Site Loader

Сюрпризы схем китайских блоков питания эконом класса.

Обслуживая очередной объект с щитами управления бассейном. На достаточно не бедном объекте, с удивлением обнаружил, что используемый блок питания оперативных цепей построен не на закрытом модульном БП а открытом БП в корпусе. Отчего сборщику того щита пришлось его колхозить стяжками на перекрест к дин рейке. Это какой-то китайский NoName HSM-15-12, который благополучно сдох и обесточил цепи управления. Кстати, из цепей управления питал он только одно промежуточное реле 1Вт мощности, потому причина его гибели при такой низкой нагрузки для меня неясна.
Заменять на подобный нет желания, потому предложил поставить там, проверенный временем модульный MeanWell HDR-15-12 на 15Вт/12В, с таким БП проблем быть не должно.
При том, что этот блок питания дешёвый внешне он выполнен аккуратно, штамповка и сборка сделана на высоком технологическом уровне. На алюминиевых деталях, заусенцев нет, присутсвуют различные пазы, для фиксации платы, и перфорированной крышки.

При сборки ничего не перекошено, и не играет в руках, внешне алюминий матовый, врннутри полированн.
В целом в руках держать приятно.

Не в последнюю очередь, по этой причине я, решил по-быстрому его отремонтировать, тем более список поломок таких БП банален:
— Электролиты, как первичных так и вторичных цепей питания.
— Силовой ключ первичной цепи + ШИМ, либо просто интегрированный ШИМ с обвязкой.
— В редких случаях первичка трансформатора.
— Оптрон ОС, и/или микросхема TL431.

Когда открыл этот БП, то выяснялось, что он построен, на автогенераторной схеме без микросхем ШИМ.
Электролиты первичной и вторичной цепи вздуты, предохранитель цел, входной диодный мост и ключ первичной цепи целы, при подключении ни каких признаков жизни не демонстрирует.

Имея определенный опыт ремонта таких изделий обольщаться простой ремонта не стал. Заменил вздутые конденсаторы проверил силовой ключ первичной цепи, мост и предохранитель — целы. Включил через балласт, чтобы избежать взрывов, если что. БП признаков жизни так и не поддал. Решил проверить оптопару, для этого надо выпаять. Но тут выяснилась первая «тупость» а точнее говоря сознательная подлость конструкции – оптопара находится под силовым трансформатором… стало быть надо выпаять и его!

Вот как это выглядело после ремонтных работ о чем будет ниже:

Ну что-ж, «надо, значить надо», аккуратно выпаиваю трансформатор и оптрон.
Подключаю его выводы 1-2 к лабороторнику, задав ограничение по напряжению в 1.2В а току в 20мА. На выводах оптрона 3-4 мерим сопротивление, и получаем – 1.2кОм (обычно порядка 40-65 Ом) значит сдохла и оптопара.

Тут я допустил оплошность, будучи уверенным в том, что все позади, запаял трансформатор на место и включил БП на прямую. Слава Богу, ничего не произошло, но БП так и не подал признаков жизни.

Пришлось делать того чего, не хотелось в рамках данного проекта — срисовывать схему по образцу платы. Так как, входные цепи были уже проверены решил сэкономить время и вычерчивать только ту часть схемы где много всякой обвязки и не очевидно, как она устроена.

Где-то потихоньку начал высокую сторону реставрировать…


Но походу работы решил сделать ход конем. Подключить к выходу БП, параллельно лабораторник, и начать подымать напряжение до номинала, чтобы проверить вторичную цепь. Только начал наращивать напряжение, как лабороторник уперся в ограничение тока 1А.
Проверяю диод вторичной цепи – пробит!
Заменяю безимяный китайский 3IDQ 100E, на аналогичный по корпусу SR560.

Снова поддаю и увеличиваю напряжения.
Все хорошо, загорелся светодиод, в защиту уже не уходим, но замечаю, что при 12В потребляемый ток аж 130мА! Для 15Вт БП, это слишком лихо для холостого хода. Нащупываю плату, в первую очередь баластные резисторы, но они холодны. Тем временем где-то выделяются 1.5Вт тепла. Вдруг неожиданно обжигаю палец об поверхность платы, под… трансформатором, там где, стоит перепаянный оптрон… и парочка резисторов. Но, не оптрон горяч, а резистор возле него. Отключил все.

Выпаял трансформатор для расследования причин.
Начинаю срисовывать всю вторичку, чтобы понять, что там за резисторы стоят ну и в целом как она устроена.

Проверяю микросхему TL431А – пробит по всем направлениям. Это конечно плохо, но еще не причина потерь мощности аж в целые 1.5Вт.
И тут барабанная дробь… номинал сопротивления в цепи оптрона R11 – 100Ом, это при 12вольтах номинала напряжения! И спрятан этот резистор вместе с оптроном прямо под силовой трансформатор!
Мое мнение, что это какое-то сознательное вредительство.
И действительно, если принять падение напряжение на открытом оптроне в 1.2В, и микросхеме TL431A в 2.5В, то мы имеем ток I=(Uin-DUopt-DU431)/R11=(12-1.2-2.5)/100= 0.083А = 83mA (при сгоревшем TL431 этот ток будет выше — 108mA). При максимально допустимом токе оптрона в 50mA, очевидно что проживет, он не долго. Сколько прожил этот БП на том объекте, не знаю. Судя по чистому корпусу его поставили не давно. Поэтому перепаял сгоревший TL431A и заменил R11 со 100 на 680Ом.

Снова запаял трансформатор на место,

включил блок питания в сеть и он заработал.

Нагрузил его лентой – полет нормальный. Все!

Вот такие, вот дела. Китайцы, не просто «экономят» а тупо в цепь ОС закладывают такой резистор из-за которого впоследствии вылетит целый набор компонентов. Чтобы ремонтнику было веселее, проблемные компоненты прячутся под трансформатор!!!

По просьбе трудящихся добавляю всю принципиальную схему:

Магические числа электроники: 431, 494, 1524, 1843

27 ноября 2007

 

 

 Совсем не факт, что крупные компании «генерируют» больше магических чисел в наименованиях своих микросхем, но, несомненно, — чем больше номенклатура, тем вероятнее попадание в «магический» рейтинг. Еще лучше, если компания стояла у истоков полупроводниковой эры — именно в первые десятилетия создавались изделия максимально широкого применения. Этим условиям полностью удовлетворяет компания TEXAS INSTRUMENTS — все пять десятилетий полупроводниковой эры компания сохраняет позицию в мировом Top-10 рейтинге, а сотрудник компании Джек Килби в 1958 году создал первую интегральную микросхему.

Трудно найти электронщика, не знакомого с префиксом TL для аналоговых микросхем или SN для логических. И хотя в последнее десятилетие в номенклатуре компании появились и иные префиксы — UC, OPA, REF, BQ (пришедшие из поглощенных компаний Unitrode, Burr-Brown и Benchmarq), классические микросхемы TI прочно вошли в историю отрасли.

Безусловным претендентом на включение в список «магических» ИС следует признать «регулируемый прецизионный шунтовой регулятор»

TL431. Это 3-х выводная микросхема содержит 10 транзисторов и эквивалентна обычному стабилитрону (диоду Зенера), но имеет более высокую крутизну характеристики и температурную стабильность. Кроме того, с помощью внешнего делителя можно регулировать напряжение в диапазоне от 2,5 до 30 В (в более поздних моделях минимальное напряжение стабилизации было понижено до 1,25 В).

Рис. 1. Функциональная схема TL431

 

Рис. 2. Пример применения в линейном стабилизаторе

Создал

TL431 в конце 70-х сотрудник TI Барни Холланд (Barney Holland), причем произошло это в процессе копирования линейного стабилизатора LM117 компании National Semiconductor. Барни пришло в голову, что источник опорного напряжения в составе стабилизатора после некоторой доработки может быть использован в качестве отдельного элемента. Сначала была выпущена микросхема TL430, а затем более точная и стабильная TL431, которая и стала, возможно, самой популярной и массовой микросхемой, применяемой в источниках питания. Клоны TL431 производятся многими компаниями. Первые микросхемы выпускались в корпусе to-92, сейчас же они доступны и в dip8, so8, tssop8, sot23, sot89, sc70, to-252… Одно из самых популярных применений TL431 — источник опорного напряжения с усилителем ошибки в цепи обратной связи импульсных источников питания с гальванической развязкой через оптрон.

Барни Холланд создал и другую микросхему для импульсных источников питания, число в обозначении которой настолько хорошо известно специалистам, что с полным правом может быть отнесено к «магическим». Это двухтактный ШИМ-контроллер TL494, сыгравший заметную роль в становлении импульсной силовой электроники. Стоит упомянуть, что, разрабатывая TL494 Барни Холланд, использовал в качестве прототипа классическую микросхему ШИМ-контроллера

SG1524 компании Silicon General. Кстати, тем же путем шли и разработчики других ШИМ-контроллеров: MC3240 (Motorola), NE5560 (Signetics) и ZN1066 (Ferranti). Тут стоит немного отвлечься от продукции TI и рассказать о числе 1524, не столь известном российским электронщикам, но в мировой электронике причисляемом к «магическим» за использование в микросхеме SG1524 — первой микросхеме ШИМ-контроллера, открывшей эру массовых импульсных источников питания. Разработчиком микросхемы SG1524 в компании Silicon General был Боб Маммано (Robert Mammano) — «пионер» силовой электроники и обладатель 20-ти патентов в этой сфере. В 1975 году перед ним была поставлена задача «перевести в кремний», используемые главным образом военными (из-за их высокой стоимости), схемотехнические решения импульсных преобразователей напряжения, выполненных на дискретных компонентах. Одним из заказчиков была компания Teledyne, стремившаяся уменьшить размеры и повысить КПД источников питания своих телетайпов. Разработка заняла год и в 1976 году на рынок была выпущена первая микросхема, совместившая в себе цифровые (триггер, логические элементы, генератор) и аналоговые (ОУ, компаратор, ИОН) элементы, что было по тому времени технологическим прорывом. Это и была SG1524. За ней последовали SG1525 и SG1526…

В 1980 году Боб Маммано переходит в компанию Unitrode. В 1993 году компания Silicon General становится Linfinity, а последняя вскоре поглощается компанией Microsemi, в номенклатуре которой SG1524 числится до сих пор. Следует отметить, что в практике ряда американских компаний принято первой цифрой в обозначении микросхемы кодировать температурный диапазон: «1» — (military) -55…125°С, «2» — (industrial) -25…85°С и «3» — (commercial) 0…70°С. Таким образом, числа 1524, 2524 и 3524 фактически эквивалентны, но для простоты «магическим» будем считать начинающееся с «1». Как и в нашей стране, в США военные были главными потребителями (по крайней мере, в те годы), и микросхемы на расширенный температурный диапазон можно считать «главными».

В качестве последнего «магического» числа рассмотрим Хотя оно представляет только одну микросхему из семейства UC1842… UC1845, да и то, с учетом сказанного выше, в military исполнении. Российским электронщикам, как в сфере разработки, так и ремонта, больше известны именно микросхемы в коммерческом исполнении UC3842…UC3845.

Разработчиком UC1843 в компании Unitrode был Ларри Воффорд (Larry Wofford). Сначала им была разработана микросхема UC1846, работавшая в появившемся начале 80-х режиме постоянного контроля тока (current-mode control). Но эта микросхема требовала использования 16-ти выводного DIP корпуса и являлась избыточной для многих приложений. Ее модификация и стала ядром семейства UC1842…UC1845, выполненного в корпусе dip8. Микросхемы семейства отличались только значениями пороговых уставок по напряжению питания и глубиной ШИМ (50% или 100%).

Любопытно, что пути всех трех упомянутых разработчиков микросхем для силовой электроники в итоге сошлись в компании Texas Instruments. Барни Холланд в начале 80-х покинул компанию и, став главным инженером в компании Unitrode, участвовал в разработке UC3846. Однако в 1999 году компания Texas Instruments купила Unitrode, и Барни вернулся. И проработал в должности вице-президента вплоть до выхода на пенсию в 2004 году. Боб Маммано, бывший в числе основателей Silicon General, а затем создававший направление силовых микросхем в Unitrode, также пришел в TI вместе с остальным коллективом Unitrode в 1999 году и работает до сих пор. Таким же был путь и Ларри Воффорда, и он тоже продолжает работать в компании.

В заключение стоит отметить, что поиск в Google по рассмотренным наименованиям ИС дает число ссылок, в целом соответствующее их положению на рынке в наши дни:

TL431 — 790 тыс. ссылок

TL494 — 78 тыс. ссылок

UC1843 — 1070 ссылок

SG1524 — 650 ссылок.

Известный специалист по рынку электронных компонентов Георгий Келл на своей автор­ской странице рассказывает об электронных компонентах, сыгравших ключевую роль в развитии отрасли.

•••

TL431: Может ли он регулировать 300 В постоянного тока?

Статус
Эта старая тема закрыта. Если вы хотите повторно открыть эту тему, свяжитесь с модератором, нажав кнопку «Пожаловаться».

Перейти к последнему

#1