Site Loader

Содержание

Что такое сила тока? Единица измерения силы тока

Автор Andrey Ku На чтение 28 мин Опубликовано

Содержание

  1. Что такое сила тока?
  2. Формула силы тока
  3. Сила тока и сопротивление
  4. Сила тока в проводнике
  5. Как измерить силу тока?
  6. Приборы для измерения силы тока
  7. Примеры типичных токов
  8. Какие бывают виды электрического тока в быту
  9. Напряжение, ток и сопротивление
  10. Единицы измерения: вольт, ампер и ом
  11. Кулон и электрический заряд
  12. Формула закона Ома
  13. Анализ простых схем с помощью закона Ома
  14. Метода треугольника закона Ома
  15. Воздействие на человека
  16. Практические измерения
  17. Электрический ток в различных средах: что надо знать электрику
  18. Сила тока в проводнике из металла: как используется в бытовых условиях
  19. Транспортировка электрической мощности
  20. Нагревательные элементы
  21. Защитные устройства
  22. Ток в полупроводниках и его характеристики
  23. Ток в жидкостях: 3 метода применения
  24. Изоляционные свойства
  25. Аккумуляторы и гальванопластика
  26. Ток в газах: диэлектрические свойства среды и условия протекания разрядов
  27. Ток в вакууме: как используется в радиоэлектронных приборах
  28. Электрическая цепь и ее схематическое изображение
  29. Условные обозначения некоторых элементов электрической цепи
  30. Направление электрического тока в металлах
  31. Действия электрического тока (преобразования энергии)
  32. Единица и определение
  33. Эволюция эталона
  34. Будущее величины в СИ
  35. Единицы измерения в других системах единиц

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Сила тока – это количество электронов, прошедших через площадь поперечного сечения проводника за какое-либо определенное время.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

где

I – собственно сила тока, Амперы

N – количество электронов

t – период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

где

Δq  – это заряд за какой-то определенный промежуток времени, Кулон

Δt – тот самый промежуток времени, секунды

I – сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10-19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅1018 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅1018 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока  – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам,  Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе – это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет “протащить” через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок.

Его толщина зависит от того, на какую силу тока он рассчитан.

Плавкий предохранитель

Как только сила тока через тонкий проводок  предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

Сгоревший плавкий предохранитель

Поэтому, силовые кабели,  через которые “бегут” сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

Формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

Таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

закон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

задача на силу тока в проводнике

Решение:

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы – амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который  может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое “сила тока”.

Приборы для измерения силы тока

Прибором для измерения токовой силы называется амперметр, в дополнение к теме, чем измеряют ток. Бывает стрелочным, цифровым и электронным. Активно применяется в электролаборатории, автомобилестроении, точной науке и строительстве. По принципу действия бывает электромагнитным, магнитоэлектрическим, термоэлектронным, ферродинамическим, электродинамическим и цифровым. Измеряет как переменный, так и постоянный электроток.

Работает благодаря взаимодействию магнитного поля с подвижной катушкой или сердечником, который находится в корпусе. Пользоваться всеми типами очень просто. Все что нужно от пользователя, это внимательно изучить инструкцию и руководство к эксплуатации. Как правило, для начала измерения необходимо с помощью щупов прикоснуться к проводнику и нажать соответствующую кнопку. После на экране будет выведено значение в амперах. Стоит указать, что измеряет токовую силу также вольтметр, мультиметр и измерительная отвертка.

Примеры типичных токов

Значения силы тока можно прочитать на информационных табличках на электроприёмниках или в руководствах к этим устройствам. В таблице ниже приведены типичные значения электрических токов для различных электроприёмников.

ПотребительСила тока
Электрический термометроколо 0,00001 мА
Наушники1 мА
Лампа накаливания 60 Вт0,26 А
Лампа накаливания 75 Вт0,33 А
Холодильник0,8 А
Зарядное устройство для смартфона (быстрая зарядка)2 А
Персональный компьютер0,87 — 2,6 A
Микроволновая печь3,5 А
Пылесос4 — 9 А
Стиральная машина6 — 10 А
Электроплавильная печь15000 А
Грозовая молния10 000 — 100 000 А (в среднем 36 000 А)

Какие бывают виды электрического тока в быту

Форма сигнала токов зависит от работы источника напряжения и сопротивления среды, через которую проходит сигнал. Чаще всего на практике домашнему мастеру приходится сталкиваться со следующим видами:

  • постоянный сигнал, вырабатываемый от аккумуляторов или гальванических элементов;
  • синусоидальный, создаваемый промышленными генераторами частоты 50 герц;
  • пульсирующий, образуемый за счет преобразований различных блоков питания;
  • импульсный, проникающий в бытовую сеть за счет разряда молний в воздушные линии электропередач;
  • произвольный.

Чаще всего встречается синусоидальный или переменный ток: им питаются все наши приборы.

В современной проводке, питающейся синусоидальным напряжением, работает много полупроводниковых бытовых приборов. Они обладают не линейным сопротивлением, нарушают форму гармоники.

Эти помехи складываются по всей цепи от конкретного потребителя до питающего трансформатора, искажают идеальный синус произвольным образом. В результате изменяется как форма, так и величина питающего напряжения.

Это может привести к созданию аварийного режима: отгоранию нулевого проводника в питающей трехфазной цепи. Подробно этот процесс описан отдельной статьей другого сайта.

Напряжение, ток и сопротивление

Электрическая цепь образуется, когда создается проводящий путь, позволяющий электрическому заряду непрерывно перемещаться. Это непрерывное движение электрического заряда по проводникам цепи называется током, и о нем часто говорят как о «потоке», как о потоке жидкости через полую трубу.

Сила, побуждающая носители заряда «течь» по цепи, называется напряжением. Напряжение – это особая мера потенциальной энергии, которая всегда относительна между двумя точками. Когда мы говорим об определенной величине напряжения, присутствующего в цепи, мы имеем в виду измерение потенциальной энергии для перемещения носителей заряда из одной конкретной точки этой цепи в другую конкретную точку. Без упоминания двух конкретных точек термин «напряжение» не имеет значения.

Ток, как правило, проходит через проводники с некоторой степенью трения или противодействия движению. Это противодействие движению правильнее называть сопротивлением. Величина тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующего прохождению тока. Как и напряжение, сопротивление – это величина, измеряемая между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как «между» двумя точками в цепи.

Единицы измерения: вольт, ампер и ом

Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:

Единицы измерения тока, напряжения, сопротивления

ВеличинаСимволЕдиница измеренияСокращение единицы измерения
ТокIАмперА
НапряжениеVВольтВ
СопротивлениеRОмОм

«Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах.

Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.

Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I». Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»).

Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени. Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.

Кулон и электрический заряд

Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.

Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.

Формула закона Ома

Основное открытие Ома заключалось в том, что величина электрического тока, протекающего через металлический проводник в цепи, при любой заданной температуре прямо пропорциональна напряжению, приложенному к нему. Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь напряжения, тока и сопротивления:

[E=IR]

В этом алгебраическом выражении напряжение (E) равно току (I), умноженному на сопротивление (R). Используя алгебру, мы можем преобразовать это уравнение в других два варианта, решая его для I и R соответственно:

[I = frac{E}{R}]

[R = frac{E}{I}]

Анализ простых схем с помощью закона Ома

Давайте посмотрим, как эти формулы работают, чтобы помочь нам анализировать простые схемы:

Рисунок 1 – Пример простой схемы

В приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа).

Это позволяет очень легко применить закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

В этом первом примере мы вычислим величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

Рисунок 2 – Пример 1. Известны напряжение источника и сопротивление лампы

Какая величина тока (I) в этой цепи?

[I = frac{E}{R} = frac{12 В}{3 Ом} = 4 А]

Во втором примере мы вычислим величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

Рисунок 3 – Пример 2. Известны напряжение источника и ток в цепи

Какое сопротивление (R) оказывает лампа?

[R = frac{E}{I} = frac{36 В}{4 А} = 9 Ом]

В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

Рисунок 4 – Пример 3. Известны ток в цепи и сопротивление лампы

Какое напряжение обеспечивает батарея?

[E = IR = (2 А)(7 Ом) = 14 В]

Метода треугольника закона Ома

Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Рисунок 5 – Треугольник закона Ома

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

Рисунок 6 – Закон Ома для определения R

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

Рисунок 7 – Закон Ома для определения I

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

Рисунок 8 – Закон Ома для определения E

В конце концов, вам придется научиться работать с формулами, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!

Воздействие на человека

В большинстве случаев электрический ток представляет собой поток электронов. Поскольку ампер является мерой количества заряда, проходящего в секунду, нетрудно будет посчитать количество электронов в перемещённом заряде: 1 Кл = 6,24151·10 18. То есть один ампер равен потоку 6340 квадриллионов частиц в секунду. Это колоссальная цифра, но вряд ли она иллюстративна для сравнительного понимания, когда показатель чего-либо измеряют в амперах. В этом помогут следующие повседневные примеры:


  • 160х10 -19 — один электрон в секунду;
  • 0,7х10 -3 — слуховой аппарат;
  • 5х10 -3 — пучок в кинескопе телевизора;
  • 150х10 -3 — портативный ЖК телевизор;
  • 0,2 — электрический угорь;
  • 0,3 — лампа накаливания;
  • 10 — тостер, чайник;
  • 100 — стартер автомобиля;
  • 30х10 3 — удар молнии;
  • 180х10 3 — дуговая печь для ферросплавов;
  • 5х10 6 — дуга между Юпитером и Ио.

Порог смертельно опасного воздействия на человеческий организм начинается с 18 мА. Ток, превышающий это значение и проходящий через грудную клетку, способен стимулировать мышцы груди таким образом, что их спазмы могут вызвать полную остановку дыхания. Другой опасный эффект при подобном воздействии связан с фибрилляцией желудочков сердца. Основные факторы летальности:

  1. Сила тока. Так как сопротивление между точками входа и выхода — постоянная величина, по закону Ома высокое напряжение делает вероятным высокий ампераж.
  2. Маршрут протекания. Наиболее опасны для сердечной мышцы направления рука-рука и передняя-задняя части грудной клетки.
  3. Индивидуальная чувствительность к воздействию электричества и особенности организма (сопротивление кожи и её влажность, возраст и пол, заболевания, наличие медицинских имплантов).
  4. Продолжительность воздействия.

Большое влияние на тяжесть поражения током оказывает также неспособность отпустить источник. При условии, что пальцы человека держат в руках один из контактов под напряжением, многие взрослые люди не могут отпустить источник при протекающем постоянном токе менее 6 мА. При 22 мА это будет не под силу всем людям. 10 мА для человека, находящегося в воде, достаточно, чтобы вызвать полную потерю контроля над мышцами.

Практические измерения

Подсчёт количества электронов в проводнике с секундомером в руке практически неосуществим, поэтому ток измеряют специальными приборами (амперметрами) или косвенными расчётами. Амперметры устроены таким образом, что они реагируют на магнитное поле, создаваемое измеряемым током. Существуют различные типы подобных измерительных приборов, но все они основаны на одном принципе. Общие правила измерений силы тока можно свести к следующему перечню:

  1. Амперметр всегда включается последовательно к нагрузке, при измерениях ток должен протекать через прибор. Подключение прибора параллельно может привести к протеканию в нём слишком больших токов, что способно вызвать его выход из строя.
  2. Для высокой точности измерений внутреннее сопротивление прибора должно быть настолько низким, насколько это возможно, чтобы не влиять на параметры цепи.
  3. Следует позаботиться о виде тока (AC или DC). В случае с постоянным обязательно обратить внимание на полярность.
  4. Диапазон измерений должен быть настолько большим, насколько это возможно без вреда для точности. Важно, чтобы неизмеряемое значение не оказалась за пределами шкалы.

Возможны случаи, когда контур невозможно разомкнуть для замеров или нужное место в цепи труднодоступно. В таких ситуациях измерение можно выполнить косвенно. Определив падение напряжения на резисторе, можно с помощью закона Ома определить ток. Косвенные измерения удобно производить мультиметром — прибором, объединяющим функции омметра, вольтметра и амперметра.

В ситуациях, когда ток слишком высок для того, чтобы измерить его стандартным прибором, используют шунтирование. Самый дешёвый и простой способ — параллельное присоединение к участку резистора с омметром. Применение для измерений трансформатора тока добавляет важное преимущество, заключающееся в создании гальванической развязки между измерительным прибором и схемой, в которой измеряется ток. Но в этом случае анализ возможен только для переменного тока.

Измерения тока на реальных схемах выполняются в большинстве случаев для двух целей. Основная задача замеров — контроль за питанием. Вторая функция анализа токов заключается в определении неисправностей или превышения допустимого ампеража.

Очень важен выбор правильной технологии снятия показаний, чтобы компоненты контрольного оборудования способны были должным образом работать в пиковых и аварийных режимах. Современное развитие цифровой и компьютерной техники значительно расширило возможности точного измерения и исследования токов косвенными методами, а полупроводниковые технологии недалёкого будущего обещают дозировать электричество с точностью до единичного заряда.

Электрический ток в различных средах: что надо знать электрику

Заряженные частицы под действием приложенного напряжения перемещаются не только внутри металлов, как мы разобрали выше на примере электронов, но и в:

  • переходном слое полупроводниковых элементов;
  • жидкостях различных составов;
  • среде газа;
  • и даже внутри вакуума.

Все эти среды оценивают способностью пропускать ток термином, называемым проводимостью. Это величина, обратная сопротивлению. Она обозначается буквой G, оценивается через удельную проводимость, которую можно найти в таблицах.

Проводимость вычисляется по формулам:

G = 1 / R = I / U

Сила тока в проводнике из металла: как используется в бытовых условиях

Способность внутренней структуры металлов по-разному влиять на условия движения направленных зарядов применяется для реализации специфических задач.

Транспортировка электрической мощности

Чтобы передать электрическую энергию на большое расстояние используют металлические проводники повышенного сечения с высокой проводимостью: медь или алюминий. Более дорогие металлы серебро и золото работают внутри сложных электронных схемах.

Всевозможные конструкции проводов, шнуров и кабелей на их основе надежно эксплуатируются в домашней проводке.

Нагревательные элементы

Для обогревательных приборов применяют вольфрам и нихром,обладающие большим сопротивлением. Оно позволяет разогревать проводник до высоких температур при правильном подборе приложенной мощности.

Этот принцип воплотился в многочисленных конструкциях электрических нагревателей — ТЭН-ах.

Защитные устройства

Завышенная сила тока в проводнике из металла с хорошей проводимостью, но тонким сечением позволяет создавать предохранители,используемые как токовые защиты.

Они нормально работают в оптимальном режиме нагрузки, но быстро перегорают при бросках напряжения, коротких замыканиях или перегрузках.

Еще несколько десятков лет предохранители массово служили основной защитой домашней проводки. Сейчас их заменили автоматическими выключателями. Но внутри всех блоков питания они продолжают надежно работать.

Ток в полупроводниках и его характеристики

Электрические свойства полупроводников сильно зависят от внешних условий: температуры, облучения светом.

Для увеличения их собственной проводимости в состав структуры добавлены специальные примеси.

Поэтому внутри полупроводника ток создается за счет собственной и примесной проводимости внутреннего p-n перехода.

Носителями зарядов полупроводника выступают электроны и дырки. Если плюсовой потенциал источника напряжения приложен к полюсу p, а минусовой — к n, то через p-n переход станет течь ток за счет созданного ими движения.

При обратном приложении полярности p-n переход остается закрытым. Поэтому на картинке выше в первом случае показана светящаяся лампочка, а во втором — потухшая.

Аналогичные p-n переходы работают в других полупроводниковых конструкциях: транзисторах, стабилитронах, тиристорах…

Все они рассчитаны на номинальное прохождение силы тока. Для этого прямо на их корпус наносится маркировка. По ней заходят в таблицы технических справочников и оценивают полупроводник по электрическим характеристикам.

Ток в жидкостях: 3 метода применения

Если металлы обладают хорошей проводимостью, то среда жидкостей может выступать как диэлектрик, проводник и даже полупроводник. Но, последний случай не для домашнего применения.

Изоляционные свойства

Высокими диэлектрическими свойствами обладает минеральное масло высокой степени очистки и заниженной вязкости, созданное для работы внутри промышленных трансформаторах.

Дистиллированная вода тоже имеет высокие изоляционные свойства.

Аккумуляторы и гальванопластика

Если в дистиллированную воду добавить немного соли, кислоты или щелочи, то она, за счет возникновения электролитической диссоциации, станет токопроводящей средой — электролитом.

Однако здесь надо понимать: ток, протекающий в металлах, не нарушает структуру их вещества. В жидкостях же происходят разрушительные химические процессы.

Поэтому принято считать металлы проводниками первого рода, а жидкости — второго.

Ток в жидкостях так же создается под действием приложенного напряжения. Например, когда к двум электродам, опущенным в водный раствор какой-то соли, подведены положительные и отрицательные потенциалы от батарейки или аккумулятора.

Молекулы раствора образуют положительно и отрицательно заряженные частицы — ионы. По знаку заряда их называют анионы (+) и катионы (-).

Под действием приложенного электрического поля анионы и катионы начинают движение к электродам противоположных знаков: катоду и аноду.

Такое встречное движение заряженных частиц образует электрический ток в жидкостях. При этом ионы, дойдя до своего электрода,разряжаются на нем и образуют осадок.

Наглядным примером могут быть гальванические процессы,проходящие в растворе медного купороса CuSO4 с опущенными в него медными электродами.

Ионы меди Cu заряжены положительно — это анионы. На катоде они теряют свой заряд и оседают тонким металлическим слоем.

Катионами выступает кислотный остаток SO4. Они приходят на анод, разряжаются, вступают в химическую реакцию с медью электрода, образуют молекулы медного купороса, поступают обратно в раствор.

По этому принципу за счет ионной проводимости работают все электролиты в гальванопластике, когда идет изменение структуры электродов, а состав жидкости не меняется.

С помощью этого метода создают тонкие покрытия из благородных металлов на ювелирных украшениях или защитный слой различных деталей от коррозии. Силу тока подбирают под скорость протекания химической реакции в зависимости от конкретных условий среды.

По этой же схеме работают все аккумуляторные батареи. Только они еще обладают возможностью накапливать заряд от приложенной энергии генератора и отдают электричество при разряде на потребитель.

Работу никель кадмиевого аккумулятора в режиме заряда от внешнего генератора и разряда на приложенную нагрузку демонстрирует простая схема.

Ток в газах: диэлектрические свойства среды и условия протекания разрядов

Обычная газовая среда обладает хорошими диэлектрическими свойствами: она состоит из нейтральных молекул и атомов.

Примером может служить воздушная атмосфера. Ее используют как изолирующий материал даже на высоковольтных линиях электропередач, передающих очень большие мощности.

Оголенные металлические провода закреплены на опоре через изоляторы и отделены от контура земли их высоким электрическим сопротивлением,а между собой — обычным воздухом. Так работают ВЛ всех напряжений, включая 1150кВ.

Однако диэлектрические свойства газов могут быть нарушены за счет воздействия внешней энергии: нагрева до большой температуры или приложения повышенной разности потенциалов. Только тогда происходит ионизация их молекул.

Она отличается от тех процессов, которые происходят внутри жидкостей. У электролитов молекулы расщепляются на две части: анионы и катионы.Молекула же газа во время ионизации выделяет электрон и остается в виде иона положительного заряда.

Как только внешние силы, создающие ионизацию газов,прекращают действовать, сразу исчезает проводимость газовой среды. Разряд молнии в воздухе является кратковременным явлением, подтверждающим это положение.

Ток в газах, кроме разряда молнии, может создаваться за счет поддержания электрической дуги. По этому принципу работают прожектора и проекционные аппараты яркого света, а также промышленные дуговые печи.

Неоновые и люминесцентные лампы используют свечение тлеющего разряда, протекающего в среде газа.

Еще один вид разряда в газах, применяемый в технике —искровой. Он создается газовыми разрядниками для замера величин больших потенциалов.

Ток в вакууме: как используется в радиоэлектронных приборах

Латинское слово вакуум трактуется на русском языке как пустота. Она создается практическим путем за счет откачки газов из закрытого пространства вакуумными насосами.

Носителей электрических зарядов в вакууме нет. Их необходимо внести в эту среду для того, чтобы создать ток. Здесь используется явление термоэлектронной эмиссии, которая возникает при нагреве металла.

Таким способом работают радиоэлектронные лампы, у которых катод подогревается нитью накала. Освобождающиеся из него электроны, под действием приложенного напряжения, движутся к аноду, образуют ток в вакууме.

По этому же принципу создана электронно лучевая трубка кинескопного телевизора, монитора, осциллографа.

Просто в ней добавлены управляющие электроды для отклонения луча и экран, указывающий на его положение.

Во всех перечисленных устройствах сила тока в проводнике среды должна рассчитываться, контролироваться и поддерживаться на определённом уровне оптимального режима.

Электрическая цепь и ее схематическое изображение

Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т. е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Единица и определение

Важнейшей характеристикой для описанных явлений является количественное измерение потока заряженных частиц. Этот показатель называют силой тока, его единица измерения — ампер (обозначается A). В численном выражении 1 ампер равен единичному заряду (1 кулону), проходящему через точку в цепи за единицу времени (1 секунду). Таким образом, A можно рассматривать как скорость потока I=Q/T, имеющую такой же смысл для заряда, как и скорость для физических тел. Широко применяются следующие кратные единицы:

  • 10 −6А — микроампер мкА;
  • 10 −3А — миллиампер мА;
  • 10 3А — килоампер кА.

Эволюция эталона

В знак признания фундаментальных работ великого физика André-Marie Ampère название ампер было принято в качестве электрической единицы измерения на международной конвенции в 1881 году. По международному определению 1883 года 1ампером являлся ток, способный при прохождении раствора нитрата серебра выделить 0,001118000 грамм серебра за секунду. Более поздние замеры показали, что принятый эквивалент составлял 0,99985 A, поэтому способы расписать ампер через явления электролиза со временем перестали удовлетворять из-за растущих требований к точности.

С 1948 года A (amper) был определён в Международной системе единиц как неизменяющийся ток, протекающий в двух параллельных проводниках бесконечной длины и ничтожно малого сечения, помещённых на расстоянии одного метра друг от друга в вакууме, и производящий между ними силу взаимодействия, равную 2х10 -7 ньютонов на метр длины. Это определение базируется на явлении электромагнетизма, связывая метр, килограмм и электрические единицы магнитной постоянной (1.25663706х10 -6 м кг с -2 А -2).

Вам это будет интересно  Буквенное обозначение элементов на электрических схемах

Реализация такого эталона основана на работе сложных электромеханических устройств. Их точность ограничивается десятимиллионными долями, что недостаточно для современных нужд. Эта проблема классического определения ампера привела к новой практической реализации. В соответствии с ней все электрические единицы рассматриваются как производные от электрических квантовых стандартов на основе эффекта Джозефсона и квантового эффекта Холла. Подобная привязка позволяет воспроизводить единицу с точностью до миллиардных долей.

Будущее величины в СИ

В 2005 году Международный комитет мер и весов начал первые приготовления к переопределению единиц СИ с целью привязки их к естественным константам. В соответствии с таким взглядом на эталоны ампер будет определяться подсчётом одиночных частиц с элементарным зарядом e. На основании решения 2014 года пересмотр вступает в силу в 2018 году.

Элегантная реализация нового определения A теоретически возможна с помощью одноэлектронных насосов, производящих электрический ток через синхронизированный контролируемый транспорт одиночных электронов. Некоторые международные исследования в этом направлении уже близки к достижению такой амбициозной цели.

Единицы измерения в других системах единиц

Таблица, какие есть единицы измерения тока

Система единицПолные и сокращенные обозначенияФормулы перевода
СИАмпер (А)
СГСМАбампер (абА), био1 био = 10 А
СГСЭСтатоампер (статА)1 А = 2 997 924 536,8 статА

Источники

  • https://www.RusElectronic.com/sila-toka/
  • https://rusenergetics.ru/polezno-znat/v-chem-izmeryaetsya-sila-toka
  • https://www.asutpp.ru/chto-takoe-sila-toka-formula-izmerenie.html
  • https://ElectrikBlog.ru/sila-toka-v-provodnike-i-sredakh-dlya-novichkov-i-ne-tolko/
  • https://radioprog.ru/post/920
  • https://rusenergetics.ru/novichku/amper
  • https://Spadilo.ru/elektricheskij-tok-zakon-oma-dlya-uchastka-cepi/
  • https://amperof. ru/teoriya/edinica-izmereniya-sily-toka.html

Единицы измерения тока таблица

Какая связь существует между напряжением, током и сопротивлением? Это непрерывное движение свободных электронов по проводникам цепи называется током. Иногда его, по аналогии с потоком воды через трубу, называют «потоком». Напряжение — это определённая мера потенциальной энергии, которая всегда взаимосвязана с двумя точками цепи. Когда мы говорим что в схеме присутствует определенная величина напряжения, мы имеем в виду величину потенциальной энергии , необходимой для перемещения электронов из одной точки цепи в другую. Без привязки к двум конкретным точкам цепи термин «напряжение» не имеет смысла.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Основные величины и меры электрического тока
  • ЕДИНИЦЫ ИЗМЕРЕНИЯ НАПРЯЖЕНИЯ, ТОКА, СОПРОТИВЛЕНИЯ, МОЩНОСТИ, ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ.
  • В помощь изучающему электронику
  • Таблица единиц измерения
  • Читать онлайн «Электроника для начинающих (2-е издание)» автора Платт Чарльз — RuLit — Страница 13
  • Единица измерения электрической мощности
  • Характеристики тока.
  • Постоянный ток

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Базовые единицы измерения при работе с током

Основные величины и меры электрического тока


Постоянный ток является разновидностью однонаправленного тока. Однонаправленный ток англ. Часто можно встретить сокращения DC от первых букв англ. На рисунке к этой статье красным цветом изображён график постоянного тока. Как видно, график постоянного тока представляет собой прямую линию , параллельную горизонтальной оси оси времени.

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества электрических зарядов. В каждой точке проводника, по которому протекает постоянный ток, одни элементарные электрические заряды непрерывно сменяются другими, совершенно одинаковыми по сумме электрическими зарядами.

Несмотря на непрерывное перемещение электрических зарядов вдоль проводника, общее пространственное их расположение внутри проводника как бы остаётся неизменным во времени, или стационарным. Постоянное движение электрических зарядов создаётся и поддерживается сторонними силами , которые могут иметь химическую в гальванических элементах , электромагнитную динамо-машина постоянного тока , механическую электрофорная машина или иную например, радиоактивную в стронциевых источниках тока природу.

Во всех случаях источник тока является преобразователем энергии сторонних сил в электрическую. Электрическое поле, сопутствующее постоянному току в проводнике и в соответствии с этим стационарное распределение в нём электрических зарядов, называется стационарным неизменным во времени электрическим полем.

Электрические заряды в стационарном электрическом поле нигде не накапливаются и нигде не исчезают, так как при всяком пространственном перераспределении зарядов неизбежно должно было бы измениться стационарное электрическое поле и соответственно ток перестал бы быть постоянным по времени.

Для стационарности поля и тока требуется, чтобы электрические заряды нигде не накапливались и нигде не терялись, а перемещались непрерывным и равномерным потоком вдоль проводников. Для этого необходимо, чтобы проводники совместно образовывали замкнутый на себя контур. В этом случае будет достигнуто непрерывное круговое равномерное движение электрических зарядов вдоль всего контура. Постоянный электрический ток может существовать только в замкнутом на себя контуре, состоящем из совокупности проводников электричества, в котором действует стационарное электрическое поле.

Самыми первыми источниками постоянного тока являлись химические источники тока : гальванические элементы , затем были изобретены аккумуляторы. Полярность химических источников тока самопроизвольно измениться не может. В электронной аппаратуре, питающейся от сети переменного тока , для получения постоянного тока используют блоки питания. Как правило, переменный ток понижается трансформатором до нужного значения, затем выпрямляется. Далее для уменьшения пульсаций используется сглаживающий фильтр и, при необходимости, стабилизатор тока или стабилизатор напряжения или регулятор напряжения.

В современной радиоэлектронной аппаратуре получили распространение импульсные блоки питания. Сглаживание пульсаций выходного напряжения происходит благодаря наличию интегрирующего элемента, способного накапливать электрическую энергию и отдавать её в нагрузку.

В результате на выходе можно получить практически постоянный ток. Электрическую энергию могут накапливать электрические конденсаторы. В общем случае, при разряде конденсатора во внешней цепи протекает переменный ток. Если конденсатор разряжается через резистор, то появляется однонаправленный переменный ток постепенно уменьшающийся. Однако, если конденсатор разряжается через катушку индуктивности , то в цепи появляется двунаправленный переменный ток , это устройство называется колебательный контур.

Электролитические конденсаторы могут иметь очень большую электрическую ёмкость сотни и тысячи микрофарад и более. При разряде таких конденсаторов через большое сопротивление ток уменьшается медленнее, и для короткого времени можно считать, что во внешней цепи протекает постоянный ток.

Это значит, что направление постоянного электрического тока всегда совпадает с направлением движения положительных электрических зарядов, например положительных ионов в электролитах и газах. Там же, где электрический ток создаётся только движением потока отрицательно заряженных частиц, например, потока свободных электронов в металлах , за направление электрического тока принимают направление, противоположное движению электронов.

В тех случаях, когда приходится иметь дело с большими токами, количество электричества измеряется более крупной единицей, называемой ампер-часом , 1 ампер-час равен 3 кулонам.

Сила тока измеряется амперметром , он включается в цепь так, чтобы через него проходил весь измеряемый ток, то есть последовательно. В электротехнике часто бывает важно знать не только силу тока в проводнике, но и плотность тока , так как плотность тока является мерой допустимой нагрузки проводов.

Разность потенциалов между точками, между которыми протекает постоянный ток, могут охарактеризовать электродвижущая сила и электрическое напряжение. Каждый первичный источник электрической энергии создаёт стороннее электрическое поле. Стороннее электрическое поле, имеющееся в источнике электрической энергии постоянного тока, непрерывно взаимодействует на электрические заряды проводников, образующих вместе с ним замкнутую цепь, и создаёт в ней постоянный электрический ток.

Перемещая электрические заряды по замкнутой цепи, силы стороннего электрического поля преодолевают сопротивление противодействующих сил, например вещественных частиц проводников.

Это приводит к тому, что силы стороннего электрического поля совершают работу за счёт энергии этого поля. По мере расхода энергии стороннее электрическое поле пополняет её за счёт механической или химической энергии. В результате работы сил стороннего электрического поля энергия этого поля переходит в электрической цепи в какие-либо иные виды энергии , например в тепловую энергию в металлических проводниках , тепловую и химическую в электролитах, тепловую и световую энергию в электрических лампах и так далее.

Единица названа в честь итальянского физика и физиолога Алессандро Вольта. Следовательно, чем больше падение напряжения внутри источника электрической энергии, тем меньше при всех прочих равных условиях падение напряжения на зажимах источника электрической энергии. Так как падение напряжения имеет одинаковую размерность с электродвижущей силой , то есть выражается в джоулях на кулон , или, иначе, в вольтах, то за единицу измерения падения напряжения электрического напряжения принят один вольт.

Напряжение на участках цепи измеряется вольтметром , он всегда присоединяется к тем точкам цепи, между которыми он должен измерить падение напряжения, то есть параллельно. Число оборотов легко регулируется последовательным включением реостата или изменением напряжения на зажимах двигателя путём переключения нескольких двигателей с последовательного на параллельное соединение. Направление вращения легко меняется как правило, переключается полярность обмотки возбуждения.

В силу этого электродвигатели постоянного тока с последовательным возбуждением нашли широкое применение на электровозах , электропоездах , тепловозах , трамваях , троллейбусах , подъёмных кранах , подъёмниках и так далее. Исторически сложилось, что линии трамвая , троллейбуса и метрополитена электрифицированы на постоянном токе, электрическое напряжение составляет — вольт трамвай и троллейбус , метрополитен — вольт.

С развитием полупроводниковой техники с х годов на магистральных тепловозах начали устанавливаться трёхфазные генераторы переменного тока которые имеют лучшие массо-габаритные показатели по сравнению с генераторами постоянного тока с полупроводниковой выпрямительной установкой электрическая передача переменно-постоянного тока, тепловозы ТЭ , ТЭ , ТЭ , ТЭМ7 , ТЭМ9 и другие , а с х гг, с развитием силовой электроники , применяются асинхронные тяговые двигатели тепловозы с электропередачей переменно-переменного тока 2ТЭ25А , ТЭМ В России и в республиках бывшего СССР около половины электрифицированных участков железных дорог электрифицированы на постоянном токе вольт.

Например, два электровоза имеют равную мощность киловатт. В е годы в СССР проводились эксперименты с электрификацией на напряжение 6 кВ , однако по ряду технических причин эта система не была принята. Следует отметить, что также выпускаются двухсистемные электровозы, способные работать как на переменном, так и на постоянном токе см. Использование постоянного тока позволяет увеличить передаваемую электрическую мощность , передавать электроэнергию между энергосистемами , использующими переменный ток разной частоты, например, 50 и 60 герц, а также не синхронизировать соседние энергосистемы, как это сделано на границе Ленинградской области с Финляндией см.

Материал из Википедии — свободной энциклопедии. Однако существует ряд приборов, требующих обратного включения стабилитроны , варикапы , защитные диоды, подавляющие выбросы обратного напряжения , при котором анод подключается к отрицательному, а катод к положительному полюсу источника напряжения.

Категории : Электрический ток Электротехника. Скрытая категория: Статьи с ссылкой на БСЭ, без указания издания. Пространства имён Статья Обсуждение. Просмотры Читать Править Править код История. В других проектах Викисклад. Эта страница в последний раз была отредактирована 13 апреля в Текст доступен по лицензии Creative Commons Attribution-ShareAlike ; в отдельных случаях могут действовать дополнительные условия.

Подробнее см. Условия использования. Политика конфиденциальности Описание Википедии Отказ от ответственности Свяжитесь с нами Разработчики Заявление о куки Мобильная версия.


ЕДИНИЦЫ ИЗМЕРЕНИЯ НАПРЯЖЕНИЯ, ТОКА, СОПРОТИВЛЕНИЯ, МОЩНОСТИ, ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ.

Сила тока является количественной характеристикой тока. Это алгебраическая величина. Мгновенное значение силы тока находят как:. В системе СИ единицей измерения силы тока является ампер.

Зная единицы силы тока, легко получить определение единицы на организм человека, в зависимости от силы тока (в таблице приведена сила тока при частоте 50 Для измерения силы тока используется прибор – амперметр.

В помощь изучающему электронику

Раздел недели: Символы и обозначения оборудования на чертежах и схемах Техническая информация тут. Перевод единиц измерения величин Таблицы числовых значений Алфавиты, номиналы, единицы тут Математический справочник Физический справочник Химический справочник Материалы Рабочие среды Оборудование Инженерное ремесло Инженерные системы Технологии и чертежи Личная жизнь инженеров Калькуляторы. Поставщики оборудования. Полезные ссылки. Адрес этой страницы вложенность в справочнике dpva. Перевод единиц измерения физических величин. Таблицы перевода единиц величин. Перевод химических и технических единиц измерения величин. Величины измерения. Таблицы соответствия величин.

Таблица единиц измерения

Вернемся к нашей аналогии с водой: высота уровня жидкости в емкости пропорциональна давлению воды, это же верно и для напряжения. Рисунок 1. Но напряжение — это еще не все. Когда электроны проходят по проводу, величина их потока за определенный период времени называется силой тока, она измеряется в амперах, названных в честь еще одного первооткрывателя, Андре-Мари Ампера. Этот поток электронов носит название электрического тока.

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу.

Читать онлайн «Электроника для начинающих (2-е издание)» автора Платт Чарльз — RuLit — Страница 13

В области электричества ампер, вольт и ватт настолько распространены, что каждый, кто сменил лампочку или предохранитель, знаком с этими названиями. Это относится к подавляющему большинству людей, независимо от их образования. Сила тока определятся количественным показателем заряда, прошедшего по сечению провода в единичный отрезок времени. Все электрические процессы можно описать формулами, а расчеты по этим выражениям должны производиться в определенных единицах. Ампер — это базовая единица СИ, единственная из электрических, полученная из результатов эксперимента. Определение единицы измерения силы тока происходит из исследования магнетизма.

Единица измерения электрической мощности

Постоянный ток является разновидностью однонаправленного тока. Однонаправленный ток англ. Часто можно встретить сокращения DC от первых букв англ. На рисунке к этой статье красным цветом изображён график постоянного тока. Как видно, график постоянного тока представляет собой прямую линию , параллельную горизонтальной оси оси времени. При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества электрических зарядов. В каждой точке проводника, по которому протекает постоянный ток, одни элементарные электрические заряды непрерывно сменяются другими, совершенно одинаковыми по сумме электрическими зарядами.

Записать формулу, назвать физические величины, указать единицы измерения: all-audio.pro тока, all-audio.proение, all-audio.proи. Посмотри.

Характеристики тока.

Характеристикой тока в цепи служит величина, называемая силой тока I. Единица измерения силы тока — 1 ампер 1 А. Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток.

Постоянный ток

На этой страничке кратко излагаются основные величины электрического тока. По мере необходимости, страничка будет пополняться новыми величинами и формулами. Сила тока — количественная мера электрического тока, протекающего через поперечное сечение проводника. Чем толще проводник, тем больший ток может по нему течь. Измеряется сила тока прибором, который называется Амперметр. Единица измерения — Ампер А.

Тензор электромагнитного поля Тензор энергии-импульса 4-потенциал 4-ток. В качестве рассматриваемой поверхности часто используется поперечное сечение проводника.

Каждое измерение — это сравнение измеряемой величины с другой, однородной с ней величиной, которую считают единичной. Теоретически единицы для всех величин в физике можно выбрать независимыми друг от друга. Но это крайне неудобно, так как для каждой величины следовало бы ввести свой эталон. Кроме этого во всех физических уравнениях, которые отображают связь между разными величинами, возникли бы числовые коэффициенты. Основная особенность используемых в настоящее время систем единиц состоит в том, что между единицами разных величин имеются определенные соотношения. Эти соотношения установлены теми физическими законами определениями , которыми связываются между собой измеряемые величины. Так, единица скорости выбрана таким образом, что она выражается через единицы расстояния и времени.

Следовательно, работа электрического тока на рассматриваемом участке будет равна:. Формула 1 выполняется для произвольного участка цепи, содержащего любые нагрузки, если сила тока постоянна. Если использовать частное определение работы электрического поля 1 , то получим определение электрической мощности:.


Единица измерения силы электрического тока. Измерение тока. Приборы. Принцип измерений. Виды

Нагрузка в электрической цепи характеризуется силой тока, которая измеряется в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к и замене кабеля.

  • После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
  • Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
  • При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через . Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
  • Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
  • Если измерить ток в цепи работающего , то он покажет исправность .
  • Работоспособность в квартире также проверяется измерением тока.
Мощность тока

Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Мощность тока обозначают буквой «Р» и измеряют в ваттах.

Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.

Измерение тока приборами

Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.

  • . Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.
  • является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.

Порядок измерения силы тока мультиметром

  • . Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.


Способы измерения тока

Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или , а другой вывод к проводу потребителя. После этого можно измерять силу тока.


При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.

Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.

Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.

Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.

Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.

Электри́ческий ток — направленное (упорядоченное) движение заряженных частиц. Такими частицами могут являться: в металлах — электроны, в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупро-водниках — электроны и дырки (электронно-дырочная проводимость). Иногда электрич. током называют также ток смещения, возникающий в результате изменения во времени электрического поля. Электрический ток имеет количественные характеристики: скалярную — силу тока, и векторную — плотность тока.

Сила тока — физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А).По закону Ома сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку цепи, и обратно пропорциональна егосопротивлению:

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа. Мощность измеряется в ваттах. Ваттме́тр-измерительный прибор, предназначенный для определения мощности электрич. тока или электромагнитного сигнала.

Электрическое напряжение — это величина, численно равная работе по перемещению единицы электрического заряда между двумя произвольными точками электрической цепи.

2. Постоянный электрический ток. Характеристики электрического поля. Закон Ома для участка цепи. Сформулируйте и запишите закон Джоуля-Ленца.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени. Основные характеристики электрического поля: потенциал, напряжение и напряженность. Энергия электрического поля, отнесенная к единице положительного заряда, помещенного в данную точку поля, и называется потенциалом поля в данной его точке. потенциал электрического поля в данной его точке численно равен работе, совершаемой сторонней силой при перемещении единицы положительного заряда из-за пределов поля в данную точку. Потенциал поля измеряется в вольтах. Если потенциал обозначить буквой φ, заряд — буквой q и затраченную на перемещение заряда работу — W, то потенциал поля в данной точке выразится формулой φ = W/q

Напряжение между двумя точками электрического поля численно равно работе, которую совершает поле для переноса единицы положительного заряда из одной точки поля в другую.

Как видно, напряжение между двумя точками поля и разность потенциалов между этими же точками представляют собой одну и ту же физическую сущность. Напряжение измеряется в вольтах (В)

Величина Е, численно равная силе, которую испытывает единичный положительный заряд в данной точке поля, называется напряженностью электрического поля. F = Q х Е, где F — сила, действующая со стороны электрического поля на заряд Q, помещенный в данную точку поля, Е — сила, действующая на единичный положительный заряд, помещенный в эту же точку поля.

Закон Ома для участка цепи

Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорциональна сопротивлению этого участка:

I = U/R где U – напряжение на данном участке цепи

R – сопротивление данного участка цепи

Сформулируйте и запишите Джоуля-Ленца

При прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.

Это положение называется законом Ленца — Джоуля.

Если обозначить количество теплоты, создаваемое током, буквой Q (Дж), ток, протекающий по проводнику — I, сопротивление проводника — R и время, в течение которого ток протекал по проводнику — t, то закону Ленца — Джоуля можно придать следующее выражение:

Так как I = U/R и R = U/I, то Q = (U2/R) t = UIt.

3. Чем обусловлено получение фигур Лиссажу? Нарисуйте фигуры, если частота по каналу Х = 50 Гц – соnst, а частота по каналу Y = 25,50,100,150 Гц.

Фигуры Лиссажу — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях.

Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний

Х=50Гц,у=50Гц Х=50Гц,у=100Гц Х=50Гц, у=150 Гц х=50Гц у=25Гц

Чтобы ответить на вопрос, как измерить силу тока мультиметром, необходимо разобраться, что такое сила тока, и что собой представляет мультиметр. Итак, начнем с первой позиции.

Со школьной скамьи известно, что сила тока – это количество (объем) электроэнергии, который проходит через какой-нибудь проводник, к примеру, это может быть обычная лампочка или кусок проволоки. Сам же электрический ток – это направленное движение электронов. Так вот сила тока – это, по сути, количество электронов, прошедших через какую-то одну точку в проводнике за единицу времени (обычно считается за одну секунду). Чисто с физической стороны – это один ампер, равный одному кулону в секунду. На этом информацию по школьной программе можно считать законченной.

Теперь переходим к электрике. Для чего необходимо измерять силу тока? Основное назначение данной процедуры – это определить, не является ли проходящий через проводник ток выше, чем этот проводник может выдержать. Другого назначения нет.

А вот измерять лучше именно мультиметром, который собой представляет универсальный измерительный прибор, с помощью которого можно измерить не только силу тока, но и напряжение, и сопротивление электрической цепочки.

Виды мультиметров

В настоящее время рынок предлагает два вида мультиметров.

  1. Аналоговые.
  2. Цифровые.

Первая модель в своей конструкции имеет шкалу, на которой установлены показатели напряжения, силы тока и сопротивления, а также стрелку, указывающую измеряемые параметры электрических проводников. Начнем с того, что аналоговые мультиметры очень популярны среди новичков. Это и понятно, их цена в несколько раз ниже, чем у цифровых. Плюс возможность научиться на простом приборе.

Недостатков много, и один из главных – это большая погрешность показаний. Правда, в конструкции прибора есть построечный резистор, с помощью которого погрешность можно уменьшить. И все равно, если есть необходимость более точного определения параметров электрической цепи, то лучше выбирать цифровой вариант.

Цифровой мультиметр

Чисто с внешней стороны эта модель отличается от аналоговой только дисплеем, на который выводятся измеряемые величины. Экран в старых моделях светодиодный, в новых жидкокристаллический. При этом это самые точные мультиметры на сегодняшний день, который очень просты в обращении (нет необходимости заниматься подгонкой градуировки, как в случае с аналоговыми моделями).

Конструктивные особенности

Итак, в мультиметре есть два вида выходов, они обозначены цветом: красным и черным. А вот гнезд может быть на разных моделях разное количество: два, четыре или больше. Черный выход – это масса, то есть, общий (обозначается или «com», или минусом). Красный используется именно для измерений, то есть, является потенциальным. Здесь может быть несколько гнезд для измерения каждого параметра электрической цепи, то есть, сопротивления, напряжения и силы тока. На мультиметре такие гнезда обозначаются единицей измерения параметров, так что не ошибетесь.

Второй внешний элемент – это рукоятка, вращающаяся по кругу. С ее помощью устанавливается предел измерений. Так как перед нами стоит вопрос, как можно измерить силу тока мультиметром, то нас должна интересовать шкала с амперами. Хотелось бы отметить, что таких пределов на аналоговых тестерах меньше, чем на цифровых. Плюс ко всему последние комплектуются разными полезными опциями, к примеру, звуковым сигналом.

А вот теперь один из важных моментов. У каждого мультиметра есть предел по току, который является максимальным. Поэтому выбирая проверяемую электрическую сеть, необходимо сопоставить проверяемую ситу тока цепи с пределом в тестере. К примеру, если в проверяемой электрической цепочке предполагается, что проходящий по ней ток будет иметь показатель 200 А, то не стоит проверять эту цепь мультиметром с максимальным пределом в 10 А. Предохранители прибора тут же сгорят, как только вы начнете тестирование. Кстати, максимальный показатель обязательно указывается на корпусе прибора или в его паспорте.

Измеряем силу тока

Что нужно сделать в первую очередь:

  • устанавливаем щупы: черный в черное гнездо, красный в красное с обозначением ампера – «А»;
  • переключаем тумблер, который показывает, какой ток надо будет проверять: переменный «AC» или постоянный «DC»;
  • устанавливается интервал измеряемых пределов так, чтобы не спалить сам прибор, то есть, предел установить таким, который будет выше ожидаемого уровня силы тока в электрической цепи.

Подготовительный этап закончен, мультиметр готов, можно проводить измерение силы тока.

Внимание! Перед тем как проводить замеры, необходимо электрическую сеть обесточить. Не стоит проводить тестирование во влажной среде или в помещении с высокой влажностью. Придерживайтесь обязательно требований техники безопасности.

К примеру, как проверить участок электропроводки. Для этого концы участка надо оголить (удалить изоляцию на проводах) и подключить к ним два щупа от мультиметра. Кстати, на конце черного провода установлен «крокодил», так что подсоединить его к проводке не составит труда. На красном проводе установлен именно щуп в виде шила. Его придется вручную подсоединять, прикладывая щуп к оголенному концу.


Итак, если все приготовления закончены, можно подавать на участок проводки напряжение. На дисплее мультиметра должны показаться цифровые обозначения силы тока. Если на экране высветились нули, то это или обрыв сети, или неправильно установлен предел измерений. Поэтому выключите подачу тока на участок, отсоединить мультиметр и настройте его под другую ожидаемую величину. И все, то же самое, проведите заново.

Что можно дополнительно посоветовать?

  • Будет лучше, если перед тем как начать работу по тестированию проводника, ознакомиться с инструкцией к прибору. Особое внимание надо уделить разделу, где описываются меры предосторожности.
  • Обязательно при использовании мультиметра надевать на руки защитные резиновые перчатки.

Похожие записи:

Определение стандартных электрических единиц

Электрические единицы, такие как ток и напряжение, точно определены международным стандартом.


20 мая 2019 г. изменилось определение ампера — теперь оно основано на заряде электрона, а не на измерении силы.

Предыдущее определение: «Ампер — это такой постоянный ток, который, если его поддерживать в двух прямолинейных параллельных проводниках бесконечной длины, с ничтожно малым круглым поперечным сечением, расположенных на расстоянии 1 м друг от друга в вакууме, создавал бы между этими проводниками силу, равную 2× 10−7 ньютонов на метр длины».

Новое определение: «Ампер, символ А, является единицей измерения электрического тока в системе СИ. Он определяется путем принятия фиксированного числового значения элементарного заряда $e$ равным 1,602176634×10−19, выраженному в единице C, что равно A⋅s».

Раньше ампер определялся силой, а кулон производился от ампера. Теперь все наоборот. Кулон в точности кратен элементарному заряду $e$, а ампер определяется как кулон в секунду.


Содержимое
  • Электронный заряд
  • Кулон
  • Ампер
    • Проверка концепции
  • Производные единицы
    • Ватт
    • Вольт
    • Ом
  • Приложение
    • Что такое СИ?
    • Определение ампера до 2019 года

Стандартные электрические блоки определяются в определенном порядке,

  • Во-первых, заряду протона дается переменное имя $e$, называемое элементарным зарядом . Электрон имеет заряд $-e$.
  • Далее кулон $(\text C)$ определяется путем задания $e$ точного значения в кулонах.
  • Тогда ампер $(\text A)$ определяется как поток в один кулон в секунду $\text C/\text s$.
  • После этого выводим остальные электрические единицы — ватт, вольт, ом.

Заряд электрона

In 1897, Дж.Дж. Томсон из Кембриджского университета продемонстрировал существование электрона. В 1913 году, шестнадцать лет спустя, Роберт Милликен из Чикагского университета описал свой эксперимент с каплей масла, в ходе которого он установил заряд электрона.

Протон и электрон являются элементарными частицами . Элементарный заряд — это заряд протона, обычно обозначаемый $e$ или $q_e$. Заряд одного электрона равен $−e$. Это обозначение со знаком может немного сбивать с толку, но обычно вы можете понять из контекста, относится ли $e$ к заряду протона или электрона. В любом случае мы знаем, что электрон и протон — самые маленькие частицы, несущие заряд. Эта плата является основой для всех других электрических единиц. 9{18} \,\text{элементарные расходы}$

Что такое SI?

СИ — это современная форма метрической системы.

Расшифровывается как Международная система единиц, на французском языке: « S ystème I International d’Unités».

Принимающая организация: Бюро мер и весов (Bureau de Poids et Mesures) Париж, Франция. Текущая спецификация — 9-е издание, 2019 г.
https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf 9{18} \,\text{электроны}/\text{кулон}} = 96{,}485 \text{ кулонов/моль}$

Это известно как постоянная Фарадея — не путать с единицей измерения емкости, фарадом. Один моль электронов имеет заряд около 100 000 Кл.

Производные единицы

После определения элементарного заряда, кулона и ампера мы получаем остальные электрические единицы из этих плюс других основных единиц СИ, таких как метр, джоуль и секунда.

Ватт

ватт — почетное название единицы мощности. Мощность — это скорость. Это скорость, с которой энергия передается или потребляется за определенный промежуток времени. Или можно сказать, что мощность — это скорость выполнения работы. Стандартно говоря, $1\,\text{ватт}$ – это количество энергии, которое за одну секунду дает энергию в $1\,\text{джоуль}$.

$1 \,\text{ватт} = 1 \,\text{джоуль}/\,\text{секунда}$

Это реальное физическое определение ватта. Когда мы говорим о мощности в электрических системах, мы выражаем ватты как произведение тока и напряжения.

$1 \,\text{ватт} = 1 \,\text{ампер} \times 1\,\text{вольт}$

Вольт

вольт — почетное название единицы измерения разности электрических потенциалов . $1$ вольт определяется как разность потенциалов между двумя точками провода, по которому течет ток $1$ ампер, когда рассеиваемая в проводе мощность составляет $1$ ватт.

$1 \,\text{вольт} = 1\,\text{ватт} / \text{ампер}$

Вольт также может быть выражен через энергию и заряд как

$1\,\text{вольт} = 1 \,\text{джоуль}/\text{кулон}$

Интуитивное описание напряжения можно найти во вводной статье об основных электрических величинах. Формальный вывод напряжения см. в разделе « Электрический потенциал и напряжение» в разделе «Электростатика».

Ом

Ом — почетное название электрической единицы сопротивления. Один Ом определяется как сопротивление между двумя точками проводника, когда приложено $1$ вольт и течет ток $1$ ампер.

$1 \,\text{Ом} = 1\,\text{вольт}/\text{ампер}$

Теперь у нас есть базовый набор наших любимых электрических единиц.

Приложение

Что такое СИ?

СИ — это современная форма метрической системы.

Расшифровывается как Международная система единиц, на французском языке: « S ystème I International d’Unités».

Принимающая организация: Бюро мер и весов (Bureau de Poids et Mesures) Париж, Франция.

Текущая спецификация SI – 9-е издание, 2019 г.

BIPM подготовили памятку о том, как измерять основные электрические единицы, Mise en pratique для определения ампера и других электрических единиц в SI. {-7}$ ньютонов на метр длины.

Это определение означает, что вы можете провести эксперимент в своей лаборатории, чтобы получить точный ток в $1\,\text{ампер}$. Эксперимент основан на силовом законе Ампера. Если вы знаете ток, длину и расстояние между проводами, этот закон говорит вам, какая сила действует между проводами.

Чтобы получить стандартный ампер в 1$, нужно провести один из вариантов следующего эксперимента. Установите два провода длиной в 1 метр параллельно на расстоянии 1 метр друг от друга и предусмотрите способ измерения силы, действующей на провода (какой-нибудь тензодатчик). 9{-7}$ ньютон/метр является историческим значением, полученным из еще более старого определения ампера. Когда-то ампер определялся как сила тока, при которой из раствора нитрата серебра за одну секунду выделяется 0,001118 грамм серебра, известный как серебряный ампер . Это определение ампера уважало эту старую традицию.

Дополнительные ресурсы:

Закон Силы Ампера https://en. wikipedia.org/wiki/Ampère’s_force_law

Закон Био-Савара. https://en.wikipedia.org/wiki/Biot–Savart_law

Магнитные силы, магнитные поля и закон Фарадея. Академия Хана. https://www.khanacademy.org/science/physics/магнитные силы-и-магнитные поля

Что такое электрическая установка? (с картинками)

Электрическая единица измерения — это любая единица измерения, используемая для описания свойства, присутствующего в электрических цепях. Примеры некоторых из наиболее распространенных типов электрических единиц включают кулон, который используется для измерения заряда; ампер, который используется для измерения электрического тока; и вольт, который используется для измерения напряжения. Электрические блоки обеспечивают абсолютное измерение состояния конкретной цепи в любой момент времени, что необходимо для создания и обслуживания электрических цепей.

Единица напряжения — вольт — вероятно, одна из самых важных электрических единиц. Его также иногда называют единицей электродвижущей силы. Это второе название дает представление о том, что на самом деле представляет собой напряжение — сила, которая действует на электроны в цепи и толкает их в определенном направлении. Вольт также является электрической единицей для разности потенциалов, которая является аналогичной величиной.

Ток — это поток электронов в электрической цепи. Электрической единицей тока является ампер, который описывает количество заряда, протекающего в секунду. По этой причине ампер также может быть описан как кулон в секунду. На базовом уровне ток — это измерение того, сколько электронов проходит через определенную точку каждую секунду. Это связано с тем, что каждый электрон имеет определенный заряд.

Помимо напряжения и тока, третьим основным электрическим свойством является сопротивление, которое измеряется в омах. Электрическое сопротивление описывает силу сопротивления потоку электронов по определенной цепи. Хотя специально изготовленные резисторы используются для увеличения сопротивления в цепи и, следовательно, для уменьшения тока, любой компонент имеет собственное сопротивление. Даже провода имеют небольшое, но реальное сопротивление, которое увеличивается с температурой.

Другие электрические единицы включают ватт, который является мерой электрической мощности, и фарад, который является мерой емкости. Джоуль является стандартной единицей измерения энергии в физике, хотя его также можно применять к электрической энергии, протекающей по цепи. Однако джоуль — относительно небольшая единица измерения, поэтому во многих ситуациях обычно используется киловатт-час — более практичный способ измерения энергии.

Кулон считается стандартной электрической единицей измерения заряда. Его также можно рассматривать как количество электричества, передаваемого по цепи за одну секунду определенным током. Уравнения, связывающие эти стандартные свойства электрической цепи, позволяют детально прогнозировать поведение электричества в определенной ситуации.

Физика — Электричество

  • Примечания по физике для предварительных экзаменов UPSC IAS (часть I)
  • Физика — Главная
  • Физика — сила и давление
  • Физика — Трение
  • Физика. Некоторые природные явления
  • Физика — Движение
  • Физика. Сила и законы движения
  • Физика — Гравитация
  • Физика — масса и вес
  • Физика — работа и энергия
  • Физика — Свет
  • Физика — отражение и преломление
  • Изображения, образованные сферическими зеркалами
  • Физика — преломление света
  • Физика — сферические линзы
  • Человеческий глаз и красочный мир
  • Преломление света через призму
  • Физика — Электричество
  • Химические эффекты электрического тока
  • Магнитные эффекты электрического тока
  • Физика — Электродвигатель
  • Физика — источник энергии
  • Физика — Звук Часть I
  • Физика — Звук Часть II
  • Скорость звука в различных средах
  • Физика — Солнечная система
  • Физика — Звезды и Солнечная система
  • Полезные ресурсы по физике
  • Физика. Часть 1 — Онлайн-викторина
  • Физика, часть 1 — онлайн-тест
  • Физика, часть 1 — Краткое руководство
  • Физика — полезные ресурсы
  • Физика — Обсуждение
  • Выбранное чтение
  • Примечания к экзаменам UPSC IAS
  • Передовой опыт разработчиков
  • Вопросы и ответы
  • Эффективное составление резюме
  • HR Вопросы на собеседовании
  • Компьютерный глоссарий
  • Кто есть кто

Предыдущая страница

Следующая страница  

Введение

  • Если электрический заряд протекает через проводник, такой как металлическая проволока, он известен как электрический ток в проводнике.

  • Непрерывный и замкнутый путь электрического тока известен как электрическая цепь (как показано на рисунке ниже) −

  • В электрической цепи обычно направление электрического тока (известного как положительные заряды) считается противоположным направлению потока электронов, которые считаются отрицательными зарядами.

  • Единицей электрического заряда в СИ является кулон ( Кл ).

  • Кулона эквивалентно заряду, содержащемуся в 6 × 10 18 электронов.

  • Электрический ток выражается в единицах, известных как ампер ( А ).

  • Назван в честь французского ученого Андре-Мари Ампера.

  • Один ампер составляет поток в один кулон заряда в секунду, т. е. 1 А = 1 Кл/1 с .

  • Прибор, измеряющий электрический ток в цепи, известен как амперметр .

  • Электрический ток течет в цепи, начинающейся от положительной клеммы к отрицательной клемме элемента через лампочку и амперметр.

Электрический потенциал и разность потенциалов

  • Электроны в проводнике движутся только при наличии разности электрических давлений, известной как разность потенциалов .

  • Химическое действие внутри клетки создает разность потенциалов на концах клетки. Далее, когда эта ячейка соединена с проводящим элементом цепи, разность потенциалов приводит в движение заряды (в проводнике) и генерирует электрический ток.

  • Алессандро Вольта (1745–1827), итальянский физик, первым заметил разность электрических потенциалов; поэтому единица СИ разности электрических потенциалов равна вольт ( В ).

  • Прибор, измеряющий разность потенциалов, известен как вольтметр .

Принципиальная схема

  • Некоторые определенные символы используются для иллюстрации наиболее часто используемых электрических компонентов на принципиальных схемах.

  • В следующей таблице описаны некоторые символы, обычно используемые для обозначения электрических компонентов. −

Компоненты Символы
Электроячейка
Батарея или комбинация элементов
Штепсельный ключ или выключатель (открытый)
Штепсельный ключ или выключатель (закрытый)
Соединение проводов
Пересечение проводов без соединения
Электрическая лампочка
Резистор сопротивлением R
Переменное сопротивление или реостат
Амперметр
Вольтметр

Закон Ома

  • Немецкий физик, Георг Симон Ом в 1827 году утверждалось, что «Электрический ток, протекающий по металлическому проводу, прямо пропорционален разности потенциалов (В) на его концах при условии, что его температура остается неизменной».

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *