Как в сети постоянного и переменного тока подключить амперметр и вольтметр
Как в сети постоянного и переменного тока подключить амперметр и вольтметр
Схема подключения амперметра и вольтметра в цепь.
Постоянный ток не меняет направления во времени. Примером может служить батарейка в фонарике или радиоприемнике, аккумулятор в автомобиле. Мы всегда знаем, где положительная клейма источника питания, а где отрицательная.
Переменный ток — это ток, который с определенной периодичностью меняет направление движения. Такой ток протекает в нашей розетке, когда мы к ней подключаем нагрузку. Тут нет положительного и отрицательного полюса, а есть только фаза и ноль. Напряжение на нуле близко по потенциалу с потенциалом земли. Потенциал же на фазовом выводе меняется с положительного до отрицательного с частотой 50 Гц, го есть ток под нагрузкой будет менять свое направление 50 раз в секунду.
В течение одного периода колебания величина тока повышается от нуля до максимума, затем уменьшается и проходит через ноль, а потом совершается обратный процесс, но уже с другим знаком.
Получение и передача переменного тока намного проще, чем постоянного: меньше потерь энергии, С помощью трансформаторов мы можем легко менять напряжение переменного тока.
При передаче большого напряжения требуется меньший ток для той же мощности. Это позволяет использовать более тонкие довода. В сварочных трансформаторах используется обратный процесс — понижают напряжение для повышения сварочного тока.
Измерение постоянного тока
Чтобы в электрической цепи измерить ток, необходимо последовательно с приемником электроэнергии включить амперметр или миллиамперметр. При этом, чтобы исключить влияние измерительного прибора на работу потребителя, амперметр должен обладать очень малым внутренним сопротивлением, чтобы практически его можно было бы принять равным нулю, чтобы падением напряжения на приборе можно было бы просто пренебречь.
Включение амперметра в цепь — всегда последовательно с нагрузкой. Если подключить амперметр параллельно нагрузке, параллельно источнику питания, то амперметр просто сгорит или сгорит источник, поскольку весь ток потечет через мизерное сопротивление измерительного прибора.
Шунт
Шунт — цепь, включаемая параллельно данной цепи или прибору. Шунты применяются для расширения пределов измерений амперметров, т. к. в шунте ответвляется часть тока, текущего в цепи, тем большая, чем меньше сопротивление шунта.
Пределы измерения амперметров, предназначенных для проведения измерений в цепях постоянного тока, расширяемы, путем подключения амперметра не напрямую измерительной катушкой последовательно нагрузке, а путем подключения измерительной катушки амперметра параллельно шунту.
Так через катушку прибора пройдет всегда лишь малая часть измеряемого тока, основная часть которого потечет через шунт, включенный в цепь последовательно. То есть прибор фактически измерит падение напряжения на шунте известного сопротивления, и ток будет прямо пропорционален этому напряжению.
Практически амперметр сработает в роли милливольтметра. Тем не менее, поскольку шкала прибора градуирована в амперах, пользователь получит информацию о величине измеряемого тока. Коэффициент шунтирования выбирают обычно кратным 10.
Шунты, рассчитанные на токи до 50 ампер монтируют непосредственно в корпуса приборов, а шунты для измерения больших токов делают выносными, и тогда прибор соединяют с шунтом щупами. У приборов, предназначенных для постоянной работы с шунтом, шкалы сразу градуированы в конкретных значениях тока с учетом коэффициента шунтирования, и пользователю уже не нужно ничего вычислять.
Если шунт наружный, то в случае с калиброванным шунтом — на нем указывается номинальный ток и номинальное напряжение: 45 мВ, 75 мВ, 100 мВ, 150 мВ. Для текущих измерений выбирают такой шунт, чтобы стрелка отклонялась бы максимум — на всю шкалу, то есть номинальные напряжения шунта и измерительного прибора должны быть одинаковыми.
Если речь идет об индивидуальном шунте для конкретного прибора, то все, конечно, проще. По классам точности шунты делятся на: 0,02, 0,05, 0,1, 0,2 и 0,5 — это допустимая погрешность в долях процента.
Шунты изготавливают из металлов с малым температурным коэффициентом сопротивления, и обладающих значительным удельным сопротивлением: константан, никелин, манганин, — чтобы когда протекающий через шунт ток нагревает его, это не отражалось бы на показаниях прибора. Еще для снижения температурного фактора при измерениях, последовательно с катушкой амперметра включают добавочный резистор из материла такого же рода.
Измерение постоянного напряжения
Чтобы измерить постоянное напряжение между двумя точками цепи, параллельно цепи, между этими двумя точками, подключают вольтметр. Вольтметр включается всегда параллельно приемнику или источнику. А чтобы подключенный вольтметр не оказывал влияния на работу цепи, не вызывал бы снижения напряжения, не вызывал потерь, — он должен обладать достаточно высоким внутренним сопротивлением, чтобы током через вольтметр можно было бы пренебречь.
Добавочный резистор
И чтобы расширить пределы измерения вольтметра, последовательно с его рабочей обмоткой включается добавочный резистор, чтобы только часть измеряемого напряжения приходилась бы непосредственно на измерительную обмотку прибора, пропорционально ее сопротивлению. А при известном значении сопротивления добавочного резистора, по зафиксированному на нем напряжению легко определяется полное измеряемое напряжение, действующее в данной цепи. Так работают все классические вольтметры.
Коэффициент, появляющийся в результате добавления добавочного резистора, покажет, во сколько раз измеряемое напряжение больше напряжения, приходящегося на измерительную катушку прибора. То есть пределы измерения прибора зависят от величины добавочного резистора.
Добавочный резистор встраивается в прибор. Для снижения влияния температуры окружающей среды на измерения, добавочный резистор изготавливают из материала обладающего малым температурным коэффициентом сопротивления. Поскольку сопротивление добавочного резистора во много раз больше сопротивления прибора, то и сопротивление измерительного механизма прибора в итоге не зависит от температуры. Классы точности добавочных резисторов выражаются аналогично классам точности шунтов — в долях процентов обозначают величину погрешности.
Чтобы еще больше расширить пределы измерения вольтметров, применяют делители напряжения. Это делается для того, чтобы при измерении на прибор приходилось напряжение, соответствующее номиналу прибора, то есть не превышало бы предел на его шкале. Коэффициентом деления делителя напряжения называется отношение входного напряжения делителя к выходному, измеряемому напряжению. Коэффициент деления берут равным 10, 100, 500 и более, в зависимости от возможностей применяемого вольтметра. Делитель не вносит большой погрешности, если сопротивление вольтметра также высоко, а внутреннее сопротивление источника мало.
Измерение переменного тока
Чтобы точно измерить прибором параметры переменного тока, необходим измерительный трансформатор. Измерительный трансформатор, применяемый в целях измерений, к тому же дает персоналу безопасность, поскольку благодаря трансформатору достигается гальваническая развязка от цепи высокого напряжения. Вообще, техника безопасности запрещает подключать электроизмерительные приборы без таких трансформаторов.
Применение измерительных трансформаторов позволяет расширить пределы измерения приборов, то есть появляется возможность измерять большие напряжения и токи при помощи низковольтных и слаботочных приборов. Так, измерительные трансформаторы бывают двух типов: трансформаторы напряжения и трансформаторы тока.
Измерительный трансформатор напряжения
Чтобы измерить переменное напряжение применяют трансформатор напряжения. Это понижающий трансформатор с двумя обмотками, первичная обмотка которого присоединяется к двум точкам цепи, между которыми нужно измерить напряжение, а вторичная — непосредственно к вольтметру. Измерительные трансформаторы на схемах изображают как обычные трансформаторы.
Трансформатор без нагруженной вторичной обмотки работает в режиме холостого хода, и при подключенном вольтметре, сопротивление которого велико, трансформатор остается практически в этом режиме, и поэтому можно считать измеренное напряжение пропорциональным напряжению, приложенному к первичной обмотке, с учетом коэффициента трансформации, равного соотношению количеств витков во вторичной и первичной его обмотках.
Таким образом можно измерять высокое напряжение, при этом на прибор будет подаваться небольшое безопасное напряжение. Останется умножить измеренное напряжение на коэффициент трансформации измерительного трансформатора напряжения.
Те вольтметры, которые изначально предназначены для работы с трансформаторами напряжения, имеют градуировку шкалы с учетом коэффициента трансформации, тогда по шкале без дополнительных вычислений сразу видно значение измененного напряжения.
В целях повышения безопасности при работе с прибором, на случай повреждения изоляции измерительного трансформатора, один из выводов вторичной обмотки трансформатора и его каркас сначала заземляются.
Измерительные трансформаторы тока
Для подключения амперметров к цепям переменного тока служат измерительные трансформаторы тока. Это двухобмоточные повышающие трансформаторы. Первичная обмотка включается последовательно в измеряемую цепь, а вторичная — к амперметру. Сопротивление в цепи амперметра мало, и получается, что трансформатор тока работает практически в режиме короткого замыкания, при этом можно считать, что токи в первичной и вторичной обмотках относятся друг к другу как количества витков во вторичной и первичной обмотках.
Подобрав подходящее соотношение витков, можно измерять значительные токи, при этом через прибор всегда будут протекать токи достаточно малые. Останется умножить измеренный во вторичной обмотке ток на коэффициент трансформации. Те амперметры, которые предназначены для постоянной работы совместно с трансформаторами тока, имеют градуировку шкал с учетом коэффициента трансформации, и по шкале прибора без вычислений можно легко считать значение измеряемого тока. С целью повышения безопасности персонала, один из выводов вторичной обмотки измерительного трансформатора тока и его каркас сначала заземляются.
Во многих применениях удобны проходные измерительные трансформаторы тока, у которых магнитопровод и вторичная обмотка изолированы и расположены внутри проходного корпуса, через окно которого проходит медная шина с измеряемым током.
Вторичная обмотка такого трансформатора никогда не оставляется разомкнутой, ибо сильное увеличение магнитного потока в магнитопроводе может не только привести к его разрушению, но и навести на вторичной обмотке опасную для персонала ЭДС. Чтобы провести безопасное измерение, вторичную обмотку шунтируют резистором известного номинала, напряжение на котором будет пропорционально измеряемому току.
Для измерительных трансформаторов характерны погрешности двух видов: угловая и коэффициента трансформации. Первая связана с отклонением угла сдвига фаз первичной и вторичной обмоток от 180°, что приводит к неточным показаниям ваттметров. Что касается погрешности связанной с коэффициентом трансформации, то это отклонение показывает класс точности: 0,2, 0,5, 1 и т. д. — в процентах от номинального значения.
Ранее ЭлектроВести писали, что НКРЭКУ запретила импорт российской и белорусской электроэнергии до 1 октября 2021 года.
По материалам: electrik.info.
61015-15: I-TOR-110 Устройства измерения тока и напряжения в высоковольтной сети
Назначение
Устройства измерения тока и напряжения в высоковольтной сети типа I-TOR — 110 (далее — устройства I-TOR-110) предназначены для измерения и масштабного преобразования тока и напряжения в сетях переменного тока промышленной частоты с номинальным напряжением 110 кВ и номинальным током от 100 до 1000 А включительно, до электрических величин, пригодных для измерения стандартными электроизмерительными приборами, а также для создания гальванической развязки между высоковольтной сетью и приборами измерения.
Описание
По принципу действия устройства I-TOR — 110 являются приборами электромагнитного типа с аналого-цифровым и цифро-аналоговым преобразованием.
Устройства I-TOR — 110 состоят из измерительного компонента, канала связи и блока обработки информации.
Измерительный компонент устройств I-TOR — 110, в зависимости от исполнения, может быть выполнен как в составе с подвесным изолятором, предназначенным для подвешивания на опоре ЛЭП 110 кВ, так и в составе с опорным изолятором.
Измерительный компонент устройств I-TOR-110 состоит из:
— двух измерительных блоков (тока и напряжения соответственно),
— двух аналого-цифровых преобразователей с оптическими передатчиками;
— блока питания.
Измерительные блоки выполнены на классическом электромагнитном трансформаторе тока и делителе напряжения и позволяют преобразовывать высокое напряжение и большой ток в удобные для измерения электронными блоками величины тока и напряжения.
Преобразованные значения тока и напряжения подаются в аналого-цифровые цифровые преобразователи с оптическими передатчиками, где происходит преобразование аналогового сигнала в последовательность цифрового кода и его передача по оптическому каналу связи.
Для питания электронной начинки измерительного компонента используется либо мощность протекающего тока главной цепи, либо высокое напряжение сети установки. Блок питания преобразует эти значения в стабилизированное напряжение питания электронной начинки.
Канал связи служит для передачи информации от измерительного компонента к блоку обработки информации и представляет собой оптическое волокно длиной не более 2000 м, с выполненными присоединениями на концах и элементами для присоединения кабеля к несущим конструкциям. Оптический канал связи позволяет пропускать через себя световой поток на большую длину без существенного затухания сигнала.
Блок обработки информации состоит из:
— двух оптических приемников с цифроаналоговыми преобразователями;
— двух блоков усиления.
Полученный из оптического канала связи цифровой код принимается и преобразовывается в аналоговый сигнал оптическим приемником с цифроаналоговым преобразователем. Далее блоки усиления преобразуют полученный сигнал с
цифроаналогового преобразователя до нормированных величин, пригодных для измерения или учета.
Общий вид измерительного компонента устройств I-TOR — 110 приведен на рисунках 1 и 2.
Общий вид блока обработки информации устройств I-TOR — 110 приведен на рисунке 3.
Рисунок.3
Фотография общего вида блока обработки информации устройства
I-TOR — 110.
Технические характеристики
Таблица 1 — Метрологические и технические характеристики устройств I-TOR — 110
Наименование характеристики |
Значение |
1 |
2 |
Номинальное напряжение сети установки, кВ |
110 |
Коэффициент преобразования по напряжению |
110000:V3/100:V3 |
Диапазон преобразования напряжений (действующие значения), кВ |
от 50,8 до 76,2 |
Класс точности преобразования по напряжению по ГОСТ 19832001 |
0,2 |
Максимальная мощность нагрузки выхода канала преобразования по напряжению, при коэффициенте мощности нагрузки cos ф = 0,8 .ном | |
Класс точности преобразования по току по ГОСТ 7746-2001 |
0,2S |
Максимальная мощность нагрузки выхода канала преобразования по току, при коэффициенте мощности нагрузки cos ф = 0,8 … 1,0, В-А |
2,5 |
Номинальная частота, Гц |
50 |
Габаритные размеры измерительного компонента, мм, не более: — при исполнении с подвесным изолятором (1ном от 100 до 800 А) — при исполнении на опорном изоляторе (1ном от 100 до 800 А) |
633 х400х1484 629 х400х1463 |
Габаритные размеры измерительного компонента, мм, не более: — при исполнении с подвесным изолятором (1ном = 1000 А) — при исполнении на опорном изоляторе (1ном = 1000 А) |
544 х320х1554 544 х400х1540 |
Г абаритные размеры блока обработки информации, мм, не более |
250 х280х195 |
Масса, кг, не более: — при исполнении с подвесным изолятором (1ном от 100 до 800 А) — при исполнении на опорном изоляторе (1ном от 100 до 800 А) |
70 75 |
Наименование характеристики |
Значение |
1 |
2 |
Масса, кг, не более: — при исполнении с подвесным изолятором (1ном = 1000 А) — при исполнении на опорном изоляторе (1ном = 1000 А) |
80 85 |
Масса блока обработки информации, кг, не более |
5 |
Климатическое исполнение и категории размещения У1 по ГОСТ 15150-69: о/~’ — температура окружающего воздуха, С — относительная влажность воздуха, % — атмосферное давление, кПа |
от минус 45 до 55 от 30 до 98 от 84 до 106 |
Наработка на отказ, ч, не менее |
160 000 |
Средний срок службы, лет, не менее |
25 |
Знак утверждения типа
наносится на специальную табличку устройств I-TOR — 110 металлографическим методом или методом электрохимической гравировки, и типографическим способом на титульный лист Руководства по эксплуатации.
Комплектность
Таблица 2 — Комплектность средства измерений
№ п/п |
Наименование |
Обозначение |
Кол-во |
1 |
Устройство I-TOR — 110: — измерительный компонент — блок обработки информации — канал связи |
МЦАВ.01.01.00.00 МЦАВ.01.02.00.00 МЦАВ.01.03.00.00 |
1 1 1 |
2 |
У стройство измерения тока и напряжения в высоковольтной сети типа I-TOR-110. Паспорт |
МЦАВ.411529.001 ПС |
1 |
3 |
Устройство измерения тока и напряжения в высоковольтной сети типа I-TOR-110. Руководство по эксплуатации |
МЦАВ.411529.001 РЭ |
1 |
4 |
ГСИ. Устройства измерения тока и напряжения в высоковольтной сети I-TOR-110. Методика поверки |
МП 30-262-2015 |
1 |
Поверка
осуществляется по документу МП 30-262-2015 «ГСИ. Устройства измерения тока и напряжения в высоковольтной сети I-TOR-110. Методика поверки», утвержденному ФГУП «УНИИМ» в 2015 г.
Перечень основных средств поверки (эталонов):
— прибор сравнения КНТ-03, 5 = ± 0,001 %, А = ± 0,1 угл. мин;
— трансформатор тока лабораторный эталонный ТТЛЭ, КТ 0,05;
— трансформатор напряжения измерительный эталонный NVOS-200, КТ 0,05.
Сведения о методах измерений
Методика измерений представлена в документе МЦАВ.411529.001 РЭ «Устройство измерения тока и напряжения в высоковольтной сети типа I-TOR-110. Руководство по эксплуатации»
Нормативные и технические документы, устанавливающие требования к устройствам измерения тока и напряжения в высоковольтной сети I-TOR — 110
1 ГОСТ 7746 — 2001 «Трансформаторы тока. Общие технические условия»
2 ГОСТ 8.217 — 2003 «ГСИ. Трансформаторы тока. Методика поверки»
3 ГОСТ 1983 — 2001 «Трансформаторы напряжения. Общие технические условия»
4 ГОСТ 8.216 — 2011 «ГСИ. Трансформаторы напряжения. Методика поверки»
5 МЦАВ.411529.001 ТУ «Устройство измерения тока и напряжения в высоковольтной сети типа I-TOR-110. Технические условия»
Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Общие сведения
И. К. Айвазовский. Чесменский бой
Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.
Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.
Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава
Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.
Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава
Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.
Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава
Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.
Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.
Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.
Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава
Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.
Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава
Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.
Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.
Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.
Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.
Историческая справка
С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.
Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)
Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.
Жан-Батист Био (1774–1862)
Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.
Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.
Электрический ток. Определения
Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:
I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах
Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:
I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах
Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).
Размерность тока в системе СИ определяется как
[А] = [Кл] / [сек]
Особенности протекания электрического тока в различных средах. Физика явлений
Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей
Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках
При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.
Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.
Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода
С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.
В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.
Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали
Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.
Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.
Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.
Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.
Хромированная пластмассовая душевая головка
Электрический ток в жидкостях (электролитах)
Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.
Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.
Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.
Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.
Электрический ток в газах
Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.
Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В
Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.
Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.
Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.
Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.
Тихий разряд. Вольт-амперная характеристика.
Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.
Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.
Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)
Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.
При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.
Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.
Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.
Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.
Электрический ток в вакууме
Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава
Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.
Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава
Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.
Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.
Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.
Современный видеопроектор
Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.
При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.
Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов
В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.
Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.
Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.
Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава
Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.
Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.
Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.
Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.
Электрический ток в биологии и медицине
Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения
Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.
С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.
При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.
Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.
Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.
Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.
Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.
Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.
Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах
В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.
Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.
К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.
Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.
Автоматический дефибриллятор для обучения лиц, не являющихся медработниками
Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.
У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.
Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.
Характеристики электрического тока, его генерация и применение
Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.
Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава
Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.
Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.
Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.
Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава
В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.
Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.
Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.
Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.
Объектив лазера в приводе компакт-диска
В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.
Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.
Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.
Стрелочный мультиметр со снятой верхней крышкой
Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.
Измерение силы электрического тока
Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.
По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.
Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной
Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.
Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:
- мгновенное,
- амплитудное,
- среднее,
- среднеквадратичное (действующее).
Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.
Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.
Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.
Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.
Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.
Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.
Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.
Измерение тока с помощью осциллографа
Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).
Общая схема эксперимента №1 представлена ниже:
Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.
Опыт 1
Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:
IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,
что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен
IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА
Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).
Опыт 2
Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:
IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,
что приблизительно соответствует показаниям мультиметра (1,55 мА).
Опыт 3
Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.
Опыт 4
Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.
Техника безопасности при измерении тока и напряжения
Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии
- Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
- Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
- Не производить измерения токов в труднодоступных местах или на высоте.
- При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
- Пользоваться исправным измерительным инструментом.
- В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
- Пользоваться измерительным прибором с исправными щупами.
- Строго следовать рекомендациям производителя по использованию измерительного прибора.
Автор статьи: Сергей Акишкин
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Методики измерения пускового тока для соответствия требованиям Постановления Правительства
Скачать PDF версию|0,4 Мб
В соответствии с общепринятой терминологией, пусковой ток в электронных блоках питания (БП) – это самый первый импульс тока, возникающий сразу после включения БП в питающую сеть. Амплитуда такого тока зачастую в десятки раз превышает рабочий ток (nominal current), что связано с «нулевым сопротивлением» входных емкостей, являющихся элементами фильтра ЭМС/ЭМИ без которых невозможно создать БП соответствующий всем нормам и требованиям.
- Амплитуда и длительность пускового тока (inrush current) всеми известными мировыми производителями блоков питания для светодиодных светильников (MOONS’, MEAN WELL, INVENTRONICS, HELVAR, OSRAM, PHILIPS и др.) измеряется в соответствии с требованиями мирового стандарта NEMA 410-2015 (Performance Testing for Lighting Controls and Switching Devices with Electronic Drivers and Discharge Ballasts) и приведена в Приложении №1.
- В соответствии с Постановлением Правительства РФ от 3 ноября 2018 г. № 1312 пункт 27: «Пусковой ток светильников на этапе 2 не должен быть более 5-кратного рабочего тока источника питания». Поскольку определение «пусковой ток» и методика его измерения в российской нормативной базе не описана, то мы можем сами определять, какой именно ток в нашем светильнике «пусковой». То есть мы можем в качестве пускового указать значение тока не в момент включения БП в питающую сеть, а через 300–800 мс. Этот ток правильно называется «стартовый», но, еще раз повторим, нам никто не запрещает назвать его применительно к нашему изделию «пусковым». Методика измерения Амплитуды пускового тока приведена в Приложении №2. В связи с тем, что выполнить эти требования «честно» представляется возможным только применяя специальные дополнительные устройства, например, SPD-230_OVP от MOONS’, что приводит к существенному удорожанию светильников, то были введены в действие результаты работы так называемой регуляторной гильотины, отсекшей ряд Постановлений Правительства, касающихся требований к светотехнической продукции. В частности, в Постановлении Правительства РФ от 11 июля 2020 г. № 1036 признаны утратившими силу с 1 января 2021 года:
- Постановление Правительства РФ от 10 ноября 2017 г. № 1356 «Об утверждении требований к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения».
- Постановление Правительства Российской Федерации от 3 ноября 2018 г. № 1312 «О внесении изменений в требования к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения».
Приложение 1
ТИПОВАЯ МЕТОДИКА ИЗМЕРЕНИЯ ПУСКОВОГО ТОКА ПО NEMA 410-2015 ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ ИЛИ СВЕТИЛЬНИКА
- Необходимо подать напряжение на блок питания строго в момент времени максимального значения амплитуды (пик) напряжения, так как именно в этот момент времени значение пускового тока будет максимально. Это можно сделать, например, с помощью специального лабораторного оборудования в виде электронного генератора сети переменного тока, как указано ниже:
- Использовать эквивалент питающей сети – 450 мОм 800 мкГн;
- Подключить осциллограф с 2 каналами (с гальванической изоляцией измерительных каналов от питающей сети) ко входу блока питания, чтобы наблюдать форму входного тока относительно формы входного напряжения;
- Зафиксировать осциллограмму (режим Триггер) и измерить амплитуду пускового тока, а также измерить длительность импульса при 10% и 50% от значения амплитуды импульса. Типовые значения Амплитуды пускового тока >20 А, а длительность тока в среднем составляет от 150 до 400 мксек;
- Провести такое измерение 5 раз, чтобы в итоге в паспорте на изделие указать среднее значение.
Приложение 2
МЕТОДИКА ИЗМЕРЕНИЯ ПУСКОВОГО ТОКА БЛОКОВ ПИТАНИЯ MOONS’
В отличие от методики NEMA 410-2015 в которой измеряется амплитуда и длительность пускового тока, в данной методике необходимо измерить только амплитуду стартового тока (в Паспорте на свой светильник Вы имеете право назвать стартовый ток пусковым, так как отсутствует определение Пускового тока) – соответственно не требуется подавать напряжение на блок питания строго в момент максимального значения амплитуды напряжения, так как на стартовый ток это никак не влияет.
Если Вы используете в своих светильниках БП MOONS’, то мы рекомендуем указывать максимальное кол-во подключаемых БП на один автоматический выключатель, эту информацию Вы найдете в спецификации на БП или обратитесь в компанию «Планар-СПб».
- Подключить блок питания через токовый шунт 0,5 Ом (мощностью 1 Вт для блоков питания мощностью до 320 Вт) к питающей сети напряжения 220/230 В 50 Гц;
- Подключить осциллограф с 2 каналами (с гальванической изоляцией измерительных каналов от питающей сети) ко входу блока питания, чтобы наблюдать форму входного тока относительно формы входного напряжения;
- Зафиксировать осциллограмму (режим работы Триггер) и измерить амплитуду стартового тока – импульс тока, следующий после пускового тока через ориентировочно 300-800 мсек характеризующий включение БП. Типовые значения амплитуды стартового тока превышают значения номинального входного тока в зависимости от мощности БП в 1,5-2 раза;
- Провести такое измерение 5 раз, чтобы в итоге в паспорте на изделие указать среднее значение;
- Осциллограмма блоков питания MOONS’ ME075Mxxx приведена ниже и на них мы видим, что жёлтым показано входное напряжение, синим – входной ток, а стартовый ток выделен красным и полностью соответствует требованиям Постановления Правительства.
А чем измеряется сила тока. Измерение тока. Приборы. Принцип измерений. Виды
Чтобы ответить на вопрос, как измерить силу тока мультиметром, необходимо разобраться, что такое сила тока, и что собой представляет мультиметр. Итак, начнем с первой позиции.
Со школьной скамьи известно, что сила тока – это количество (объем) электроэнергии, который проходит через какой-нибудь проводник, к примеру, это может быть обычная лампочка или кусок проволоки. Сам же электрический ток – это направленное движение электронов. Так вот сила тока – это, по сути, количество электронов, прошедших через какую-то одну точку в проводнике за единицу времени (обычно считается за одну секунду). Чисто с физической стороны – это один ампер, равный одному кулону в секунду. На этом информацию по школьной программе можно считать законченной.
Теперь переходим к электрике. Для чего необходимо измерять силу тока? Основное назначение данной процедуры – это определить, не является ли проходящий через проводник ток выше, чем этот проводник может выдержать. Другого назначения нет.
А вот измерять лучше именно мультиметром, который собой представляет универсальный измерительный прибор, с помощью которого можно измерить не только силу тока, но и напряжение, и сопротивление электрической цепочки.
Виды мультиметров
В настоящее время рынок предлагает два вида мультиметров.
- Аналоговые.
- Цифровые.
Первая модель в своей конструкции имеет шкалу, на которой установлены показатели напряжения, силы тока и сопротивления, а также стрелку, указывающую измеряемые параметры электрических проводников. Начнем с того, что аналоговые мультиметры очень популярны среди новичков. Это и понятно, их цена в несколько раз ниже, чем у цифровых. Плюс возможность научиться на простом приборе.
Недостатков много, и один из главных – это большая погрешность показаний. Правда, в конструкции прибора есть построечный резистор, с помощью которого погрешность можно уменьшить. И все равно, если есть необходимость более точного определения параметров электрической цепи, то лучше выбирать цифровой вариант.
Цифровой мультиметр
Чисто с внешней стороны эта модель отличается от аналоговой только дисплеем, на который выводятся измеряемые величины. Экран в старых моделях светодиодный, в новых жидкокристаллический. При этом это самые точные мультиметры на сегодняшний день, который очень просты в обращении (нет необходимости заниматься подгонкой градуировки, как в случае с аналоговыми моделями).
Конструктивные особенности
Итак, в мультиметре есть два вида выходов, они обозначены цветом: красным и черным. А вот гнезд может быть на разных моделях разное количество: два, четыре или больше. Черный выход – это масса, то есть, общий (обозначается или «com», или минусом). Красный используется именно для измерений, то есть, является потенциальным. Здесь может быть несколько гнезд для измерения каждого параметра электрической цепи, то есть, сопротивления, напряжения и силы тока. На мультиметре такие гнезда обозначаются единицей измерения параметров, так что не ошибетесь.
Второй внешний элемент – это рукоятка, вращающаяся по кругу. С ее помощью устанавливается предел измерений. Так как перед нами стоит вопрос, как можно измерить силу тока мультиметром, то нас должна интересовать шкала с амперами. Хотелось бы отметить, что таких пределов на аналоговых тестерах меньше, чем на цифровых. Плюс ко всему последние комплектуются разными полезными опциями, к примеру, звуковым сигналом.
А вот теперь один из важных моментов. У каждого мультиметра есть предел по току, который является максимальным. Поэтому выбирая проверяемую электрическую сеть, необходимо сопоставить проверяемую ситу тока цепи с пределом в тестере. К примеру, если в проверяемой электрической цепочке предполагается, что проходящий по ней ток будет иметь показатель 200 А, то не стоит проверять эту цепь мультиметром с максимальным пределом в 10 А. Предохранители прибора тут же сгорят, как только вы начнете тестирование. Кстати, максимальный показатель обязательно указывается на корпусе прибора или в его паспорте.
Измеряем силу тока
Что нужно сделать в первую очередь:
- устанавливаем щупы: черный в черное гнездо, красный в красное с обозначением ампера – «А»;
- переключаем тумблер, который показывает, какой ток надо будет проверять: переменный «AC» или постоянный «DC»;
- устанавливается интервал измеряемых пределов так, чтобы не спалить сам прибор, то есть, предел установить таким, который будет выше ожидаемого уровня силы тока в электрической цепи.
Подготовительный этап закончен, мультиметр готов, можно проводить измерение силы тока.
Внимание! Перед тем как проводить замеры, необходимо электрическую сеть обесточить. Не стоит проводить тестирование во влажной среде или в помещении с высокой влажностью. Придерживайтесь обязательно требований техники безопасности.
К примеру, как проверить участок электропроводки. Для этого концы участка надо оголить (удалить изоляцию на проводах) и подключить к ним два щупа от мультиметра. Кстати, на конце черного провода установлен «крокодил», так что подсоединить его к проводке не составит труда. На красном проводе установлен именно щуп в виде шила. Его придется вручную подсоединять, прикладывая щуп к оголенному концу.
Итак, если все приготовления закончены, можно подавать на участок проводки напряжение. На дисплее мультиметра должны показаться цифровые обозначения силы тока. Если на экране высветились нули, то это или обрыв сети, или неправильно установлен предел измерений. Поэтому выключите подачу тока на участок, отсоединить мультиметр и настройте его под другую ожидаемую величину. И все, то же самое, проведите заново.
Что можно дополнительно посоветовать?
- Будет лучше, если перед тем как начать работу по тестированию проводника, ознакомиться с инструкцией к прибору. Особое внимание надо уделить разделу, где описываются меры предосторожности.
- Обязательно при использовании мультиметра надевать на руки защитные резиновые перчатки.
Похожие записи:
Электри́ческий ток — направленное (упорядоченное) движение заряженных частиц. Такими частицами могут являться: в металлах — электроны, в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупро-водниках — электроны и дырки (электронно-дырочная проводимость). Иногда электрич. током называют также ток смещения, возникающий в результате изменения во времени электрического поля. Электрический ток имеет количественные характеристики: скалярную — силу тока, и векторную — плотность тока.
Сила тока — физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А).По закону Ома сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку цепи, и обратно пропорциональна егосопротивлению:
Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа. Мощность измеряется в ваттах. Ваттме́тр-измерительный прибор, предназначенный для определения мощности электрич. тока или электромагнитного сигнала.
Электрическое напряжение — это величина, численно равная работе по перемещению единицы электрического заряда между двумя произвольными точками электрической цепи.
2. Постоянный электрический ток. Характеристики электрического поля. Закон Ома для участка цепи. Сформулируйте и запишите закон Джоуля-Ленца.
Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени. Основные характеристики электрического поля: потенциал, напряжение и напряженность. Энергия электрического поля, отнесенная к единице положительного заряда, помещенного в данную точку поля, и называется потенциалом поля в данной его точке. потенциал электрического поля в данной его точке численно равен работе, совершаемой сторонней силой при перемещении единицы положительного заряда из-за пределов поля в данную точку. Потенциал поля измеряется в вольтах. Если потенциал обозначить буквой φ, заряд — буквой q и затраченную на перемещение заряда работу — W, то потенциал поля в данной точке выразится формулой φ = W/q
Напряжение между двумя точками электрического поля численно равно работе, которую совершает поле для переноса единицы положительного заряда из одной точки поля в другую.
Как видно, напряжение между двумя точками поля и разность потенциалов между этими же точками представляют собой одну и ту же физическую сущность. Напряжение измеряется в вольтах (В)
Величина Е, численно равная силе, которую испытывает единичный положительный заряд в данной точке поля, называется напряженностью электрического поля. F = Q х Е, где F — сила, действующая со стороны электрического поля на заряд Q, помещенный в данную точку поля, Е — сила, действующая на единичный положительный заряд, помещенный в эту же точку поля.
Закон Ома для участка цепи
Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорциональна сопротивлению этого участка:
I = U/R где U – напряжение на данном участке цепи
R – сопротивление данного участка цепи
Сформулируйте и запишите Джоуля-Ленца
При прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.
Это положение называется законом Ленца — Джоуля.
Если обозначить количество теплоты, создаваемое током, буквой Q (Дж), ток, протекающий по проводнику — I, сопротивление проводника — R и время, в течение которого ток протекал по проводнику — t, то закону Ленца — Джоуля можно придать следующее выражение:
Так как I = U/R и R = U/I, то Q = (U2/R) t = UIt.
3. Чем обусловлено получение фигур Лиссажу? Нарисуйте фигуры, если частота по каналу Х = 50 Гц – соnst, а частота по каналу Y = 25,50,100,150 Гц.
Фигуры Лиссажу — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях.
Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний
Х=50Гц,у=50Гц Х=50Гц,у=100Гц Х=50Гц, у=150 Гц х=50Гц у=25Гц
Нагрузка в электрической цепи характеризуется силой тока, которая измеряется в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к и замене кабеля.
- После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
- Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
- При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через . Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
- Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
- Если измерить ток в цепи работающего , то он покажет исправность .
- Работоспособность в квартире также проверяется измерением тока.
Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Мощность тока обозначают буквой «Р» и измеряют в ваттах.
Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.
Измерение тока приборамиДля определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.
- . Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.
- является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.
- . Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.
Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или , а другой вывод к проводу потребителя. После этого можно измерять силу тока.
При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.
Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.
Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.
Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.
Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.
Схемы измерения тока — E-core
Почти каждый электронщик рано или поздно сталкивается с необходимостью измерять ток, например при проектировании лабораторного блока питания или зарядного устройства.
В этой статье мы рассмотрим наиболее популярные схемы их преимущества и недостатки.
Измерение тока в отрицательном полюсе нагрузки
Схема измерения тока в отрицательном полюсе нагрузки наиболее простая и широко распространенная. Данную схему можно встретить как в лабораторных блока питания, так и в схемах управления двигателями, схемах защит и пр.
Если не требуется высокая точность измерения тока, как правило, используется схема 1а, для более точного измерения тока, как правило, используется схема 1б.
Схема 1а
Схема 1б
В схеме 1б резистор R4 подключается к сигнальной аналоговой земле, резисторы R3 и R1 подключаются непосредственно к шунту. Сопротивление резисторов R1 и R3, R2 и R4 должно быть одинаковым.
Преимущества схемы:
- простая реализация;
- низкий уровень синфазного сигнала;
- низкое выходное сопротивление;
- широкий диапазон напряжений питания нагрузки;
- низкая стоимость.
Недостаток у данной схемы один — токоизмерительный резистор (шунт) устанавливается в отрицательном полюсе нагрузки, что накладывает определенные ограничения.
Крутизна выходного сигнала схемы 1а определяется по формуле
(1)
Крутизна выходного сигнала схемы 1б определяется по формуле
(2)
В схемах с однополярным питанием когда требуется высокая точность измерений, кроме усиления сигнала с шунта требуется его небольшое смещение. Рассмотрим этот момент поподробнее.
При однополярном питании получить на выходе операционного усилителя (ОУ) нулевой потенциал достаточно сложно, даже при использовании дорогих Rail-to-rail ОУ минимальное напряжение на выходе может составлять десятки и сотни милливольт. Поскольку напряжение на выходе ОУ не опускается до нуля, то мы не может корректно измерять ток при около нулевых значениях, диапазон измерения оказывается «зарезан» на величину минимального выходного напряжения.
На схемах 2а и 2б приведена доработанная схема 1б со смещением выходного сигнала.
Схема 2а
Схема 2б
Вариант 2б сложнее, но дает чуть более высокую точность, кроме того он может оказаться более удобным если в устройстве несколько измерительных каналов, в этом случае ОУ U1B формирует единое смещение на все каналы.
В схемах 2а и 2б резистор R5 необходимо подключать к источнику опорного напряжения, если он имеется.
Смещение выходного сигнала схемы 2а определяется по формуле
(3)
Смещение выходного сигнала схемы 2б определяется по формуле
(4)
В формулах (3) и (4) Uref — это напряжение к которому подключается R5.
Измерение тока в положительном полюсе нагрузки
Измерение тока в положительном полюсе нагрузки является более предпочтительным, но это более сложная задача.
Наиболее распространенные схемы измерения тока в положительном полюсе нагрузки приведены ниже.
Схема 3а
Схема 3б
Преимущества схемы 3а:
- измерение тока в положительном полюсе нагрузки;
- выходной сигнал от 0В.
Недостатки схемы 3а:
- высокий уровень синфазного сигнала;
- высокое выходное сопротивление.
Преимущества схемы 3б:
- измерение тока в положительном полюсе нагрузки;
- низкое выходное сопротивление.
Недостатки схемы 3б:
- высокий уровень синфазного сигнала;
- необходимость точного подбора резисторов;
- необходимость смещения выходного сигнала при однополярном питании.
В схеме 3б аналогично схеме 1б, резисторы R1 и R3, R2 и R4 должны быть равны.
Крутизна выходного сигнала схемы 3а и 3б определяется по формуле
(5)
Общим и существенным недостатком схем 3а и 3б является высокий уровень синфазного сигнала близкий к напряжению на нагрузке, из-за этого диапазон допустимых напряжений на нагрузке ограничен напряжением питания ОУ. Существуют ОУ допустимый уровень синфазного сигнала которых может существенно превышать напряжение питания ОУ, например LT1637, но такие ОУ труднодоступны и дороги.
Высокий уровень синфазного сигнала приводит к существенной погрешности при использовании недорогих ОУ. Типовой уровень ослабления синфазного сигнала недорогих ОУ на уровне 80Дб, что дает погрешность 1мВ на входе ОУ на каждые 10В напряжения на нагрузке, погрешность на входе ОУ усиливается на величину коэффициента усиления схемы (R2/R1).
Для схемы 3б ситуация с ослаблением синфазного сигнала оказывается еще хуже из-за несогласованности сопротивления резисторов, так при использовании 1% резисторов коэффициент ослабления синфазного сигнала находиться на уровне 45Дб, что дает погрешность 56мВ на входе ОУ на каждые 10В напряжения на нагрузке.
Впрочем не все так плохо, данные схемы выпускаются в интегральном исполнении и называются токовые мониторы, например INA225, INA169 и др. В этих микросхемах используются высококачественные ОУ и точная подгонка сопротивления резисторов, благодаря чему коэффициент ослабления синфазного сигнала 100Дб и более, кроме того у них расширен диапазон допустимых синфазных напряжений.
Токоизмерительный резистор (шунт)
Все описанные схемы усиливают сигнал с токоизмерительного резистора (шунта) и естественно, что точность измерения тока зависит и от качества шунта.
Лучше всего для изготовления шунтов подходит манганин (проволока и лента), преимущество манганина в том, что он имеет очень низкий температурный коэффициент сопротивления (ТКС) на уровне 10-20 ppm/C и низкое значение термоЭДС с медью.
Чуть похуже в плане ТКС константан 30 ppm/C, но он имеет относительно высокое значение термоЭДС с медью, что приводит к дополнительной погрешности при измерении. Погрешность от термоЭДС незначительна и при разрешении системы на уровне 12 бит практически не заметна.
Хуже всего в плане ТКС проволочные резисторы типа KNP ( цилиндрические) и типа SQP (прямоугольные), имеющие ТКС 400 ppm/C и 300 ppm/C соответственно. Даже обычные выводные металлопленочные резисторы лучше и имеют ТКС 100 ppm/C.
Низкий ТКС для шунта важен потому, что при протекании через него большого тока он сильно нагревается, температура перегрева шунта может составлять 20 и более градусов. Если шунт из манганина, то изменение температуры на 20 градусов приведет к изменению сопротивления шунта всего на 0,02-0,04%, изменение сопротивления проволочного резистора составит 0,6-0,8%, металлопленочного 0,2%.
18 электронов (1 кулон) в секунду проходят через точку в цепи.
Как вы измеряете ток?
Закон и мощность Ом
- Чтобы найти напряжение, (В) [V = I x R] V (вольт) = I (амперы) x R (Ω)
- Чтобы найти ток, (I) [I = V ÷ R] I (амперы) = V (вольты) ÷ R (Ω)
- Чтобы найти сопротивление, (R) [R = V ÷ I] R (Ω) = V (вольт) ÷ I (амперы)
- Чтобы найти мощность (P) [P = V x I] P (Вт) = V (вольты) x I (амперы)
Как измерить электрический ток?
Ток можно измерить с помощью амперметра.Электрический ток можно напрямую измерить гальванометром, но этот метод предполагает разрыв электрической цепи, что иногда бывает неудобно. Ток также можно измерить без разрыва цепи, обнаружив магнитное поле, связанное с током.
Какой счетчик используется для измерения силы тока?
Амперметр
Амперметр — это измерительное устройство, используемое для измерения электрического тока в цепи. Вольтметр подключается параллельно к устройству для измерения его напряжения, а амперметр подключается последовательно с устройством для измерения его тока.
Какие 3 основные единицы в электричестве?
Основные элементы электрических цепей. Основными единицами простой электрической цепи являются ампер, вольт и ом.
Как вы измеряете напряжение и ток?
Измерение тока и напряжения
- Ток измеряется в амперах. Амперы часто обозначают как амперы или А. Ток, протекающий через компонент в цепи, измеряется с помощью амперметра.
- Напряжение измеряется в вольтах, часто сокращенно до В.
- Вольтметр должен быть подключен параллельно компоненту.
Что такое напряжение и сила тока?
Определение. Электрический ток — это количество заряженных электронов, протекающих в цепи за секунду. Проще говоря, ток — это поток электронов между двумя точками, вызванный напряжением. Напряжение — это разница в электрической потенциальной энергии на единицу заряда между двумя точками.
Используется для определения тока?
Полный ответ: Прибор, используемый для измерения электрического тока, называется амперметром.Прибор отображает ток, проходящий через него, в амперах, поэтому его название — амперметр. Гальванометр помогает нам обнаружить наличие электрического тока в цепи.
Какие 4 основные единицы?
Рассматриваются четыре единицы измерения: ампер, килограмм, моль и кельвин.
Какие четыре основных единицы электричества?
Следовательно, четыре основных единицы электричества — это вольты, амперы, омы и ватты.
Какая связь между напряжением и током?
Взаимосвязь между напряжением, током и сопротивлением описывается законом Ома.Это уравнение i = v / r говорит нам, что ток i, протекающий по цепи, прямо пропорционален напряжению v и обратно пропорционален сопротивлению r.
Как вы читаете напряжение?
Как измерить напряжение переменного тока
- Поверните шкалу на ṽ. Некоторые цифровые мультиметры (DMM) также включают m ṽ.
- Сначала вставьте черный провод в разъем COM.
- Затем вставьте красный провод в гнездо VΩ.
- Подключите щупы к цепи: сначала черный, затем красный.
- Считайте результат измерения на дисплее.
Как узнать, отключилось ли питание без мультиметра?
Для проверки провода под напряжением без измерительного прибора вы можете создать свой собственный тестер. Например, возьмите розетку и лампочку и прикрепите к ней пару проводов, затем прикоснитесь к заземлению или нейтрали, а другой провод к тесту.
В чем разница между мощностью и током?
Мощность определяется как скорость изменения работы на единицу изменения во времени, а ток определяется как скорость изменения заряда на единицу изменения во времени.
В чем разница между электричеством и током?
Электричество — это форма энергии, производимая потоком электронов, тогда как ток — это комбинация потока заряда в единицу времени. Ток — это количество электрической энергии. Электричество может относиться к статическому электричеству, стационарным или подвижным зарядам.
«Магнитность», наблюдаемая и измеряемая впервые
Магнитный заряд может вести себя и взаимодействовать с некоторыми материалами точно так же, как электрический заряд, согласно новому исследованию, проведенному Лондонским центром нанотехнологий (LCN), которое может привести к переоценке современные теории магнетизма, а также значительные технологические достижения.
Исследование, опубликованное сегодня в журнале Nature (1), доказывает существование магнитных зарядов размером с атом, называемых «магнитными монополями», которые ведут себя и взаимодействуют так же, как более известные электрические заряды. Он также демонстрирует идеальную симметрию между электричеством и магнетизмом — явление, названное «магнетизмом» авторами из LCN и ISIS Neutron and Muon Source.
Чтобы впервые экспериментально доказать существование магнитного тока, команда сопоставила теорию Онзагера 1934 года о движении ионов в воде на магнитные токи в материале, называемом спиновым льдом.Затем они проверили теорию, применив магнитное поле к образцу спинового льда при очень низкой температуре и наблюдая за процессом, используя релаксацию мюонов в ISIS, метод, который действует как супер-микроскоп, позволяющий исследователям понять мир вокруг нас на атомном уровне. .
Эксперимент позволил группе обнаружить магнитные заряды в спиновом льду (Dy2Ti2O7), измерить их токи и определить элементарную единицу магнитного заряда в материале. Наблюдаемые ими монополи возникают как возмущения магнитного состояния спинового льда и могут существовать только внутри материала.
Профессор Стив Брамвелл, соавтор этой статьи из LCN, сказал: «Магнитные монополи были впервые предсказаны в 1931 году, но, несмотря на многочисленные поиски, они никогда не наблюдались как свободно перемещающиеся элементарные частицы. Эти монополи существуют, по крайней мере, внутри образца спинового льда, но не вне его.
«Нечасто в области физики можно спросить:« Как вы что-то измеряете? » а затем перейти к однозначному доказательству теории.Это очень важный шаг для установления того, что магнитный заряд может течь подобно электрическому заряду.Это находится на ранней стадии, но кто знает, какие приложения магнетизма могут быть через 100 лет ».
Доктор Шон Гиблин, приборолог из ISIS и соавтор статьи, добавил:« Результаты были поразительными, если использовать В ISIS мы наконец-то можем подтвердить, что магнитный заряд действительно проводится через определенные материалы при определенных температурах — точно так же, как ионы проводят электричество в воде ».
Рис. 1: Магнитный эффект Вина и обнаружение магнитного заряда имплантированными мюонами.
a, В нулевом поле магнитные заряды возникают в виде связанных пар, но некоторые из них диссоциируют, давая флуктуирующий магнитный момент (зеленая стрелка).
b. Энергия поля -QBrz конкурирует с кулоновским потенциалом -micro0Q2 / 4pir, снижая активационный барьер диссоциации.
c, Приложение поперечного поля вызывает диссоциацию, поскольку заряды ускоряются полем.
d, В приложенном поле эти заряды остаются диссоциированными, в то время как больше связанных пар образуются для восстановления равновесия.Колебания магнитного момента из-за свободных зарядов создают локальные поля, которые обнаруживаются имплантированными мюонами (микро +).
Ссылки:
(1) Измерение заряда и тока магнитных монополей в спиновом льду
С. Т. Брамвелл, С. Р. Гиблин, С. Колдер, Р. Альдус, Д. Прабхакаран и Т. Феннелл
Nature 461, 956-959 (15 октября 2009 г.)
doi: 10.1038 / nature08500
Похожие статьи
Текущие измерения — Тесты и измерения
Тесты и измерения
Измерения тока обычно можно проводить только при последовательном подключении амперметра. с тестируемой схемой.Эти измерения требуют, чтобы цепь соединение должно быть распаяно или иным образом разомкнуто для последовательного включения счетчика со схемой. Более простой метод, который вы можете использовать для получения текущего измерения заключается в измерении напряжения на известном сопротивлении и вычислении ток по закону Ома. Точность измерения тока зависит от от внутреннего сопротивления счетчика по сравнению с сопротивлением внешняя цепь (нагрузка). Более высокая точность достигается, если счетчик сопротивление значительно меньше сопротивления нагрузки.
Метод мультиметра
Мультиметр содержит схему, позволяющую использовать его в качестве амперметра. Обычно он способен измерять как переменный, так и постоянный ток до нескольких амперы.
Осциллограф, метод
Ток можно измерить с помощью осциллографа, зашунтировав входные клеммы. с маломощным резистором. Затем входные клеммы должны быть подключены в последовательно с проверяемой схемой. Номинал резистора должен быть небольшим. Достаточно, чтобы не мешать работе тестируемой схемы.На в то же время оно должно быть достаточно большим, чтобы возникающее напряжение вызывало адекватное отклонение осциллограммы.
Токовые пробники
Токовые пробники в первую очередь предназначены для использования с осциллографом или амперметром для измерения тока. Основное преимущество в использовании токового пробника заключается в том, что он не должен быть включен последовательно с измеряемый ток. Отпайка проводов или подключения к клеммам не обязательно; токовые пробники предназначены для закрепления на изолированных проводники.Благодаря индуктивному действию они способны ощутить величину тока, протекающего в проводнике. Токовые пробники предназначены для выполнение измерений переменного тока. Их можно разделить на три основных типа: пассивный, активный и эффект Холла. У каждого типа есть свои достоинства и недостатки. свойственен его способ работы.
Видео с вопросом: Определение тока, измеренного амперметром
Стенограмма видео
На схеме ниже показан электрический схема, состоящая из ячейки, резистора, вольтметра и амперметра.Показания вольтметра и номиналы резистора оба показаны на диаграмме. Какой ток будет у амперметра мера?
В этом вопросе нам дается схема электрической цепи с различными компонентами. И нас просят узнать, сколько ток в цепи будет измеряться амперметром. В схеме у нас есть ячейка с немаркированная разность потенциалов, резистор с сопротивлением 1 Ом, вольтметр, подключенный параллельно на обоих концах резистора, и амперметр с неизвестное показание, подключенное последовательно, так что он может измерять ток через провода схемы.
Чтобы найти это значение текущий, мы можем рассчитать его, используя значения других компонентов, которые мы приводим в схема. Мы делаем это с помощью специального выражение закона Ома, который выражает свои переменные в терминах потенциала разница. Ток 𝐼 равен разность потенциалов 𝑉, деленная на сопротивление 𝑅. Итак, чтобы найти ток в этот амперметр, который измеряет ток в цепи, нам просто нужно найти разность потенциалов и сопротивление цепи.
Сначала это может показаться трудным поскольку нам не дается значение разности потенциалов, обеспечиваемой мощностью клетка. Однако нам дано значение для разность потенциалов в двух точках по обе стороны от нагрузочного резистора в схема. Потому что есть только этот резистор в цепи, это означает, что вся разность потенциалов на одном конце и другое должно представлять всю разность потенциалов для схемы, так как там нет других компонентов, которые могут вызвать дальнейшую разницу в потенциале.Хотя есть еще один компонент в цепь, амперметр, мы предполагаем, что идеальные амперметры имеют нулевое сопротивление, поэтому они не вызовут изменения разности потенциалов в цепи.
Все это означает, что теперь мы можем используйте это значение, полученное с помощью вольтметра, здесь как значение разности потенциалов. необходимо для выражения закона Ома, который представляет всю схему. Если совместить это значение вольтметра с сопротивлением резистора, которое представляет собой полное сопротивление цепи, то мы можем найти ток в цепи, который будет измеряться амперметром.
Для этого настроим наш уравнение. Значение разности потенциалов 𝑉 — это один вольт, выданный нам вольтметром. Значение сопротивления 𝑅 равно единице. ом, подаваемый нам резистором. Для единиц в этом уравнении мы Следует отметить, что когда мы разделим вольт на ом, мы получим единицы ампер. Итак, один вольт, разделенный на один ом, равен равный одному ампер. Следовательно, ток, который Амперметр в этой схеме будет измерять один ампер.
Мониторинг и устранение токов заземления на ферме и за ее пределами, измеренный как ступенчатый потенциал на молочной ферме в Висконсине: тематическое исследование
Ток заземления, обычно называемый «паразитным напряжением», был проблемой на молочных фермах с тех пор, как в сельские районы Америки впервые пришло электричество. Оборудование, которое генерирует высокочастотные переходные процессы напряжения на электрических проводах, в сочетании с многозаземленной (распределительной) системой и недостаточным возвратом нейтрали, вносит свой вклад в ток заземления.Несмотря на десятилетия проблем, мы не приблизились к решению этой проблемы, отчасти из-за трех заблуждений, которые рассматриваются в этом исследовании. Заблуждение 1. Текущий стандарт 1 В при контакте с коровой достаточен для защиты дойных коров; Заблуждение 2. Не нужно учитывать частоты выше 60 Гц; и Заблуждение 3. Все источники тока заземления берут начало на ферме, имеющей проблемы с током заземления. В этом тематическом исследовании молочной фермы Висконсина рассказывается, как: 1. установить постоянный мониторинг тока заземления (ступенчатого потенциала) на молочной ферме; 2.как определить и устранить как внутрихозяйственные, так и внехозяйственные источники, способствующие ступенчатому потенциалу; 3. какие показатели шагового потенциала относятся к комфорту коров и надоям молока; и 4. как эти показатели соотносятся с установленными стандартами. Внутрихозяйственные источники включают освещение, частотно-регулируемые приводы на двигателях, систему радиочастотной идентификации, а источники вне фермы возникают из-за плохого возврата первичной нейтрали на стороне энергоснабжения распределительной системы. Пороговое значение ступенчатого потенциала, равное среднеквадратичному значению (СКЗ) 1 В при 60 Гц, недостаточно для защиты дойных коров, поскольку уменьшение пиковых значений на несколько мВ на более высоких частотах увеличивает надои молока, сокращает время доения и улучшает комфорт коров.
Ключевые слова: Ток заземления; ПНЕВ; молочная ферма; грязное электричество; высокочастотные переходные процессы напряжения; ступенчатый потенциал; паразитное напряжение; неконтролируемое электричество.
Ученые генерируют самый быстрый электрический ток, когда-либо измеренный внутри твердого материала
Световые импульсы генерируют в сыпучих продуктах электрический ток мультичастотного диапазона. Испускаемое крайнее ультрафиолетовое излучение позволяет ученым регистрировать эти электрические токи в режиме реального времени.
Используя сверхбыстрые лазерные вспышки, физики из Института Макса Планка создали самый быстрый электрический ток, который когда-либо измерялся внутри твердого материала.
В области электроники действует принцип «чем меньше, тем лучше». Однако некоторые строительные блоки компьютеров или мобильных телефонов сегодня стали почти такими же маленькими, как всего несколько атомов. Поэтому их дальнейшее сокращение вряд ли возможно.
Еще одним фактором, влияющим на производительность электронных устройств, является скорость, с которой колеблются электрические токи.Ученые из Института квантовой оптики Макса Планка создали электрические токи внутри твердых тел, которые превышают частоту видимого света более чем в десять раз. Они заставили электроны в диоксиде кремния колебаться с помощью сверхбыстрых лазерных импульсов. Электропроводность материала, который обычно используется в качестве изолятора, была увеличена более чем на 19 порядков.
Возможность замены светом традиционных источников электричества, таких как батареи для генерации электрических токов внутри твердых материалов, уже более века захватывает воображение ученых.Попытки наблюдать токи в твердых материалах, освещая их светом, в последние несколько десятилетий не увенчались успехом. «Однако сегодня контроль материи с помощью лазеров стремительно развивается, и возможность измерения световых полей с еще более высокой точностью стала реальностью», — объясняет Элефтериос Гулиельмакис, руководитель исследовательской группы Attoelectronics в Институте квантовой оптики Макса Планка.
Традиционные электронные методы не могут ни генерировать, ни улавливать такие быстрые электрические токи, потому что в обычных схемах электроны подталкиваются электрическим полем стандартных электрических источников, таких как батареи, для выполнения колебаний.Несмотря на то, что все электроны изначально следуют за силой полей батареи, они в конечном итоге сталкиваются с другими более медленными движущимися частицами, такими как атомы или ионы, и теряют синхронность друг с другом. Сильные световые поля могут очень быстро выталкивать электроны. Они могут совершать свои колебания и создавать токи до того, как любая другая частица в твердом теле получит возможность двигаться.
Поэтому ученые использовали лазеры для генерации токов. Они могут приводить электроны в твердых телах в чрезвычайно быстрое колебательное движение.«Чтобы измерить это быстрое электронное движение, мы использовали оптические методы. Когерентно колеблющиеся электроны внутри диоксида кремния генерируют ультрафиолетовое излучение. Это излучение легче измерить, чем непосредственно обнаружить токи », — говорит Маниш Гарг, один из авторов исследования. Обнаруженные электрические токи примерно в миллион раз быстрее, чем те, которые широко используются в современных процессорах компьютеров. Исследователи также заинтересованы в изучении физических ограничений: «Поскольку электроны движутся когерентно, они также генерируют свет, который является ключевым элементом фотоники.По этой причине мы скоро сможем объединить две важные области современной науки и техники: электронику и фотонику », — говорит Гулиелмакис. В то же время такой подход может открыть путь для электронных устройств, которые в миллион раз быстрее, чем те, которые доступны сегодня.
Публикация: М. Гарг и др., «Многопетагерцовая электронная метрология», Nature 538, 359–363 (20 октября 2016 г.) doi: 10.1038 / nature19821
Как собрать робота Учебники
ДАТЧИКИ — ДАТЧИК ТОКА
Датчик тока
Измерение тока — это, как говорится, определение количества тока, используемого конкретным
цепь или устройство.Если вы хотите знать количество энергии, используемой для
компонент робота, измерение тока — это то, что вам нужно.
Приложения
Измерение тока — нетипичное применение в робототехнике. Большинство роботов
никогда не понадобится текущая чувствительность. Измерение тока — это способ для робота
измерять его внутреннее состояние и редко требуется для исследования внешнего мира.
Строителю роботов полезно лучше понимать мощность
использование различных компонентов робота. Зондирование может быть выполнено для
Двигатели постоянного тока, цепи или
сервоприводы для измерения требований к мощности привода.Это можно сделать для таких вещей, как
микроконтроллеры для измерения
силовые показатели в разных ситуациях. Это может быть полезно для таких вещей, как
робот контролирует аккумулятор. А также
наконец, устройства обнаружения захвата рук робота и обнаружение столкновений. Например,
если текущее использование внезапно увеличивается, это означает, что физический объект вызывает
сопротивление.
Методы
Существует несколько методов измерения тока, каждый из которых имеет свои преимущества и недостатки.
Самый простой способ — использовать типичный настольный источник питания постоянного тока .
Это устройство довольно дорогое, поскольку оно исчисляется сотнями, но оно очень дорогое. обычным, и вы можете легко найти его в любой типичной университетской лаборатории. Эти устройства являются обязательными для любого инженера-электрика или строителя роботов. Работа этого устройства должно быть прямолинейно. Подайте напряжение на ваш компонент, и он быстро даст считывание тока, который вы рисуете. Хотя это занимает секунды и небольшие усилия Чтобы сделать, у этого метода есть несколько недостатков.
Первый недостаток — это не очень точный . Обычно они могут только измерить с шагом округления до ближайших 10 мА. Это нормально для приложений с высокой производительностью. где дополнительные 5 мА не имеют значения, но для устройств с низким потреблением тока это может быть проблемой. Следующий недостаток — тайминги . Настольные блоки питания измеряют ток только в установить периоды времени — обычно 3 раза в секунду. Если ваше устройство со временем потребляет постоянный ток это не проблема.Но если, например, ваше устройство разгоняется от 0 до 3 ампер пять раз в секунду, текущее значение, которое вы получите, не будет точным. Последний серьезный недостаток: что нет нет возможности регистрации данных — поэтому вы не можете анализировать какой-либо сложный текущие данные розыгрыша на компьютере.
Второй способ — использовать цифровой мультиметр .
Цифровой мультиметр — еще одно широко доступное устройство, способное анализировать множество различных характеристик вашей схемы — напряжение, ток, емкость, сопротивление, температура, частота и т. д.Если у вас его еще нет, вам обязательно нужно сделать робота. Это было бы похоже на приготовление пищи без тепла, если его не было. . . По стоимости они варьируются по цене от 10 до 100 долларов. Цена зависит от характеристик и точности. Чтобы измерить ток, все, что вам нужно сделать, это подключить два провода серии к одному из провода источника питания. Но опять же, у этого метода есть недостатки.
Как и настольные источники питания, цифровые мультиметры имеют проблемы с синхронизацией и .Тем не мение, точность обычно на один или два десятичных знака лучше. Достаточно хорошо для большинства приложений. Что касается регистрации данных, несколько доступных мультиметров действительно имеют кабели для подключения к компьютеру. так что вы можете записать текущие данные для обработки позже.
Последний метод использует микросхему под названием Current Sense IC .
Эта микросхема за 5 долларов, использующая крошечный резистор и встроенный усилитель с высоким коэффициентом усиления, выдает пропорциональное напряжение. току, проходящему через него.Поместите чип последовательно с тем, что вы хотите измерить, и подключите выход к устройству регистрации данных, например микроконтроллеру.