Site Loader

Содержание

Термосопротивления Pt100, Pt500, Pt1000 и другие

Термосопротивления Pt100, Pt500, Pt1000 и другие

Термосопротивления — это элементы, сопротивление которых практически линейно зависит от температуры окружающей среды. Наряду с термином «Термосопротивление» для обозначения этих элементов используют название «Термометр Сопротивления», аббривеатуры ТС и RTD, а также обозначения Pt100, Pt500, Pt1000, 50П, 100П, 500П, 1000П, 50М, 100М и другие наименования, в зависимости от НСХ датчика. Не следует путать термосопротивления с термопарами и терморезисторами (термисторами).

 

Зависимость сопротивления чувствительного элемента от температуры окружающей среды R(T) называется номинальной статической характеристикой термосопротивления.

НСХ любого термосопротивления близка к линейной функции и описывается либо полиномом с известными коэффициентами, либо соответствующей таблицей. Существует несколько типов термосопротивлений — платиновые Pt 3850, Pt 3750, Pt 3911, никелевые Ni 6180, Ni 6720, а также медные термосопротивления, например Cu 4280, и другие. Каждому типу термосопротивлений соответствует свой полином R(T).

 

Большая часть используемых в индустрии термосопротивлений имеют тип Pt 3850, его НСХ описывается полиномом

R(T) = R0 (1 + A x T + B x T2) при T > 0 и
R(T) = R0 (1 + A x T + B x T2 + C x (T-100) x T3) при T

где

A = 3.9083 x 10-3 °C-1, B = -5.775 x 10-7 °C-2, C = -4.183 x 10-12 °C-4, а R0 — номинальное сопротивлене (сопротивление при температуре 0°C).

 

Другим платиновым, никелевым и медным термосопротивлениям соответствуют другие полиномы и другие наборы коэффициентов. 

Степень полинома и значения коэффициентов зафиксированы в различных национальных и международных стандартах. Действующий российский стандарт — ГОСТ 6651-2009. Европейские производители, в том числе компания IST, используют стандарт DIN 60751 (он же IEC-751), однако в мире действуют и другие нормативные документы.

Подробнее о существующих типах сопротивлений и действующих спецификациях — в статье «Термосопротивления: теория».

 

Термосопротивления типа Pt 3850 описаны и в российском ГОСТе, и в международных стандартах. Для датчиков Pt 3850 приняты условные обозначения Pt100, Pt500, Pt1000 и т.д. Они соответствуют датчикам с номинальным сопротивлением R0, равным 100, 500 и 1000 Ом соответственно.

 

Точность термосопротивлений

Для обозначения точности термосопротивлений используют понятие класса допуска. Класс допуска термосопротивления определяет максимально допустимое отклонение реальной характеристики R(T) от расчетной. Допуск задается как функция температуры — при нуле градусов допустимо наименьшее отклонение, а при уменьшении или увеличении температуры допустимое отклонение увеличивается.

 

Каждому классу допуска также соответствует диапазон температур, на котором этот класс определен. Для платиновых термосопротивлений с температурным коэффициентом 3850 ppm/K действуют следующие определения классов допуска:

 
  Другие названия Допуск, °С Диапазон температур
Класс АА Class Y
Class 1/3 DIN
Class 1/3 IEC
Class 1/3 B
Class F 0.1
±(0.1 + 0.0017 |T|) 0 .. +150°С
Класс А (F 0.15) Class 1/2 DIN
Class ​1/2 IEC
Class 1/2 B
Class  F 0.15
±(0.15 + 0.002 |T|) -30 .. +300°С
Класс B (F 0.3) Class DIN
Class IEC
Class F 0.3
±(0.3 + 0.005 |T|) -30 .. +500°С
Класс С (F 0.6) Class 2B
Class BB
Class F 0.6
±(0.6 + 0.01 |T|) -50 .. +600°С

 

Данные определения соответствуют и российскому ГОСТу, и нормам DIN 60751 (IEC-751) для тонкопленочных датчиков с температурным коэффициентом 3850 ppm/K (альфа-коэффициентом 0.00385°C-1 ).

Подробнее об определении классов точности для различных типов термосопротивлений — в статье «Термосопротивления: теория».

 

Структура термосопротивлений

Термосопротивления общего назначения производятся либо по намоточной (проволочной), либо по тонкопленочной технологии. Датчики компании IST являются тонкопленочными, они состоят из керамической подложки площадью несколько квадратных миллиметров, токопроводящей дорожки (как правило, из платины), пассивационного слоя из стекла, и выводов. 

 

 

 

Подробнее об определении классов точности для намоточных и тонкопленочных датчиков — в статье «Термосопротивления: теория».

Подробнее о структуре тонкопленочных датчиков — в статье «Термосопротивления: производственный процесс».

 

 

Компания IST (Inovative Sensor Technology) более 25 лет занимается производством тонкопленочных термосопротивлений. Производственные мощности IST находятся на территории Швейцарии. Среди датчиков IST есть как стандартные выводные и SMD датчики, так и сотни специальных решений — датчики для работы с повышенной точностью (до 1/10 DIN), для работы с температурами до +1000°C, элементы в различных корпусах с выводами различного типа и длины.

 

 

 

 

СТАНДАРТНЫЕ ВЫВОДНЫЕ ТЕРМОСОПРОТИВЛЕНИЯ

Самыми востребованными и самыми бюджетными выводными термосопротивлениями являются платиновые элементы с характеристикой Pt100, Pt500 или Pt1000, габаритными размерами 2 x 2 мм и выводами длиной около 10 мм.

Такие датчики предназначены для работы с температурами от -200 до +300°C и различаются по классу допуска (по точности). Выводы датчиков данной группы подходят для пайки (в том числе твердым припоем), обжима или сварки.

 
Стоимость

Цены, действующие на датчики в наличии, указаны в таблице. Вы можете рассчитывать на значительные скидки при заказе от 300 шт.

Отметим, что цена термосопротивления не имеет прямой зависимости от рабочего температурного диапазона — датчики, предназначенные для температур до +150 °C или до +200°C, отпускаются по более высокой цене.

 

Наименование Характеристика (тип НСХ) Класс допуска  
P1K0.202.3K.A.010* Pt1000 (температурный (альфа) коэффициент — 3850 ppm/°C,
Номинальное сопротивление R0 = 1000 Ом)
Класс А (F0.15) Наличие на складе
P1K0.202.3K.B.010* Класс B (F0.3) Наличие на складе
P0K5.202.3K.A.015* Pt500 (температурный (альфа) коэффициент — 3850 ppm/°C,
Номинальное сопротивление R0 = 500 Ом)
Класс А (F0.15) Наличие на складе
P0K5.202.3K.B.015* Класс B (F0.3) Наличие на складе
P0K1.202.3K.A.010* Pt100 (температурный (альфа) коэффициент — 3850 ppm/°C,
Номинальное сопротивление R0 = 100 Ом)
Класс А (F0.15) Наличие на складе
P0K1.202.3K.B.010* Класс B (F0.3) Наличие на складе

* Последние три символа кодируют длину выводов датчика в миллиметрах. Термосопротивления с выводами 7, 10 и 15 мм отпускаются по одной и той же цене.

 

Документация

На сайте производителя доступен Application Note, содержащий общие сведения о НСХ платиновых датчиков, определения классов допуска и данные о времени отклика, самонагреве, рекомендуемом токе измерения и проч. Характеристики эементов конкретной серии доступны в Datasheet.

 


СТАНДАРТНЫЕ SMD-ТЕРМОСОПРОТИВЛЕНИЯ

 

Тонкопленочная технология производства позволяет выпускать дешевые термосопротивления для поверхностного монтажа. Между собой эти компоненты различаются типом корпуса, металлом, из которого выполнены контакты, а также диапазоном рабочих температур и классом допуска (точностью). 

Популярные платиновые SMD-термосопротивления имеют характеристику Pt100, Pt500 или Pt1000 и выпускаются в корпусах 0603, 0805 и 1206. Компания IST также выпускает термосопротивления в корпусе Flip-Chip. Документация на датчики для поверхностного монтжа представлена на сайте производителя.

 

SMD-термосопротивления Pt1000 со склада ЭФО.
Корпус 0805, класс допуска B, диапазон рабочих температур — от 50 до +150 °C

Наличие на складе

SMD-термосопротивления Pt100 со склада ЭФО.
Корпус 0805, класс допуска А, диапазон рабочих температур — от 50 до +250 °C

Наличие на складе

 

P1K0 — Pt1000 (температурный (альфа) коэффициент — 3850 ppm/°C, Номинальное сопротивление R0 = 1000 Ом)
P0K5 — Pt500 (температурный (альфа) коэффициент — 3850 ppm/°C, Номинальное сопротивление R0 = 500 Ом)
P0K1 — Pt100 (температурный (альфа) коэффициент — 3850 ppm/°C, Номинальное сопротивление R0 = 100 Ом)
  Размер (0603 / 0805 / 1206)
    2P — SMD, рабочие температуры -50 .. +150°C, контакты 96.5Sn/3Ag/0.5Cu
3P — SMD, рабочие температуры -50 .. +250°C, контакты 5Sn/93.5Pb/1.5Ag
4P — SMD, рабочие температуры -50 .. +250°C, контакты Au
1FC — Flip-Chip, рабочие температуры -50 .. +150°C, контакты 96.5Sn/3Ag/0.5Cu
2FC — Flip-Chip, рабочие температуры -50 .. +250°C, контакты 5Sn/93.5Pb/1.5Ag
3FC — Flip-Chip, рабочие температуры -50 .. +250°C, контакты Au
5FC — Flip-Chip, рабочие температуры -50 .. +400 °C, контакты Pt
6FC — Flip-Chip, рабочие температуры -50 .. +600 °C, контакты Pt
      A — класс допуска А (F0.15)
— класс допуска B (F0.3)
        — упаковка в ленту
P0K1. 0805. 2FC. A. S

 

 


ТЕРОМОСОПРОТИВЛЕНИЯ ДЛЯ РАСШИРЕННЫХ ДИАПАЗОНОВ ТЕМПЕРАТУР

Для измерения температур, превышающих +300°C, предлагаются специальные серии термосопротивленй:

Для работы в диапазоне от -200 до +400 °C предлагаются датчики различных размеров с неизолированными серебряными выводами различной длины.

В данную группу входит множество датчиков, которые различаются по

  • номинальному сопротивлению — доступны как стандартные датчики Pt100, Pt500 и Pt1000, так и датчики с R0 = 150 Ом и R0 = 350 Ом.
  • классу допуска — кроме популярных датчиков с классом допуска A (F0.15) и B (F0.3), выпускаются датчики класса допуска AA (F0.1), а также высокоточные 1/5 DIN и 1/10 DIN.
  • размеру — доступно около десяти вариантов габаритных размеров датчика, среди которых миниатюрные элементы 1.6 x 1.2 мм, вытянутые датчики размером 10 x 2 мм и другие.
  • длине и диаметру выводов.
Для монтажа датчиков данной группы используют пайку, обжим и сварку.

С ассортиментом термосопротивлений серии +400 °C можно ознакомиться в документации.

По запросу могут быть изготовлены специальные решения — датчики для 3- и 4-проводной схемы включения, датчики в составе пар и групп, датчики с изолированными выводами, датчики с перпендикулярными или инвертированными выводами, датчики с измененной толщиной подложки, датчики в керамическом циллиндрическом корпусе и т.д.

 

Со склада ЭФО доступны образцы некоторых датчиков данной группы:

P0K1.161.4W.Y.010 — датчик типа Pt100 размером 1.6 x 1.2 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 10 мм

Наличие на складе

P0K1.232.4W.Y.010 — датчик типа Pt100 размером 2 x 2.3 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 10 мм

Наличие на складе

P1K0.161.4W.Y.010 — датчик типа Pt1000 размером 1.6 x 1.2 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 10 мм

Наличие на складе

P1K0.232.4W.Y.010 — датчик типа Pt1000 размером 2 x 2.3 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 10 мм

Наличие на складе

PG0K1.216.4K.A.010 — датчик типа 100П размером 2.5 x 1.5 мм. Класс допуска А, неизолированные выводы длиной 10 мм

Наличие на складе

 

Для работы в диапазоне от -200 до +600 °C предлагаются датчики различных размеров с неизолированными выводами из платины или никеля с платиновым покрытием.

В данную группу входит большое количество датчиков, которые различаются по

  • номинальному сопротивлению — доступны термосопротивления типа Pt100, Pt500 и Pt1000.
  • классу допуска — кроме популярных датчиков с классом допуска A (F0.15) и B (F0.3), выпускаются датчики класса допуска AA (F0.1), а также высокоточные 1/5 DIN и 1/10 DIN.
  • размеру — доступно около десяти вариантов габаритных размеров датчика, среди которых миниатюрные элементы 1.6 x 1.2 мм, крупные датчики 5 x 3.8 мм, вытянутые датчики размером 10 x 2 мм и другие.

С ассортиментом термосопротивлений серии +600 °C можно ознакомиться в документации.

По запросу могут быть изготовлены специальные решения — датчики в составе пар и групп, датчики с перпендикулярными или инвертированными выводами, датчики с измененной толщиной подложки, датчики в керамическом циллиндрическом корпусе и т.д.

 

Со склада ЭФО доступны образцы некоторых датчиков данной группы:

P0K1.161.6W.Y.010 — датчик типа Pt100 размером 1.6 x 1.2 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 10 мм

Наличие на складе

P0K1.232.6W.Y.007 — датчик типа Pt100 размером 2 x 2.3 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 7 мм

Наличие на складе

P0K1.520.6W.Y.010 — датчик типа Pt100 размером 5 x 2 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 10 мм

Наличие на складе

P1K0.161.6W.Y.010 — датчик типа Pt1000 размером 1.6 x 1.2 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 10 мм

Наличие на складе

P1K0.232.6W.Y.008 — датчик типа Pt1000 размером 2 x 2.3 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 8 мм

Наличие на складе

P1K0.281.6W.A.007.R — датчик типа Pt1000 в циллиндрическом керамическом корпусе длиной 13 мм и диаметром 2.8 мм. Класс допуска A, неизолированные выводы длиной 7 мм

Наличие на складе

P1K0.520.6W.Y.010 — датчик типа Pt1000 размером 5 x 2 мм. Класс допуска 1/3 DIN, неизолированные выводы длиной 10 мм

Наличие на складе

 

Для работы в диапазоне от -200 до +750 °C предлагаются датчики различных размеров с неизолированными выводами из платины.

В данную группу входят датчики, которые различаются по

  • номинальному сопротивлению — доступны термосопроиивления типа Pt100, Pt500 и Pt1000.
  • классу допуска — кроме популярных датчиков с классом допуска A (F0.15) и B (F0.3), выпускаются датчики класса допуска AA (F0.1).
  • размеру — доступны датчики размером 5 x 1.6 мм, 10 x 2 мм, 2.5 x 1.6 мм и 5 x 2 мм.

С ассортиментом термосопротивлений серии +750 °C можно ознакомиться в документации.

По запросу могут быть изготовлены специальные решения — датчики в составе пар и групп, датчики с измененной толщиной подложки и др.

 

Со склада ЭФО доступны образцы некоторых датчиков данной группы:

PG1K0.216.7W.A.007 — датчик типа 1000П размером 2.5 x 1.6 мм. Класс допуска A, неизолированные выводы длиной 7 мм

Наличие на складе

PW1K0.216.7W.A.007 — датчик типа Pt1000 размером 2.5 x 1.6 мм. Класс допуска A обеспечивается на диапазоне температур от -200 до +600 °C, неизолированные выводы длиной 7 мм

Наличие на складе

 

Для работы с температурами от от -200 до +850 °C предлагаются датчики Pt100, Pt200 и Pt1000 c платиновыми выводами. С ассортиментом термосопротивлений серии +850 °C можно ознакомиться в документации. Стандартные позиции имеют класс допуска В.

Производство датчиков более высокой точности и других специальных решений под требования клиента обсуждается по запросу. 

 

Со склада ЭФО доступны образцы некоторых датчиков данной группы:

P0K1.281.8W.A.005.R — датчик типа Pt100 в циллиндрическом керамическом корпусе длиной 13 мм и диаметром 2.8 мм. Класс допуска A, неизолированные выводы длиной 5 мм

Наличие на складе

 

Для работы с температурами от от -70 до +1000 °C предлагается датчик с температурным коэффициентом 3770 ppm/K и номинальным сопротивлением 200 Ом и короткими платиновыми выводами.

Характеристики элемента указаны в документации, датчик данного типа поставляется под заказ.

 

ТЕРМОСОПРОТИВЛЕНИЯ С ИЗОЛИРОВАННЫМИ ВЫВОДАМИ

Компания IST выпускает различные модели термосопротивлений с длинными изолированными выводами. Длинные провода не наращиваются, а крепятся к телу датчика при производстве (используется точечная сварка).

Для заказа доступны датчики типа Pt100, Pt500, Pt1000, а также менее популярные модели.

 

Эмалированные (обмоточные) медные выводы

Серия датчиков 1E — это термосопротивления с медными эмалированными выводами, предназначенные для работы с температурами до +150°C (допустимо кратковременное воздействие температур до +180 °C). Для удобства пайки таких датчиков изоляция удалена на концах проводов. Выводы датчиков серии 1E имеют диаметр 0.15 или 0.2 мм, сами термосопротивления предлагаются в том числе в миниатюрных корпусах 0.8 x 3 мм, 1.2 x 1.6 мм и др. Документация на данную серию представлена на сайте производителя.

Со склада ЭФО доступны образцы некоторых датчиков данной группы:

P1K0.161.1E.A.040 — датчик типа Pt1000 размером 1.6 x 1.2 мм для температур от -50 до +150°C. Класс допуска A, эмалированные медные выводы длиной 40 мм

Наличие на складе

P0K1.308.1E.B.100 — датчик типа Pt100 размером 3 x 0.8 мм для температур от -50 до +150°C. Класс допуска В, эмалированные медные выводы длиной 100 мм

Наличие на складе

 

Стандартные и многожильные выводы с изоляцией PTFE (тефлон)

Термосопротивления, оснащенные изолированными выводами, предназначены для измерения температур до +200°C.

Датчики со стандартными изолированными выводами обозначаются 2I и имеют медные выводы с золотым покрытием размером AWG30. Датчики с многожильными изолированными выводами обозначаются 2L и имеют выводы размером AWG28/7. Термосопротивления с изолированными выводами подходят для пайки, сварки и опрессовки. Документация на данную серию представлена на сайте производителя.

Со склада ЭФО доступны образцы некоторых датчиков данной группы:

P0K1.520.2I.B.100 — датчик типа Pt100 размером 5 x 2 мм для температур от -50 до +200°C. Класс допуска В, изолированные выводы длиной 100 мм

Наличие на складе

P0K1.232.2I.A.030 — датчик типа Pt100 размером 2 x 2.3 мм для температур от -50 до +200°C. Класс допуска А, изолированные выводы длиной 30 мм

Наличие на складе

P1K0.232.2I.A.025.S — датчик типа Pt1000 размером 2 x 2.3 мм для температур от -50 до +200°C. Класс допуска А, частично изолированные выводы длиной 25 мм

Наличие на складе

P1K0.232.2I.B.050 — датчик типа Pt1000 размером 2 x 2.3 мм для температур от -50 до +200°C. Класс допуска В, изолированные выводы длиной 50 мм

Наличие на складе

P1K0.520.2I.A.050 — датчик типа Pt1000 размером 5 x 2 мм для температур от -50 до +200°C. Класс допуска А, изолированные выводы длиной 50 мм

Наличие на складе

P1K0.520.2L.A.070.M — датчик типа Pt1000 размером 5 x 2 мм для температур от -50 до +200°C. Класс допуска А, многожильные изолированные выводы длиной 70 мм, металлизированная тыльная сторона

Наличие на складе

 

По запросу доступны датчики с изолированными (PTFE) выводами, предназанеченные для измерения температур до +400°C.

 

 


МЕТАЛЛИЗИРОВАННЫЕ ТЕРМОСОПРОТИВЛЕНИЯ, НАИЛУЧШИЙ КОНТАКТ С ПОВЕРХНОСТЬЮ

Для задач, где критичны точность и время отклика термосопротивления, предлагаются датчики с металлизированной тыльной стороной. Главная особенность контрукции такого датчика — дополнительный слой металла на нижней (тыльной) стороне чувствительного элемента.

 

P1K0.520.2L.A.070.M — датчик типа Pt1000 размером 5 x 2 мм для температур от -50 до +200°C. Класс допуска А, изолированные многожильные выводы длиной 70 мм

Наличие на складе

P1K0.520.2L.B.070.M — датчик типа Pt1000 размером 5 x 2 мм для температур от -50 до +200°C. Класс допуска В, изолированные многожильные выводы длиной 70 мм

Наличие на складе

P1K0.232.3K.B.007.M.U — датчик типа Pt1000 размером 2 x 2.3 мм для температур от -200 до +300°C. Класс допуска В, неизолированные выводы длиной 7 мм, расположенные перпендикулярно к поверхности элемента

Наличие на складе

P050.232.3K.B.007.M.U — датчик типа Pt50 размером 2 x 2.3 мм для температур от -200 до +300°C. Класс допуска В, неизолированные выводы длиной 7 мм, расположенные перпендикулярно к поверхности элемента

Наличие на складе

 

Металлизированные датчики припаиваются, привариваются или иным образом кремятся к поверхности объекта. Это позволяет обеспечить наилучший тепловой контакт, а значит и минимальное время отклика. Более подробная информация о металлизированных термосопротивлениях доступна в статье «Применение тонкопленочных термосопротивлений (Thin Film RTD) для измерения температуры и скорости потока».

На базе металлизированных термоспротивлений также изготавливают решения для измерения скорости потока наподобие датчика Out Of Liquid. Более подробную информацию об этих решениях можно найти в статье «Запускаем датчик скорости потока жидкости»

 

  

Для измерения температуры выпускается готовое решение на базе металлизированного датчика — RealProbeTemp, металлизированное термосопротивление, установленное в металлическую гильзу.

В отличие от других термосопротивлений в аналогичном корпусе, в датчике RealProbeTemp чувствительный элемент установлен на дно корпуса, а не по центру наполненной термопроводящей пастой гильзы. Таким образом обеспечиваются минимальное время отклика (около 1.5 сек) и отсутствие необходимости полностью погружать датчик в измеряемую среду — достоверные результаты измерений могут быть получены при погружении менее чем на 10 мм.

Гильза выполнена из нержавеющей стали и имеет длину 25 мм и диаметр 6 мм, RealProbeTemp позволяет измерять температуру в диапазоне от -50 до +200°C. Более подробная информация доступна в документации от производителя.

Наличие на складе

 

 


САМЫЕ МИНИАТЮРНЫЕ ТЕРМОСОПРОТИВЛЕНИЯ

Платиновые термосопротивления IST доступны в версиях с различными габаритными размерами, однако особенно востребованными являются самые миниатюрные элементы — элементы серии MiniSens размером 1.2 x 1.6 мм и серии SlimSens размером 0.8 x 3 мм. Такие датчики доступны в различных исполнениях, в том числе с выводами увеличенной длины, с повышенной точностью (класс допуска вплоть до AA), модели для расширенного диапазона температур (от -200 до +600°C) и т.д.

Главным преимуществом датчиков малой площади является минимальные показатели по времени отклика и самонагреву.

В таблице приведены значения времени отклика для датчиков MiniSens и SlimSens. Время отклика выражено в секундах и описывает время, за которое датчик реагирует на изменение температуры окружающей среды. Например t0.63 соответствует времени, которое требуется термосопротивлению для детектирования 63% от величины, на которую изменилось значение температуры среды. Помимо размеров термосопротивления, время отклика зависит от параметров измеряемой среды и качества теплового контакта датчика и среды.

 

  Время отклика, сек Самонагрев
Среда вода, v=0.4 м/с воздух, v=1 м/с вода, v=0.4 м/с воздух, v=1 м/с
  t 0.5 0.63 0.9 0.5 0.63 0.9 E, мВт/К ∆T, мК * E, мВт/К ∆T, мК *
Размер датчиков: 1.2 x 1.6 мм 0.05 0.08 0.18 1.2 2.5 12 8.3 1.8 56
Размер датчиков: 0.8 x 3.0 мм 0.08 0.1 0.25 1.2 1.5 3.5 15 6.7 2.2 46

* Самонагрев ∆T, выраженный в миликельвинах, измерен для датчика типа Pt100 при токе 1 мА и температуре окружающей среды 0 ºC

 

Помимо приложений, где важно минимизировать время отклика и самонагрев, датчики MiniSens и SlimSens находят применение в задачах где важны непосредственно габариты элемента. Например, датчики SlimSens размером 0.8 x 3 мм идеально подходит для монтажа в трубу диаметром 1 мм.

 

 

Образцы некоторых моделей миниатюрных датчиков доступны со склада компании ЭФО.

 

Термосопротивления MiniSens

P0K1.161.6W.A.007 — датчик типа Pt100 размером 1.2 x 1.6 мм для температур от -200 до +600°C. Класс допуска A, неизолированные выводы длиной 7 мм

Наличие на складе

P0K1.161.6W.B.007 — датчик типа Pt100 размером 1.2 x 1.6 мм для температур от -200 до +600°C. Класс допуска B, неизолированные выводы длиной 7 мм

Наличие на складе

P1K0.161.1E.A.040 — датчик типа Pt1000 размером 1.2 x 1.6 мм для температур от -50 до +150°C. Класс допуска А, изолированные (эмалированные) выводы длиной 40 мм

Наличие на складе

P1K0.161.3K.A.020 — датчик типа Pt1000 размером 1.2 x 1.6 мм для температур от -200 до +300°C. Класс допуска А, неизолированные выводы длиной 20 мм

Наличие на складе

P1K0.161.3K.B.020 — датчик типа Pt1000 размером 1.2 x 1.6 мм для температур от -200 до +300°C. Класс допуска B, неизолированные выводы длиной 20 мм

Наличие на складе

P1K0.161.4W.Y.010 — датчик типа Pt1000 размером 1.2 x 1.6 мм для температур от -200 до +400°C. Класс допуска 1/3 DIN, неизолированные  выводы длиной 10 мм

Наличие на складе

P1K0.161.6W.Y.010 — датчик типа Pt1000 размером 1.2 x 1.6 мм для температур от -200 до +600°C. Класс допуска 1/3 DIN, неизолированные выводы длиной 10 мм

Наличие на складе

 

 

Термосопротивления SlimSens

P1K0.308.1E.A.025 — датчик типа Pt1000 размером 0.8 x 3 мм для температур от -50 до +150°C. Класс допуска А, изолированные (эмалированные) выводы длиной 25 мм

Наличие на складе

P0K1.308.1E.B.100 — датчик типа Pt100 размером 0.8 x 3 мм для температур от -50 до +150°C. Класс допуска В, изолированные (эмалированные) выводы длиной 100 мм

Наличие на складе

 

 


ЭЛЕМЕНТЫ С ПЕРПЕНДИКУЛЯРНЫМИ ВЫВОДАМИ

Для приложений, где пространство для установки датчика сильно ограничено, также предлагаются элементы с выводами нестандартной ориентации. Такие элементы хорошо подхолят для установки в трубки небольшого диаметра, а также для установки на поверхность объекта. 

Термосопротивления с перпендикулярными выводами выпускаются в том числе с металлизированной тыльной стороной, что позволяет крепить элемент к контактной площадке или к поверхности объекта измерений.

P1K0.232.3K.B.007.M.U — датчик типа Pt1000 размером 2 x 2.3 мм для температур от -200 до +300°C. Класс допуска В, неизолированные выводы длиной 7 мм, расположенные перпендикулярно к поверхности элемента

Наличие на складе

P050.232.3K.B.007.M.U — датчик типа Pt50 размером 2 x 2.3 мм для температур от -200 до +300°C. Класс допуска В, неизолированные выводы длиной 7 мм, расположенные перпендикулярно к поверхности элемента

Наличие на складе

 

 


ПОВЫШЕННАЯ ТОЧНОСТЬ
Термосопротивления с классом допуска выше 1/3 DIN

Помимо термосопротивлений класса допуска AA, A и B, производятся датчики класса допуска 1/5 DIN и 1/10 DIN. Датчики с нестандартным классом точности доступны под заказ.

Класс допуска Допуск, °С
1/5 DIN (1/5 IEC) ±(0.06 + 0.001 |T|)
1/10 DIN (1/10 IEC) ±(0.03 + 0.0005 |T|)

 

 
Пары и группы

Для приложений, где главным требованием является не абсолютная точность измерений, а минимальное отклонение между показаниями двух или более датчиков, предлагаются пары и группы термосопротивлений. Такие датчики отбираются и группируются производителем в соответствии с требованиями клиента. Для групп датчиков может быть обеспечено взаимное отклонение от 0.05 до 0.1 °C, пары датчиков могут быть подобраны с практически идентичной НСХ.

Парные датчики используются как для приложений, подразумевающий одновременный контроль двух точек измерений, так и для уменьшения затрат на калибровку датчиков.

 
Класс допуска A на расширенном диапазоне температур

В соответствии с международным стандартом IEC 60751 и действующим ГОСТом 6651-2009, термометры сопротивления класса А обеспечивают допуск ±(0.15 + 0.002 |T|)°C на диапазоне от -30 до +300°С. Для задач, где точность класса А необходима на более широком диапазоне, предлагаются термосопротивления серии PW, которые обеспечивают допуск ±(0.15 + 0.002 |T|)°C на диапазоне температур от -200 до +600 °C.

Наличие на складе

 


НЕСТАНДАРТНЫЙ ТЕМПЕРАТУРНЫЙ КОЭФФИЦИЕНТ, НИКЕЛЕВЫЕ И МЕДНЫЕ ДАТЧИКИ

Помимо наиболее популярных на сегодняшний день термосопротивлений из платины с температурным коэффициентом 0.00385°C-1 (другое обозначение — Pt 3850 ppm/K), выпускаются термосопротивления с другими типами НСХ.

До середины 1990-х годов российским ГОСТом были определены только термосопротивления с коэффициентом 0.00391°C-1, в действующих российских стандартах определены и датчики с коэффициентом 0.00391°C-1, и датчики с коэффициентом 0.00385°C-1.
Датчики с НСХ, соответствующей коэффициенту 0.00385°C-1, являются общемировым стандартном, и используются подавляющим большинством российских предприятий, однако в некоторых случаях продолжают использовать датчики с коэффициентом 0.00391°C-1. В зависимости от величины номинального сопротивления они обозначаются как 50П (R0 = 50 Ом), 100П (R0 = 100 Ом), 500П (R0 = 500 Ом) и 1000П (R0 = 1000 Ом).

Со склада ЭФО доступны образцы некоторых датчиков данной группы:

PG0K1.216.4K.A.010 — датчик типа 100П размером 2.5 x 1.5 мм для температур от -200 до +400 °C. Класс допуска А, неизолированные выводы длиной 10 мм

Наличие на складе

PG1K0.216.7W.A.007 — датчик типа 1000П размером 2.5 x 1.5 мм для температур от -200 до +750 °C. Класс допуска А, неизолированные выводы длиной 7 мм

Наличие на складе

Документация доступна на сайте производителя. 

 

Помимо платиновых датчиков, производятся медные и никелевые элементы.

Медь обладает наиболее линейной характеристикой, но из-за сравнительно узкого диапазона рабочих температур и низкого удельного сопротивления используется относительно редко. Тонкопленочные медные термосопротивления от IST используются в качестве замены устаревающим намоточным (проволочным) датчикам с аналогичной НСХ. Такая замена позволяет повысить надежность чувствительного элемента и его устойчивость к вибрациям и перепадам температур, сократить время отклика, уменьшить габаритные размеры. Медные датчики IST имеют коэффициент 4280 ppm/K и номинальное сопротивление 50 или 100 Ом.

Никелевые термосопротивления используются гораздо реже платиновых, т.к. их рабочий температурный диапазон ограничен значением +300 °C. Однако в ряде случаев оптимальными являются именно никелевые датчики: никелевые элементы имеют относительно высокие температурный коэффициент и выходное сопротивление, поэтому никелевые термосопротивления обеспечивают наиболее высокое разрешение.

С номенклатурой никелевых термосопротивлений IST можно ознакомиться в документации производителя. Медные и никелевые датчики доступны под заказ.

 

 


НЕСТАНДАРТНОЕ НОМИНАЛЬНОЕ СОПРОТИВЛЕНИЕ R0

Как правило, термосопротивления имеют номинальное сопротивление (R0) величиной 100, 500 или 1000 Ом. Компания IST также выпускает компоненты с увеличенным номинальным сопротивлением, например 2000, 5000 и даже 10000 Ом, а также термосопротивления с номинальным сопротивлением, «сдвинутым» относительно стандартного значения, например 150 или 350 Ом.

Датчики с нестандартным номинальным сопротивлением доступны под заказ.


ЦИЛИНДРИЧЕСКИЙ КЕРАМИЧЕСКИЙ КОРПУС

До появления на рынке тонкопленочных термосопротивлений, эти элементы изготавливались с использованием намоточных (проволочных) технологий и имели форму циллиндра. Для быстрой замены таких циллиндрических датчиков компания IST AG выпускает тонкопленочные сенсоры, заключенные в дополнительный керамический корпус стандартного размера.

Керамический корпус не имеет дополнительной защитной функции и предназначен исключительно для упрощения монтажа элемента.

Со склада ЭФО доступны образцы некоторых датчиков данной группы:

P1K0.281.6W.A.007.R — датчик типа Pt1000 для температур от -200 до +600°C в циллиндрическом керамическом корпусе длиной 13 мм и диаметром 2.8 мм. Класс допуска A, неизолированные выводы длиной 7 мм

Наличие на складе

P1K0.281.6W.B.020.R — датчик типа Pt1000 для температур от -200 до +600°C в циллиндрическом керамическом корпусе длиной 13 мм и диаметром 2.8 мм. Класс допуска B, неизолированные выводы длиной 20 мм

Наличие на складе

P0K1.281.8W.A.005.R — датчик типа Pt100 для температур от -200 до +800°C в циллиндрическом керамическом корпусе длиной 13 мм и диаметром 2.8 мм. Класс допуска A, неизолированные выводы длиной 5 мм

Наличие на складе

 


СПЕЦИАЛЬНЫЕ КОНСТРУКТИВЫ

Компания IST выпускает десятки датчиков в специальных конструктивах, отвечающих требованиям заказчика. Среди специальных решений 

  • 3- и 4-выводные термосопротивления,
  • датчики, выполненные в термоусадочных трубках,
  • датчики, выводы которых оснащены коннекторами,
  • датчики с металлизорованной стороной, установленные на металлические диски, пластины или другие контактные площадки,
  • датчики в керамическом циллиндрическом корпусе,
  • датчики в нестандартных корпусах.

 

Термосопротивление, описание, принцип работы, виды

В общепринятом смысле термосопротивление — это физическая величина, способность тела препятствовать распространению теплового движения молекул. Однако чаще всего под этим термином подразумевают специальные приборы, способные этот параметр измерять — термометры сопротивления и терморезисторы.

Принцип работы термосопротивления

При нагреве проводника изменяется его сопротивление, а следовательно, и ток, проходящий через проводник. Интенсивность изменения зависит от нескольких факторов:

  • температура и плотность окружающей среды;
  • скорость жидкой или газообразной среды;
  • размеры и материал самого проводника.

Если измерить зависимость сопротивления провода от этих неэлектрических величин, то на основе этой информации можно получать данные об изменении параметров окружающей среды. Собственно, в этом и заключается принцип, по которому работает термосопротивление.

Виды термосопротивлений

По материалу изготовления все термосопротивления можно разделить на следующие группы:

  1. Проводниковое термосопротивление. Термопреобразователи сопротивления производятся в точном соответствии с ГОСТ 6651-2009. Как правило, они изготавливаются из чистых металлов: меди, никеля и платины. В основном представляют собой каркасную или безкаркасную катушку, выполненную из однородного проводника с контактными выводами. Характеризуются прямой зависимостью сопротивления от температуры, чем выше температура, тем выше сопротивление. Имеют большой температурный коэффициент измерения, точность, характеристику близкую к линейной.

    Медь используется при измерениях от -50 до 150—180 градусов Цельсия в среде, свободной от посторонних примесей. Если температура будет выше, металл окислится, а это снижает точность.

    Никель можно применять для измерений до 250—300 градусов Цельсия. Однако стоит учитывать, что при температуре свыше 100 ºС зависимость сопротивления уже не является линейной. Она высчитывается по формулам, зависящим от марки никеля.

    Платина — это самый распространенный материал для промышленных приборов. Этот металл может использоваться при температуре до 1000—1200 градусов Цельсия, хотя на практике платиновое термосопротивление применяется до 650 ºС. Дело в том, что при температуре свыше 500 градусов Цельсия удобнее использовать датчики термопары. Кстати, стоит оговориться, что этот металл нельзя применять в восстановительных средах (углерод, пары кремния, калия, натрия и т. п.).

  2. Полупроводниковое термосопротивление. Терморезистор (термистор), полупроводниковое сопротивление из разнородного сплава, может иметь прямую или обратную характеристику (PTC-термистор или NTС-термистор) зависимости сопротивления от температуры. Изготавливаются методом порошковой металлургии в виде дисков, шайб, бусинок, тонких пластинок. Имеют большой температурный коэффициент сопротивления, нелинейную характеристику, способны работать при значительных механических нагрузках и в сложных условия эксплуатации.

    NTC-термисторы типов ММТ-1 и КМТ-1 (рис. 1-а) состоят из полупроводникового эмалированного стержня (1), контактных колпачков (2) и выводов (3).

    NTC-термисторы типов ММТ-4 и КМТ-4 (рис. 1-б) выпускаются в герметичном металлическом корпусе (2), за счет чего могут использоваться даже во влажной среде. Герметизация осуществляется при помощи стекла (3) и олова (4), а сам полупроводниковый стержень (1) обернут фольгой (5).

    • рис. 1-а              рис. 1-б

    Медно-кобальто-марганцевые терморезисторы вроде МКМТ-16 бусинкового типа (NTC-термисторы) (рис. 2) — это мини-измерители в стеклянном корпусе. В нем роль сопротивления играет шарик диаметром около 0,8 мм с платиновыми выводами диаметром 0,05 мм, к концам которых приварены проводники из нихромовой проволоки диаметром 0,1 мм.

    Все термопреобразователи сопротивления , предлагаемые нашей компанией, можно посмотреть в каталоге продукции.

Термометры сопротивления. Термосопротивление

Термопреобразователи сопротивления оптимальны для высокоточных измерений в узких диапазонах измерения. Термосопротивления взаимозаменяемы и имеют практически линейные характеристики.

Выбрать и купить датчик температуры вы можете в интернет-магазине …


Области применения термосопротивлений

Термосопротивления обширно используются в промышленности  и их применение в той или иной среде зависит главным образом от корпуса прибора:

  • Нефтегазовый, топливно-энергетический комплекс
  • Машиностроение, автомобильная индустрия и спецтехника
  • Химическая промышленность, строительство
  • Сфера образования
  • Химические соединения
  • Вода, газ, пар
  • Жидкие, твердые, сыпучие продукты
  • Среды температурой от -200 до + 600°С (в среднем), требующие контроля температуры для систем автоматического управления, например:
    • Cистема контроля воды
    • Насосные системы
    • Системы охлаждения
    • Мониторинг температур масла, охлаждающей жидкости, топлива в подвижной технике и т.п.
  • Прочие АСУ


Назначение термопреобразователей сопротивления
  • Высокоточное (до тысячных долей градуса) и высокостабильное измерение температуры среды в средних температурных диапазонах (-200…+600 в большинстве случаев) с передачей сигнала в информационно-управляющую систему (+ используются 2, 3, и 4-х проводные схемы снятия данных)
  • Лабораторные стенды, эталонные измерения температур
  • Унифицированные системы, требующие высокой взаимозаменяемости датчиков


Преимущества

Основные достоинства термопреобразователей сопротивления:

  • Взаимозаменяемость (+ датчики стандартизированы по номинальным статическим характеристикам)
  • Высокая точность, а также стабильность измерений (может доходить до тысячных) + возможность исключения сопротивления линии связи из факторов, влияющих на точность (при 3 или 4-проводной схеме)
  • Близость характеристик к линейным (почти линейная зависимость)


Недостатки

Недостатки в основном исходят из принципа работы. Обращайте внимание:

  1. Требуется источник питания (тока) для запитывания резистора.
  2. Дороговизна относительно простых термопар.
  3. Малый в сравнении с термопарами диапазон измерений


Принцип работы термопреобразователей сопротивления

Термопреобразователи сопротивления представляют собой более сложные приборы, нежели простые резисторы. Их принцип работы основан на изменении электрического сопротивления полупроводниковых материалов либо металлов/сплавов под воздействием температуры окружающей среды. Для промышленных приборов выведены номинальные статические характеристики, на которые ориентируются производители.

На примере ТСП типовые схемы подключения выглядят так:

2-проводная схема. Питание и информационный сигнал имеют общую точку. Поэтому возникает небольшая погрешность из-за влияния сопротивления проводов.

3-проводная схема. Вход питания отдельный, но один из измерительных проводов имеет общую точку с минусом питания.

4-проводная схема. Вход питания и измерительные провода отделены друг от друга. В этой схеме обеспечивается наилучшая точность снятия сигнала.

Термосопротивление, понятие, типы, схемы подключения

Существует множество радиоэлектронных компонентов, которые изменяют некоторые свои параметры под действием изменения температурного режима. Таким элементом является и термосопротивление, или же как его еще называют – терморезистор. Из названия уже понятно, что деталь увеличивает сопротивление при повышении температуры.

Термосопротивление – это полупроводник, очень зависимый от температурных режимов, именно данный параметр, а также высокий коэффициент сопротивления, позволяет использовать устройство практически во всех отраслях промышленного производства. Термосопротивления (терморезисторы) производят из различных материалов, имеющих разное удельное сопротивление. К основным качественным показателям данного РЭК относят высокий коэффициент температур, химическую стабильность, температуру плавления.

Термосопротивление могут быть различные по конструкции изготовления, но больше всего распространены полупроводниковые стержни, покрытые эмалью. К стержню подводятся выводы и контактные колпачки, использовать их можно только лишь в среде, которая сухая. Множество подобных элементов отлично действуют в определенном температурном промежутке, любой же перегрев их вызывает отрицательное действие и ведет к разрушению терморезистора. Для того, чтобы защитить их от пагубного воздействия от внешнего негативного фактора, конструкцию термосопротивлений помещают в специальные герметичные корпуса. Такие детали можно использовать в любой среде, даже влажной. Если элементы производились из материалов, имеющих плохую проводимость, то изменение температурного режима способно привести к изменениям в сопротивлении в несколько десятков раз. Применение материала изготовления с идеальной проводимостью ведет к соотношению в пределах десяти. Если соблюдать все необходимые нормы, соответствующие техническим характеристиками того или иного типа терморезисторов, можно продлить их эксплуатационный срок до нескольких лет.

Термосопротивления и их типы

Наиболее популярны РЭК, при изготовлении которых используют платину, позволяющую выдерживать широкий диапазон температур: минус 200 – плюс 1200 градусов по Цельсию, иметь высокий температурный коэффициент, стойкость к процессам окисления и технологичность. Также, материалом для производства терморезисторов могут применять никель, медь.

Медные термосопротивления идеальны, когда необходимо продолжительное измерение рабочей температуры, при этом диапазон колеблется в пределах минус 200 – плюс 200 градусов. Достоинства меди, как материала: недорогая, без примесей, технологична, сопротивление линейно зависит от температуры. К недостаткам можно отнести: сопротивление удельное невысоко, сильное окисление. Эти недостатки приводят к ограничениям использования медных термосопротивлений.

Никелевые термосопротивления превосходно подходят, что измерять температуры, находящиеся в пределах минус 100 – плюс 300 градусов. К достоинствам можно отнести невысокую тепловую инерцию, сопротивление номинала идеальное. Недостатки: нелинейные, нестабильные номинальные статические характеристики, невозможность их взаимозаменять, так присутствует значительный разброс сопротивления номинального.

Схемы подключения

Датчики термосопротивлений подключаются по нескольким схемотипам: двухпроводная, трехпроводная, четырехпроводная. Двухпроводная не является распространенной, так как сопротивление соединительных проводов дает значительные погрешности при измерении. Более популярны именно трехпроводные схемы, так как именно такая схема применяется для подключения датчиков к различному виду контроллеров. Схему четырехпроводную применяют для подключения датчиков термосопротивлений к техническим и коммерческим устройствам, чтобы получать наиболее точные данные при потреблении энергоресурсов. Четырехпроводная схема позволяет обеспечить полную компенсацию сопротивления соединительных проводов и высочайшую точность в показаниях.

виды, типы конструкции, классы допуска

Термометрия относится к наиболее простым и эффективным методам измерений. Она основана на том, что физические свойства материала меняются в зависимости от температуры. В частности, измеряя сопротивление металла, сплава или полупроводникового элемента, можно определить его температуру с высокой степенью точности. Датчики такого типа называются термоэлектрическими или термосопротивлениями. Предлагаем рассмотреть различные виды этих устройств, их принцип работы, конструкции и особенности.

Виды термодатчиков

Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):

  1. Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС. Конструкция термистора

Обозначения:

  • А – Выводы измерителя.
  • В – Стеклянная пробка, закрывающая защитную гильзу.
  • С – Защитная гильза, наполненная гелием.
  • D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
  • E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
  1. Металлические датчики. У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.

Расшифровка аббревиатур

Чтобы не возникало вопросов, что такое ТСМ, приведем расшифровку этой и других аббревиатур:

  • ТСМ это термометр сопротивления (ТС), в чувствительном элементе (ЧЭ) которого используется медная проволока (М).
  • ТСП, в применяется платиновый (проволока из платины) ЧЭ.
  • КТС б – обозначение комплекта из нескольких платиновых ТС., позволяющих провести многозонные измерения, как правило, монтаж таких устройств производится на вход и выход системы отопления, чтобы установить разность температур.
  • ТПТ – технический (Т) платиновый термометр (ПТ).
  • КТПТР – комплект из ТПТ приборов, буква «Р» в конце указывает, что может производиться не только измерение разницы температур между различными датчиками.
  • ТСПН – «Н» в конце ТСП, обозначает, что датчик низкотемпературный.
  • НСХ – под данным сокращением подразумевается «номинальная статическая характеристика», соответствующая стандартной функции «температура-сопротивление». Достаточно посмотреть таблицу НСХ для pt100 или любого другого датчика (например, pt1000, rtd, ntc и т.д.), чтобы иметь представление о его характеристиках.
  • ЭТС – эталонные приборы, служащие для калибровки датчиков.

Чем отличается термосопротивление от термопары?

Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.

Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.

Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.

Платиновые измерители температуры

Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.

В соответствии с нормами ГОСТ 6651 2009 и МЭК 60751, у рабочих приборов данного типа значение температурного коэффициента должно быть 0,00385°С-1, эталонных – 0,03925°С-1. Диапазон измеряемой температуры: от-196,0°С до 600,0°С. К несомненным достоинствам следует отнести высокий коэффициент точности, близкую к линей характеристику «Температура-сопротивление», стабильные параметры. Недостаток – наличие драгметаллов увеличивает стоимость конструкции. Необходимо заметить, что современные технологии позволяют минимизировать содержание этого металла, что делает возможным снижение стоимости продукции.

Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.

Датчик термопреобразователь ТСП 5071 производства Элемер

Никелевые термометры сопротивления

Температурный коэффициент (далее ТК) у данного типа измерительных устройств самый высокий — 0,00617°С-1. Диапазон измеряемых температур также существенно уже, чем у платиновых ЧЭ (от -60,0°С до 180,0°С). Основное достоинство данных приборов – высокий уровень выходного сигнала. В процессе эксплуатации следует учитывать особенность, связанную с приближением температуры нагрева к точке Кюри (352,0°С), вызывающую существенное изменение параметров ввиду непредсказуемого гистерезиса.

Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).

Медные датчики (ТСМ)

ТК медных измерительных приборов – 0,00428°С-1, диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление». Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.

Внешний вид термопреобразователя ТСМ 1088 1

Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.

Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.

Типовые конструкции платиновых термосопротивлений

Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.

Конструктивное исполнение «Strain free»

Обозначения:

  • А – Выводы термоэлектрического элемента.
  • В – Защитный корпус.
  • С – Спираль из платиновой проволоки.
  • D – Мелкодисперсный наполнитель.
  • E – Глазурь, герметизирующая ЧЭ.

Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.

На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.

Исполнение Hollow Annulus.

Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий. Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.

Пример исполнения «Hollow Annulus»

Обозначения:

  • А – Выводы с ЧЭ.
  • В – Изоляция выводов ЧЭ.
  • С – Изолирующий мелкодисперсный наполнитель.
  • D – Защитный корпус датчика.
  • E – Проволока из платины.
  • F – Металлическая трубка.

ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.

Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.

Пленочное исполнение (Thin film).

Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.

Миниатюрный пленочный датчик

Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).

Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.

Стеклянная изоляция спирали.

В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.

Класс допуска

Согласно действующим нормам допускается определенное отклонение от линейной характеристики «температура-сопротивление». Ниже представлена таблица соответствия класса точности.

Таблица 1. Классы допуска.

Класс точностиНормы допуска

°C |t |

Диапазон измерения температуры
Платиновые датчикиМедныеНикелевые
ПроволочныеПленочные
AA±0,10+0,0017-50°C …250°C-50°C …150°Cxx
A±0,15+0,002-100°C …450°C-30°C …300°C-50°C …120°Cx
B±0,30+0,005-196°C …660°C-50°C …500°C-50°C …200°Cх
С±0,60+0,01-196°C …660°C-50°C …600°C-180°C …200°C-60°C …180°C

Приведенная в таблице погрешность отвечает текущим нормам.

Схемы включения ТСМ/ТСП

Существует три варианта подключения:

  • 2-х проводное (см. А на рис. 7), этот наиболее простой способ используется в тех случаях, когда точность результатов не критична. Дополнительную погрешность создает номинальное сопротивление проводников, которыми подключается датчик. Обратим внимание, что для классов точности A и AA данная схема включения неприемлема. Рисунок 7. Двухпроводная, трехпроводная и четырехпроводная схема включения термометра сопротивления
  • 3-х проводное (В). Такой вариант обладает более высокой точностью, чем 2-х проводная схема вариант подключения. Это происходит за счет того, что появляется возможность измерить сопротивление монтажных проводов, чтобы учесть их воздействие.
  • 4-х проводное. Этот вариант позволяет полностью исключить воздействие сопротивления монтажных проводов на результаты измерений.

В измерительных приборах ТС, как правило, включен по мостовой схеме.

Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздуха

Обратим внимание, что под rл.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик.

Обслуживание

Информация о ТО температурного датчика указана в паспорте прибора или инструкции эксплуатации, там же приводится типовые неисправности и способы их ремонта, рекомендуемая длина кабеля для подключения, а также друга полезная информация.

Термометры сопротивления не требуют специального ТО, в задачу обслуживающего персонала входит:

  • Проверка условий, в которых эксплуатируется датчик.
  • Внешний осмотр на предмет целостности конструкции и кабельных соединений, проверка хода подвижного штуцера (если таковой имеется).
  • Помимо этого проверяется наличие пломб.
  • Проверяется заземление.

Такой осмотр должен проводиться с периодичностью один раз в месяц или чаще.

Помимо этого должна проводиться поверка приборов, с использованием эталонного датчика, например, ЭТС 100.

Платиновый эталонный ПТС (датчик ЭТС 100)

Для градуировки датчиков используются специальные таблицы, в качестве примера приведена одна из них для термосопротивления pt100. Саму методику калибровки мы приводить не будем, ее описание несложно найти в сети.

Градуировочная таблица для терморезистора pt100 (фрагмент, без указания пределов градуировки измерений)

Что касается методики поверки эталонных платиновых датчиков, то она должна производиться на специальных реперных точках.

ТЕРМОСОПРОТИВЛЕНИЕ — это… Что такое ТЕРМОСОПРОТИВЛЕНИЕ?

ТЕРМОСОПРОТИВЛЕНИЕ
— см. Стойкость углей термическая.

Геологический словарь: в 2-х томах. — М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978.

Синонимы:
  • ТЕРМОНАТРИТ
  • ТЕРМОФИЛИЯ

Смотреть что такое «ТЕРМОСОПРОТИВЛЕНИЕ» в других словарях:

  • термосопротивление — термосопротивление …   Орфографический словарь-справочник

  • термосопротивление — сущ., кол во синонимов: 1 • микротермосопротивление (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • термосопротивление — šiluminis varžas statusas T sritis chemija apibrėžtis Puslaidininkinis elementas, kurio laidumas priklauso nuo temperatūros. atitikmenys: angl. N.T.C. resistor; thermal resistor; thermistor rus. термистор; термосопротивление ryšiai: sinonimas –… …   Chemijos terminų aiškinamasis žodynas

  • термосопротивление — termistorius statusas T sritis fizika atitikmenys: angl. heat variable resistor; thermal resistor; thermistor vok. Heißleiterwiderstand, m; Thermistor, m rus. термистор, m; терморезистор, m; термосопротивление, m pranc. résistance thermosensibile …   Fizikos terminų žodynas

  • Термосопротивление — …   Википедия

  • термосопротивление — термосопротивл ение, я …   Русский орфографический словарь

  • термосопротивление — (2 с), Пр. о термосопротивле/ нии …   Орфографический словарь русского языка

  • термосопротивление — термосопротивле/ние, я …   Слитно. Раздельно. Через дефис.

  • термосопротивление — терм/о/сопротивл/ени/е [й/э] …   Морфемно-орфографический словарь

  • СТОЙКОСТЬ УГЛЕЙ ТЕРМИЧЕСКАЯ (ТЕРМОСОПРОТИВЛЕНИЕ) — свойство углей сопротивляться механическому разрушению при нагревании. Повышается с увеличением спекаемости угля и уменьшается с повышением влажности, зольности и выхода летучих веществ. Определяется по ГОСТ 9183 59 и 7714 55. Геологический… …   Геологическая энциклопедия

Таблицы НСХ: номинальные статические характеристики. КИП-Сервис: промышленная автоматика

ГОСТ 6651-2009 — НСХ Термопреобразователи типа Pt100, ТСП 100П, ТСМ 100М

Pt100: Номинальная статическая характеристика для платиновых термопреобразователей сопротивления и чувствительных элементов R0 = 100, α = 0,00385 °C-1.

ТСП 100П: Номинальная статическая характеристика для платиновых термопреобразователей сопротивления и чувствительных элементов R0 = 100, α = 0,00391 °C-1.

ТСМ 100М: Номинальная статическая характеристика для медных термопреобразователей сопротивления и чувствительных элементов R0 = 100, α = 0,00426 °C-1.

Тип термосопротивления Pt100 ТСП 100П ТСМ 100М
Температура раб. конца, °C Сопротивление, Ом
-200 18,52 17,24
-190 22,83 21,62
-180 27,10 25,96
-170 31,34 30,26
-160 35,54 34,54
-150 39,72 38,79
-140 43,88 43,00
-130 48,00 47,20
-120 52,11 51,37
-110 56,19 55,51
-100 60,26 59,64
-90 64,30 63,75
-80 68,33 67,83
-70 72,33 71,91
-60 76,33 75,96
-50 80,31 80,00 78,7
-40 84,27 84,03 82,96
-30 88,22 88,04 87,22
-20 92,16 92,04 91,48
-10 96,09 96,03 95,74
0 100,00 100,00 100,00
10 103,90 103,96 104,26
20 107,79 107,91 108,52
30 111,67 111,85 112,78
40 115,54 115,78 117,04
50 119,40 119,70 121,3
60 123,24 123,60 125,56
70 127,08 127,50 129,82
80 130,90 131,38 134,08
90 134,71 135,25 138,34
100 138,51 139,11 142,6
110 142,29 142,95 146,86
120 146,07 146,79 151,12
130 149,83 150,61 155,38
140 153,58 154,42 159,64
150 157,33 158,22 163,9
160 161,05 162,01 168,16
170 164,77 165,78 172,42
180 168,48 169,55 176,68
190 172,17 173,30 180,94
200 175,86 177,04 185,2
210 179,53 180,77
220 183,19 184,49
230 186,84 188,20
240 190,47 191,89
250 194,10 195,57
260 197,71 199,25
270 201,31 202,90
280 204,90 206,55
290 208,48 210,19
300 212,05 213,81
310 215,61 217,43
320 219,15 221,03
330 222,68 224,62
340 226,21 228,19
350 229,72 231,76
360 233,21 235,31
370 236,70 238,86
380 240,18 242,39
390 243,64 245,91
400 247,09 249,41
410 250,53 252,91
420 253,96 256,39
430 257,38 259,87
440 260,78 263,33
450 264,18 266,78
460 267,56 270,21
470 270,93 273,64
480 274,29 277,05
490 277,64 280,46
500 280,98 283,85
510 284,30 287,23
520 287,62 290,59
530 290,92 293,95
540 294,21 297,29
550 297,49 300,63
560 300,75 303,95
570 304,01 307,26
580 307,25 310,55
590 310,49 313,84
600 313,71 317,11
610 316,92 320,37
620 320,12 323,63
630 323,30 326,86
640 326,48 330,09
650 329,64 333,31
660 332,79 336,51
670 335,93 339,70
680 339,06 342,88
690 342,18 346,05
700 345,28 349,21
710 348,38 352,35
720 351,46 355,49
730 354,53 358,61
740 357,59 361,72
750 360,64 364,82
760 363,67 367,91
770 366,70 370,98
780 369,71 374,05
790 372,71 377,10
800 375,70 380,14
810 378,68 383,17
820 381,65 386,18
830 384,60 389,19
840 387,55 392,18
850 390,48 395,16

факторов термического сопротивления | Renesas

Самый важный способ добиться лучшего отвода тепла — это уменьшить тепловое сопротивление полупроводникового прибора. Факторы, определяющие термическое сопротивление, подробно описаны ниже.

Тепловое сопротивление, которое можно рассчитать так же, как и закон Ома

Тепловой дизайн, который учитывает тепло, рассеиваемое полупроводниковыми устройствами, использует понятие «тепловое сопротивление», основанное на том факте, что теплопередачу можно сравнить со способом передачи электричества.

В случае электричества соотношение между напряжением (разностью электрических потенциалов), током и сопротивлением выражается законом Ома, как показано ниже. Тепловое сопротивление можно рассчитать по закону, аналогичному закону Ома, заменив напряжение на разницу температур, ток на тепловой поток и сопротивление на тепловое сопротивление.

Как видно из приведенного выше выражения, тепловое сопротивление показывает, насколько быстро тепло рассеивается.

Четыре фактора, определяющие термическое сопротивление упаковки

Общее тепловое сопротивление упаковки почти полностью определяется:

  • Структура пакета
  • Размер микросхемы
  • Расход воздуха
  • Размер упаковки

Каждый из этих элементов влияет на тепловое сопротивление следующим образом.

Различия теплового сопротивления в зависимости от конструкции корпуса

Структура упаковки

Пакеты

бывают разных типов, каждый с разными характеристиками термического сопротивления (см. Диаграмму выше). Такие корпуса, как FCBGA с медной крышкой, к которой непосредственно прикреплен чип, обладают превосходными характеристиками термического сопротивления. В случае PBGA тепловое сопротивление можно снизить, используя четырехслойную подложку вместо двухслойной, и его можно еще больше снизить, поместив шарики припоя непосредственно под тепловые сквозные отверстия.

Размер микросхемы

Теплопроводность кремниевого чипа примерно в 100 раз выше, чем у формовочной смолы, и примерно в 10 раз выше, чем у подложек корпуса; следовательно, размер кристалла является основным фактором, влияющим на теплопроводность.

Расход воздуха

Принудительное воздушное охлаждение, включая охлаждение вентилятором, не влияет на теплопроводность корпуса, но эффективно отводит тепло с поверхности корпуса или печатной платы в атмосферу и, таким образом, снижает общее тепловое сопротивление.

Размер упаковки

Обычно считается, что упаковка большего размера имеет лучшую теплопроводность. Это верно для FCBGA, у которого есть большая медная крышка, обеспечивающая отличную теплопроводность по всему корпусу. Но для корпусов с более низкой теплопроводностью, таких как FBGA, размеры корпуса не очень помогают повысить теплопроводность; следовательно, при одинаковых размерах микросхем тепловое сопротивление между корпусами разного размера будет немного отличаться.

Тепловое сопротивление


Термическое сопротивление (R th ) определяется как разница температур между двумя замкнутыми изотермическими поверхностями, деленная на общий тепловой поток между ними.

Основы теплопередачи для светодиодных приложений

В электрической цепи постоянного тока закон Ома описывает отношения между напряжениями и токами. В нем говорится, что разница напряжений на резисторе вызывает электрический ток, который пропорционален разности напряжений:? V = I * R. В установившемся режиме теплопередачи разница температур вызывает тепловой поток, который пропорционален разнице температур, как видно в уравнениях (1, 2). Оба уравнения могут быть записаны в виде? T = q * R th , где R th — тепловое сопротивление (также обычно обозначается как R, когда нет возможности ошибочно интерпретировать его как электрическое сопротивление).Это аналог закона Ома. Как в электрическом, так и в тепловом случае мы наблюдаем наличие движущей силы (либо разность напряжений, либо разность температур), которая вызывает протекание (тока или тепла) через резистор. Тепловое сопротивление на единицу площади равно отношению толщины (t) к теплопроводности (k) и часто используется для прямого сравнения характеристик теплопередачи коммерчески доступных TIM.

Щелкните здесь, чтобы узнать больше

Общее тепловое сопротивление ( всего) — это сумма компонентов и их значение теплового сопротивления.

Тепловое сопротивление

Номенклатура: запутанная ситуация с «тепловым импедансом».

«Электрический импеданс» исторически зарезервирован для описания электрического сопротивления, зависящего от времени. В пределе устойчивого состояния тепловое сопротивление равно тепловому сопротивлению; следовательно, единицы должны быть одинаковыми. Следовательно, Термический импеданс , используемый поставщиками в США, нарушает электротермическую аналогию, потому что:

  • Единица измерения не соответствует (К / Вт vs.м 2 К / Вт)
  • Определение не соответствует (зависящее от времени или установившееся состояние)

Почему это проблема?
Будут все чаще использоваться зависящие от времени (динамические) методы испытаний, одним из результатов которых является «правильный» термический импеданс.

Используйте тепловое сопротивление на единицу площади, или на единицу R th .

Знакомство с серийным калькулятором термического сопротивления

Перейти к калькулятору

Thermtest рада представить новый серийный калькулятор термического сопротивления.После ввода термического сопротивления и толщины материала калькулятор выводит термическое сопротивление композита.

Что такое термическое сопротивление?

Как следует из названия, термическое сопротивление — это разница температур в способности материала противостоять потоку тепла. Тепло — это энергия, которая передается от одного объекта или вещества к другому из-за разницы в температуре между ними. Тепловой поток — это движение тепла из недр Земли к поверхности.Термическое сопротивление часто описывается как величина, обратная теплопроводности. Единицы СИ — кельвины на ватт или эквивалентные градусы Цельсия на ватт. Это тепловое свойство во многом зависит от площади, толщины и теплопроводности материала.

Сопротивление увеличивается за счет увеличения толщины материала, уменьшения его площади и теплопроводности. Часто тепловой поток и температуру можно определить по термическому сопротивлению. Это становится полезным в строительстве, когда при проектировании зданий необходимо учитывать потери тепла от электроники.

Рис. 1. Конструкция, состоящая из двух материалов с разным сопротивлением, где тепловой поток через них (Q) считается постоянным.

Расчет термического сопротивления в серии

Когда тепловой поток через несколько сред считается постоянным, можно определить тепловое сопротивление «последовательно». Тепловое сопротивление можно сравнить с моделью электрической цепи. В этом случае тепловой поток представлен током, температуры заменяются напряжениями, а сопротивления выражаются резисторами.

Рисунок 2. Тепловое сопротивление в виде электрической цепи. Ток заменяется тепловым потоком (Q), напряжения представлены как температуры (T), а резисторы заменяются сопротивлениями (R).

Тепловой поток или граничные температуры системы также можно определить, когда известно сопротивление объекта. Последовательный поток тепла через композитный материал считается постоянным, а разные серии эквивалентны:

\ [R = R_ {1} + R_ {2} \]

Когда температуры на каждой стороне композитного материала известны (\ (T_ {L} \) и \ (T_ {R} \)), скорость теплопередачи выражается как:

\ [\ dot {Q} = \ frac {T_ {L} {-} T_ {R}} {R} = \ frac {T_ {L} {-} T_ {R}} {R_ {1} {+ } R_ {2}} \]

Это уравнение теплового сопротивления может применяться к композитным материалам «последовательно», таким как стена, окруженная изоляцией, поскольку \ (\ dot {Q} \) постоянна для каждого компонента.Теплопередачу композитного материала можно определить по формуле термического сопротивления:

\ [{Q} = \ frac {T_ {\ infty 1} {-} T_ {1}} {R_ {conv1}} = \ frac {T_ {1} {-} T_ {2}} {R_ {wall }} = \ frac {T_ {2} {-} T_ {\ infty 2}} {R_ {conv1}} \]

Рис. 3. Термическое сопротивление (R) и температура (T) стены, окруженной изоляцией (слева), смоделированные как электрический ток (справа).

Из чего можно рассчитать сопротивления каждого компонента, \ (R_ {conv1} \), \ (R_ {wall} \) и \ (R_ {conv2} \), используя:

\ [R_ {total} = R_ {conv1} + R_ {wall} + R_ {conv2} \]

После того, как известно полное сопротивление системы, тепловой поток через композит можно рассчитать по уравнению теплового потока.Сюда входят известные граничные температуры, как показано в следующем уравнении.

\ [Q = \ frac {T_ {\ infty 1} {-} T_ {\ infty 2}} {R_ {total}} \]

Калькулятор последовательного сопротивления позволяет легко определять термическое сопротивление композитных материалов. Калькулятор также можно использовать в сочетании с базой данных материалов Thermtest, которая включает тепловые свойства более 1000 материалов. Этот недавно разработанный калькулятор обеспечивает быстрый, простой и точный способ последовательного вычисления теплового сопротивления.

Список литературы

https://neutrium.net/heat_transfer/thermal-resistance/

http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node118.html

Общие сведения о термическом сопротивлении — learn.sparkfun.com

Добавлено в избранное Любимый 3

Термическое сопротивление

Чтобы понять, как потери мощности влияют на выделяемое тепло, сначала необходимо понять термическое сопротивление (R θ ).Подобно тому, как электрическое сопротивление сопротивляется потоку тока в Омах, тепловое сопротивление сопротивляется потоку тепла в Кельвинах на ватт или в градусах Цельсия на ватт. Мы можем использовать термическое сопротивление, чтобы оценить, насколько нагревается конкретная деталь при различных нагрузках, в зависимости от того, насколько легко тепло может передаваться из одного места в другое. В электронике тепло начинается у источника, такого как переход полупроводников, и распространяется, чтобы в конечном итоге рассеяться в окружающий воздух.

Если соединение полупроводника превысит максимальную температуру, он сломается и выпустит весь магический дым.Чтобы убедиться, что мы этого не делаем, нам нужно посмотреть, насколько эффективно устройство может использовать мощность …

Закон Ома и тепловое сопротивление

Мы можем использовать закон Ома для расчета температур от радиатора до перехода, и везде между ними, используя закон Ома. Как упоминалось ранее, электрическое сопротивление очень похоже на тепловое сопротивление. Мы можем использовать закон Ома, который гласит, что V = I * R, и заменить напряжение на температуру (T) и ток на мощность (P), что даст нам:

Эквивалентная тепловая схема показана ниже, где:

  • T_Junction (T J ): температура перехода
  • R θJC : термическое сопротивление перехода к корпусу
  • T_Case (T C ): температура перехода
  • R θCH : Тепловое сопротивление корпуса к радиатору
  • T_Heatsink (T H ): температура радиатора
  • R θHA : Тепловое сопротивление радиатора к окружающему воздуху
  • T_Ambient (T A ): температура окружающего воздуха

Чтобы лучше понять, как используется термическое сопротивление, давайте рассмотрим следующий пример:

  • Рассеиваемая мощность: 2 Вт
  • R θJC = 4 ° C / Вт
  • R θCH = 0.5 ° C / Вт
  • R θHA = 6 ° C / Вт
  • T A = 25 ° C

Начиная с теплового эквивалента закона Ома:

Мы хотим найти рост температуры перехода, поэтому T становится T J . Наша рассеиваемая мощность P составляет 2 Вт. И наши тепловые сопротивления включены последовательно, поэтому, как и резисторы, включенные последовательно в цепи, мы можем сложить значения вместе:

Температура перехода на 20,5 ° C выше температуры окружающей среды (в данном случае 25 ° C), что означает, что абсолютная температура равна 20.5 ° C + 25 ° C, что составит 45,5 ° C.

Где найти значения термического сопротивления? Для таких деталей, как регуляторы напряжения, диоды, транзисторы и другие полупроводники, в техническом описании будет раздел с тепловой информацией, в основном переход к воздуху (R θJA ), если какой-либо тип радиатора не использовался, или переход к корпусу (R θJC ), если будет использоваться радиатор, который будет иметь собственное тепловое сопротивление и рассматривается в следующем разделе. Типичные данные теплового сопротивления будут выглядеть примерно так, как на изображении ниже.


← Предыдущая страница
Введение

Тепловое сопротивление | Neutrium

Концепция термического сопротивления может использоваться для решения задач стационарной теплопередачи, которые связаны с последовательными, параллельными или комбинированными последовательно-параллельными компонентами. В этой статье показано, как рассчитать общее тепловое сопротивление для таких систем и как рассчитать тепловое сопротивление для практических геометрий, таких как стенка трубы.

: Термическое сопротивление (К / Вт)
: Тепловое сопротивление для конвективной теплопередачи (К / Вт)
: Тепловое сопротивление К / Вт)
: Тепловое сопротивление для кондуктивной теплопередачи через плоскую стену (К / Вт)
: Тепловой поток (Вт)
: Температура при заданная точка (К)
: Толщина плоской стенки (м)
: Площадь теплопередачи (м 2 )
: Средняя теплопроводность (Вт / м.K)
: Внутренний диаметр (м)
: Внешний диаметр (м)
: Длина трубы (м)
:: Коэффициент теплопередачи (Вт / м 2 .K)

Термическое сопротивление — это сопротивление конкретной среды или системы потоку тепла через ее границы и зависит от геометрии и тепловых свойств среды, таких как как теплопроводность.

Точное знание теплового сопротивления данной системы или компонента системы может позволить рассчитать тепловой поток через него или температуры на его границах. Это особенно полезно при решении задач теплового проектирования в промышленности, таких как расчет теплопотерь из резервуара или выбор изоляции трубопроводов.

Сети термического сопротивления обычно используются для анализа стационарной теплопередачи. Сети с тепловым сопротивлением имеют те же функции, что и сети электрического сопротивления, используемые в электротехнике, и позволяют легко рассчитать общее тепловое сопротивление в системе, независимо от того, состоит ли она из последовательно включенных, параллельных или обоих сопротивлений.

Сопротивление в серии

Часто приходится рассматривать передачу тепла через различные среды последовательно, одним из таких примеров является тепловой поток от газа на одной стороне плоской стенки к газу на другой стороне. Эту систему теплопередачи можно проанализировать с помощью приведенной ниже схемы теплового сопротивления.

Общее сопротивление для описанной выше системы может быть вычислено из всех сопротивлений компонентов R conv1 , R wall и R conv2 следующим образом.

После расчета общего сопротивления тепловой поток через систему можно рассчитать, зная две конечные температуры, следующим образом.

Сопротивление параллельно

Теплопередача может также происходить через сопротивление параллельно, например, потеря тепла с внешней поверхности резервуара будет происходить из-за механизмов конвективной и радиационной теплопередачи.

Обратное полное сопротивление для системы, показанной выше, может быть вычислено путем сложения обратных сопротивлений двух компонентов.

Это можно упростить, чтобы его можно было напрямую комбинировать с тепловыми сопротивлениями других компонентов в данной системе, что особенно важно, когда тепловые сопротивления существуют как параллельно, так и последовательно.

Комбинированное последовательное и параллельное сопротивление

В промышленных задачах теплопередачи тепловое сопротивление часто оказывается как последовательным, так и параллельным. Например, потеря тепла из содержимого неизолированного резервуара будет иметь конвективное сопротивление содержимого резервуара, за которым следует сопротивление проводимости стенок резервуара последовательно, за которым следует конвективное и радиационное сопротивление окружающей среде параллельно.Этот пример описывается схемой теплового сопротивления ниже.

В этом случае общее сопротивление может быть вычислено путем сложения общего сопротивления для последовательного сегмента и общего сопротивления для параллельного сегмента, как описано в предыдущих разделах.

При проектировании и оптимизации промышленного оборудования часто требуется определить установившуюся температуру в некоторой точке сети теплового сопротивления, например температуру между стенкой резервуара и внутренней стороной его изоляции.

Для определения этих температур необходимо сначала рассчитать термическое сопротивление. Некоторые уравнения для расчета теплового сопротивления представлены ниже.

Сопротивление проводимости

Уравнения сопротивления проводимости для некоторых распространенных случаев приведены в таблице ниже.

9369
Геометрия Уравнение сопротивления
Плоская стенка
Стенка цилиндра
Сферическая стенка
Сопротивление конвективной теплопередачи по следующему уравнению.

Для расчета конвективного сопротивления необходимо сначала определить коэффициент теплопередачи h. Существует множество корреляций для расчета коэффициента теплопередачи в зависимости от геометрии рассматриваемой системы.

Сопротивление излучению

Сопротивление теплопередаче посредством излучения можно рассчитать по следующему уравнению:

Это позволяет легко сгруппировать лучистый теплоперенос вместе с другими режимами теплопередачи при рассмотрении общей теплопередачи для данной системы, однако Сначала необходимо рассчитать коэффициент радиационной теплопередачи.

Обычно при анализе теплопередачи предполагается, что между поверхностями двух компонентов происходит идеальный контакт. Чтобы это предположение было правильным, необходимо, чтобы обе поверхности были идеально гладкими, однако на практике это бывает редко.

Когда две реальные поверхности прижимаются друг к другу, выступы на каждой поверхности будут соприкасаться и образовывать области с высокой теплопроводностью, в то время как углубления будут заполнены воздухом. Поскольку воздух является плохим проводником тепла, это увеличивает сопротивление тепловому потоку по сравнению с идеально гладкими поверхностями.Это увеличение сопротивления характеризуется термическим контактным сопротивлением, которое можно рассчитать следующим образом.

Здесь h c — теплопроводность контакта, часто определяется экспериментально.

Статья создана: 11 июня 2012 г.
Теги статьи

Понимание данных о тепловом сопротивлении полупроводников

Автор: Сива Уппулури, инженер по приложениям

Полупроводниковые устройства не идеальны — все диоды и транзисторы характеризуются потерями мощности из-за переключения и проводимости.Коммутационные потери возникают в интервале между включенным и выключенным состояниями перехода, когда есть как напряжение на выводах устройства, так и ток, протекающий через него. Потери проводимости возникают из-за внутреннего сопротивления устройства, которое, каким бы низким оно ни было, приведет к потере мощности при протекании тока. Даже в выключенном состоянии потери из-за токов утечки транзисторов могут быть значительными в таких устройствах, как микропроцессоры, которые должны использовать небольшие геометрические процессы, чтобы упаковать миллионы транзисторов в единую интегральную схему.

Какой бы ни была причина, потери в полупроводниковых устройствах генерируют тепло, которое необходимо отводить, если температура перехода должна поддерживаться в допустимых пределах для правильной работы устройства. Упаковка полупроводниковых устройств еще больше усложняет способы отвода тепла, поэтому важно понимать различные процессы и способ представления тепловой информации в технических паспортах устройств.

В этой статье будут рассмотрены механизмы, с помощью которых обычно отводится тепло, с целью понять, каким образом они применяются к полупроводниковым устройствам и, в свою очередь, как производители полупроводников определяют тепловые характеристики своей продукции.Неточности, которые могут возникнуть в результате использования тепловой информации, представленной в техническом описании, будут выделены вместе с альтернативным методом определения температуры ключевого перехода устройства.

Механизмы отвода тепла

Существует три основных механизма отвода тепла от электронного устройства: теплопроводность, конвекция и излучение. Для упакованного полупроводникового устройства большая часть тепла будет передаваться за счет теплопроводности: от источника тепла в сердечнике устройства через полупроводниковую подложку, выводную рамку, к которой прикреплен чип, и через формовочный материал, который инкапсулирует устройство, к его внешняя поверхность.В этот момент тепло может дополнительно передаваться за счет теплопроводности через любой твердый материал, с которым устройство контактирует, например печатная плата или внешний радиатор.

Конвекция определяется как передача тепла через жидкость, которая может быть жидкостью или газом, как в окружающем воздухе. Это механизм, который в значительной степени учитывает остаточное тепловыделение в окружающую среду. Лучистая теплопередача редко является важным механизмом теплопередачи в электронике и сложна для расчета, поскольку она зависит не только от разницы температур, но и от расстояния между объектами и таких факторов, как цвет и текстура поверхностей.

Несмотря на то, что целью является эффективная теплопередача от источника к окружающей среде, обычно тепловыделение определяется с учетом обратного теплового потока, а именно теплового сопротивления между этими точками. Обычно эта цифра складывается из тепловых сопротивлений между конечными точками и одной или несколькими промежуточными точками, в зависимости от механизмов теплопередачи и задействованных материалов.

Производители полупроводников предоставляют значения термического сопротивления для корпусных устройств в качестве вспомогательного средства при проектировании для определения их способности выдерживать нагрузку.Обычно этот показатель выражается в термическом сопротивлении перехода к окружающей среде и предназначен для расчета количества мощности, которое может безопасно рассеиваться внутри устройства без повышения температуры перехода (Tj) выше указанного максимума. Например, для устройства, работающего при температуре окружающей среды (Ta) 25 ° C, которое имеет тепловое сопротивление перехода к окружающей среде, Rth (JA), 150 ° C / Вт с указанной максимальной температурой перехода, Tj, 150 ° C, максимальная мощность (Pmax) может быть рассчитана по следующей формуле:

Pmax = (Tj (max) — Ta) / Rth (JA) = (150-25) / 150 = 0.83W

Примечание. Предполагается, что устройство установлено в тех же условиях, для которых Rth (JA) определен в таблице данных.

И наоборот, исходя из этой формулы, Tj можно рассчитать, зная мощность, рассеиваемую внутри устройства, и значения Rth (JA) и Ta.

Иногда производители предоставляют альтернативные или дополнительные значения термического сопротивления, которые можно использовать аналогичным образом для расчета рабочей температуры перехода. Они могут включать значение соединения с корпусом (верх упаковки), Rth (JC), и значение соединения с выводами (соединение с точкой пайки выводной рамки), Rth (JL) — см. Рисунок 1.

Рис. 1. Пакет PowerDI5®, показывающий точки измерения температуры для Tc (температура корпуса) и Tl (температура выводов)

Попытка измерить тепловое сопротивление конкретного пути теплового потока, например, от перехода к корпусу или переход к свинцу осложняется тем фактом, что мощность, рассеиваемая на переходе полупроводника, покидает корпус через ряд параллельных путей теплового потока. Каждый из них имеет определенное тепловое сопротивление, значение которого зависит от размеров и теплопроводности этого пути.Следовательно, значимый показатель теплового сопротивления зависит от 1) того, насколько точно могут быть измерены температуры на стыке и корпусе (или выводе), а также 2) от определения доли общего тепла, генерируемого на переходе полупроводника, которое течет между переходом и измерением. точка (т. е. верхняя часть корпуса или вывод).

На практике получить точную температуру в требуемых точках измерения сложно даже при использовании бесконтактных инфракрасных приборов.Вместо этого можно использовать один из следующих стандартных методов JEDEC (JESD51-12) для определения значений термического сопротивления для Rth (JC) или Rth (JL).

Метод 1: Rth (JX_Ө)

Этот метод направлен на определение теплового сопротивления пути теплового потока между переходом и конкретной интересующей точкой, «X», которая может быть верхней частью корпуса, точкой пайки. и т. д. Метод 1 предполагает, что вся мощность, рассеиваемая на переходе, проходит через интересующую точку с использованием эффективного теплоотвода в точке «X».Затем при точном измерении температуры в этой точке (Tx) истинное тепловое сопротивление может быть рассчитано как:

Rth (JX_Ө) = (Tj –Tx) / P

Где P — рассеиваемая мощность (тепло), которая течет из переход к точке «X». В идеале во время этого измерения около 100% мощности должно течь от соединения до точки «X». Эта цифра зависит только от физических свойств пути теплового потока и не зависит от количества рассеиваемой мощности или размера платы, на которой установлено устройство.

Значения теплового сопротивления перехода и выводов, предоставленные компанией Diodes Incorporated в ее технических паспортах, измерены с использованием метода 1. Это значение не зависит от размера платы и поэтому помогает сравнивать тепловые характеристики выводных рамок различных корпусов.

Метод 2: Rth (JX_ᴪ)

Этот метод обеспечивает параметр тепловых характеристик, который не следует путать с тепловым сопротивлением. Он рассчитывается с использованием уравнения, аналогичного используемому в методе 1:

Rth (JX_ᴪ) = (Tj –Tx) / P

В этом методе, поскольку не используется дополнительный теплоотвод для отвода большей части генерируемого тепла через Для интересующего пути в расчетах используется значение общей рассеиваемой мощности вместо доли, которая течет между узлом и точкой «X».Это приводит к более низкому абсолютному значению Rth (JX_ᴪ).

Значения термического сопротивления перехода к корпусу, предоставленные компанией Diodes Incorporated в ее технических паспортах, измерены с использованием метода 2, поэтому в дальнейшем в этой статье Rth (JC) будет более правильно называться ᴪth (JC).

Определение температуры перехода (Tj):

Точное определение температуры перехода (Tj) устройства с помощью Rth (JA), Rth (JL) или ᴪth (JC) зависит от возможности измерения температуры окружающей среды, свинца или корпуса в идеальных условиях таблицы.В действительности, устройство часто устанавливается на печатной плате, заполненной другими устройствами и компонентами; также количество меди, подключенной к выводной рамке, может не соответствовать условиям таблицы, что ограничивает полезность этих параметров, как обсуждается ниже:

Диаграммы 1–3, измеренные на пакете PowerDI (как показано на рисунке 1), показывают соотношение между температурой перехода и ᴪth (JC), Rth (JL) и Rth (JA) соответственно при различных условиях радиатора: 1) алюминиевая плата размером 2 дюйма * 2 дюйма и 2) минимальная рекомендуемая компоновка площадки (MRP).

Диаграмма 1. ᴪth (JC) по сравнению с Tj

Диаграмма 2. Rth (JL) по сравнению с Tj

Диаграмма 3. Rth (JA) по сравнению с Tj

Диаграмма 4. Tc в зависимости от Tj

Rth (JA)… Как показано на диаграмме 3, изменение Rth (JA) в зависимости от температуры перехода минимально, но влияние из-за различных радиаторов более важно. Следовательно, при использовании значений Rth (JA) из таблицы данных необходимо следить за тем, чтобы условия установки устройства в реальных приложениях были близки к тем, которые указаны в таблице.Различия в расположении радиаторов (объем и проводимость радиатора, подключенного к выводной рамке устройства) могут вызвать значительные ошибки при оценке температуры перехода с использованием Rth (JA).

Rth (JL)… Это значение измеряется в соответствии с методом 1 JEDEC (JESD51-12) и может использоваться только 1) если тепловой поток в каждом другом пути сделать незначительным и 2) температура выводов измерена точно. . Чтобы измерить значение Rth (JL) из таблицы данных с помощью этого метода, необходимо прикрепить массивный радиатор к выступу выводной рамки, чтобы гарантировать, что большая часть тепла от перехода отводится от выступа выводной рамки в радиатор.На практике это бывает редко, поскольку будут другие параллельные пути теплового потока, которые уменьшают точность Rth (JL). На диаграмме 2 показана зависимость Rth (JL) от теплоотвода при использовании радиаторов практичного размера. Следовательно, значение Rth (JL) в техническом описании действительно может обеспечить только сравнение теплопроводности выводных рам корпусов различных производителей. Для расчета температуры перехода в реальных приложениях Rth (JL) вряд ли даст точный ответ и чаще дает результат «наилучшего случая», связанный с максимальным теплоотводом.

ᴪth (JC)… Это значение измеряется в соответствии с методом 2 JEDEC (JESD51-12) и использует 1) разницу температур между спаем и точкой измерения на корпусе (которая часто является центром упаковки) и 2) общая мощность, рассеиваемая в устройстве, но не мощность, протекающая между переходом и точкой измерения на корпусе. По этой причине это значение не следует рассматривать как истинное тепловое сопротивление, а только как тепловой параметр, и поэтому его следует использовать только для сравнения между различными пакетами.График 1 показывает, что это значение зависит не только от размера радиатора, но и от рабочей температуры перехода. Значение уменьшается с увеличением температуры перехода из-за конвекции воздуха вокруг устройства. Несмотря на то, что измерение проводится в условиях неподвижного воздуха, горячая поверхность устройства все равно вызывает циркуляцию воздуха, что приводит к эффекту конвекции. Поскольку ᴪth (JC) часто является меньшим значением по сравнению с Rth (JA) и Rth (JL), эффект конвекции приводит к большему пропорциональному изменению его значения, что делает его более значительным.Следовательно, это значение не следует использовать безоговорочно при попытке определить температуру перехода в реальных приложениях. Однако меньшее абсолютное значение ᴪth (JC) означает, что ошибка при вычислении температуры перехода также будет низкой.

Диаграмма 4 предлагает альтернативный подход, который можно использовать в качестве инструмента для более точного определения температуры перехода устройства в реальных сценариях применения. Такой подход исключает влияние различных радиаторов из уравнения.Однако следует соблюдать осторожность при измерении температуры корпуса, поэтому 1) рекомендуется использовать бесконтактный прибор для измерения температуры и 2) точка измерения на корпусе должна находиться как можно ближе к центру его поверхности.

Заключение

Результаты, представленные выше, показывают, что определение температуры перехода полупроводникового устройства с использованием различных параметров термического сопротивления (переход к корпусу, выводу или окружающей среде), обычно содержащихся в технических данных производителя, в значительной степени зависит от расположения радиатора.Вместо этого на диаграмме 4 показана гораздо более тесная корреляция между температурой перехода и температурой корпуса, которая в гораздо меньшей степени зависит от размера или эффективности любого радиатора. Следовательно, график, подобный диаграмме 4, является наиболее точным инструментом для определения температуры перехода устройства, при условии, что температуру корпуса можно измерить таким же образом на реальной монтажной плате.

PowerDI является зарегистрированным товарным знаком Diodes Incorporated.

Загрузить PDF-файл этой статьи

Вернуться к оглавлению статей

Как выбрать радиатор

С увеличением тепловыделения от устройств микроэлектроники и уменьшением общих форм-факторов управление температурным режимом становится все более важным. важный элемент дизайна электронного продукта.

И надежность работы, и ожидаемый срок службы электронного оборудования обратно пропорциональны температуре компонентов оборудования. Взаимосвязь между надежностью и рабочей температурой типичного кремниевого полупроводникового устройства показывает, что снижение температуры соответствует экспоненциальному увеличению надежности и ожидаемого срока службы устройства. Следовательно, долгий срок службы и надежная работа компонента могут быть достигнуты путем эффективного управления рабочей температурой устройства в пределах, установленных инженерами-разработчиками устройства.

Радиаторы — это устройства, которые улучшают отвод тепла от горячей поверхности, обычно в случае тепловыделяющего компонента, в более прохладную окружающую среду, обычно воздух. Для следующих обсуждений в качестве охлаждающей жидкости предполагается воздух. В большинстве случаев передача тепла через границу раздела между твердой поверхностью и охлаждающим воздухом наименее эффективна в системе, а граница раздела твердое тело-воздух представляет собой наибольший барьер для рассеивания тепла. Радиатор снижает этот барьер, главным образом, за счет увеличения площади поверхности, непосредственно контактирующей с хладагентом.Это позволяет рассеивать больше тепла и / или снижает рабочую температуру устройства. Основная цель радиатора — поддерживать температуру устройства ниже максимально допустимой температуры, указанной производителями устройства.

Тепловой контур

Прежде чем обсуждать процесс выбора радиатора, необходимо определить общие термины и установить концепцию теплового контура. Цель состоит в том, чтобы предоставить основные основы теплопередачи для тех читателей, которые не знакомы с предметом.Обозначения и определения терминов следующие:

Q : общая мощность или скорость рассеивания тепла в Вт, представляют собой скорость рассеивания тепла электронным компонентом во время работы. С целью выбора радиатора выдавалась максимальная рассеиваемая рабочая мощность.

T j : максимальная температура перехода устройства в ° C. Допустимые значения T j находятся в диапазоне от 115 ° C в типичных приложениях микроэлектроники до 180 ° C для некоторых электронных устройств управления.В специальных и военных применениях температура от 65 ° C до 80 ° C не редкость.

T c : температура корпуса устройства в ° C. Поскольку температура корпуса устройства зависит от места измерения, она обычно представляет собой максимальную местную температуру корпуса.

T с : температура раковины в ° C. Опять же, это максимальная температура радиатора в ближайшем к устройству месте.

T a : температура окружающего воздуха в ° C.

Используя температуру и скорость рассеивания тепла, количественная мера эффективности теплопередачи в двух местах теплового компонента может быть выражена в терминах теплового сопротивления R , определяемого как

R = Т / К

Были T — разница температур между двумя точками. Единица теплового сопротивления — ° C / Вт, что указывает на повышение температуры на единицу скорости рассеивания тепла. Это тепловое сопротивление аналогично электрическому сопротивлению R e , определяемому по закону Ома:

R e = V / I

Если В, — это разность напряжений, а I — ток.

Рисунок 1: Схема термического сопротивления

Рассмотрим простой случай, когда радиатор установлен на корпусе устройства, как показано на рис. 1. Используя концепцию теплового сопротивления, можно нарисовать упрощенную тепловую схему этой системы, как показано на рисунке. В этой упрощенной модели тепло последовательно течет от перехода к корпусу, затем через интерфейс в радиатор и, наконец, отводится от радиатора в воздушный поток.

Термическое сопротивление между переходом и корпусом устройства определяется как

.

R jc = (T jc ) / Q = (T j — T c ) / Q

Это сопротивление указано производителем устройства.Хотя значение R jc данного устройства зависит от того, как и где используется механизм охлаждения над корпусом, оно обычно дается как постоянное значение. Также считается, что R jc находится вне возможностей пользователя изменять или контролировать.

Аналогичным образом сопротивление между корпусом и стоком и между стоком и окружающей средой определяется как

.

R cs = (T cs ) / Q = (T c — T с ) / Q

R sa = (T sa ) / Q = (T s — T a ) / Q

соответственно.Здесь R cs представляет тепловое сопротивление на границе раздела между корпусом и радиатором и часто называется сопротивлением интерфейса. Это значение может быть существенно улучшено в зависимости от качества сопрягаемой поверхности и / или выбора материала интерфейса. R sa — тепловое сопротивление радиатора.

Очевидно, что полное сопротивление перехода к окружающей среде является суммой всех трех сопротивлений:

R ja = R jc + R cs + R sa = (T j — T a ) / Q

Требуемое тепловое сопротивление радиатора

Чтобы начать выбор радиатора, первым делом необходимо определить тепловое сопротивление радиатора, необходимое для удовлетворения тепловых критериев компонента.Изменив предыдущее уравнение, сопротивление радиатора можно легко получить как

R sa = ((T s — T a ) / Q) — R jc — R cs

В этом выражении T j , Q и R jc предоставляются производителем устройства, а T a и R cs являются параметрами, определяемыми пользователем.

Температура окружающего воздуха T a для охлаждения электронного оборудования зависит от рабочей среды, в которой предполагается использовать компонент.Как правило, она находится в диапазоне от 35 до 45 ° C, если используется внешний воздух, и от 50 до 60 ° C, если компонент находится в закрытом помещении или находится за другим тепловыделяющим оборудованием.

Сопротивление интерфейса R cs зависит от отделки поверхности, плоскостности, приложенного монтажного давления, площади контакта и, конечно же, от типа материала интерфейса и его толщины. Трудно получить точное значение этого сопротивления даже для заданного типа материала и толщины, поскольку оно может широко варьироваться в зависимости от давления монтажа и других параметров, зависящих от конкретного случая.Однако более надежные данные можно получить непосредственно от производителей материалов или от производителей радиаторов. Типичные значения для общих материалов интерфейса приведены в таблице 1.

Материал Электропроводность
Вт / дюйм ° C
Толщина
дюймов
Сопротивление
дюйм 2 ° C / Вт
There-O-Link
Термический состав
0.010 0,002 0,19
Высокопроизводительный
Термический состав
0,030 0,002 0,07
Кон-Дукс 0,030 0,005 0,17
A-Dux 0,008 0,004 0,48
1070 Ther-A-Grip 0,014 0,006 0,43
1050 Ther-A-Grip 0.009 0,005 0,57
1080 Ther-A-Grip 0,010 0,002 0,21
1081 Ther-A-Grip 0,019 0,005 0,26
A-Phi 220 @ 20psi 0,074 0,020 0,27
1897 в Сил-8 0,010 0,008 0,81
1898 в Сил-8 0.008 0,006 0,78
Таблица 1: Термические свойства интерфейсных материалов 1

Когда все параметры в правой части выражения R sa определены, это становится требуемым максимальным тепловым сопротивлением радиатора для данного приложения. Другими словами, значение теплового сопротивления выбранного радиатора для данного приложения должно быть равным или меньше значения R sa , чтобы температура перехода поддерживалась на уровне или ниже указанного значения T j .

Выбор радиатора

При выборе подходящего радиатора, отвечающего требуемым тепловым критериям, необходимо изучить различные параметры, которые влияют не только на характеристики самого радиатора, но и на общую производительность системы. Выбор конкретного типа радиатора во многом зависит от теплового баланса, предусмотренного для радиатора, и внешних условий, окружающих радиатор. Следует подчеркнуть, что для данного радиатора никогда не может быть одного значения теплового сопротивления, поскольку тепловое сопротивление изменяется в зависимости от внешних условий охлаждения.

При выборе радиатора необходимо классифицировать воздушный поток как естественный, смешанный с низким потоком или принудительную конвекцию с высоким потоком. Естественная конвекция возникает, когда нет потока, индуцированного извне, а теплопередача зависит исключительно от свободного всплывающего потока воздуха, окружающего радиатор. Принудительная конвекция возникает, когда поток воздуха вызывается механическими средствами, обычно вентилятором или нагнетателем. Нет четкого различия по скорости потока, разделяющего смешанный и принудительный режимы течения.В приложениях принято, что влияние выталкивающей силы на общую теплопередачу уменьшается до незначительного уровня (менее 5%), когда скорость индуцированного воздушного потока превышает 1 2 м / с (от 200 до 400 лфм).

Следующим шагом является определение необходимого объема радиатора. В таблице 2 показаны приблизительные диапазоны объемного теплового сопротивления типичного радиатора при различных условиях потока.

Условия потока
м / с (lfm)
Объемное сопротивление
см3 ° C / Вт (в 3 ° C / Вт)
естественная конвекция 500-800 (30-50)
1.0 (200) 150–250 (10-15)
2,5 (500) 80-150 (5-10)
5,0 (1000) 50-80 (3-5)
Таблица 2: Диапазон объемного термического сопротивления

Объем радиатора для данного низкого состояния может быть получен путем деления объемного теплового сопротивления на требуемое тепловое сопротивление. Таблицу 2 следует использовать только в качестве руководства для целей оценки в начале процесса отбора.Фактические значения сопротивления могут отличаться за пределами указанного диапазона в зависимости от многих дополнительных параметров, таких как фактические размеры радиатора, тип радиатора, конфигурация потока, ориентация, обработка поверхности, высота над уровнем моря и т. Д. Меньшие значения, показанные выше, соответствуют объем теплоотвода примерно от 100 до 200 см 3 (от 5 до 10 дюймов 3 ), а более крупных — примерно до 1000 см 3 (60 дюймов 3 ).

Приведенные выше табличные диапазоны предполагают, что конструкция оптимизирована для заданных условий потока.Хотя существует множество параметров, которые следует учитывать при оптимизации радиатора, одним из наиболее важных параметров является плотность ребер. В плоском радиаторе с ребрами оптимальное расстояние между ребрами сильно зависит от двух параметров: скорости потока и длины ребер в направлении потока. Таблицу 3 можно использовать в качестве руководства для определения оптимального расстояния между ребрами радиатора с плоскими ребрами в типичных приложениях.

Длина ребра, мм (дюйм)
Условия потока
м / с (lfm)
75
3.0
150
6.0
225
9,0
300
12,0
Естественная конвекция 6,5
0,25
7,5
0,30
10
0,38
13
0,50
1,0 (200) 4.0
0,15
5,0
0,20
6,0
0,24
7,0
0,27
2,5 (500) 2,5
0,10
3,3
0,13
4,0
0,16
5,0
0,20
5.0 (1000) 2,0
0,08
2,5
0,10
3,0
0,12
3,5
0,14
Таблица 3: Расстояние между ребрами (в мм / дюймов, ) в зависимости от расхода и длины ребер

Средняя производительность типичного радиатора линейно пропорциональна ширине радиатора в направлении, перпендикулярном потоку, и приблизительно пропорциональна квадратному корню из длины ребра в направлении, параллельном потоку.Например, увеличение ширины радиатора в два раза увеличит способность рассеивания тепла в два раза, тогда как способность рассеивания тепла увеличится в 1,4 раза. Следовательно, если есть выбор, желательно увеличить ширину радиатора, а не длину радиатора. Кроме того, эффект радиационной теплопередачи очень важен при естественной конвекции, так как на нее может приходиться до 25% общего рассеивания тепла. Если компонент не обращен к более горячей поверхности поблизости, необходимо обязательно покрасить или анодировать поверхности радиатора для усиления излучения.

Типы радиаторов

Радиаторы можно классифицировать по способам производства и формам конечной формы. К наиболее распространенным типам радиаторов с воздушным охлаждением относятся:

    1. Штампы : Медный или алюминиевый листовой металл штампуется в желаемые формы. они используются в традиционном воздушном охлаждении электронных компонентов и предлагают недорогое решение тепловых проблем с низкой плотностью. Они подходят для крупносерийного производства, потому что усовершенствованная оснастка с высокоскоростной штамповкой снизит затраты.Дополнительные трудосберегающие опции, такие как краны, зажимы и материалы интерфейса, могут быть применены на заводе, чтобы помочь снизить затраты на сборку платы.
    2. Экструзия : Они позволяют формировать сложные двухмерные формы, способные рассеивать большие тепловые нагрузки. Они могут быть вырезаны, обработаны и добавлены дополнительные опции. Поперечная резка приведет к образованию всенаправленных радиаторов с прямоугольными штыревыми ребрами, а включение зубчатых ребер повысит производительность примерно на 10-20%, но с более медленной скоростью экструзии.Пределы экструзии, такие как высота ребра до толщины зазора ребра, обычно определяют гибкость вариантов конструкции. Типичное соотношение высоты ребра к зазору до 6 и минимальная толщина ребра 1,3 мм достигаются при стандартной экструзии. Соотношение сторон 10: 1 и толщина ребра 0,8 ″ могут быть достигнуты с помощью специальных конструктивных особенностей штампа. Однако по мере увеличения соотношения сторон допуск на экструзию ухудшается.
    3. Склеенные / изготовленные ребра : Большинство радиаторов с воздушным охлаждением ограничены конвекцией, и общие тепловые характеристики радиатора с воздушным охлаждением часто могут быть значительно улучшены, если большая площадь поверхности может быть подвергнута воздействию воздушного потока.В этих высокоэффективных радиаторах используется теплопроводящая эпоксидная смола с алюминиевым наполнением для приклеивания плоских ребер к рифленой экструзионной базовой пластине. Этот процесс позволяет добиться гораздо большего соотношения высоты ребра к зазору от 20 до 40, что значительно увеличивает охлаждающую способность без увеличения требований к объему.
    4. Отливки : Доступны процессы литья под давлением, литья под давлением с использованием вакуума или без него, из алюминия или меди / бронзы. Эта технология используется в радиаторах с ребристыми штырями высокой плотности, которые обеспечивают максимальную производительность при использовании ударного охлаждения.
    5. Гнутые ребра : Гофрированный лист из алюминия или меди увеличивает площадь поверхности и, следовательно, объемные характеристики. Затем радиатор прикрепляется либо к опорной плите, либо непосредственно к поверхности нагрева с помощью эпоксидной смолы или пайки. Он не подходит для радиаторов с высоким профилем из-за доступности и эффективности ребер. Следовательно, он позволяет изготавливать радиаторы с высокими эксплуатационными характеристиками для приложений.

На рис. 2 показан типичный диапазон функций стоимости для различных типов радиаторов с точки зрения требуемого теплового сопротивления.

Рисунок 2: Стоимость в зависимости от требуемого термического сопротивления

Эффективность различных типов радиаторов сильно зависит от потока воздуха, проходящего через радиатор. Чтобы количественно оценить эффективность различных типов радиаторов, объемную эффективность теплопередачи можно определить как

.

, где m — массовый расход через радиатор, c — теплоемкость жидкости, а T sa — средняя разница температур между радиатором и окружающим воздухом.Эффективность теплопередачи была измерена для широкого диапазона конфигураций радиатора, и их диапазоны перечислены в таблице 4.

Тип радиатора n диапазон, %
Пластины для штамповки и плоские 10-18
Ребристые профили 15-22
Ударный поток
Радиаторы вентилятора
25-32
Экструзии с полностью закрытым воздуховодом 45-58
Ребро со штифтом,
Склеенные и загнутые ребра
78-90
Таблица 4: Диапазон эффективности теплопередачи

Улучшенные тепловые характеристики обычно связаны с дополнительными затратами либо на материалы, либо на производство, либо на то и другое.

График температурных характеристик

Графики производительности, типичные для тех, которые публикуются поставщиками радиаторов, показаны на рис. 3. Графики представляют собой композицию двух отдельных кривых, объединенных в один рисунок. Предполагается, что охлаждаемое устройство правильно установлено, а радиатор находится в своей обычно используемой монтажной ориентации по отношению к направлению воздушного потока. Первый график, перемещающийся из нижнего левого угла в верхний правый, представляет собой кривую естественной конвекции повышения температуры радиатора, T sa по сравнению с Q .Кривые естественной конвекции также предполагают, что радиатор окрашен или анодирован в черный цвет. Кривая сверху слева направо вниз представляет собой кривую принудительной конвекции теплового сопротивления в зависимости от скорости воздуха. При принудительной конвекции T sa линейно пропорционально Q , следовательно, R sa не зависит от Q и становится функцией только скорости потока. Однако явление естественной конвекции является нелинейным, поэтому необходимо представить T sa как функцию Q.
Рисунок 3: Типовые графики производительности

Можно использовать графики производительности для определения радиатора и, для приложений с принудительной конвекцией, для определения минимальной скорости потока, удовлетворяющей тепловым требованиям. Если требуемое тепловое сопротивление в приложении принудительной конвекции составляет, например, 8 ° C / Вт, приведенная выше кривая зависимости теплового сопротивления от скорости потока указывает на то, что скорость должна быть не ниже 2,4 м / с (470 лфм).Для применений с естественной конвекцией требуемое термическое сопротивление R sa можно умножить на Q , чтобы получить максимально допустимое значение T sa . Превышение температуры выбранного радиатора должно быть равным или меньше максимально допустимого T sa при том же Q .

Напоминаем читателям, что кривые естественной конвекции предполагают необязательную ориентацию радиатора относительно силы тяжести.Кроме того, скорость потока на графике принудительной конвекции представляет скорость набегающего потока без учета влияния обхода потока. Было проведено ограниченное количество исследований 2,3 на предмет перепуска потока. Эти исследования показывают, что байпас потока может снизить эффективность радиатора на целых 50% при той же скорости потока на входе. Для получения дополнительной информации по этому вопросу читатели могут обратиться к процитированным источникам.

Когда устройство существенно меньше базовой пластины радиатора, возникает дополнительное тепловое сопротивление, называемое сопротивлением растекания, которое необходимо учитывать в процессе выбора.Графики производительности обычно предполагают, что тепло равномерно распределяется по всей базовой площади радиатора, и, следовательно, не учитывают дополнительное повышение температуры, вызванное меньшим источником тепла. Это сопротивление растеканию обычно может составлять от 5 до 30% от общего сопротивления радиатора и может быть оценено с помощью простого аналитического выражения, разработанного в ссылке 4.

Еще один критерий проектирования, который необходимо учитывать при выборе радиатора, — это влияние высоты.Хотя температура воздуха в помещении обычно контролируется и не зависит от изменения высоты, давление воздуха в помещении изменяется с высотой. Поскольку многие электронные системы устанавливаются на большой высоте, необходимо снизить характеристики радиатора в основном из-за более низкой плотности воздуха, вызванной более низким давлением воздуха на большей высоте. В таблице 5 показаны коэффициенты снижения характеристик для типичных радиаторов на большой высоте. Например, чтобы определить фактические тепловые характеристики радиатора на высотах, отличных от уровня уплотнения, значения теплового сопротивления, считанные с графиков рабочих характеристик, должны быть разделены на коэффициент снижения мощности, прежде чем значения будут сравнены с требуемым тепловым сопротивлением. .

Высота
м / фут
Фактор
0, уровень моря 1,00
1000 3000 0,95
1500 5000 0,90
2000 7000 0,86
3000 10000 0.80
3500 12000 0,75
Таблица 5: Коэффициенты снижения номинальных характеристик на высоте

Ссылки
    1. Aavid Engineering, Inc., EDS № 117, Интерфейсные материалы , январь 1992 г.
    2. R.A. Виртц, В. Чен и Р. Чжоу, Влияние обхода потока на характеристики радиаторов с продольными ребрами , ASME Journal of Electronic Packaging », Vol.~ 116, с. ~ 206-211, 1994.
    3. S. Lee, Оптимальная конструкция и выбор радиаторов , Труды 11-го симпозиума IEEE Semi-Therm Symposium, стр. 48-54, 1995.
    4. С. Сонг, С. Ли и В. Ау, Уравнение в замкнутой форме для тепловых сопротивлений сужения / растекания с переменным граничным условием сопротивления , Труды технической конференции IEPS 1994, стр. 111-121, 1994.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *