амперметр постоянного…
Сушка трансформаторовСуществует много способов сушки трансформаторов: методом индукционных потерь в стали бака, в специальном шкафу, инфракрасными лучами, воздуходувкой, под вакуумом, токами нулевой последовательности и др. Каждый из перечисленных способов имеет свои…
Общие сведения Трансформатор силовой масляный трехфазный двухобмоточный типа ТДЦП-32000/110-У1 предназначен для работы в составе передвижных тяговых подстанций сетей железных дорог. Изготовляется для нужд народного хозяйства. Структура условного обозначения ТДЦП-32000/110-У1: Условия эксплуатации Номинальные значения климатических факторов по ГОСТ 11677-85. Высота установки над уровнем моря не более 1000 м. Температура окружающего воздуха от минус 45 до 40°С. Окружающая среда невзрывоопасная, не содержащая токопроводящей пыли, агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию. Режим работы нейтрали обмотки ВН — глухое заземление, при этом изоляция нейтрали должна выдерживать одноминутное напряжение промышленной частоты, равное 100 кВ при испытаниях по методике ГОСТ 22756-77. Требования безопасности, в том числе и пожарной безопасности, должны соответствовать ГОСТ 11677-85. Трансформатор соответствует ТУ 16-90 ИБМД 672534.005 ТУ. ТУ 16-90 ИБМД.672534.005 ТУ Технические характеристики Номинальная мощность обмоток, кВ·А: ВН — 32000 НН — 32000 Номинальное напряжение обмоток, кВ: ВН — 110 НН — 27,5 или 11 Схема и группа соединения обмоток — Ун/Д-11 Напряжение короткого замыкания, % — 11 Потери, кВт: холостого хода — 27,0 короткого замыкания — 141,0 Ток холостого хода, % — 0,5 Способ и диапазон регулирования напряжения обмотки ВН — ПБВ+2×2,5% Номинальная частота, Гц — 50 Масса, кг: полная без платформы — 59000 транспортная (с платформой) — 80500 масла — 13700 Гарантии изготовителя — по ГОСТ 11677-85. Конструкция и принцип действия Трансформатор включает в себя следующие составные части: остов, обмотки, главную изоляцию, отводы, бак, систему охлаждения. Остов трансформатора стержневого типа. Вертикальные стержни и ярма остова образуют замкнутую трехфазную магнитную цепь. Конструкция остова шихтованная однорамная. Магнитная система набирается из холоднокатаной электротехнической стали. Стержни остова прессуются стеклобандажами, ярма — ярмовыми балками и стальными полубандажами. Обмотки цилиндрические, выполнены из провода прямоугольного сечения марки ПБ-М и расположены концентрически на стержне остова. Порядок расположения обмоток на стержне НН-ВН. Изоляция маслобарьерного типа — электрокартон чередуется с масляным промежутком. Бак трансформатора сварной с нижним разъемом. На крышке бака установлены вводы ВН, «О» ВН, НН. Для охлаждения трансформатора используется групповое охлаждающее устройство. Для автоматического управления и контроля работы системы охлаждения предусмотрен шкаф автоматического управления. Трансформатор должен транспортироваться полностью собранным (вводы, системы охлаждения, контрольные кабели, монтаж расширителя и т.д.), как груз на своих осях в собственном баке, полностью залитом маслом. Габаритные, установочные и присоединительные размеры трансформатора показаны на рисунке. Рисунок Габаритные, установочные и присоединительные размеры трансформатора ТДЦП-32000/110-У1 1 — шкаф автоматического управления; 2 — бак;3 — ввод ВН; 4 — ввод «О» ВН; 5 — ввод НН i С трансформатором поставляются: комплект запасных частей, комплект эксплуатационной документации. Центр комплектации «СпецТехноРесурс» |
Simscape Electrical Документация
Страница, которую вы искали, не существует. Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы.Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы. Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы.Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® . Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
Simscape Electrical Документация
Страница, которую вы искали, не существует.Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы. Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы.Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы. Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® .Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
Simscape Electrical Документация
Страница, которую вы искали, не существует.Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы. Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы.Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы. Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® .Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
Simscape Electrical Документация
Страница, которую вы искали, не существует.Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы. Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы.Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы. Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® .Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
Реализация трехфазного двухобмоточного трансформатора с настраиваемыми соединениями обмоток и геометрия сердечника
Тип матрицы индуктивности трехфазного трансформатора (две обмотки) представляет собой трехфазный трансформатор с трехполюсным сердечником и двумя обмотками на фазу.В отличие от блока трехфазного трансформатора (две обмотки), который моделируется тремя отдельными однофазные трансформаторы, этот блок учитывает муфты между обмотками разные фазы. Сердечник и обмотки трансформатора показаны на следующем рисунке.
Эта геометрия сердечника подразумевает, что фазная обмотка 1 соединена со всеми другими фазными обмотками (2 до 6), тогда как в блоке трехфазного трансформатора (две обмотки) (трехфазный трансформатор, использующий три независимых сердечника) обмотка 1 соединяется только с обмоткой 4.
Модель трансформатора
Блок трехфазного трансформатора с матрицей индуктивности (две обмотки) реализует следующие матричные отношения:
R 1 до R 6 представляют собой сопротивления обмоток. В члены самоиндукции L ii и взаимная индуктивность члены L ij вычисляются из отношений напряжений, индуктивная составляющая токов возбуждения холостого хода и реактивных сопротивлений короткого замыкания при номинальная частота.Два набора значений в прямой и нулевой последовательности позволяют расчет 6 диагональных членов и 15 недиагональных членов симметричной индуктивности матрица.
Когда параметр Тип сердечника установлен на Три
однофазные жилы
, в модели используются две независимые цепи с (3×3) R и L
матрицы. В этом состоянии параметры прямой и нулевой последовательности идентичны.
и вы указываете только значения прямой последовательности.
Собственные и взаимные члены матрицы (6×6) L получаются из токов возбуждения (один трехфазная обмотка возбуждается, а другая трехфазная обмотка остается разомкнутой) и от реактивные сопротивления короткого замыкания прямой и нулевой последовательности X1 12 и X0 12 измерено с трехфазным обмотка 1 возбуждена, а трехфазная обмотка 2 замкнута накоротко.
При следующих параметрах прямой последовательности:
Q1 1 = Трехфазная реактивная мощность, потребляемая обмотка 1 без нагрузки, когда обмотка 1 возбуждается напряжением прямой последовательности Vnom 1 с разомкнутой обмоткой 2
Q1 2 = Трехфазная реактивная мощность, потребляемая обмотка 2 без нагрузки, когда обмотка 2 возбуждается напряжением прямой последовательности Vном 2 с разомкнутой обмоткой 1
X1 12 = Прямая последовательность
реактивное сопротивление короткого замыкания со стороны обмотки 1
, когда обмотка 2
короткозамкнутый
Вном 1 , Vном 2 = Номинальные линейные напряжения обмоток 1 и 2
. Собственные и взаимные реактивные сопротивления прямой последовательности определяются как:
Самореактивные сопротивления нулевой последовательности X 0 (1,1), X 0 (2,2), и взаимное реактивное сопротивление Х 0 (1,2) = X 0 (2,1) также вычисляются с использованием аналогичных уравнений.
Расширение следующих двух (2×2) матриц реактивного сопротивления в прямой последовательности и в нулевой последовательности
в матрицу (6×6), выполняется заменой каждого из четырех [ X 1 X 0 ] пар на подматрицу (3×3) вида:
, где собственные и взаимные члены задаются как:
X s =
( Х 0 +
2 X 1 ) / 3
X м = ( Х 0 — X 1 ) / 3
Для моделирования потерь в сердечнике (активная мощность P1 и P0 в положительных и нулевой последовательности), дополнительные шунтирующие сопротивления также подключаются к клеммам одного из трехфазные обмотки.Если выбрана обмотка 1, сопротивления вычисляются как:
Блок учитывает выбранный вами тип подключения, и значок блока выглядит следующим образом:
автоматически обновляется. Входной порт с меткой N
добавляется к блоку, если вы
выберите соединение Y с доступной нейтралью для обмотки 1. Если вы просите доступную
нейтраль на обмотке 2, создается дополнительный выходной порт с меткой n2
.
Часто ток возбуждения нулевой последовательности трансформатора с трехполюсным сердечником не соответствует норме. предоставляется производителем.В таком случае разумную стоимость можно угадать, как объяснено. ниже.
На следующем рисунке показан трехлепестковый сердечник с одной трехфазной обмоткой. Только фаза B возбуждается, и напряжение измеряется на фазе A и фазе C. Поток Φ, создаваемый фаза B делится поровну между фазой A и фазой C, так что Φ / 2 течет в конечности A и в конечность C. Следовательно, в данном конкретном случае, если индуктивность рассеяния обмотки B будет равна нулю, напряжение, индуцированное на фазах A и C, будет -к.V B = -V B /2 . Фактически, из-за индуктивности рассеяния трех обмоток среднее значение индуцированной отношение напряжений к при последовательном возбуждении обмоток A, B и C должно быть немного ниже 0,5.
Предположим:
Z s = среднее значение трех
собственные сопротивления
Z м = среднее
значение взаимного сопротивления между фазами
Z 1 = прямая последовательность
полное сопротивление трехфазной обмотки
Z 0 = полное сопротивление нулевой последовательности
трехфазная обмотка
I 1 =
ток возбуждения прямой последовательности
I 0 = возбуждение нулевой последовательности
ток
, где кОм = коэффициент индуцированного напряжения (при кОм чуть ниже 0.5)
Следовательно, I 0 / I 1 соотношение можно вывести из k :
Очевидно, что k не может быть точно 0,5, потому что это приведет к бесконечный ток нулевой последовательности. Также, когда три обмотки возбуждаются нулевой последовательностью напряжение, путь потока должен вернуться через воздух и резервуар, окружающий железный сердечник. В высокое сопротивление пути потока нулевой последовательности приводит к высокому току нулевой последовательности.
Допустим, I 1 = 0,5%. Разумная стоимость для I 0 может быть 100%. Следовательно I 0 / I 1 = 200. Согласно уравнению для I 0 / I 1 Из приведенных выше данных можно вывести значение к . к = (200-1) / (2 * 200 + 1) = 199/401 = 0,496 .
Потери нулевой последовательности также должны быть выше потерь прямой последовательности из-за дополнительные потери на вихревые токи в резервуаре.
Наконец, значение тока возбуждения нулевой последовательности и значение тока Потери нулевой последовательности не критичны, если трансформатор имеет обмотку, подключенную по схеме треугольника. потому что эта обмотка действует как короткое замыкание для нулевой последовательности.
Подключение обмотокТрехфазные обмотки трансформатора могут быть подключены следующим образом: способ:
Y
Y с доступной нейтралью
Заземленный Y
Дельта (D1), запаздывание по Y на 30 градусов
Дельта (D11), опережение по оси Y 30 градусы
Примечание
Обозначения D1 и D11 относятся к следующему условию часов.Предполагается, что Вектор опорного напряжения Y находится в полдень (12) на дисплее часов. D1 и D11 относятся соответственно до 1 PM (дельта-напряжение, отставание от напряжения Y на 30 градусов) и 11 AM (дельта-напряжение, опережающее Y напряжения на 30 градусов).
Simscape Electrical Документация
Страница, которую вы искали, не существует. Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы.Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы. Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы.Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® . Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
Simscape Electrical Документация
Страница, которую вы искали, не существует.Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы. Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы.Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы. Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® .Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
.