Site Loader

Содержание

Изоляция трансформаторов тока

 

Трансформаторы тока в зависимости от номинальных параметров, назначения и места установки бывают следующих основных типов: втулочные, проходные стержневые или шинные и баковые. Втулочные трансформаторы тока представляют собой кольцевые магнитопроводы со вторичными обмотками, надеваемыми на проходные изоляторы выключателей и трансформаторов. Стержень проходного изолятора служит одновитковой «первичной обмоткой» трансформатора тока. Высоковольтная изоляция этих трансформаторов тока создается самим проходным изолятором.

 

 

8.3 – Трансформатор тока ТФН-110М.

 

Проходные стержневые трансформаторы тока по конструкции аналогичны втулочным, но в них проходной изолятор является основной конструкцией самого трансформатора тока. В шинных трансформаторах тока роль стержня — «первичной обмотки» играет шина, которая проходит через отверстие в главной изоляции трансформатора тока. Стержневые и шинные трансформаторы тока выпускаются на напряжения до 35 кВ.

Трансформатор тока как отдельный аппарат на высокие напряжения наружной установки выпускается бакового типа. Конструкции баковых трансформаторов тока, в частности устройство их изоляции, непрерывно совершенствуются. В нашей стране широко применяются трансформаторы тока серии ТФН, устройство которых показано на рис. 6.3. В этой конструкции принято звеньевое расположение первичной и вторичной обмоток. Бумажно-масляная изоляция наложена частично на первичную, частично на вторичную обмотку; такая изоляция называется двухступенчатой. Баком трансформатора тока служит фарфоровая покрышка. Ввиду трудностей изготовления крупногабаритных покрышек в баковом трансформаторе тока изоляционные расстояния весьма малы. Это и обусловливает применение бумажно-масляной изоляции, обладающей высокой электрической прочностью.

 

 

Рис. 8.4 – Схема кабельно-конденсаторной изоляции первичной обмотки (а) и общий вид трансформатора тока ТФКН-330 (б).

 

На сверхвысокие напряжения трансформаторы тока типа ТФН соединяются в каскадные схемы, в которых вторичная обмотка верхней ступени питает первичную обмотку нижней. Хотя изоляционная проблема в этих трансформаторах тока решается относительно просто, применение каскадных схем снижает точность измерения тока. Повышение электрической прочности изоляции обмоток достигается устройством кабельно-конденсаторной изоляции. Кабельно-конденсаторная изоляция представляет собой бумажно-масляную изоляцию, в толщу которой заложены коаксиальные конденсаторные обкладки, последняя из которых заземляется (рис. 8.4,а). Эти обкладки выравнивают распределение напряжения в радиальном и осевом направлениях. Тот же принцип использован в конденсаторных вводах. Трансформаторы тока с кабельно-конденсаторной изоляцией выпускаются вплоть до высших номинальных напряжений в серии ТФКН (рис. 8.4,б).

На напряжения до 35 кВ просты в производстве, дешевы и малогабаритны трансформаторы тока с литой изоляцией. Наилучшие результаты дает эпоксидная изоляция. Выбор конфигурации литой изоляцией требует подробного расчета электрического поля для устранения высоких градиентов по поверхности изоляции и в воздушных включениях вблизи вторичной обмотки.

 



Дата добавления: 2017-01-16; просмотров: 2770;


Похожие статьи:

Изоляция трансформаторов тока — Студопедия.Нет

  Трансформаторы тока в зависимости от номинальных параметров, назначения и места установки бывают следующих основных типов: втулочные, проходные стержневые или шинные и баковые. Втулочные трансформаторы тока представляют собой кольцевые магнитопроводы со вторичными обмотками, надеваемыми на проходные изоляторы выключателей и трансформаторов. Стержень проходного изолятора служит одновит-ковой «первичной обмоткой» трансформатора тока. Высоковольтная изоляция этих трансформаторов тока создаётся самим проходным изолятором.

Проходные стержневые трансформаторы тока по конструкции аналогичны втулоч-ным, но в них проходной изолятор является основной конструкцией самого транс-форматора тока. В шинных трансформаторах тока роль стержня – «первичной обмот-ки» играет шина, которая проходит через отверстие в главной изоляции трансформа-тора тока. Стержневые и шинные трансформаторы тока выпускаются на напряжения до 35 кВ.
Трансформатор тока как отдельный аппарат на высокие напряжения наружной установки выпускается бакового типа. Конструкция баковых трансформаторов тока предполагает звеньевое расположение первичной и вторичной обмоток. Бумажно-масляная изоляция наложена частично на первичную, частично на вторичную обмотку; такая изоляция называется двухступенчатой. Баком трансформатора тока служит фарфоровая покрышка.

На сверхвысокие напряжения трансформаторы тока соединяются в каскадные схемы, в которых вторичная обмотка верхней ступени питает первичную обмотку нижней. Применение каскадных схем снижает точность измерения тока. Повышение электри-ческой прочности изоляции обмоток достигается устройством кабельно-конденсатор-ной изоляции. Кабельно-конденсаторная изоляция представляет собой бумажно-масля-ную изоляцию, в толщу которой заложены коаксиальные конденсаторные обкладки, последняя из которых заземляется. Эти обкладки выравнивают распределение напряже-ние в радиальном и осевом направлениях. Тот же принцип использован в конденсатор-ных вводах.

На напряжения до 35 кВ просты в производстве, дешевы и малогабаритны трансфор-маторы тока с литой изоляцией. Эпоксидная изоляция имеет наилучшие результаты. Выбор конфигурации литой изоляцией требует тщательного расчёта электрического поля для устранения высоких градиентов по поверхности изоляции и в воздушных включениях вблизи вторичной обмотки.

Изоляция конденсаторов.

  Изоляция конденсаторов служит не только собственно изоляцией, но является также носителем электрического поля, энергия и мощность которого используются в электри-ческой установке. Чем больше напряжённость электрического поля в изоляции, тем ближе его обкладки и выше ёмкость, а поэтому и больше удельная мощность конденса-тора, выраженная в киловольт – амперах реактивных (кВАр). Удельная мощность кон-денсатора увеличивается также с повышением диэлектрической постоянной изоляции.

С другой стороны, надёжность изоляции снижается с увеличением напряжённости поля Е  ; материалы же с высокой пробивной электрической прочностью имеют отно-сительно невысокую диэлектрическую постоянную изоляции. Таким образом, условия повышения удельной мощности конденсатора противоположны условиям повышения изоляционной надёжности конструкции. Это противоречие разрешается применением наиболее высококачественных материалов. В конденсаторах применяется бумажно-масляная изоляция с конденсаторной бумагой высокой плотности толщиной от 5 до 30 мк. Такая бумага обладает высокой механической и электрической прочностью и повы-шенной диэлектрической постоянной изоляции. С уменьшением толщины бумаги эле-ктрическая прочность бумажно-масляной изоляции повышается. Для пропитки приме-няется конденсаторное масло, отличающееся высокой степенью очистки.

Конденсаторы состоят из отдельных секций, соединяемых для получения необходимой ёмкости параллельно и последовательно. Секции бывают рулонного и пакетного типов.

Конденсатор первого типа выполнен в виде рулона из бумажных лент с проложен-ными между лентами электродами из алюминиевой фольги. Намотка рулонов произ-водится на станках, после чего он сплющивается для придания секции плоской формы. Такие секции располагаются компактно в корпусе конденсатора. Секции конденсаторов помещаются в металлический или фарфоровый корпус, залитый маслом. В металличе-ском корпусе вывод концов конденсатора осуществляется через проходные изоляторы.

Вследствие большой ёмкости С потери в конденсаторах также относительно велики. Теплоотвод из конденсаторов осуществляется по электродам – фольге в направлении к торцам секции и далее через и далее через масло к металлическому корпусу. Улучше-ние теплоотвода достигается присоединением фольги к металлическому корпусу кон-денсатора. В конденсаторах с фарфоровым корпусом условия теплоотвода ухудшаются, что ограничивает применение таких конденсаторов относительно небольшими емкос-тями (конденсаторы связи или емкостных трансформаторов напряжения).

В бумажно-масляной изоляции резко выражен кумулятивный эффект, заключающий-ся в накоплении необратимых дефектов при частичных разрядах. Известно, что в кон-денсаторах переменного напряжения начальные частичные разряды возникают на кра-ях электродов (обкладок) , что свидетельствует об образовании начальных электронов вследствие автоэлектронной эмиссии.

 

Возникающие при частичных разрядах мельчайшие газовые включения растворяются в масле и распределяются с течением времени по всей изоляции. Этому способствует пульсация давления в масляных прослойках между обкладками вследствие действия между ними электростатических сил.

Растворение газа в масле приводит к постепенному снижению электрической проч-ности изоляции; изоляция стареет. Внутренние перенапряжения приводят к напря-жённостям в изоляции , близким к критическим. Поэтому конденсаторы, подвергаю-щиеся относительно частым внутренним перенапряжениям, например конденсаторы продольной и поперечной компенсации, выполняются с более низкими рабочими напряжённостями.

На выбор напряжённости значительное влияние оказывает вид рабочего напряжения. Для конденсаторов постоянного напряжения, в которых явления ионизации проявляются в слабой форме и диэлектрические потери исчезающее малы, рабочие напряжённости могут быть резко увеличены по сравнению с напряжённостями для конденсаторов переменного напряжения 50 Гц.

Выделим основные типы высоковольтных конденсаторов, применяемых в электрических установках:

1) конденсаторы переменного напряжения (50Гц), служащие для улучшения коэффициента мощности потребителя (косинусные конденсаторы), генерирования реактивной мощности вдали от потребителя и для установок продольной компенсации. Допускаемые рабочие напряженности  для косинусных конденсаторов 12-14 кВ/мм , для конденсаторов продольной и поперечной компенсации 7-10 кВ/мм;

2) конденсаторы связи, емкостных трансформаторов напряжения, делителей напряжения на выключателях. Все эти конденсаторы имеют относительно малую ёмкость. Корпус фарфоровый. Рабочие напряжённости 7-8 кВ/мм;

3) конденсаторы для электропередач постоянного тока, работающие при выпрямленном напряжении, с составляющей (до 10%) переменного напряжения повышенной частоты. Рабочие напряжённости 30-40 кВ/мм;

4) конденсаторы постоянного напряжения импульсные, предназначенные для работы в лабораторных схемах. Корпус конденсаторов металлический, фарфоровый или бакелитовый. Рабочие напряжённости до 100 кВ/мм.

Испытания конденсаторов переменного напряжения проводятся повышенным напряжением рабочей частоты. Вследствие высокой ёмкости конденсаторов для испытания требуются испытательные трансформаторы большой мощности. При отсутствии таких трансформаторов практикуется испытание постоянным напряжением до 5Uном.

 

 

 

 

Измерительные трансформаторы / ПУЭ 7 / Библиотека / Элек.ру

1.8.17. Измерительные трансформаторы испытываются в объеме, предусмотренном настоящим параграфом.

1. Измерение сопротивления изоляции:

а) первичных обмоток. Производится мегаомметром на напряжение 2500 В. Значение сопротивления изоляции не нормируется.

Для трансформаторов тока напряжением 330 кВ типа ТФКН-330 измерение сопротивления изоляции производится по отдельным зонам; при этом значения сопротивления изоляции должны быть не менее приведенных в табл. 1.8.12.

б) вторичных обмоток. Производится мегаомметром на напряжение 500 или 1000 В.

Сопротивление изоляции вторичных обмоток вместе с подсоединенными к ним цепями должно быть не менее 1 МОм.

2. Измерение тангенса угла диэлектрических потерь изоляции. Производится для трансформаторов тока напряжением 110 кВ и выше.

Таблица 1.8.12. Наименьшее допустимое сопротивление изоляции первичных обмоток трансформаторов тока типа ТФКН-330.

Измеряемый участок изоляции

Сопротивление изоляции, МОм

Основная изоляция относительно предпоследней обкладки

5000

Измерительный конденсатор (изоляция между предпоследней и последней обкладками)

3000

Наружный слой первичной обмотки (изоляция последней обкладки относительно корпуса)

1000

Тангенс угла диэлектрических потерь изоляции трансформаторов тока при температуре +20 °С не должен превышать значений, приведенных в табл. 1.8.13.

3. Испытание повышенным напряжением промышленной частоты:

а) изоляция первичных обмоток. Испытание является обязательным для трансформаторов тока и трансформаторов напряжения до 35 кВ (кроме трансформаторов напряжения с ослабленной изоляцией одного из выводов).

Таблица 1.8.13. Наибольший допустимый тангенс угла диэлектрических потерь изоляции трансформаторов тока.

Наименование испытуемого объекта

Тангенс угла диэлектрических потерь, %, при номинальном напряжении, кВ

110

150-220

330

500

Маслонаполненные трансформаторы тока (основная изоляция)

2,0

1,5

1,0

Трансформаторы тока типа ТФКН-300:

– основная изоляция относительно предпоследней обкладки

0,6

Измерительный конденсатор (изоляция между предпоследней и последней обкладками)

0,8

Наружный слой первичной обмотки (изоляция последней обкладки относительно корпуса)

1,2

Значения испытательных напряжений для измерительных трансформаторов указаны в табл. 1.8.14.

Таблица 1.8.14. Испытательное напряжение промышленной частоты для измерительных трансформаторов.

Исполнение изоляции измерительного трансформатора

Испытательное напряжение, кВ, при номинальном напряжении, кВ

3

6

10

15

20

35

Нормальная

21,6

28,8

37,8

49,5

58,5

85,5

Ослабленная

9

14

22

33

Продолжительность приложения нормированного испытательного напряжения: для трансформаторов напряжения 1 мин; для трансформаторов тока с керамической, жидкой или бумажно-масляной изоляцией 1 мин; для трансформаторов тока с изоляцией из твердых органических материалов или кабельных масс 5 мин;

б) изоляции вторичных обмоток. Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями составляет 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

4. Измерение тока холостого хода. Производится для каскадных трансформаторов напряжением 110 кВ и выше на вторичной обмотке при номинальном напряжении. Значение тока холостого хода не нормируется.

5. Снятие характеристик намагничивания магнитопровода трансформаторов тока. Следует производить при изменении тока от нуля до номинального, если для этого не требуется напряжение выше 380 В. Для трансформаторов тока, предназначенных для питания устройств релейной защиты, автоматических аварийных осциллографов, фиксирующих приборов и т. п., когда необходимо проведение расчетов погрешностей, токов небаланса и допустимой нагрузки применительно к условиям прохождения токов выше номинального, снятие характеристик производится при изменении тока от нуля до такого значения, при котором начинается насыщение магнитопровода.

При наличии у обмоток ответвлений характеристики следует снимать на рабочем ответвлении.

Снятые характеристики сопоставляются с типовой характеристикой намагничивания или с характеристиками намагничивания других однотипных исправных трансформаторов тока.

6. Проверка полярности выводов (у однофазных) или группы соединения (у трехфазных) измерительных трансформаторов. Производится при монтаже, если отсутствуют паспортные данные или есть сомнения в достоверности этих данных. Полярность и группа соединений должны соответствовать паспортным данным.

7. Измерение коэффициента трансформации на всех ответвлениях. Производится для встроенных трансформаторов тока и трансформаторов, имеющих переключающее устройство (на всех положениях переключателя). Отклонение найденного значения коэффициента от паспортного должно быть в пределах точности измерения.

8. Измерение сопротивления обмоток постоянному току. Производится у первичных обмоток трансформаторов тока напряжением 10 кВ и выше, имеющих переключающее устройство, и у связующих обмоток каскадных трансформаторов напряжения. Отклонение измеренного значения сопротивления обмотки от паспортного или от сопротивления обмоток других фаз не должно превышать 2%.

9. Испытание трансформаторного масла. Производится у измерительных трансформаторов 35 кВ и выше согласно 1.8.33.

Для измерительных трансформаторов, имеющих повышенное значение тангенса угла диэлектрических потерь изоляции, следует произвести испытание масла по п. 12 табл. 1.8.38.

У маслонаполненных каскадных измерительных трансформаторов оценка состояния масла в отдельных ступенях производится по нормам, соответствующим номинальному рабочему напряжению ступени (каскада).

10. Испытание емкостных трансформаторов напряжения типа НДЕ. Производится согласно инструкции завода-изготовителя.

11. Испытание вентильных разрядников трансформаторов напряжения типа НДЕ. Производится в соответствии с 1.8.28.

Глава четвертая изоляция в трансформаторах

4.1. Классификация изоляции в трансформаторах

Каждый силовой трансформатор при оценке его электрической прочности может быть представлен состоящим из трех систем — системы частей, находящихся во включенном трансформаторе под напряжением; системы заземленных частей и системы изоляции, разделяющей как первые две системы, так и отдельные части, находящиеся под напряжением.

К системе частей, находящихся под напряжением, относятся все металлические части и детали, служащие для проведения рабочего тока (обмотки, контакты переключателей ступеней напряжения, отводы, проходные шины и шпильки вводов и др.), а также все гальванически соединенные с ними детали (защитные экраны, емкостные кольца, металлические колпаки проходных изоляторов и т. д.).

К системе заземленных частей следует отнести: магнитную систему со всеми металлическими деталями, служащими для ее крепления, бак и систему охлаждения, также со всеми деталями и металлической арматурой в масляных трансформаторах или защитный кожух в сухих трансформаторах.

Изоляция, разделяющая части, находящиеся под напряжением, между собой и отделяющая их от заземленных ча стей, в силовых трансформаторах выполняется в виде конструкций и деталей из твердых диэлектриков — электроизоляционного картона, кабельной бумаги, лакотканей, дерева, текстолита, бумажно-бакелитовых изделий, фарфора и других материалов. Части изоляционных промежутков, не за полненные твердым диэлектриком, заполняются жидким или газообразным диэлектриком — трансформаторным маслом в масляных трансформаторах, атмосферным воздухом в сухих трансформаторах. В качестве такого диэлектрика иногда применяются и другие жидкости и газы, а также практикуется заливка всего трансформатора компаундом или заполнение кварцевым песком.

Изоляция обмоток может быть подразделена на главную изоляцию, т. е. изоляцию каждой из обмоток от заземленных частей и от других обмоток, и продольную изоляцию — между различными точками данной обмотки, т. е. между витками, слоями, катушками и элементами емкостной защиты. Аналогично можно подразделить также и изоляцию отводов и переключателей. Разделение изоляции на главную и продольную может быть отнесено к масляным и сухим трансформаторам.

Классом напряжения обмотки называют ее длительно допустимое рабочее напряжение. Класс напряжения обмотки трансформатора совпадает с номинальным напряжением электрической сети, в которую обмотка включается. Классом напряжения трансформатора считают класс напряжения обмотки ВН. Каждому классу напряжения трансформатора соответствуют номинальное рабочее напряжение и определенные испытательные переменные напряжения при 50 Гц и импульсное. Так для класса напряжения 35 кВ номинальными напряжениями являются 31,5, 35 и 38,5 кВ; наибольшее рабочее напряжение равно 40,5 кВ; испытательное переменное напряжение 50 Гц равно 85 кВ, а импульсное для полной волны 200 кВ.

4.2. Общие требования. Предъявляемые к изоляции трансформатора

Изоляция трансформатора должна выдерживать без повреждений электрические, тепловые, механические и физико-химические воздействия, которым она подвергается при эксплуатации трансформатора.

Стоимость изоляции составляет существенную долю стоимости трансформатора. Для трансформаторов классов напряжения 220—500 кВ стоимость изоляции, включая масло, достигает 15—20 % стоимости всего трансформатора.

Главными задачами при проектировании изоляции транс форматора являются: определение тех воздействий, прежде всего электрических, которым изоляция подвергается в процессе эксплуатации; выбор принципиальной конструкции изоляции и форм изоляционных деталей; выбор изоляционных материалов, заполняющих изоляционные промежутки, и размеров изоляционных промежутков.

В эксплуатации силовой трансформатор постоянно находится во включенном состоянии, а его изоляция — под дли тельным воздействием рабочего напряжения, которое она должна выдерживать без каких-либо повреждений неограниченно долгое время. Допустимые продолжительные превышения напряжения должны быть указаны в стандартах на конкретные типы и группы трансформаторов. Согласно требованию ГОСТ 11677-85 силовые трансформаторы должны быть также рассчитаны на работу в определенных условиях при кратковременном напряжении, превышающем номинальное до 15 и 30 %. В электрической системе, в которой работает трансформатор, вследствие нормальных коммутационных процессов (включение и выключение больших мощностей и т. д.) или процессов аварийного характера (короткие замыкания, обрыв линий и т. д.) возникают кратковременные перенапряжения, достигающие в отдельных редких случаях значений, близких к четырехкратному фазному напряжению. Длительность этих перенапряжений измеряется сотыми долями секунды и, как правило, не превышает 0,1 с. Нормальное рабочее напряжение и перенапряжение коммутационного характера воздействуют в основном на главную изоляцию обмотки.

В воздушной сети могут возникать также импульсные волны перенапряжений, вызванных грозовыми атмосферными разрядами. Эти импульсы, достигая трансформатора, воздействуют на его изоляцию. Атмосферные перенапряжения в отдельных неблагоприятных случаях достигают 10-кратного фазного напряжения при длительности, измеряемой микросекундами. Воздействие атмосферных грозовых перенапряжений сказывается главным образом на продольной изоляции обмоток трансформатора, в частности на изоляции между витками, между слоями витков и между от дельными катушками обмотки.

При возникновении перенапряжений того или иного типа в случае недостаточной электрической прочности изоляции может произойти электрический разряд или даже пробой, т. е. местное разрушение изоляции.

Для упрощения расчета и стандартизации требований, предъявляемых к электрической прочности изоляции готового трансформатора, электрический расчет изоляции произ водится так, чтобы она могла выдержать приемосдаточные и типовые испытания, предусмотренные соответствующими нормами. Нормы испытаний составлены с учетом возможных в практике значений, длительности и характера электрических воздействий, содержат необходимые запасы прочности и закреплены в ГОСТ. Нормы периодически пересматриваются в соответствии с уточнением технических требований, предъявляемых к трансформаторам, развитием их производства и улучшением условий эксплуатации. Эти нормы являются строго обязательными для всех предприятий, выпускающих трансформаторы.

Для проверки электрической прочности изоляции масляных транс форматоров обычной конструкции, т. е. не имеющих ступенчатой изоляции по отношению к земле, установлены следующие приемосдаточные испытания каждого выпускаемого из производства трансформатора классов напряжения до 35 кВ включительно (ГОСТ 1516.1-76).

1. Испытанию подвергается изоляция каждой из обмоток, электрически не связанной с другими обмотками. Испытательное напряжение (50 Гц) от постороннего источника прикладывается между испытываемой обмоткой, замкнутой накоротко, и заземленным баком, с которым соединяется магнитная система и замкнутые накоротко все прочие об мотки испытываемого трансформатора. Длительность приложения испытательного напряжения 1 мин. Значения испытательных напряжений при нормальных атмосферных условиях [температура 20 °С, барометрическое давление 0,1 МПа (760 мм рт. ст.), влажность 11 г/м3] должны быть равны значениям, указанным в табл. 4.1 (для сухих трансформаторов табл. 4.2).

При этом испытании все части обмотки имеют один и тот же по тенциал и проверяется главная изоляция испытываемой обмотки, ее от водов, вводов и переключателей.

Таблица 4.1. Испытательные напряжения промышленной частоты (50Гц) для масляных силовых трансформаторов (ГОСТ 1516.1-76)

Класс напряжения,

кВ

3

6

10

15

20

35

110

150

220

330

500

Наибольшее рабочее напряжение,

кВ

3,6

7,2

12,0

17,5

24

40,5

126

172

252

363

525

Испытательное напряжение Uисп,кВ

18

25

35

45

55

85

200

230

325

460

630

Примечание: Обмотки масляных и сухих трансформаторов с рабочим напряжением до 1кВ имеют Uисп=5кВ.

Таблица 4.2. Испытательные напряжения промышленной частоты (50Гц) для сухих силовых трансформаторов (ГОСТ 1516.1-76)

Класс напряжения, кВ

До 1,0

3

6

10

15

Испытательное напряжение, кВ

3

10

16

24

37

2. После испытания напряжением, приложенным от другого источника, изоляция обмоток испытывается напряжением, наведенным в самом испытываемом трансформаторе в результате приложения к одной из обмоток (между ее вводами) двойного номинального напряжения повышенной частоты. Длительность приложения этого испытательного напряжения для силовых трансформаторов 1 мин.

При этом испытании в каждом витке, каждой катушке и обмотке наводится двойная ЭДС и проверяется продольная изоляция всех обмоток, отводов, вводов и переключателей.

Трансформаторы классов напряжения 110, 150 и 220 кВ, нейтраль обмотки которых при работе в сети нормально заземлена, испытываются напряжением, приложенным от постороннего источника, между испытываемой обмоткой и заземленными частями в течение 1 мин в размере испытательного напряжения нейтрали, т. е. 100 кВ при классе напряжения обмотки 110 кВ; 130 кВ при классе напряжения 150 кВ и 200 кВ при классе напряжения 220 кВ. Эти трансформаторы испытываются также напряжением, индуктированным в самом трансформаторе, в размере испытательного напряжения по табл. 4.1 при частоте 100—400 Гц. Длительность испытания при частоте 100 Гц 1 мин. При более высокой частоте длительность сокращается.

Таблица 4.3. импульсные испытательные напряжения внутренней изоляции (в масле) силовых трансформаторов (ГОСТ 1516.1-76)

Класс напряжения обмотки,кВ

Амплитуды импульсных испытательных напряжений, кВ

Класс напряжения обмотки, кВ

Амплитуды импульсных испытательных напряжений, кВ

Полная волна

Срезанная волна

Полная волна

Срезанная волна

3

44

50

110

480

550

6

68

70

150

550

600

10

80

90

220

750

835

15

108

120

330

1050

1150

20

130

150

500

1550

1650

35

200

225

 

 

 

Трансформаторы классов напряжения 220, 330 и 500 кВ испытываются путем длительного—при приемосдаточных испытаниях в течение 30 мин — приложения напряжения от постороннего источника между частями, находящимися под напряжением и заземленными. Значения испытательных напряжений: 220 кВ при классе напряжения 220 к В; 295 кВ при классе 330 кВ и 425 при классе напряжения 500 кВ. Эти трансформаторы испытываются также индуктированным напряжением частотой 100—400 Гц в размере испытательного напряжения по табл. 4.1.

Кроме приемосдаточных испытаний электрической изоляции, которым подвергается каждый трансформатор, выпускаемый заводом, каждый новый тип трансформатора подвергается типовым испытаниям по более широкой программе, включающей испытания грозовыми, а при классах напряжения 330 кВ и выше также и коммутационными им пульсами (табл. 4.3).

Электрическая прочность изоляции трансформатора обеспечивается прежде всего правильным учетом тех электрических воздействий, которые эта изоляция испытывает в эксплуатации, и правильным выбором норм, т. е. испытательных напряжений и методов воздействия на изоляцию при приемосдаточных и типовых испытаниях трансформаторов. Именно условиями электрической прочности определяется выбор принципиальной конструкции изоляции и форм ее деталей. Основные типы изоляционных конструкций приведены в § 4.4, а в § 4.5 даны рекомендации по их выбору для трансформаторов различных классов напряжения.

Обмотки и все токоведущие части трансформатора при его работе нагреваются от возникающих в них потерь, Как длительное, так и кратковременное (аварийное) воздействие высоких температур на изоляцию обмоток вызывает старение изоляции, которая постепенно теряет свою эластичность, становится хрупкой, снижает электрическую прочность и разрушается. В правильно рассчитанном и правильно эксплуатируемом трансформаторе изоляция обмоток должна служить 25 лет и более.

Необходимая нагревостойкость изоляции, гарантирующая длительную безаварийную работу трансформатора, достигается ограничением допустимой температуры его обмоток и масла, применением изоляционных материалрв соответствующего класса, выдерживающих длительное воздействие допустимой температуры, и рациональной конструкцией обмоток и изоляционных деталей, обеспечиваю щей их нормальное охлаждение.

При прохождении электрического тока по обмоткам и другим токоведущим частям между ними возникают механические силы. В аварийном случае короткого замыкания трансформатора механические силы, достигая значений тем больших, чем больше мощность трансформатора, могут вы звать разрушающие напряжения в междукатушечной или опорной изоляции обмоток.

Выбор изоляционных материалов производится с учетом их изоляционных свойств, механической прочности и химической стойкости по отношению к трансформаторному маслу, если речь идет о масляном трансформаторе. Материал не должен входить в химические реакции с маслом при температуре до 105—110 °С и не должен содействовать химическим и физическим изменениям масла в качестве катали затора. В трансформаторостроении накоплен достаточный опыт для выбора изоляционных материалов для масляных и сухих трансформаторов, имеющих необходимые изоляционные свойства, стойких в химическом отношении и обладающих достаточной механической прочностью, позволяю щей им выдерживать механические воздействия при аварийных процессах в трансформаторе (см. § 4.3). Материалы, применяемые в масляных трансформаторах, например электроизоляционный картон, бумага разных сортов, фарфор, хлопчатобумажная лента, не вступают в химическое воз действие с маслом, не разрушаются сами и не способствуют химическому разложению и загрязнению масла.

Изоляционные материалы, имеющие в том или ином виде смолы, лаки и эмали, например эмалевая изоляция провода, бумажно-бакелитовые изделия, лакоткани, текстолит, должны содержать смолы, лаки и эмали, нерастворимые в трансформаторном масле.

В обычно применяемых конструкциях трансформаторов изоляция подвергается воздействию, как правило, только сжимающих усилий, а наиболее употребительные изоляционные материалы, например электроизоляционный кар тон, кабельная бумага, бумажно-бакелитовые изделия, текстолит, допускают сжимающие напряжения до 20—40 МПа, что практически оказывается совершенно достаточным.

При выборе изоляционных материалов для той или иной конструкции изоляции масляного или сухого трансформатора и установлении размеров изоляционных промежутков можно пользоваться рекомендациями § 4.5. При этом в масляном трансформаторе можно использовать материалы класса нагревостойкости А, допускающего температуру до 105 °С, и в сухом — классов от А до Н, допускающих температуру от 105 до 155 °С. Неправильный выбор изоляционных промежутков, материалов и размеров изоляционных конструкций может привести к разрушению трансформатора, если эти промежутки малы, или к чрезмерному расходу изоляционных и других материалов и увеличению стоимости трансформатора, если промежутки велики.

Выбор изоляционных промежутков определяет в известной мере не только расход активных, изоляционных и конструктивных материалов, но также массу, габариты, а следовательно, и предельную мощность трансформатора, который можно изготовить на заводе и доставить по железной дороге к месту установки. Уменьшение изоляционных промежутков, обеспечивающее экономию материалов и увеличение предельной мощности выпускаемых заводами транс форматоров, при достаточной электрической прочности изоляции достигается различными мерами. К этим мерам относятся прежде всего: применение рациональных конструкций обмоток и их изоляции; улучшение защиты транс форматоров в сетях от атмосферных и коммутационных перенапряжений путем установки разрядников с лучшими разрядными характеристиками; улучшение качества изоляционных материалов, а также технологии обработки изоляции и повышение общей культуры производства.

Решающее значение в обеспечении электрической прочности изоляции имеет технология ее обработки. Одной из важнейших технологических операций обработки изоляции является вакуумная сушка активной части трансформатора после ее сборки и перед установкой в баке и заливкой маслом. Эта операция проводится для удаления влаги и газов из изоляции трансформатора для увеличения ее электрической прочности и уменьшения диэлектрических потерь, стабилизации размеров изоляционных деталей и увеличения электродинамической стойкости трансформатора при коротком замыкании, повышения надежности и увеличения срока службы трансформатора.

Основная работа в совершенствовании процесса сушки ведется в направлении некоторого уменьшения температуры сушки и существенного снижения остаточного давления в сушильных камерах. Считается, что остаточное давление в камере во время сушки трансформатора не должно быть выше 650 Па (5 мм рт. ст.) при классе напряжения 10 кВ; 130 Па (1 мм рт. ст.) при 35—150 кВ; 13 Па (0,1 мм рт. ст.) при 220—500 кВ и 1 Па (0,01 мм рт. ст.) при 750—1150 кВ. Немаловажное значение для электрической прочности трансформатора имеет заливка его после сушки хорошо про сушенным и дегазированным маслом.

Трансформаторы классов напряжения до 35 кВ включительно заливаются маслом при окончательной сборке без вакуумирования бака. Трансформаторы классов напряжения 110 кВ и выше при окончательной сборке заливаются просушенным, дегазированным и подогретым маслом надлежащей марки под вакуумом. Распространение этого способа заливки на трансформаторы класса напряжения 35 кВ может позволить перейти на облегченную изоляцию по рис. 4.5, б.

Примером технологической операции, увеличивающей механическую прочность изоляционного материала, может служить предварительная, до изготовления деталей, прессовка и уплотнение электроизоляционного картона.

Достаточная электрическая прочность изоляции транс форматора зависит также от уровня культуры производства — соблюдения технологической дисциплины, надлежащей чистоты в цехах и т. д. Заготовку и хранение изоляции, а также сборку активной части трансформаторов классов напряжения 500 кВ и выше рекомендуется производить в помещениях с регулируемым микроклиматом при поддержании определенного уровня температуры, влажности, при ограниченной запыленности воздуха и т. д.

Трансформаторное масло, соприкасаясь в горячем со стоянии с воздухом, в большей степени подвергается химическим воздействиям и увлажнениям, чем твердая изоляция трансформатора. Поэтому при эксплуатации трансформаторов практикуются систематическая очистка, сушка и смена масла, а также принимаются меры, направленные на уменьшение поверхности соприкосновения масла с воздухом, осуществляется осушение поступающего в расширитель воздуха в специальных химических осушителях, производятся герметизация расширителей, защита открытой поверхности масла слоем инертного газа или синтетическими пленками и т. д. Определенная технология подготовки и заливки масла должна соблюдаться не только в производстве трансформатора, но также и в эксплуатации при периодических сменах и очистках масла.

Изоляция сухих трансформаторов должна предохраняться от увлажнения, а при установке трансформаторов в помещениях, воздух которых содержит пары кислот или других разъедающих жидкостей, — от воздействия этих паров. Этим целям служит пропитка обмоток различными лаками. Изоляция трансформатора должна быть не только прочной во всех отношениях, но также и дешевой. При условии соблюдения равной прочности всегда следует добиваться получения более простой в производстве конструкции, применения более дешевых материалов, экономного их расходования, а также применения материалов, допускающих более простую и дешевую технологическую обработку.

Оглавление

Дисциплина: Электрическое оборудование электроэнергетических систем и сетей зарубежных стран

Лекция № 4 Измерительные трансформаторы

4.2 Трансформаторы напряжения 1

4.3 Трансформаторы тока 11

12

где I1ном и I2ном — номинальные значения первичного и вторичного тока соответственно 12

Отечественная промышленность выпускает довольно большой ассортимент трансформаторов тока с литой изоляцией. На рисунке 12а, б, в, г. представлены трансформаторы тока с литой изоляцией на напряжение 10-35 кВ. 13

Рис. 12аТрансформатор тока измерительный опорный типа ТОЛ-10 14

Рис. 12в Трансформатор тока измерительный проходной типа ТШЛ-10 15

4.1 Введение

Измерительные трансформаторы используют, главным образом, для подключения релейных защит и электроизмерительных приборов к цепям переменного тока высокого напряжения. При этом все устройства РЗА и электроизмерительные приборы оказываются изолированными от цепей высокого напряжения, что обеспечивает безопасность работы обслуживающего персонала. Кроме того, измерительные трансформаторы дают возможность расширять пределы измерения приборов, т.е. измерять большие токи и напряжения с помощью сравнительно несложных приборов, рассчитанных для измерения малых токов и напряжений. Измерительные трансформаторы служат для подключения к цепям высокого напряжения обмоток реле, обеспечивающих защиту электроустановок от аварийных режимов. Измерительные трансформаторы подразделяют на два типа — трансформаторы напряжения и трансформаторы тока.

4.2 Трансформаторы напряжения

Трансформаторы напряжения служат для подведение цепей напряжения к РЗА и включения вольтметров, а также других приборов, реагирующих на значение напряжения (например, катушек напряжения ваттметров, счётчиков, фазометров и т.д.). Измерительные трансформаторы напряжения изготовляют мощностью от пяти до нескольких сотен вольт-ампер. Они рассчитаны для совместной работы со стандартными приборами РЗА на 100, 100  и 33В. Наиболее распространёнными трансформаторами напряжения по конструкции являются: с литой изоляцией, маслонаполненные, масленые герметичные и с элегазовой изоляцией.

Трансформатор напряжения выполнен в виде двухобмоточного понижающего трансформатора (см. рисунок 1). Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют в одной точке. Условное обозначение трансформатора напряжения такое же, как двухобмоточного трансформатора. Так как сопротивления обмоток вольтметров и других измерительных приборов (V, W, KV), подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, что

U1 = U2*K,

где К — коэффициент трансформации.

U1 – напряжение первичной обмотки;

U2 – напряжение вторичной обмотки.

Рис. 1 Схема включения трансформатора напряжения

1 — первичная обмотка; 2- магнитопровод; 3 — вторичная обмотка.

Сегодня трансформаторы с литой изоляцией прочно заняли свои позиции на электротехническом рынке. На первом этапе эпоксидные компаунды начали применяться для производства оборудования напряжением 6–10 кВ, а затем, благодаря ряду инновационных решений, распространились на трансформаторы 35 кВ. Литая изоляция лишена недостатков, присущих масляной изоляции, и обладает рядом достоинств. Например, немаловажное значение имеет то, что компаунд жёстко фиксирует и герметизирует активные части трансформаторов, исключая влияние на них механических, климатических и прочих внешних воздействий. Это значительно повышает надежность трансформаторов напряжения, позволяя применять их в большом диапазоне температур (см. рисунок 2).

Рис. 2 Однофазный литой трансформатор напряжения ЗНОЛ – 35III

На рисунке 3а,б,в представлены трансформаторы напряжения 6-10 кВ

а б в

Рис.3 Трансформаторы напряжения 6-10 кВ

а – типа НОЛП – 6-10 кВ; б – типа ЗНИОЛ -10-П; в — типа НОЛ-10

Трансформаторы напряжения могут выполняться с одним или двумя высоковольтными вводами первичной обмотки. У заземляемых трансформаторов один ввод первичной обмотки, имеющий неполную изоляцию, во время работы должен быть заземлён. Вводы первичной обмотки не заземляемых трансформаторов напряжения имеют полную изоляцию.

Маслонаполненные трансформаторы напряжением 35 кВ и выше (см. рисунок 4.) изготавливались на электротехнических заводах Российской Федерации. Основной недостаток их конструкции это непосредственный контакт трансформаторного масла с воздушной средой, который приводит к его увлажнению и снижению изоляционных параметров измерительного трансформатора. Применение резиновых прокладок для создания герметичности конструкции ТН не обеспечивает её плотности в течении всего периода эксплуатации. Техническое обслуживание этого типа трансформаторов напряжения требует значительных затрат.

а — общий вид трансформатора напряжения; 1 — вторичные выводы; 2 — расширитель; 3 — указатель уровня масла; 4 — фарфоровая покрышка; 5 — тележка; 6 — коробка с выводами;  7  —  болт для подъёма;

б  —  электрическая схема; 1 и 2 — секции первичной обмотки; 3 и 4 — магнитопроводы; 5  —  вторичная обмотка; б и 7 — уравнительные обмотки

Рис. 4 Маслонаполненный трансформатор напряжения 110 кВ

а — общий вид трансформатора напряжения; б — электрическая схема.

На рисунке 5  представлена фотография установки комплекта масляных герметичных трансформаторов напряжения EOF 123, а на рисунке 6 представлен внешний вид антирезонансного масляного герметичного трансформатора напряжения типа НАМИ-35.

Рис. 5 Установка герметичных трансформаторов напряжения серии EOF 123

ТН типов EOF 123, 145, 245 изготавливаются фирмой PFIFFNER (см. рисунок 5). Индуктивный измерительный трансформатор напряжения с бумажно-масляной изоляцией. Металлические части изготовлены из алюминия или нержавеющей стали, взрывозащищённый корпус. Соответствует как международным, так и национальным стандартам, не требует обслуживания, оснащён следующими системами контроля и мониторинга.

Простая и надёжная система индикации уровня масла.

Нижняя часть корпуса прорывается при повышении давления без осколков. Нижняя часть корпуса оптимизирована для малого объёма масла.

Расположенный горизонтально сердечник занимает мало места. Низкая рабочая индуктивность, свойства материалов и оптимизированная конструкция сердечника обеспечивают наилучшую защиту от ферро-резонанса.

Простая и безопасная кабельная разводка во вторичной распаячной коробке. Неснимаемая крышка открывается в сторону. Заземляющий вывод первичной обмотки ведёт во вторичную распаячную коробку.

ТН трёхфазный антирезонансные масляный герметичный НАМИ-35 УХЛ1 (ТУ 3414-026-11703970-05).

Трёхфазный антирезонансный масляный герметичный трансформатор напряжения типа НАМИ-35 УХЛ1 предназначен для установки в электрических сетях трехфазного переменного тока частоты 50 Гц с изолированной или с компенсированной нейтралью с целью передачи сигнала измерительной информации приборам измерения, устройствам автоматики, защиты, сигнализации и управления. Трансформатор имеет первичную обмотку и три вторичные обмотки: вторичная основная обмотка № 1 — предназначена для коммерческого учета электроэнергии, имеет отдельную опломбированную коробку, вторичная основная № 2 — для цепей измерения и защиты и вторичная дополнительная обмотка — для контроля изоляции сети. Трансформатор имеет компенсатор давления, обеспечивающий компенсацию температурных изменений объёма масла. На рисунке 6 представлен его внешний вид, а на рисунке 7 изображена электрическая схема трёхфазного антирезонансного масляного герметичного трансформатора напряжения типа НАМИ-35.

Рис. 6 Внешний вид трёхфазного антирезонансного масляного герметичного трансформатора напряжения типа НАМИ-35

Рис. 7 Электрическая схема трёхфазного антирезонансного масляного герметичного трансформатора напряжения типа НАМИ-35.

Явления феррорезонса в сетях с электромагнитными трнсформаторами напряжения характеризуются длительными перенапряжениями и токовыми перегрузками обмоток ТН. В основу антирезонансных ТН типа НАМИ 35 положен принцип увеличения активных потерь в резонансном контуре. Магнитопровод ТН частично выполняется из толстолистовой конструкционной стали. Это обеспечивает значительное увеличение активных потерь (за счёт вихревых токов) при больших индукциях в магнитопроводе, т.е. длительное воздействие тока в обмотке ВН феррорезонансные ТН выдерживают длительное время. Данные типы ТН не только сами не вступают в феррорезонанс с ёмкостью сети, но и выдерживают феррорезонансное повышение напряжения, вызванное намагничивающим током других ТН. Кроме того, трансформаторы напряжения выдерживают без ограничения времени все виды однофазных замыканий в сети на землю, в том числе и через перемежающуюся дугу. Выпускаются две разновидности масляных антирезонансных трансформаторов напряжения. Первая: НАМИ-35 кВ. Вторая: НАМИ (Т)-35 кВ. Вторая с приставкой (Т) предусматривает наличие в одном баке двух трансформаторов — трёхфазного и однофазного. Первичная обмотка однофазного трансформатора включена между нейтралью обмоток трёхфазного трансформатора и землёй. Отличаются они тем, что у НАМИ вторичная обмотка однофазного трансформатора напряжения всегда разомкнута, а у НАМИТ в нормальном режиме она короткозамкнута. Размыкается она только при феррорезонансе в сети. Механизм размыкания вторичной обмотки у НАМИТ довольно сложен – он состоит из реле обнаружения феррорезонанса и реле дешунтирования обмотки. Для питания обмоток реле требуется оперативный ток. В большинстве случаев набор реле отсутствует и вторичная обмотка постоянно замкнута. Короткозамкнутый однофазный трансформатор превращается, по существу, в разновидность балластного сопротивления нейтрали группы однофазных ТН. В этом кроется дополнительный источник повреждаемости ТН типа НАМИТ.

Элегазовые измерительные трансформаторы напряжения предназначены для применения на подстанциях открытого типа классов напряжения 35 — 220 кВ с изолированной и заземлённой нейтралью для передачи сигнала измерительной информации измерительным приборам, устройствам защиты, сигнализации, управления и автоматики. Внутренняя полость трансформатора заполняется элегазом, служащим изолирующей и теплоотводящей средой. Заполнение трансформатора напряжения элегазом производится через клапан, установленный на корпусе трансформатора. На корпусе трансформатора установлена предохранительная мембрана, срабатывающая при аварийном повышении внутреннего давления. Поток выхлопных газов направлен вниз, вдоль корпуса. Элегазовые трансформаторы напряжения могут комплектоваться термокомпенсированным сигнализатором плотности элегаза. Конструкции элегазовых измерительных трансформаторов напряжения практически одинаковы. На рисунке 8 представлено фото установки элегазового трансформатора напряжения ЗНОГ-110 кВ.

Рис. 8 Элегазовый трансформатор напряжения ЗНОГ-110 кВ

Активная часть трансформатора (ленточный разрезной магнитопровод из электротехнической стали с обмотками) – размещена в алюминиевом заземлённом корпусе, который находится в нижней части на основании трансформатора. На корпусе установлен изолятор, обеспечивающий внешнюю изоляцию аппарата. На верхнем торце изолятора размещён высоковольтный контактный вывод первичной обмотки. На корпусе расположены заземляемый вывод первичной обмотки и выводы вторичных обмоток, а также сигнализатор плотности для контроля давления элегаза, устройство для заполнения элегазом, табличка технических данных. Электрическая схема трансформатора ЗНОГ-110 и схема электрических соединений сигнализатора плотности представлена на рисунке 9.

Рис. 9 Трансформатор ЗНОГ-110 и схема электрических соединений сигнализатора плотности

Обмотки трансформатора напряжения расположены на магнитопроводе концентрически, внутри – дополнительная вторичная обмотка Д. Поверх неё намотана основная вторичная обмотка для измерения и защиты И, затем — основная вторичная обмотка, предназначенная для питания цепей учета электроэнергии У. Поверх вторичных обмоток расположена первичная высоковольтная обмотка. Для обеспечения максимальной электрической прочности изоляции, обмотки снабжены экранами. Выводы обмотки У имеют устройство, позволяющее их пломбирование. Сигнализатор плотности имеет специальные контакты, с помощью которых подаются сигналы при снижении давления элегаза. Мембрана, установленная на заземляемом корпусе, защищает трансформатор от повышения давления газа сверх допустимого уровня. Трансформатор комплектуется термокомпенсированным сигнализатором плотности элегаза типа «WIKA».

Во всех уплотняемых соединениях применены сдвоенные уплотнения из специального полимерного материала, который, в отличие от резины, нечувствителен к воздействию низких температур и практически не подвержен старению. Повышенная надежность узлов уплотнения выводов вторичных обмоток обеспечивается многоуровневым лабиринтным уплотне­нием. Многократные испытания в камерах холода и накопленный опыт эксплуатации изделий с аналогичными уплотнениями подтвердили их полную герметичность, в том числе и при экстремально низких температурах окружающего воздуха изготавливаются методом высококачественной сварки на специализированном предприятии с использованием самых современных методов контроля герметичности. Все это обеспечивает низкий уровень утечек изолирующего газа – не более 0,5% от общей массы в год. Высокий класс точности вторичной обмотки для учета — 0,2.

Элегазовые трансформаторы напряжения, как правило, изготавливаются с тремя вторичными обмотками: одна – для подключения цепей учета, вторая – для подсоединения цепей измерения, защиты и управления, третья – для цепей защиты от замыкания на землю. Возможность пломбирования выводов вторичной обмотки для учета электроэнергии позволяет предотвратить несанкционированный доступ к цепям учета.

Элегаз не поддерживает горения. Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны производственных помещений 5000 мг/м3. Предельно допустимая концентрация в атмосферном воздухе — 0,001 мг/м3. Значительная диэлектрическая прочность элегаза обеспечивает высокую степень изоляции при минимальных размерах и расстояниях, что позволяет уменьшить массу и габариты электротехнического оборудования. Применение элегаза позволяет при прочих равных условиях увеличить токовую нагрузку на 25 % и допустимую температуру медных контактов до 90°С (в воздушной среде 75°С) благодаря химической стойкости, негорючести, пожаробезопасности и большей охлаждающей способности элегаза. При увеличении давления электрическая прочность элегаза возрастает почти пропорционально давлению и может быть выше электрической прочности жидких и некоторых твёрдых диэлектриков. Однако это преимущество становится недостатком элегаза при низких температурах по причине перехода его в жидкое состояние и потере изоляционных свойств, что определяет дополнительные требования к температурному режиму элегазового оборудования в эксплуатации. Температура сжижения элегаза при избыточном давлении (давлении заполнения оборудования) 0,3 МПа составляет – 45 0С, а при 0,5 МПа она повышается до – 30 °С. Таким образом, наибольшее рабочее давление и, следовательно, наибольший уровень электрической прочности элегаза в изоляционной конструкции ограничиваются возможностью сжижения элегаза при низких температурах.

Сопротивление изоляции каскадных трансформаторов тока

Класс напряжения, кВ

Допустимые сопротивления изоляции, МОм, не менее

Основная изоляция

Измерительный вывод

Наружные слои

Вторичные обмотки*

Промежуточные обмотки

3-35

1000

50(1)

110-220

3000

50(1)

330-750

5000

3000

1000

50(1)

1

* Сопротивления изоляции вторичных обмоток приведены: без скобок — при отключенных вторичных цепях, в скобках — с подключенными вторичными цепями.

2. Измерение tg  изоляции.

Измерения tg  трансформаторов тока с основной бумажно-масляной изоляцией производятся при напряжении 10 кВ.

Измеренные значения, приведенные к температуре 20°С, должны быть не более указанных в табл. 1.8.14.

У каскадных трансформаторов тока tg  основной изоляции измеряется для трансформатора тока в целом. При неудовлетворительных результатах таких измерений tg  основной изоляции дополнительно производится измерение по ступеням.

3. Испытание повышенным напряжением промышленной частоты 50 гц.

3.1. Испытание повышенным напряжением основной изоляции.

Значения испытательного напряжения основной изоляции приведены в табл. 1.8.14. Длительность испытания трансформаторов тока — 1 мин.

Допускается проведение испытаний трансформаторов тока совместно с ошиновкой. Трансформаторы тока напряжением более 35 кВ не подвергаются испытаниям повышенным напряжением.

3.2. Испытание повышенным напряжением изоляции вторичных обмоток.

Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями принимается равным 1 кВ.

Продолжительность приложения испытательного напряжения — 1 мин.

Таблица 1.8.14

Значения tg  основной изоляции трансформаторов тока

Тип изоляции

Предельные значения tg  %, основной изоляции трансформаторов тока на номинальное

3-15

20-35

110

220

330

500

750

Бумажно-бакелитовая

3,0

2,5

2,0

Основная бумажно-масляная и конденсаторная изоляция

2,5

2,0

1,0

Не более 150% от измеренного на заводе,

но не выше 0,8.

4. Снятие характеристик намагничивания.

Характеристика снимается повышением напряжения на одной из вторичных обмоток до начала насыщения, но не выше 1800 В.

При наличии у обмоток ответвлений характеристика снимается на рабочем ответвлении.

Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных трансформаторов тока, однотипных с проверяемыми.

Отличия от значений, измеренных на заводе-изготовителе, или от измеренных на исправном трансформаторе тока, однотипном с проверяемым, не должны превышать 10 %.

Допускается снятие только трех контрольных точек.

5. Измерение коэффициента трансформации.

Отклонение измеренного коэффициента от указанного в паспорте или от измеренного на исправном трансформаторе тока, однотипном с проверяемым, не должно превышать 2 %.

6. Измерение сопротивления вторичных обмоток постоянному току.

Измерение проводится у трансформаторов тока на напряжение 110 кВ и выше.

Отклонение измеренного сопротивления обмотки постоянному току от паспортного значения или от измеренного на других фазах не должно превышать 2 %. При сравнении измеренного значения с паспортными данными измеренное значение сопротивления должно приводиться к заводской температуре. При сравнении с другими фазами измерения на всех фазах должны проводиться при одной и той же температуре.

7. Испытания трансформаторного масла.

При вводе в эксплуатацию трансформаторов тока трансформаторное масло должно быть испытано в соответствии с требованиями табл. 1.8.33 пп. 16, а у герметичных и по п. 10.

У маслонаполненных каскадных трансформаторов тока оценка состояния трансформаторного масла в каждой ступени проводится по нормам, соответствующим рабочему напряжению ступени.

8. Испытание встроенных трансформаторов тока.

Производится по пп. 1, 3.2, 46. Измерение сопротивления изоляции встроенных трансформаторов тока производится мегаомметром на напряжение 1000 В.

Измеренное сопротивление изоляции без вторичных цепей должно быть не менее 10 МОм.

Допускается измерение сопротивления изоляции встроенных трансформаторов тока вместе со вторичными цепями. Измеренное сопротивление изоляции должно быть не менее 1 МОм.

1.8.18. Измерительные трансформаторы напряжения

1. Электромагнитные трансформаторы напряжения.

1.1. Измерение сопротивления изоляции обмоток.

Измерение сопротивления изоляции обмотки ВН трансформаторов напряжения производится мегаомметром на напряжение 2500 В.

Измерение сопротивления изоляции вторичных обмоток, а также связующих обмоток каскадных трансформаторов напряжения производится мегаомметром на напряжение 1000 В.

Измеренные значения сопротивления изоляции должны быть не менее приведенных в табл. 1.8.15.

1.2. Испытание повышенным напряжением частоты 50 Гц.

Испытание изоляции обмотки ВН повышенным напряжением частоты 50 Гц проводятся для трансформаторов напряжения с изоляцией всех выводов обмотки ВН этих трансформаторов на номинальное напряжение.

Значения испытательного напряжения основной изоляции приведены в табл. 1.8.15.

Длительность испытания трансформаторов напряжения — 1 мин.

Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями принимается равным 1 кВ.

Продолжительность приложения испытательного напряжения — 1 мин.

Таблица 1.8.15

назначение и классификация, требования к материалам

При передаче электроэнергии от источника переменного тока к какому-нибудь потребителю, по соображениям безопасности необходимо изолировать конечное устройство от источника питания. Таким образом, изоляция у трансформаторов предотвращает генерацию вредных гармоник напряжения на распределительную шину.

Назначение изоляции в силовом трансформаторе

Поскольку системы бесперебойного питания работают беспрерывно, то они осуществляют выборку входного сигнала, воздействуя на него таким образом, чтобы обеспечить «чистую» мощность на выходе.  Оценивая диэлектрическую способность изоляционной конструкции, необходимо учитывать три фактора:

  1. Распределение напряжения должно быть рассчитано между различными частями обмотки.
  2. Величина диэлектрических напряжений должна учитывать геометрические параметры трансформатора.
  3. Для определения расчетного запаса фактические напряжения необходимо сравнивать со значениями напряжения пробоя.

При установившемся потоке напряжения в сердечнике распределение напряжения является линейным. Это происходит во время всех испытаний частоты и рабочих условий, а также в значительной степени – в импульсных условиях переключения, когда время фронта составляет десятки и сотни микросекунд. В подобных условиях всегда наблюдается тенденция к усилению основной изоляции, а не внутренней.

Для более коротких по длительности импульсов (таких как двухполупериодная, прерывистая или фронтальная волна), напряжение не делится линейно внутри обмотки и должно определяться расчётом или измерением низкого напряжения. Начальное распределение определяется емкостной сетью обмотки.

Изоляция трансформаторов

Классификация

Изоляция силовых трансформаторов подразделяется на главную, продольную и уравнительную. Эксплуатация каждой их них имеет свою специфику.

Главная

Разделяет обмотки высокого и низкого напряжения и обмотки сердечника. Форма обмотки сердечника влияет на равномерность начального распределения импульсов напряжения. Поэтому при изготовлении обмотки используются электростатические экраны на клеммах катушки. Статические экраны обычно используются с целью предотвращения чрезмерных концентраций напряжений в линии.

После начального периода электрические колебания происходят уже только внутри обмоток. Эти колебания создают большие напряжения от средних частей обмоток к земле, которые прямо пропорциональны длине волны. Очень быстрые импульсы создают самые большие напряжения между витками и частями катушки.

Для главных обмоток трансформатора важен тип импульсных переходных напряжений, которые могут быть двух типов: апериодические и колебательные. В отличие от апериодических волн, колебательные могут возбуждать собственные частоты обмотки и вызывать опасные напряжения во внутренней изоляции обмотки.

Главная изоляция

Продольная

Концевые повороты, которые возникают при увеличении эффективной ёмкости внутри катушки, определяют надёжность продольной изоляции. Для увеличения последовательной ёмкости катушки и увеличения диэлектрической прочности используют либо чередование витков, либо предусматривают плавающие металлические экраны.

Продольная изоляция трансформатора

Уравнительная

Используется для защиты от скачков напряжения в линиях электропередачи, сигнальных и питающих линиях.  Если скачок переходного напряжения является случайным, то энергия кратковременного электрического возмущения характеризуется временем нарастания, которое не превышает 10 мкс.

При этом около 80% зарегистрированных скачков напряжения переходного процесса происходят из-за внутренних переходных процессов переключения в трансформаторах. Поэтому задача уравнительной изоляции – отвести преобладающую часть переходной энергии от нагрузки, создавая эквивалентный потенциал между подключенными линиями. Уравнительная изоляция подразделяется на три класса:

  • первый класс предусматривается для главных распределительных плат, защищая электроустановки от прямых ударов молнии;
  • второй класс предотвращает распространение перенапряжения;
  • третий класс предусматривается как дополнение к уравнительной изоляции второго класса в местах особо чувствительных нагрузок.

Уравнительная изоляция

Требования

Нормируемые параметры устанавливаются согласно ГОСТ 8865-93.

До 35 кВ

Для маломощных трансформаторов размер зазора между изоляционными прокладками обычно не превышает 6 мм, при этом расстояние от обмотки до наружной стенки резервуара с трансформаторным маслом не должно быть меньше 65 мм. Изоляционный промежуток, который определяется конфигурацией токоведущей и заземляющей частей трансформатора устанавливается размером от 40 мм на каждую сторону.

Трансформатор до 35кВ

110 кВ

При дальнейшем увеличении мощности требовании к качеству изоляции увеличиваются. Так, размер масляного канала возрастает до 10 мм, расстояние от обмотки до стенки масляного бака должно быть не менее 90 мм (если толщина изоляционного слоя превышает 20 мм, то это достояние допустимо уменьшать, но не меньше, чем на 15 мм).

150 кВ

Для трансформаторов средней мощности характерно увеличение расстояния между токопроводящими и заземлёнными элементами – оно составляет 840 мм и должно строго выдерживаться на протяжении всего участка ввода.

трансформатор до 150 кВ

220 кВ

Обязательному контролю подлежат следующие элементы конструкции:

  1. Соединительная арматура.
  2. Целостность свинцовой оплётки.
  3. Зазоры в намотке.
  4. Фактическое заземляющее напряжение.
  5. Изоляция нейтрали.
  6. Индуцирующее напряжение.

Испытания проводят при тестовых значениях напряжений, которые не менее чем на 15 % превышают номинальные.

330 кВ

Контролируются те же параметры, что и в предыдущем случае, с учётом нормативных значений, определяемых стандартом.

330 кВ

500 кВ

Дополнительно принимаются во внимание следующие факторы:

  1. Исполнение трансформатора – открытое или закрытое.
  2. Тип циркуляции воздуха – естественный или принудительный.
  3. Высота установки над уровнем моря.
  4. Колебания внешней температуры воздуха.
  5. Наибольшие колебания нагрузки.
  6. Степень загрязнённости окружающей среды.
  7. Возможные механические воздействия.

Данные проверки сравниваются с нормативными величинами, которые приводятся в ГОСТ Р 52719-2007.

500 кВ

Какие материалы используются

Системы изоляции в силовых трансформаторах состоят из жидкости (либо газа) вместе с твердыми материалами. Жидкости должны иметь высокую температуру вспышки (силиконы, некоторые виды углеводородов, хлорированные бензолы).

Газовые системы включают азот, воздух и фтор газ. Флюорогазы используются, чтобы избежать воспламеняемости и ограничить вторичные эффекты внутренней недостаточности. Иногда используется фреон, который позволяет улучшить теплопередачу с использованием двухфазной системы охлаждения.

Внешняя

Низкая стоимость, высокая диэлектрическая прочность, отличные характеристики теплопередачи и способность восстанавливаться после перенапряжения в диэлектрике делают минеральное масло наиболее широко используемым изоляционным материалом для внутренней изоляции трансформаторов. Газ выгоднее использовать в системах, имеющих продолжительный режим работы при номинальной мощности.

Внешняя изоляция

Внутренняя

Проводники обмотки обычно изолируются эмалированной или обёрточной бумагой на основе дерева или нейлона. Использование таких материалов увеличивает прочность конструкции. При этом предел диэлектрической прочности обычно равен маслу.

Для проводов, идущих от обмотки, обычно используется материал высокой плотности. В этом случае снижаются механические напряжения в масле путём перемещения границы раздела от поверхности проводника к его периферии.  Изоляция из целлюлозы выполняет три функции:

  1. Действует как диэлектрик, накапливая электрический заряд.
  2. Поддерживает обмотки.
  3. Способствует улучшению теплоотвода.

Сроки испытания изолирующих материалов трансформаторов регламентируются приложением 3 Правил технической эксплуатации потребительских электроустановок (ПТЭЭП).

Внутренняя

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *