Site Loader

Какой трансформатор называется повышающим а какой понижающим?

Существует много разных электрических  устройств. Рассмотрим одно из основных и распространенных дошедших до наших дней и не потерявшей своей актуальности – трансформатор. Это устройство служит для повышения или уменьшения напряжения в электрических цепях, частоты и числа фаз переменного электрического тока. По изменению напряжения тока они делятся на понижающие  и повышающие значение напряжения сети.

  Какой трансформатор называется повышающим а какой понижающим?

Понижающий  трансформатор уменьшает напряжение тока в электрической цепи. Технически — это реализуется за счет разности напряжений между первичной обмотки устройства и вторичной.

 Какой трансформатор называется повышающим? Повышающий трансформатор повышает значение напряжения электрического тока. На первичной обмотке оно ниже, а на вторичной выше. Тем самым на выходе прибора напряжение выше и за счет определенного числа витков обмотки и сечения имеет нужное значение.

Автотрансформаторы

Наряду с обычными трансформаторами часто в быту и промышленности применяются автотрансформаторы. Отличие от обычных состоит в том, что первичную и вторичную обмотку связывает не только магнитное поле, но и электрическая связь. Мощность в этом устройстве передается не только за счет магнитного поля, но и за счет электрической связи. Какой трансформатор называют повышающим и какой понижающим в автотрансформаторах?  Принципы заложены те же. Какой трансформатор повышающий, а какой понижающий можно определить по соответствующей маркировке. Есть и универсальные устройства, которые выполняют обе функции на понижение и на повышение. Автотрансформаторы широко применяются в цепях  большой мощности и высокого напряжения и, а также регулируют напряжение  в устройствах небольшой мощности.

Как подобрать трансформатор

Чтобы грамотно выбрать  трансформатор необходимо вначале ознакомится с характеристиками приборов  сети, для которой вы будите покупать трансформатор. Узнать их потребляемую мощность и напряжение.

Далее узнать входное напряжение сети. Зная эти значения можно начать подбирать  устройство. Определим, вначале, нам необходим повышающий или понижающий трансформатор.  Какой трансформатор называют повышающим? Такой, у которого напряжение на входе меньше чем на выходе. Если приборы у нас потребляют напряжение больше, чем на входе сети, то выберем повышающий. Если нет – понижающий.

Смотрим на сумму значений мощности потребляемых приборов. Подбираем трансформатор с выходным параметром соответствующим этой мощности, добавив 20% и напряжению этих приборов. 

Входное напряжение устройства должно соответствовать напряжению сети.

Трансформатор ставим в безопасное место и обязательно заземляем.

Часто покупатели затрудняются в выборе трансформатора. В сложностях подсчета мощности потребляемых приборов. Какой трансформатор является повышающим , какой понижающим. Что выбрать и так далее. Проще обратиться к нашему специалисту и он все сделает. Рассчитает и подберет универсальный автотрансформатор на все случаи, когда будет необходимо добавить какой либо новый потребляющий прибор.

Повышающий/понижающий преобразователь напряжения своими руками

Всем доброго времени суток, уважаемые самоделкины!
В этой самоделке AKA KASYAN сделает универсальный понижающий и повышающий преобразователь напряжения.

Недавно автор собрал литиевый аккумулятор. А сегодня раскроет секрет, для какой цели он его изготовил.

Вот новый преобразователь напряжения, режим его работы — однотактный.

Преобразователь имеет небольшие габариты и достаточно большую мощность.

Обычные преобразователи делают одно из двух. Только повышают, или только понижают подаваемое на вход напряжение.
Вариант, изготовленный автором может как повысить,

так и понизить входное напряжение до требуемого значения.

У автора имеются различные регулируемые источники питания, с помощью которых он тестирует собранные самоделки.

Заряжает аккумуляторы, да и использует их для различных других задач.

Не так давно появилась идея создания портативного источника питания.
Постановка задачи была такой: устройство должно иметь возможность заряжать всевозможные портативные гаджеты.

От обычных смартфонов и планшетов до ноутбуков и видеокамер, а также справился даже с питанием любимого паяльника автора TS-100.

Естественно можно просто воспользоваться универсальными зарядными устройствами с адаптерами питания.
Но все они питаются от 220В


В случае автора требуется нужен был именно портативный источник различных выходных напряжений.

А таковых в продаже автор не нашел.

Питающие напряжения для указанных гаджетов имеют очень широкий диапазон.
Например смартфонам нужно всего 5 В, ноутбукам 18, некоторым даже 24 В.

Аккумулятор, изготовленный автором, рассчитан на выходное напряжение в 14,8 В.
Следовательно, необходим преобразователь, способный как повышать, так и понижать начальное напряжение.


Обратите внимание, некоторые номиналы указанных на схеме компонентов, отличаются от установленных на плате.


Это конденсаторы.

На схеме указаны эталонные номиналы, а плату автор делал для решения своих задач.
Во-первых, интересовала компактность.

Во-вторых, авторский преобразователь питания позволяет спокойно создать выходной ток в 3 Ампера.

AKA KASYAN большего и не надо.

Связано это с тем, что емкость примененных накопительных конденсаторов небольшая, но схема способна выдать выходной ток до 5 А.

Поэтому схема является универсальной. Параметры зависят от емкости конденсаторов, параметров дросселя, диодного выпрямителя и характеристик полевого ключа.


Замолвим пару слов о схеме. Она представляет собой однотактный преобразователь на базе шим-контроллера UC3843.

Поскольку напряжение от аккумулятора немного больше штатного питания микросхемы, в схему был добавлен 12В стабилизатор 7812 для питания шим-контроллера.

В приведенной схеме данный стабилизатор указан не был.
Сборка. Про перемычки, установленные с монтажной стороны платы.

Этих перемычек четыре, и две из них являются силовыми. Их диаметр должен быть не менее миллиметра!
Трансформатор, вернее дроссель, намотан на желтом кольце из порошкового железа.


Такие колечки можно найти в выходных фильтрах компьютерных блоков питания.
Размеры примененного сердечника.
Внешний диаметр 23,29мм.

Внутренний диаметр 13,59мм.

Толщина 10,33мм.

Скорее всего, толщина намотки изоляции 0,3мм.
Дроссель состоит из двух равноценных обмоток.

Обе обмотки наматываются медной проволокой диаметром 1,2 мм.
Автор рекомендует применять проволоку диаметром немного больше, 1,5-2,0 мм.

Витков в обмотке десять, оба провода наматываются разом, в одном направлении.

Перед установкой дросселя перемычки заклеиваем капроновым скотчем.

Работоспособность схемы заключается в правильной установке дросселя.


Необходимо правильно припаять выводы обмоток.

Просто установите дроссель, как это показано на фото.

Силовой N-канальный полевой транзистор, подойдет практически любой низковольтный.

Ток транзистора не ниже 30А.

Автор использовал транзистор IRFZ44N.

Выходной выпрямитель — это сдвоенный диод YG805C в корпусе TO220.


Важно использовать диоды Шоттки, так как они дают минимальную просадку напряжения (0,3В против 0,7) на переходе, это влияет на потери и нагрев. Их также легко найти в пресловутых компьютерных блоках питания.

В блоках они стоят в выходном выпрямителе.

В одном корпусе — два диода, которые в схеме у автора запараллелены для увеличения проходящего тока.
Преобразователь стабилизирован, имеется обратная связь.

Выходное напряжение задает резистор R3


Его можно заменить на выносной переменный резистор для удобства работы.

Преобразователь также снабжен защитой от короткого замыкания. В качестве датчика тока применен резистор R10.

Это низкоомный шунт, и чем выше его сопротивление тем меньше ток срабатывания защиты. Установлен SMD вариант, на стороне дорожек.

Если защита от КЗ не нужна, то этот узел просто исключаем.

Еще защита. На входе схемы стоит предохранитель на 10А.

Кстати, в плате контроля аккумулятора уже установлена защита от КЗ.

Конденсаторы, применяемые в схеме крайне желательно брать с низким внутренним сопротивлением.


Стабилизатор, полевой транзистор и диодный выпрямитель крепятся к алюминиевому радиатору в виде согнутой пластины.


Обязательно изолируем подложки транзистора и стабилизатора от радиатора при помощи пластиковых втулок и теплопроводящих изолирующих прокладок. Не забываем и про термопасту. А установленный в схеме диод уже имеет изолированный корпус.


Благодаря ШИМ-управлению, КПД у преобразователя весьма высокий кпд.
Например, ток холостого хода, в зависимости от питающего напряжения, находится в пределах 20мА — 40мА.


Приступим к испытаниям.
Для начала проверим диапазоны выходных напряжений.
Подадим на вход 12 В. Выходное напряжение достигает двадцати пяти. Выше поднимать нельзя, выходные конденсаторы на 25 В.

Минимальное выходное напряжение составляет 4,85 В. Следовательно, можно заряжать все USB гаджеты.


Стабилизация работает отлично! Увеличив входное напряжение до 22,2 В, выходное находится точно в установленных пределах.

При компактных размерах стабилизатор дает выходной ток 2,5 — 3 А практически без просадки выходного напряжения.

Важно усилить припоем широкие силовые дорожки печатной платы. Ибо там протекают большие токи.

Большое спасибо AKA KASYAN за проделанный труд!

Ссылки на комплектующие находятся в описании к оригиналу видео.
Ссылка на оригинальное видео — под текстом кнопка «источник».
Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Как повысить напряжение с трансформатора

Вам понадобится

  • — отвертка;
  • — молоток;
  • — мультиметр;
  • — намоточный станок со счетчиком;
  • — обмоточный провод;
  • — паяльник, припой и нейтральный флюс;
  • — мегомметр

Инструкция

Убедитесь, что трансформатор является разборным. Если его сердечник собран склейкой лаком, или, тем более, сваркой, а также если прибор герметизирован любым способом, то для перемотки он непригоден.

У некоторых трансформаторов имеется несколько вторичных обмоток. Соединяя их последовательно, можно получать различные напряжения. Если некоторые из таких обмоток не задействованы, включив их последовательно с уже использующимися, можно повысить выходное напряжение, не прибегая к разборке трансформатора.Все перепайки выполняйте при отключенном питании. Если снимаемое напряжение после переделки не увеличилось, а уменьшилось, значит, дополнительная обмотка подключена в неправильной фазировке. Поменяйте местами ее выводы.

Убедившись в том, что трансформатор имеет разборную конструкцию, можно приступить к его разборке. Сняв крепление сердечника, разберите его легкими ударами молотка, запоминая расположение пластин.Освободив катушку от сердечника, намотайте на нее измерительную обмотку, имеющую несколько десятков витков. Изолируйте ее, выводы вытащите наружу, после чего соберите трансформатор.

Подключите к измерительной обмотке мультиметр, работающий в режиме измерения переменного напряжения, подайте на первичную обмотку трансформатора номинальное напряжение питания. Разделив число витков измерительной обмотки на измеренное напряжение, вы получите число витков на вольт.

Рассчитайте число витков новой вторичной обмотки, которую необходимо включить последовательно с имеющейся, по следующей формуле:Nдоп=(U2-U1)*(Nизм/Uизм), где:
Nдоп — искомое число витков дополнительной обмотки;
U2 — напряжение, которое необходимо получить;
U1 — напряжение имеющейся вторичной обмотки;
Nизм — число витков измерительной обмотки;
Uизм — напряжение, снятое с измерительной обмотки.Снова разберите трансформатор, смотайте измерительную обмотку и вместо нее намотайте дополнительную. Используйте провод того же сечения, что и у имеющейся вторичной обмотки, при этом, следите, чтобы диаметр катушки не увеличился слишком сильно, иначе сердечник будет невозможно надеть. Если соблюсти это требование не получается, от переделки трансформатора придется отказаться.

Изолируйте дополнительную обмотку, соберите трансформатор, после чего включите новую обмотку последовательно с вторичной. Обеспечьте ее правильную фазировку способом, описанным выше.

После переделки трансформатора ни в коем случае не снимайте с него мощность, превышающую ту, на которую он был рассчитан изначально. Рассчитать эту мощность можно, умножив снимаемое напряжение на потребляемый ток.

С помощью мегомметра убедитесь, что утечка между первичной и вторичной обмотками, а также между каждой из них и сердечником отсутствует даже после длительного прогрева при номинальной снимаемой мощности. Удостоверьтесь, что в ходе испытания не появляются запах гари, дым.

Преобразователь напряжения повышающий без трансформатора

Устройство, которое вы сейчас видите на сайте 2 Схемы, является простым повышающим преобразователем, построенным на м/с NE555, которая выполняет здесь функцию генератора импульсов. Выходное напряжение может варьироваться в пределах 110-220В (регулируется потенциометром).

Область применения

Преобразователь идеально подходит для питания ламп часов Nixie или маломощных ламповых схем или усилителей к наушникам, заменив собой классический источник питания высокого напряжения на трансформаторах. Целью создания этого устройства был проект часов на вакуумных индикаторах в котором схема работает как источник питания высокого напряжения. Преобразователь при питании 9 В и потребляет ток порядка 120 мА (при 10 мА нагрузке).

Принцип работы схемы

Как видите, это стандартный преобразователь напряжения повышающего типа. Частота на выходе микросхемы U1 (NE555) определяется номиналами элементов R1 (56k), R3 (10k), С2 (2,2 nF), и составляет около 45 кГц. Выход с генератора непосредственно управляет mosfet транзистором Т1, который переключает ток, протекающий через катушку L1. Во время нормальной работы катушка L1 периодически накапливает и отдает энергию, увеличивая выходное напряжение.

Схема инвертора на 555

Когда транзистор T1 (IRF740) открывается и подаёт на катушку L1 (100 мкГн) питание (ток течет от источника питания к массе — это первый этап. На втором этапе, когда транзистор будет отключен — ток через катушку в соответствии с законом коммутации вызывает увеличение напряжения на аноде диода D1 (BA159) до тех пор, пока он не будет поляризован в направлении проводимости. Происходит разряд катушки в конденсатор C4 (2,2 мкф). Таким образом, напряжение на C4 растет до тех пор, пока напряжение на выходе делителя R5 (220k), P1 (1к) и R6 470R не вырастет до значения около 0,7 В. Это приведет к включению транзистора T2 (BC547) и отключению генератора 555. Когда напряжение на выходе упадет — транзистор Т2 будет закрыт и генератор снова включается. Так выходное напряжение преобразователя регулируется по величине.

Готовая плата для пайки

Конденсатор C1 (470uF) фильтрует напряжение питания схемы. Регулировка выходного напряжения выполняется с помощью потенциометра P1.

Сборка бестрансформаторного преобразователя

Собранный преобразователь 9-150 вольт

Преобразователь можно спаять на печатной плате. Рисунок PDF платы, в том числе в зеркальном отображении и расположение деталей — доступен здесь. Монтаж прост и пайка элементов произвольная. Под микросхему U1 имеет смысл использовать панельку. Устройство следует питать напряжением 9В.

Как трансформатор повышает и как понижает напряжение? В чём суть его работы? объясните..

переменный электрический ток ток в обмотке генерирует магнитное поле, которое через сердечник передается во вторую обмотку. там происходит обратный процесс. Если во второй обмотке витков меньше, то и сгенерированное напряжение меньше, правда и ток больше, и наоборот

<a rel=»nofollow» href=»https://ru.wikipedia.org/wiki/Трансформатор» target=»_blank»>https://ru.wikipedia.org/wiki/Трансформатор</a>

принцип простой: получает 380, отдает 220, на остальные — гудит

Простите, Вы смеетесь? Разъяснить суть работы трансформатора в одном ответе — увы, невозможно.

Старый анекдот: Мой папа — трансформатор. Получает 380 зарплаты, в семью отдает 220, на оставшиеся гудит.

Суть в коэффициенте трансформации в отношении витков первичной и вторичной обмоток.

Разделительный не повышает и не понижает… Мой папа трансформатор, получает 380,а домой приносит 220…

Жаль нет дочки дома, я бы попросил её объяснить. В отличие от вас, она физику не скурила и поняла суть работы трансформатора. А что мешает вам понять?

Суть его работы в законе Фарадея )) Больше витков — больше напряжение.

Когда провод свернут в кольцо, он создает электромагнитное поле классической конфигурации, с двумя полюсами. Этому полю предоставлен магнитопровод — массивное железо, тоже замкнутое в кольцо. Благодаря этому, поле не рассеивается в пространстве вокруг провода, а циркулирует только в этом магнитопроводе. Если по проводу пустить переменный ток, то и поле будет создаваться тоже переменное. Этот эффект обратим — поэтому в любом проводе, оказавшемся в таком поле, ТОЖЕ появляется переменный ток. Сила эффекта напрямую зависит от вложенной энергии. Чем более сильный ток пустишь по первому проводу, тем интенсивнее получится поле, и тем более сильный ток появится во втором проводе. Замкнутый магнитопровод очень эффективен, он практически СОВСЕМ не выпускает поле за свои пределы, и энергия не теряется попусту. Поэтому напряжение, появляющееся во втором кольцевом проводе, в точности равно напряжению, приложенному к первому проводу. Если второй провод уложить в ДВА витка, то получится, что один и тот же провод ДВАЖДЫ участвует в процессе — и напряжение в нем наведется вдвое более высокое. Эта пропорция работает и при большом количестве витков. Если обе обмотки трансформатора содержат одинаковое количество витков (100, 1000, 1млн.), то напряжение на выходе всегда окажется равно напряжению на входе. Если количество витков не равно, то напряжение на выходе окажется пропорционально выше или ниже входного. Причина все та же — сила магнитного поля зависит от того, сколько раз входной провод обернулся вокруг магнитопровода, а напряжение на выходе — от того, сколько раз обернулся вокруг магнитопровода второй провод.

магнитное поле переходит в электрическое с потерями там пластинки такие в сердечнике ш и u формы и вокруг них проволка обмотанна по одной обмотке ток подается по другой снимается но КПД естественно не 100%

Если лень мешает учёбе, бросай к чертовой матери эту учёбу.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *