Site Loader

Содержание

Термистор как проверить мультиметром?


Расшифровка основных характеристик

Кратко рассмотрим, данные приведенные в таблице на рисунке 3 (для удобства строки пронумерованы).


Рисунок 3. Таблица с основными характеристиками серии B598*1

Краткое описание:

  1. значение, характеризующее максимальный уровень рабочего напряжения при нагреве устройства до 60°С, в данном случае он соответствует 265 В. Учитывая, что нет определения DC/AC, можно констатировать, что элемент работает как с переменным, так и постоянным напряжением.
  2. Номинальный уровень, то есть напряжение в штатном режиме работы – 230 вольт.
  3. Расчетное число гарантированных производителем циклов срабатывания элемента, в нашем случае их 100.
  4. Значение, описывающее величину опорной температуры, после достижения которой происходит существенное увеличение уровня сопротивления. Для наглядности приведем график (см. рис. 4) температурной корреляции.


Рис. 4. Зависимость сопротивления от температуры, красным выделена точка температурного перехода (опорная температура) для С831

Как видно на графике, R резко возрастает в диапазоне от 130°С до 170°С, соответственно, опорной температурой будет 130°C.

  1. Соответствие номинальному значению R (то есть допуск), указывается в процентном соотношении, а именно 25%.
  2. Диапазон рабочей температуры для минимального (от -40°С до 125°С) и максимального (0-60°С) напряжения.

Схема устройства представлена на следующем рисунке.


При изменении температуры изменяется сопротивление терморезистора (термистора). Но в нашей схеме мы не будем измерять сопротивление термистора напрямую, вместо этого мы использовали делитель напряжения, одним из резисторов которого является известное сопротивление 10 кОм, а вторым – наш терморезистор. Средняя точка делителя напряжения подключена к аналоговому входу A0 платы Arduino, поэтому при помощи аналогово-цифрового преобразования (АЦП) на этом контакте мы можем определить падение напряжение на терморезисторе в любой момент времени и, следовательно, и его сопротивление. Благодаря этим данным мы по формулам, приведенным ниже в данной статье, можем определить значение температуры.

Терморезистор – это полупроводниковый прибор, сопротивление которого зависит от его температуры. В зависимости от типа элемента сопротивление может повышаться или падать при нагреве. Различают два вида терморезисторов:

  • NTC (Negative Temperature Coefficient) – с отрицательным температурным коэффициентом сопротивления (ТКС). Часто их называют «Термисторы».
  • PTC (Positive Temperature Coefficient) – с положительным ТКС. Их также называют «Позисторы».

Важно! Температурный коэффициент электрического сопротивления – это зависимость сопротивления от температуры. Описывает, на сколько Ом или процентов от номинальной величины изменяется сопротивление элемента при повышении его температуры на 1 градус Цельсия. Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается).

Терморезисторы бывают низкотемпературными (до 170К), среднетемпературными (170-510К) и высокотемпературными (900-1300К). Корпус элемента может быть выполнен из пластика, стекла, металла или керамики.

Условное графическое обозначение терморезисторов на схеме напоминает обычные резисторы, а отличием является лишь то, что они перечеркнуты полосой и рядом указывается буква t.

Кстати, так обозначаются любые резисторы, сопротивление которых изменяется под воздействием окружающей среды, а род воздействующих величин и указывается буквой, t – температура.

  • Номинальное сопротивление при 25 градусах Цельсия.
  • Максимальный ток или мощность рассеяния.
  • Интервал рабочих температур.
  • ТКС.

Интересный факт: Терморезистор изобретен в 1930 году ученым Самюэлем Рубеном.

Давайте подробнее рассмотрим, как устроен и для чего нужен каждый из них.

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).


Спецификация модельного ряда серии B598*1

Краткая расшифровка:

  1. Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
  2. Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
  3. Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
  4. Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
  5. Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
  6. Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
  7. Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).


Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Читать также: Сушильная камера для покраски автомобилей

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Проверка электронным мультиметром

Следует отметить, что резисторы довольно надёжны, поэтому их проверку следует проводить после того, как вы убедились в исправности остальных элементов. В первую очередь обратите внимание на сопротивления в цепях, где ранее были обнаружены неисправные элементы.

Сама по себе процедура проверки довольно проста, но требует выполнения определённых действий.

Для проверки будем использовать электронный мультиметр. Щупы прибора должны быть подключены к разъёмам COM и VΩmA. Полярность подключения щупов к выводам проверяемого элемента не имеет значения. Переключатель тестера необходимо установить в положение омметра (сектор помечен знаком Ω). Цифры обозначают максимальный предел измеряемой величины.

Перед началом проверки соедините щупы вместе, при этом показания прибора должны быть равны нулю, что говорит об исправности прибора и проводов щупов. Если переключатель установлен на самом малом пределе измерения, то прибор может показывать величину равную единицам ома. Эту неточность нужно будет учесть при измерении малых величин. Кроме того, у резисторов есть допустимое отклонение от номинала, если точных данных найти не удалось, то погрешность в 10 процентов можно считать нормальной.

Для начала необходимо определить номинальное сопротивление у элемента, который вы собираетесь проверять. Сделать это можно несколькими способами:

  1. На элементах старого образца величина номинального сопротивления указана на корпусе резистора.
  2. На современных элементах применяется цветовая маркировка. Это набор цветных колец, нанесённых на корпус. С их помощью зашифровано сопротивление. Нужно взять таблицу цветовой маркировки и определить искомую величину.
  3. Если вы проверяете элемент с электронной платы, то возле элемента стоит его обозначение в виде буквы R и порядкового номера. Можно взять схему электронного устройства и по обозначению определить номинал. Иногда эта величина указана прямо на печатной плате.

Читать также: Мтз 82 количество масла в двигателе

Постоянный резистор

Проверку выполняем в такой последовательности:

  • зачищаем выводы резистора от окислов и загрязнений;
  • выставляем на мультиметре предел измерения, который несколько больше номинальной величины;
  • кладём элемент на диэлектрическую поверхность;
  • прижимаем щупы прибора к выводам резистора, при этом нельзя прикасаться к щупам пальцами.

На экране мы можем увидеть три варианта показаний:

  1. Единица на экране прибора говорит о том, что сопротивление резистора больше установленного предела измерения. Проверьте правильно ли выбран предел измерения, если ошибки нет, то присутствует обрыв между выводами элемента. Такой элемент неисправен и подлежит замене.
  2. Ноль обозначает, что выводы соединены накоротко. Элемент неисправен.
  3. Если на экране другое число, сравните его с величиной номинального сопротивления резистора. Измеренная величина не должна отличаться от номинальной больше чем на 10%. Чтобы было понятно, при проверке резистора в 1 тыс. Ом прибор может показать величину от 900 Ом до 1100 Ом, в обоих случаях элемент можно считать исправным. Когда вы измеряете величины менее ста Ом, не забудьте от полученного значения отнять сопротивление щупов.

Тестирование подстроечного резистора

У переменного резистора на корпусе три вывода. Для проверки необходимо определить, к какому выводу подключён подвижный (средний) контакт. Для этих целей можно воспользоваться справочными данными, если это невозможно, то определим его в процессе измерений:

  1. Перемещаем ручку резистора в среднее положение.
  2. Выполняем все действия, указанные для постоянных резисторов, но измерения проводим попарно между первым и вторым, вторым и третьим, третьим и первым выводами. Пара между которыми сопротивление будет максимальным — это крайние выводы. Сравниваем это значение с номинальной величиной по аналогии с постоянными резисторами. Если всё в норме, продолжаем проверку.
  3. Перемещаем ползунок в одно из крайних положений. Производим измерение между центральным и крайними выводами, должны получить ноль и номинальное значение. Если данные другие (допускается небольшая погрешность), то элемент неисправен.
  4. Повторяем измерение во втором крайнем положении ползунка, теперь показания должны поменяться местами (там, где был ноль, будет номинальное значение, и наоборот).
  5. Подключаем щупы к центральному выводу и к любому крайнему. Плавно перемещаем ручку и следим за показаниями прибора. Сопротивление должно изменяться без скачков, если прибор показывает единицу, это говорит о том, что в этом положении ползунка контакт плохой или пропадает вовсе, а следовательно, нормально работать такой резистор не будет, и его нужно менять.

Проверка элемента на плате

Иногда демонтаж элементов с платы сопряжён с рядом трудностей, поэтому будет полезно знать, как проверить резистор мультиметром, не выпаивая его. Это уже более сложная задача. Чтобы правильно выполнить проверку, необходимо изучить схему, в которой он установлен.

Дело в том, что различные компоненты и способы их подключения, относительно проверяемого резистора, влияют на показания тестера по-разному. Например, параллельно подключённый диод покажет нулевое сопротивление резистора, а параллельно подключённые сопротивления или катушки индуктивности сильно исказят показание прибора. Так как в мультиметре для измерений используется постоянное напряжение, то конденсатор на схеме можно приравнять к разрыву цепи.

В сложной схеме учесть все эти влияния трудно, поэтому измерить точную величину сопротивления не получится, но если вы подробно изучите схему, то сможете проверить резистор на наличие обрыва или короткого замыкания. Если у вас возникли сомнения в исправности элемента, для полной проверки придётся выпаять хотя бы один вывод.

У многих мультиметров есть режим прозвонки. В этом режиме прибор позволяет проверять электрические цепи с сопротивлением не больше сотни ом, при превышении этой величины цепь прозваниваться не будет и звукового сигнала не последует. Применение этого режима для проверки резисторов нецелесообразно, так как прозвонка показывает только наличие или отсутствие контакта между щупами, но никак не характеризует состояние радиодетали.

Определение при помощи мультиметра

Перед измерением резистора необходимо визуально определить его целостность: осмотреть его на предмет обгоревшего внешнего покрытия — краски или лака, а также проверить надписи на корпусе, если они просматриваются. Определить номинал можно по таблицам рядов или цветовых кодов, после чего при помощи мультиметра можно замерить сопротивление.

Для прозвонки можно использовать простой измерительный прибор, например, DT-830B. В первую очередь необходимо установить переключатель измерений в режим проверки минимального сопротивления — 200 Ом, после чего соединить щупы между собой. Индикатор прибора при соединённых щупах должен показывать минимальное значение R, которое стремится к нулю, например, 0,03 Ома. После так называемой калибровки можно приступить к измерениям.

Термистор как проверить мультиметром?


Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).


Спецификация модельного ряда серии B598*1

Краткая расшифровка:

  1. Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
  2. Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
  3. Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
  4. Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
  5. Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
  6. Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
  7. Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).


Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Читать также: Как накопить денег на авто

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Диск и чип-термисторы

Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков. Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов. Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.

Проверка электронным мультиметром

Следует отметить, что резисторы довольно надёжны, поэтому их проверку следует проводить после того, как вы убедились в исправности остальных элементов. В первую очередь обратите внимание на сопротивления в цепях, где ранее были обнаружены неисправные элементы.

Сама по себе процедура проверки довольно проста, но требует выполнения определённых действий.

Для проверки будем использовать электронный мультиметр. Щупы прибора должны быть подключены к разъёмам COM и VΩmA. Полярность подключения щупов к выводам проверяемого элемента не имеет значения. Переключатель тестера необходимо установить в положение омметра (сектор помечен знаком Ω). Цифры обозначают максимальный предел измеряемой величины.

Перед началом проверки соедините щупы вместе, при этом показания прибора должны быть равны нулю, что говорит об исправности прибора и проводов щупов. Если переключатель установлен на самом малом пределе измерения, то прибор может показывать величину равную единицам ома. Эту неточность нужно будет учесть при измерении малых величин. Кроме того, у резисторов есть допустимое отклонение от номинала, если точных данных найти не удалось, то погрешность в 10 процентов можно считать нормальной.

Для начала необходимо определить номинальное сопротивление у элемента, который вы собираетесь проверять. Сделать это можно несколькими способами:

  1. На элементах старого образца величина номинального сопротивления указана на корпусе резистора.
  2. На современных элементах применяется цветовая маркировка. Это набор цветных колец, нанесённых на корпус. С их помощью зашифровано сопротивление. Нужно взять таблицу цветовой маркировки и определить искомую величину.
  3. Если вы проверяете элемент с электронной платы, то возле элемента стоит его обозначение в виде буквы R и порядкового номера. Можно взять схему электронного устройства и по обозначению определить номинал. Иногда эта величина указана прямо на печатной плате.

Читать также: Багажник на крышу нива

Постоянный резистор

Проверку выполняем в такой последовательности:

  • зачищаем выводы резистора от окислов и загрязнений;
  • выставляем на мультиметре предел измерения, который несколько больше номинальной величины;
  • кладём элемент на диэлектрическую поверхность;
  • прижимаем щупы прибора к выводам резистора, при этом нельзя прикасаться к щупам пальцами.

На экране мы можем увидеть три варианта показаний:

  1. Единица на экране прибора говорит о том, что сопротивление резистора больше установленного предела измерения. Проверьте правильно ли выбран предел измерения, если ошибки нет, то присутствует обрыв между выводами элемента. Такой элемент неисправен и подлежит замене.
  2. Ноль обозначает, что выводы соединены накоротко. Элемент неисправен.
  3. Если на экране другое число, сравните его с величиной номинального сопротивления резистора. Измеренная величина не должна отличаться от номинальной больше чем на 10%. Чтобы было понятно, при проверке резистора в 1 тыс. Ом прибор может показать величину от 900 Ом до 1100 Ом, в обоих случаях элемент можно считать исправным. Когда вы измеряете величины менее ста Ом, не забудьте от полученного значения отнять сопротивление щупов.

Тестирование подстроечного резистора

У переменного резистора на корпусе три вывода. Для проверки необходимо определить, к какому выводу подключён подвижный (средний) контакт. Для этих целей можно воспользоваться справочными данными, если это невозможно, то определим его в процессе измерений:

  1. Перемещаем ручку резистора в среднее положение.
  2. Выполняем все действия, указанные для постоянных резисторов, но измерения проводим попарно между первым и вторым, вторым и третьим, третьим и первым выводами. Пара между которыми сопротивление будет максимальным — это крайние выводы. Сравниваем это значение с номинальной величиной по аналогии с постоянными резисторами. Если всё в норме, продолжаем проверку.
  3. Перемещаем ползунок в одно из крайних положений. Производим измерение между центральным и крайними выводами, должны получить ноль и номинальное значение. Если данные другие (допускается небольшая погрешность), то элемент неисправен.
  4. Повторяем измерение во втором крайнем положении ползунка, теперь показания должны поменяться местами (там, где был ноль, будет номинальное значение, и наоборот).
  5. Подключаем щупы к центральному выводу и к любому крайнему. Плавно перемещаем ручку и следим за показаниями прибора. Сопротивление должно изменяться без скачков, если прибор показывает единицу, это говорит о том, что в этом положении ползунка контакт плохой или пропадает вовсе, а следовательно, нормально работать такой резистор не будет, и его нужно менять.

Проверка элемента на плате

Иногда демонтаж элементов с платы сопряжён с рядом трудностей, поэтому будет полезно знать, как проверить резистор мультиметром, не выпаивая его. Это уже более сложная задача. Чтобы правильно выполнить проверку, необходимо изучить схему, в которой он установлен.

Дело в том, что различные компоненты и способы их подключения, относительно проверяемого резистора, влияют на показания тестера по-разному. Например, параллельно подключённый диод покажет нулевое сопротивление резистора, а параллельно подключённые сопротивления или катушки индуктивности сильно исказят показание прибора. Так как в мультиметре для измерений используется постоянное напряжение, то конденсатор на схеме можно приравнять к разрыву цепи.

В сложной схеме учесть все эти влияния трудно, поэтому измерить точную величину сопротивления не получится, но если вы подробно изучите схему, то сможете проверить резистор на наличие обрыва или короткого замыкания. Если у вас возникли сомнения в исправности элемента, для полной проверки придётся выпаять хотя бы один вывод.

У многих мультиметров есть режим прозвонки. В этом режиме прибор позволяет проверять электрические цепи с сопротивлением не больше сотни ом, при превышении этой величины цепь прозваниваться не будет и звукового сигнала не последует. Применение этого режима для проверки резисторов нецелесообразно, так как прозвонка показывает только наличие или отсутствие контакта между щупами, но никак не характеризует состояние радиодетали.

Подключение термистора к Ардуино

Чтобы измерить сопротивление термистора, подключим его в качестве нижнего плеча делителя напряжения. Среднюю же точку делителя подключим к аналоговому входу Ардуино — A0. Подобный способ использовался в уроке про фоторезистор.

Подробно об аналоговых входах Ардуино мы говорили на уроке: Аналого-цифровые преобразования — АЦП

Принципиальная схема

Внешний вид макета

Какое сопротивление должен иметь резистор в верхнем плече делителя? Как правило, используют резистор с сопротивлением, совпадающим по порядку с номиналом термистора. В нашем уроке мы используем резистор на R1 = 102 кОм, его легко получить последовательным соединением двух резисторов на 51 кОм.

Терморезисторы NTC с инкапсулированным покрытием

Стекловолокно с термистором NTC

Это датчики температуры NTC, запечатанные в воздухонепроницаемом стеклянном пузыре. Они предназначены для использования при температурах выше 150 ° C или для монтажа на печатной плате, где требуется прочность. Инкапсуляция термистора в стекле повышает стабильность датчика, а также защиту датчика от окружающей среды. Они изготавливаются герметично уплотняющими резисторами типа NTC в стеклянный контейнер. Типичные размеры колеблются от 0,4 до 10 мм в диаметре.

Терморезисторы NTC с инкапсулированным покрытием

Типичные области применения

Термисторы NTC используются в широком спектре применений. Они используются для измерения температуры, температуры управления и температурной компенсации. Они также могут использоваться для обнаружения отсутствия или наличия жидкости, в качестве устройств ограничения тока в цепях питания, мониторинга температуры в автомобильных агрегатах и многих других. Датчики NTC можно разделить на три группы, в зависимости от электрической характеристики, используемой в агрегатах и устройствах.

Типичные области применения

Характеристика сопротивления-температуры

Приложения, основанные на характеристике сопротивления-времени, включают измерение температуры, контроль и компенсацию. К ним также относятся ситуации, в которых используется термистор NTC, так что температура датчика температуры NTC связана с некоторыми другими физическими явлениями. Эта группа агрегатов требует, чтобы термистор работал в условиях нулевой мощности, что означает, что ток проходящий через него поддерживается как можно на более низком уровне, чтобы избежать нагрева зонда.

Текущая временная характеристика

Устройствами, основанными на характеристике текущего времени, являются: временная задержка, ограничение пускового тока, подавление перенапряжений и многое другое. Эти характеристики связаны с теплоемкостью и постоянной диссипации используемого термистора NTC. Схема обычно полагается на термистор NTC, нагреваясь из-за проходящего через него тока. В какой-то момент это вызовет какое-то изменение в схеме, в зависимости от устройства, в котором оно используется.

Характеристика напряжения

Устройства, основанные на характеристике напряжения и тока термистора, обычно включают изменения условий окружающей среды или изменения схемы, которые приводят к изменениям рабочей точки на заданной кривой в цепи. В зависимости от применения это может использоваться для ограничения тока, температурной компенсации или измерения температуры.

Основные параметры NTC-термисторов и позисторов

NTC и PTC термисторы В настоящий момент промышленность выпускает огромный ассортимент терморезисторов, позисторов и NTC-термисторов. Каждая отдельная модель или серия изготавливается для эксплуатации в определённых условиях, на них накладываются определённые требования.
Поэтому от простого перечисления параметров позисторов и NTC-термисторов толку будет мало. Мы пойдём немного другим путём.

Каждый раз, когда в ваши руки попадает термистор с легко читаемой маркировкой, необходимо найти справочный листок, или даташит на данную модель термистора.

Кто не в курсе, что такое даташит, советую заглянуть на эту страницу. В двух словах, даташит содержит информацию по всем основным параметрам данного компонента. В этом документе перечислено всё, что нужно знать, чтобы применить конкретный электронный компонент.

У меня в наличии оказался вот такой термистор. Взгляните на фото. Поначалу о нём я не знал ничего. Информации было минимум. Судя по маркировке это PTC-термистор, то есть позистор. На нём так и написано – PTC. Далее указана маркировка C975.

Сперва может показаться, что найти хоть какие то сведения о данном позисторе вряд ли удастся. Но, не стоит вешать нос! Открываем браузер, вбиваем в гугле фразу типа этих: «позистор c975», «ptc c975», «ptc c975 datasheet», «ptc c975 даташит», «позистор c975 даташит». Далее остаётся лишь найти даташит на данный позистор. Как правило, даташиты оформляются как pdf-файл.

Из найденного даташита на PTC C975, я узнал следующее. Выпускает его фирма EPCOS. Полное название B59975C0160A070 (серия B599*5). Данный PTC-термистор применяется для ограничения тока при коротком замыкании и перегрузках. Т.е. это своеобразный предохранитель.

Приведу таблицу с основными техническими характеристиками для серии B599*5, а также краткую расшифровку всего того, что обозначают все эти циферки и буковки.

  • Что такое NTC термисторы

  • Max.operating voltage (TA = 60°C) – VMAX. Максимальное рабочее напряжение при температуре окружающей среды 60°С. Как видим, оно составляет 20 вольт постоянного (VDC) или переменного (VAC) тока. Это максимальное напряжение, которое может выдержать позистор.
  • Rated voltage — VR. Номинальное напряжение. То есть обычное, рабочее напряжение, при котором позистор исправно работает длительное время. В таблице указано напряжение в 12 вольт (переменный и постоянный ток).
  • Switching cycles — N. Количество циклов переключения. Это расчётное число переключений (срабатываний) позистора, при котором он не теряет свои свойства. Для данного позистора число срабатываний, при котором он должен выполнить функцию ограничения тока и не выйти из строя равно 100.
  • Reference temperature — Tref . Опорная температура. При росте тока через позистор он нагревается, а благодаря нагреву сопротивление его возрастает на несколько порядков. Так вот Tref – это температура позистора, когда его сопротивление начинает резко возрастать. Если взглянуть на график зависимости сопротивления позистора (RPTC) от его температуры (TPTC), то на нём чётко видно, что значительный рост сопротивления позистора происходит как раз на участке 150°С ~ 170°C, а температура в 160°С является опорной (Tref). Я бы назвал эту температуру «температурой перехода».
  • Tolerance of RR – ΔRR. Допустимое отклонение от номинального сопротивления. Выражается в процентах. Например, для позистора C975 номинальное сопротивление RR (Rated resistance) составляет 1,8 Ом. На деле же оно может быть от 1,35 до 2,25 Ом, так как допуск ΔRR составляет ±25%.
  • Operating temperature range — Top . Диапазон рабочих температур. Как видим, в таблице указано две строки. Диапазон рабочей температуры при минимальном напряжении на позисторе (V=0) и максимальном (V=Vmax), которое, как мы уже знаем равно 20 вольтам. Из этого можно установить, что данный позистор будет исправно работать при температуре окружающей среды от -40 до +85°С.

Теперь обратим своё внимание на электрические характеристики конкретного изделия, в нашем случае это позистор PTC C975 (полная маркировка B59975C0160A070). Взгляните на следующую таблицу.

  • IR — Rated current (mA). Номинальный ток. Это ток, который выдерживает данный позистор в течение длительного времени. Я бы его ещё назвал рабочим, нормальным током. Для позистора C975 номинальный ток составляет чуть более полуампера, а конкретно – 550 mA (0,55A).
  • IS — Switching current (mA). Ток переключения. Это величина тока, протекающего через позистор, при котором его сопротивление начинает резко возрастать. Таким образом, если через позистор C975 начнёт протекать ток более 1100 mA (1,1A), то он начнёт выполнять свою защитную функцию, а точнее начнёт ограничивать протекающий через себя ток за счёт роста сопротивления. Ток переключения (IS) и опорная температура (Tref ) связаны, так как ток переключения вызывает разогрев позистора и его температура достигает уровня Tref , при которой сопротивление позистора возрастает.
  • ISmax — Maximum switching current (A). Максимальный ток переключения. Как видим из таблицы, для данной величины указывается ещё и значение напряжения на позисторе – V=Vmax. Это неспроста. Дело в том, что любой позистор может поглотить определённую мощность. Если она превысит допустимую, то он выйдет из строя.

    Поэтому для максимального тока переключения указывается и напряжение. В данном случае оно равно 20 вольтам. Перемножив 3 ампера на 20 вольт, мы получим мощность в 60 Вт. Именно такую мощность может поглотить наш позистор при ограничении тока.

  • Ir — Residual current (mA). Остаточный ток. Это остаточный ток, который протекает через позистор, после того, как тот сработал, начал ограничивать ток (например, при перегрузке). Остаточный ток поддерживает подогрев позистора для того, чтобы он был в «разогретом» состоянии и выполнял функцию ограничения тока до тех пор, пока причина перегрузки не будет устранена. Как видим, в таблице указано значение этого тока для разного напряжения на позисторе. Одно для максимального (V=Vmax), другое для номинального (V=VR). Не трудно догадаться, что перемножив ток ограничения на напряжение, мы получим мощность, которая требуется для поддержания нагрева позистора в сработавшем состоянии. Для позистора PTC C975 эта мощность равна 1,62 ~ 1,7 Вт.

Что такое RR и Rmin нам поможет понять следующий график.

  • Rmin – Minimum resistance (Ом). Минимальное сопротивление. Наименьшее значение сопротивления позистора. Минимальное сопротивление, которое соответствует минимальной температуре, после которой начинается диапазон с положительным ТКС. Если детально изучить графики для позисторов, то можно заметить, что до значения TRmin сопротивление позистора наоборот уменьшается. То есть позистор при температурах ниже TRmin ведёт себя как «очень плохой» NTC-термистор и его сопротивление снижается (незначительно) с ростом температуры.
  • RR – Rated resistance (Ом). Номинальное сопротивление. Это сопротивление позистора при какой-то ранее оговоренной температуре. Обычно это 25°С (реже 20°С). Проще говоря, это сопротивление позистора при комнатной температуре, которое мы можем легко измерить любым мультиметром.
  • Approvals – в дословном переводе это одобрение. То есть одобрено такой-то организацией, которая занимается контролем качества и пр. Особо не интересует.
  • Ordering code – серийный номер. Тут, думаю, понятно. Полная маркировка изделия. В нашем случае это B59975C0160A070.

Из даташита на позистор PTC C975 я узнал, что применить его можно в качестве самовосстанавливающегося предохранителя. Например, в электронном устройстве, которое в рабочем режиме потребляет ток не более 0,5А при напряжении питания 12V.

Теперь поговорим о параметрах NTC-термисторов. Напомню, что NTC-термистор имеет отрицательный ТКС. В отличие от позисторов, при нагреве сопротивление NTC-термистора резко падает.

В наличии у меня оказалось несколько NTC-термисторов. В основном они были установлены в блоках питания и всяких силовых агрегатах. Их назначение — ограничение пускового тока. Остановился я вот на таком термисторе. Давайте узнаем его параметры.

На корпусе указана лишь такая маркировка: 16D-9 F1. После недолгих поисков в интернете удалось найти даташит на всю серию NTC-термисторов MF72. Конкретно наш экземпляр, это MF72-16D9. Данная серия термисторов используется для ограничения пускового тока. Далее на графике наглядно показано, как работает NTC-термистор.

В начальный момент, когда включается устройство (например, импульсный блок питания ноутбука, адаптер, компьютерный БП, зарядное устройство), сопротивление NTC-термистора велико, и он поглощает импульс тока. Далее он разогревается, и его сопротивление уменьшается в несколько раз.

Пока устройство работает и потребляет ток, термистор находится в нагретом состоянии и его сопротивление мало.

В таком режиме термистор практически не оказывает сопротивление протекающему через него току. Как только электроприбор будет отключен от источника питания, термистор остынет и его сопротивление вновь увеличится.

Обратим свой взор на параметры и основные характеристики NTC-термистора MF72-16D9. Взглянем на таблицу.

  • R25 — Номинальное сопротивление термистора при температуре 25°С(Ом). Сопротивление термистора при температуре окружающей среды 25°С. Это сопротивление легко измерить мультиметром. Для термистора MF72-16D9 это 16 Ом. По сути R25 — это то же самое, что и RR (Rated resistance) для позистора.
  • Max. Steady State Current — Максимальный ток термистора (A). Максимально возможный ток через термистор, который он может выдержать в течение длительного времени. Если превысить максимальный ток, то произойдёт лавинообразное падение сопротивления.
  • Approx. R of Max. Current — Сопротивление термистора при максимальном токе (Ом). Приблизительное значение сопротивления NTC-термистора при максимальном протекающем токе. Для NTC-термистора MF72-16D9 это сопротивление равно 0,802 Ома. Это почти в 20 раз меньше, чем сопротивление нашего термистора при температуре в 25°С (когда термистор «холодный» и не нагружен протекающим током).
  • Dissip. Coef. — Коэффициент энергетической чувствительности (mW/°C). Чтобы внутренняя температура термистора изменилась на 1°С, он должен поглотить некоторое количество мощности. Отношение поглощаемой мощности (в мВт) к изменению температуры термистора и показывает данный параметр. Для нашего термистора MF72-16D9 данный параметр составляет 11 миллиВатт/1°С.

    Напомню, что при нагреве NTC-термистора его сопротивление падает. Для его разогрева расходуется протекающий через него ток. Следовательно, термистор будет поглощать мощность. Поглощённая мощность приводит к нагреву термистора, а это в свою очередь ведёт к уменьшению сопротивления NTC-термистора в 10 — 50 раз.

  • Thermal Time Constant — Постоянная времени охлаждения (S). Время, за которое температура ненагруженного термистора изменится на 63,2% от разности температуры самого термистора и окружающей среды. Проще говоря, это время, за которое NTC-термистор успевает остыть, после того, как через него перестанет протекать ток. Например, когда блок питания отключат от электросети.
  • Max. Load Capacitance in μF — Максимальная ёмкость разряда. Тестовая характеристика. Показывает ёмкость, которую можно разрядить на NTC-термистор через ограничительный резистор в тестовой схеме без его повреждения. Ёмкость указывается в микрофарадах и для конкретного напряжения (120 и 220 вольт переменного тока (VAC)).
  • Tolerance of R25 — Допуск. Допустимое отклонение сопротивления термистора при температуре 25°С. Иначе, это отклонение от номинального сопротивления R25. Обычно допуск составляет ±10 — 20%.

Вот и все основные параметры термисторов. Конечно, есть и другие параметры, которые могут встретиться в даташитах, но они, как правило, легко высчитываются из основных параметров.

Надеюсь теперь, когда вы встретите незнакомый вам электронный компонент (не обязательно термистор), вам будет легко разузнать его основные характеристики, параметры и назначение.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Переменные резисторы. Какие бывают?
  • IGBT-транзистор. Устройство, назначение, особенности.

А Вы знаете, что такое NTC термистор и какие у него характеристики?

Сгорел термистор, ntc 470 15

Термистор чем заменить

Чем заменить сгоревший термистор на электромясорубке?

Доброго времени суток, коллеги-электронщики. Возник такой вопрос, а точнее идея, которую хотел бы обсудить.
Думаю все знают тиристорные регуляторы, выключатели и т.д.
В частности я использую вот такую простую схему для управления лебедкой, которой почти доволен.. (естественно у меня два таких модуля так как есть реверс, просто такая схема нашлась под рукой):
Вопрос в «почти»… Проблема в том, что есть механические контакты, и это портит всю картину, так как приходится довольно часто менять реле. В планах собрать подобное устройство, только на более высокую мощность (125 ампер), где реле точно будет плохим решением. К тому же есть идея управлять от контроллера. Вот и бросился на поиски решения… но гугл особо не помог, вернее помог, но частично)) так как судя ему, по интернету гуляет много схем подобных этим:
1.
2.
3.
4.
5.
и т.д. и т.п. То есть — на этих схемах структурно обозначены элементы, и везде есть блок СИФУ — Система Импульсно Фазового Управления тиристорами, а принципиальной схемы нигде нет!!

Вот и думаю, давайте поразмышляем, чего там такого секретного может быть в этой СИФУ? И создадим (или воссоздадим) свою, простую и доступную для повторения всем желающим .
Идеи —
1. Для начала применить бесконтактное управление вместо реле на моей схеме. Как это сделать на симисторах знаю — поставить оптрон типа MOC3052 и подобных, а вот как быть с тиристорами? Там ведь встречное включение, либо нужно управлять каждым по отдельности (особенно в случае плавного пуска). Ну даже если и удастся приспособить оптрон для запуска тиристоров, то как быть с мощными тиристорами на 200 ампер?? Там управляющие тока такие, что ни одна оптопара не выдержит… Надо какую то замену реле… но чтобы пропускало ток в обе стороны без искажений формы сигнала… и управлялось логической 1, ну или 0))
2. Реализовать плавный пуск двигателя, на рисунке 5б как раз показана СИФУ с плавным пуском.
Да, кстати, ПТТ-ПП расшифровывается как Пускатель Тиристорный Трёхфазный с Плавным Пуском.
Искал и на них схемы — тоже ничего нет, всё засектерили(
А вот в продаже они есть, только цены жесть какие конские. Но там правда и начинка покруче чем я хочу сделать — контроллер, дисплей, RS485, Modbus RTU и т.д.)) Такие функции простому человеку нафиг не нужны, главное 1 и 2, те что указал выше. Ну ещё думаю поставить систему защиты от резкого включения реверса, то есть когда СТОП не нажал, перед тем как поменять направление, но это просто сделать, главное понять принцип построение базовой схемы — можно вообще одну фазу рассмотреть, в идеале нужно чтобы при подаче напряжения 5 вольт включалась 100% мощность, при подаче 2.5 вольт — 50% и т.д. Тогда можно будет навесить переменник, которым задавать мощность, а в дальнейшем поставить контроллер с ЦАП, хотя не уверен что идея хорошая, так как мне кажется ключ к созданию СИФУ кроется в оптронах, а они работают нормально вроде тока в цифровом режиме (возможно ошибаюсь под утро).
В дополнение фото готовых подобных устройств. Платы управления причем видно не сильно сложные и огромные.

Источник: https://forum.cxem.net/index.php?/topic/198148-%D1%87%D0%B5%D0%BC-%D0%B7%D0%B0%D0%BC%D0%B5%D0%BD%D0%B8%D1%82%D1%8C-%D1%81%D0%B3%D0%BE%D1%80%D0%B5%D0%B2%D1%88%D0%B8%D0%B9-%D1%82%D0%B5%D1%80%D0%BC%D0%B8%D1%81%D1%82%D0%BE%D1%80-%D0%BD%D0%B0-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D1%8F%D1%81%D0%BE%D1%80%D1%83%D0%B1%D0%BA%D0%B5/

Основные параметры NTC-термисторов и позисторов

В настоящий момент промышленность выпускает огромный ассортимент терморезисторов, позисторов и NTC-термисторов. Каждая отдельная модель или серия изготавливается для эксплуатации в определённых условиях, на них накладываются определённые требования.

Поэтому от простого перечисления параметров позисторов и NTC-термисторов толку будет мало. Мы пойдём немного другим путём.

Каждый раз, когда в ваши руки попадает термистор с легко читаемой маркировкой, необходимо найти справочный листок, или даташит на данную модель термистора.

Кто не в курсе, что такое даташит, советую заглянуть на эту страницу. В двух словах, даташит содержит информацию по всем основным параметрам данного компонента. В этом документе перечислено всё, что нужно знать, чтобы применить конкретный электронный компонент.

У меня в наличии оказался вот такой термистор. Взгляните на фото. Поначалу о нём я не знал ничего. Информации было минимум. Судя по маркировке это PTC-термистор, то есть позистор. На нём так и написано – PTC. Далее указана маркировка C975.

Сперва может показаться, что найти хоть какие то сведения о данном позисторе вряд ли удастся. Но, не стоит вешать нос! Открываем браузер, вбиваем в гугле фразу типа этих: «позистор c975», «ptc c975», «ptc c975 datasheet», «ptc c975 даташит», «позистор c975 даташит». Далее остаётся лишь найти даташит на данный позистор. Как правило, даташиты оформляются как pdf-файл.

Из найденного даташита на PTC C975, я узнал следующее. Выпускает его фирма EPCOS. Полное название B59975C0160A070 (серия B599*5). Данный PTC-термистор применяется для ограничения тока при коротком замыкании и перегрузках. Т.е. это своеобразный предохранитель.

Приведу таблицу с основными техническими характеристиками для серии B599*5, а также краткую расшифровку всего того, что обозначают все эти циферки и буковки.

Max.operating voltage (TA = 60°C) – VMAX. Максимальное рабочее напряжение при температуре окружающей среды 60°С. Как видим, оно составляет 20 вольт постоянного (VDC) или переменного (VAC) тока. Это максимальное напряжение, которое может выдержать позистор.

Rated voltage — VR. Номинальное напряжение. То есть обычное, рабочее напряжение, при котором позистор исправно работает длительное время. В таблице указано напряжение в 12 вольт (переменный и постоянный ток).

Switching cycles — N. Количество циклов переключения. Это расчётное число переключений (срабатываний) позистора, при котором он не теряет свои свойства. Для данного позистора число срабатываний, при котором он должен выполнить функцию ограничения тока и не выйти из строя равно 100.

Reference temperature — Tref . Опорная температура. При росте тока через позистор он нагревается, а благодаря нагреву сопротивление его возрастает на несколько порядков. Так вот Tref – это температура позистора, когда его сопротивление начинает резко возрастать. Если взглянуть на график зависимости сопротивления позистора (RPTC) от его температуры (TPTC), то на нём чётко видно, что значительный рост сопротивления позистора происходит как раз на участке 150°С

170°C, а температура в 160°С является опорной (Tref). Я бы назвал эту температуру «температурой перехода».

Tolerance of RR – ΔRR. Допустимое отклонение от номинального сопротивления. Выражается в процентах. Например, для позистора C975 номинальное сопротивление RR (Rated resistance) составляет 1,8 Ом. На деле же оно может быть от 1,35 до 2,25 Ом, так как допуск ΔRR составляет ±25%.

Operating temperature range — Top . Диапазон рабочих температур. Как видим, в таблице указано две строки. Диапазон рабочей температуры при минимальном напряжении на позисторе (V=0) и максимальном (V=Vmax), которое, как мы уже знаем равно 20 вольтам. Из этого можно установить, что данный позистор будет исправно работать при температуре окружающей среды от -40 до +85°С.

Теперь обратим своё внимание на электрические характеристики конкретного изделия, в нашем случае это позистор PTC C975 (полная маркировка B59975C0160A070). Взгляните на следующую таблицу.

IR — Rated current (mA). Номинальный ток. Это ток, который выдерживает данный позистор в течение длительного времени. Я бы его ещё назвал рабочим, нормальным током. Для позистора C975 номинальный ток составляет чуть более полуампера, а конкретно – 550 mA (0,55A).

IS — Switching current (mA). Ток переключения. Это величина тока, протекающего через позистор, при котором его сопротивление начинает резко возрастать. Таким образом, если через позистор C975 начнёт протекать ток более 1100 mA (1,1A), то он начнёт выполнять свою защитную функцию, а точнее начнёт ограничивать протекающий через себя ток за счёт роста сопротивления. Ток переключения (IS) и опорная температура (Tref ) связаны, так как ток переключения вызывает разогрев позистора и его температура достигает уровня Tref , при которой сопротивление позистора возрастает.

ISmax — Maximum switching current (A). Максимальный ток переключения. Как видим из таблицы, для данной величины указывается ещё и значение напряжения на позисторе – V=Vmax. Это неспроста. Дело в том, что любой позистор может поглотить определённую мощность. Если она превысит допустимую, то он выйдет из строя.

Поэтому для максимального тока переключения указывается и напряжение. В данном случае оно равно 20 вольтам. Перемножив 3 ампера на 20 вольт, мы получим мощность в 60 Вт. Именно такую мощность может поглотить наш позистор при ограничении тока.

Что такое RR и Rmin нам поможет понять следующий график.

Rmin – Minimum resistance (Ом). Минимальное сопротивление. Наименьшее значение сопротивления позистора. Минимальное сопротивление, которое соответствует минимальной температуре, после которой начинается диапазон с положительным ТКС. Если детально изучить графики для позисторов, то можно заметить, что до значения TRmin сопротивление позистора наоборот уменьшается. То есть позистор при температурах ниже TRmin ведёт себя как «очень плохой» NTC-термистор и его сопротивление снижается (незначительно) с ростом температуры.

RR – Rated resistance (Ом). Номинальное сопротивление. Это сопротивление позистора при какой-то ранее оговоренной температуре. Обычно это 25°С (реже 20°С). Проще говоря, это сопротивление позистора при комнатной температуре, которое мы можем легко измерить любым мультиметром.

Approvals – в дословном переводе это одобрение. То есть одобрено такой-то организацией, которая занимается контролем качества и пр. Особо не интересует.

Ordering code – серийный номер. Тут, думаю, понятно. Полная маркировка изделия. В нашем случае это B59975C0160A070.

Из даташита на позистор PTC C975 я узнал, что применить его можно в качестве самовосстанавливающегося предохранителя. Например, в электронном устройстве, которое в рабочем режиме потребляет ток не более 0,5А при напряжении питания 12V.

Теперь поговорим о параметрах NTC-термисторов. Напомню, что NTC-термистор имеет отрицательный ТКС. В отличие от позисторов, при нагреве сопротивление NTC-термистора резко падает.

В наличии у меня оказалось несколько NTC-термисторов. В основном они были установлены в блоках питания и всяких силовых агрегатах. Их назначение — ограничение пускового тока. Остановился я вот на таком термисторе. Давайте узнаем его параметры.

На корпусе указана лишь такая маркировка: 16D-9 F1. После недолгих поисков в интернете удалось найти даташит на всю серию NTC-термисторов MF72. Конкретно наш экземпляр, это MF72-16D9. Данная серия термисторов используется для ограничения пускового тока. Далее на графике наглядно показано, как работает NTC-термистор.

В начальный момент, когда включается устройство (например, импульсный блок питания ноутбука, адаптер, компьютерный БП, зарядное устройство), сопротивление NTC-термистора велико, и он поглощает импульс тока. Далее он разогревается, и его сопротивление уменьшается в несколько раз.

Пока устройство работает и потребляет ток, термистор находится в нагретом состоянии и его сопротивление мало.

В таком режиме термистор практически не оказывает сопротивление протекающему через него току. Как только электроприбор будет отключен от источника питания, термистор остынет и его сопротивление вновь увеличится.

Обратим свой взор на параметры и основные характеристики NTC-термистора MF72-16D9. Взглянем на таблицу.

R25 — Номинальное сопротивление термистора при температуре 25°С(Ом). Сопротивление термистора при температуре окружающей среды 25°С. Это сопротивление легко измерить мультиметром. Для термистора MF72-16D9 это 16 Ом. По сути R25 — это то же самое, что и RR (Rated resistance) для позистора.

Max. Steady State Current — Максимальный ток термистора (A). Максимально возможный ток через термистор, который он может выдержать в течение длительного времени. Если превысить максимальный ток, то произойдёт лавинообразное падение сопротивления.

Approx. R of Max. Current — Сопротивление термистора при максимальном токе (Ом). Приблизительное значение сопротивления NTC-термистора при максимальном протекающем токе. Для NTC-термистора MF72-16D9 это сопротивление равно 0,802 Ома. Это почти в 20 раз меньше, чем сопротивление нашего термистора при температуре в 25°С (когда термистор «холодный» и не нагружен протекающим током).

Dissip. Coef. — Коэффициент энергетической чувствительности (mW/°C). Чтобы внутренняя температура термистора изменилась на 1°С, он должен поглотить некоторое количество мощности. Отношение поглощаемой мощности (в мВт) к изменению температуры термистора и показывает данный параметр. Для нашего термистора MF72-16D9 данный параметр составляет 11 миллиВатт/1°С.

Напомню, что при нагреве NTC-термистора его сопротивление падает. Для его разогрева расходуется протекающий через него ток. Следовательно, термистор будет поглощать мощность. Поглощённая мощность приводит к нагреву термистора, а это в свою очередь ведёт к уменьшению сопротивления NTC-термистора в 10 — 50 раз.

Thermal Time Constant — Постоянная времени охлаждения (S). Время, за которое температура ненагруженного термистора изменится на 63,2% от разности температуры самого термистора и окружающей среды. Проще говоря, это время, за которое NTC-термистор успевает остыть, после того, как через него перестанет протекать ток. Например, когда блок питания отключат от электросети.

Max. Load Capacitance in μF — Максимальная ёмкость разряда. Тестовая характеристика. Показывает ёмкость, которую можно разрядить на NTC-термистор через ограничительный резистор в тестовой схеме без его повреждения. Ёмкость указывается в микрофарадах и для конкретного напряжения (120 и 220 вольт переменного тока (VAC)).

Tolerance of R25 — Допуск. Допустимое отклонение сопротивления термистора при температуре 25°С. Иначе, это отклонение от номинального сопротивления R25. Обычно допуск составляет ±10 — 20%.

Вот и все основные параметры термисторов. Конечно, есть и другие параметры, которые могут встретиться в даташитах, но они, как правило, легко высчитываются из основных параметров.

Надеюсь теперь, когда вы встретите незнакомый вам электронный компонент (не обязательно термистор), вам будет легко разузнать его основные характеристики, параметры и назначение.

Дата: 12.09.2015 // 0 Комментариев

Терморезисторы делятся на два вида: позисторы и термисторы. Все они изменяют свое сопротивление в зависимости от их температуры. У позисторов сопротивление увеличивается в зависимости от температуры, а у термисторов, наоборот – уменьшается. Терморезисторы находят свое применение во многих узлах различной техники и аппаратуры, начиная от датчиков температуры, заканчивая ограничителями пусковых токов в энергосберегающих лампах, блоках питания или двигателях.

Как проверить термистор мультиметром?

Если есть подозрение, что термистор неисправен, а его визуальный осмотр не выявил различных почернений, сколов и т.п., тогда можно приступить к проверке термистора мультиметром.

Для проверки используем NTC термистор 10S050M, 5 Ом, 4 А, со старого блока питания компьютера.

Перед началом проверки, мультиметр переводим в режим измерения сопротивления.
Также необходимо выбрать диапазон измерений в зависимости от особенностей проверяемого термистора.

При комнатной температуре термистор покажет сопротивление указанное производителем, в данном случае оно составляет 5,1 Ом.

Следующим шагом станет нагревания термистора и отслеживание изменения его сопротивления.

Для нагрева используется старый советский паяльник на 90Вт, который нагревается очень медленно и даст возможность визуально отследить изменения сопротивления термистора (изменения сопротивления составляют от 4,2 Ом до 2,7 Ом).

В нашем случае подопытный термистор работает вполне исправно, его сопротивление уменьшается одновременно с нагревом паяльника.

При монтаже на платах необходимо учитывать особенность термисторов — они нагреваются, и их необходимо размещать подальше от термочувствительных радиодеталей.

Резистор — это самый простой и одновременно самый распространённый элемент электронных схем. Поэтому если вам нужно будет произвести ремонт любого электроприбора или электронной платы, то вы наверняка столкнётесь с этим элементом. Кроме обычных, есть ещё термосопротивления. Давайте разберёмся, что это за электронные компоненты, и как их проверить мультиметром.

Проверка электронным мультиметром

Следует отметить, что резисторы довольно надёжны, поэтому их проверку следует проводить после того, как вы убедились в исправности остальных элементов. В первую очередь обратите внимание на сопротивления в цепях, где ранее были обнаружены неисправные элементы.

Сама по себе процедура проверки довольно проста, но требует выполнения определённых действий.

Для проверки будем использовать электронный мультиметр. Щупы прибора должны быть подключены к разъёмам COM и VΩmA. Полярность подключения щупов к выводам проверяемого элемента не имеет значения. Переключатель тестера необходимо установить в положение омметра (сектор помечен знаком Ω). Цифры обозначают максимальный предел измеряемой величины.

Перед началом проверки соедините щупы вместе, при этом показания прибора должны быть равны нулю, что говорит об исправности прибора и проводов щупов. Если переключатель установлен на самом малом пределе измерения, то прибор может показывать величину равную единицам ома. Эту неточность нужно будет учесть при измерении малых величин. Кроме того, у резисторов есть допустимое отклонение от номинала, если точных данных найти не удалось, то погрешность в 10 процентов можно считать нормальной.

Для начала необходимо определить номинальное сопротивление у элемента, который вы собираетесь проверять. Сделать это можно несколькими способами:

  1. На элементах старого образца величина номинального сопротивления указана на корпусе резистора.
  2. На современных элементах применяется цветовая маркировка. Это набор цветных колец, нанесённых на корпус. С их помощью зашифровано сопротивление. Нужно взять таблицу цветовой маркировки и определить искомую величину.
  3. Если вы проверяете элемент с электронной платы, то возле элемента стоит его обозначение в виде буквы R и порядкового номера. Можно взять схему электронного устройства и по обозначению определить номинал. Иногда эта величина указана прямо на печатной плате.

Постоянный резистор

Проверку выполняем в такой последовательности:

  • зачищаем выводы резистора от окислов и загрязнений;
  • выставляем на мультиметре предел измерения, который несколько больше номинальной величины;
  • кладём элемент на диэлектрическую поверхность;
  • прижимаем щупы прибора к выводам резистора, при этом нельзя прикасаться к щупам пальцами.

На экране мы можем увидеть три варианта показаний:

  1. Единица на экране прибора говорит о том, что сопротивление резистора больше установленного предела измерения. Проверьте правильно ли выбран предел измерения, если ошибки нет, то присутствует обрыв между выводами элемента. Такой элемент неисправен и подлежит замене.
  2. Ноль обозначает, что выводы соединены накоротко. Элемент неисправен.
  3. Если на экране другое число, сравните его с величиной номинального сопротивления резистора. Измеренная величина не должна отличаться от номинальной больше чем на 10%. Чтобы было понятно, при проверке резистора в 1 тыс. Ом прибор может показать величину от 900 Ом до 1100 Ом, в обоих случаях элемент можно считать исправным. Когда вы измеряете величины менее ста Ом, не забудьте от полученного значения отнять сопротивление щупов.

Тестирование подстроечного резистора

У переменного резистора на корпусе три вывода. Для проверки необходимо определить, к какому выводу подключён подвижный (средний) контакт. Для этих целей можно воспользоваться справочными данными, если это невозможно, то определим его в процессе измерений:

  1. Перемещаем ручку резистора в среднее положение.
  2. Выполняем все действия, указанные для постоянных резисторов, но измерения проводим попарно между первым и вторым, вторым и третьим, третьим и первым выводами. Пара между которыми сопротивление будет максимальным — это крайние выводы. Сравниваем это значение с номинальной величиной по аналогии с постоянными резисторами. Если всё в норме, продолжаем проверку.
  3. Перемещаем ползунок в одно из крайних положений. Производим измерение между центральным и крайними выводами, должны получить ноль и номинальное значение. Если данные другие (допускается небольшая погрешность), то элемент неисправен.
  4. Повторяем измерение во втором крайнем положении ползунка, теперь показания должны поменяться местами (там, где был ноль, будет номинальное значение, и наоборот).
  5. Подключаем щупы к центральному выводу и к любому крайнему. Плавно перемещаем ручку и следим за показаниями прибора. Сопротивление должно изменяться без скачков, если прибор показывает единицу, это говорит о том, что в этом положении ползунка контакт плохой или пропадает вовсе, а следовательно, нормально работать такой резистор не будет, и его нужно менять.

Проверка элемента на плате

Иногда демонтаж элементов с платы сопряжён с рядом трудностей, поэтому будет полезно знать, как проверить резистор мультиметром, не выпаивая его. Это уже более сложная задача. Чтобы правильно выполнить проверку, необходимо изучить схему, в которой он установлен.

Дело в том, что различные компоненты и способы их подключения, относительно проверяемого резистора, влияют на показания тестера по-разному. Например, параллельно подключённый диод покажет нулевое сопротивление резистора, а параллельно подключённые сопротивления или катушки индуктивности сильно исказят показание прибора. Так как в мультиметре для измерений используется постоянное напряжение, то конденсатор на схеме можно приравнять к разрыву цепи.

В сложной схеме учесть все эти влияния трудно, поэтому измерить точную величину сопротивления не получится, но если вы подробно изучите схему, то сможете проверить резистор на наличие обрыва или короткого замыкания. Если у вас возникли сомнения в исправности элемента, для полной проверки придётся выпаять хотя бы один вывод.

У многих мультиметров есть режим прозвонки. В этом режиме прибор позволяет проверять электрические цепи с сопротивлением не больше сотни ом, при превышении этой величины цепь прозваниваться не будет и звукового сигнала не последует. Применение этого режима для проверки резисторов нецелесообразно, так как прозвонка показывает только наличие или отсутствие контакта между щупами, но никак не характеризует состояние радиодетали.

Типы терморезисторов и их тестирование

Отдельно нужно поговорить о том, что такое позистор и термистор, и как их проверить мультиметром.

Терморезистор — это радиодеталь, изготовленная на основе полупроводниковых материалов. Сопротивление этих элементов непостоянное и зависит от температуры. Терморезисторы разделяют на две группы:

  1. Термистор — элемент с отрицательным температурным коэффициентом сопротивления. Это значит, что при нагреве его сопротивление уменьшается.
  2. Позистор — имеет положительный температурный коэффициент сопротивления, то есть при нагреве его сопротивление увеличивается.

Как и в случае с обычными резисторами, перед началом проверки необходимо выяснить номинальное значение проверяемого образца. Сделать это можно при помощи справочных данных на основании маркировки терморезистора.

Но есть одна особенность, так как сопротивление зависит от температуры, то в справочниках может быть дана целая таблица температур и соответствующие им сопротивления. В этом случае нужно ориентироваться на величину сопротивления при температуре близкой к температуре окружающей среды.

Если в данных указана только одна величина сопротивления, то, как правило, она соответствует температуре в 25 градусов.

На практике сложно точно поддерживать определённую температуру, поэтому сопротивление исправного терморезистора будет несколько отличаться от номинальных данных, и это нужно учитывать при измерении.

Давайте пошагово разберём, как проверить позистор мультиметром, тогда и проверка термистора не вызовет у вас затруднений. Кроме тестера, потребуется источник тепла, например, паяльник или фен. Исправный позистор должен пройти все три поверки:

  1. Измеряем величину сопротивления позистора в ненагретом состоянии. Если сопротивление соответствует номинальному, то можно продолжать проверку. В противном случае элемент неисправен.
  2. На этом шаге проверки нам потребуется нагревать элемент, поэтому заранее предусмотрите, как вы будете производить измерения, например, установите зажимы на щупы. После того как вы подключили тестер к позистору, поднесите к нему нагретый паяльник. По мере нагрева величина сопротивления должна увеличиваться, если показания прибора не изменяются, радиодеталь испорчена.
  3. Прекратите нагревать позистор и дождитесь, когда он остынет до комнатной температуры. Измерьте его сопротивление, оно должно вернуться к исходной величине, измеренной в первом пункте.

Проверка термистора выполняется так же, как и проверка позистора, с тем лишь отличием, что во втором пункте при нагреве величина сопротивления должна уменьшаться.

Как проверить позистор мультиметром: пошаговая инструкция

Неприхотливость и относительная физическая устойчивость позисторов позволяет их использовать в роли датчика для автостабилизирующихся систем, а также реализовать защиту от перегрузки. Принцип работы этих элементов заключается в том, что их сопротивление увеличивается при нагреве (в отличие от термисторов, где оно уменьшается). Соответственно, при проверке тестером или мультиметром позисторов на работоспособность, необходимо учитывать температурную корреляцию.

Различные виды позисторов и их графическое изображение в принципиальных схемах

Определяем характеристики по маркировке

Широкая сфера применения РТС-термисторов подразумевает их обширный ассортимент, поскольку характеристики этих устройств должны соответствовать различным условиям эксплуатации. В связи с этим для тестирования очень важно определить серию элемента, в этом нам поможет маркировка.

Для примера возьмем радиокомпонент С831, его фотография показана ниже. Посмотрим, что можно определить по надписям на корпусе детали.

Позистор С831

Учитывая надпись «РТС», можно констатировать, что данный элемент является позистором «С831». Сформировав запрос в поисковике (например, «РТС С831 datasheet»), находим спецификацию (даташит). Из нее мы узнаем наименование (B59831-C135-A70) и серию (B598*1) детали, а также основные параметры (см. рис. 3) и назначение. Последнее указывает, что элемент может играть роль самовосстанавливающегося предохранителя, защищающего схему от КЗ (short-circuit protection) и перегрузки (overcurrent).

Расшифровка основных характеристик

Кратко рассмотрим, данные приведенные в таблице на рисунке 3 (для удобства строки пронумерованы).

Рисунок 3. Таблица с основными характеристиками серии B598*1

Краткое описание:

  1. значение, характеризующее максимальный уровень рабочего напряжения при нагреве устройства до 60°С, в данном случае он соответствует 265 В. Учитывая, что нет определения DC/AC, можно констатировать, что элемент работает как с переменным, так и постоянным напряжением.
  2. Номинальный уровень, то есть напряжение в штатном режиме работы – 230 вольт.
  3. Расчетное число гарантированных производителем циклов срабатывания элемента, в нашем случае их 100.
  4. Значение, описывающее величину опорной температуры, после достижения которой происходит существенное увеличение уровня сопротивления. Для наглядности приведем график (см. рис. 4) температурной корреляции.
Рис. 4. Зависимость сопротивления от температуры, красным выделена точка температурного перехода (опорная температура) для С831

Как видно на графике, R резко возрастает в диапазоне от 130°С до 170°С, соответственно, опорной температурой будет 130°C.

  1. Соответствие номинальному значению R (то есть допуск), указывается в процентном соотношении, а именно 25%.
  2. Диапазон рабочей температуры для минимального (от -40°С до 125°С) и максимального (0-60°С) напряжения.

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).

Спецификация модельного ряда серии B598*1

Краткая расшифровка:

  1. Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
  2. Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
  3. Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
  4. Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
  5. Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
  6. Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
  7. Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).
Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Определение исправности по внешнему виду

В отличие от других радиодеталей (например, таких как транзистор или диод), вышедший из строя РТС-резистор часто можно определить по внешнему виду. Это связано с тем, что вследствие превышения допустимой мощности рассеивания нарушается целостность корпуса. Обнаружив на плате позистор с таким отклонением от нормы, можно смело выпаивать его и начинать поиск замены, не утруждая себя процедурой проверки мультиметром.

Если внешний осмотр не дал результата, приступаем к тестированию.

Пошаговая инструкция проверки позистора мультиметром

Для процесса тестирования, помимо измерительного прибора, потребуется паяльник. Подготовив все необходимое, начинаем действовать в следующем порядке:

  1. Подключаем тестируемую деталь к мультиметру. Желательно, чтобы прибор был оснащен «крокодилами», в противном случае припаиваем к выводам элемента проволоку и накручиваем ее на разные иглы щупов.
  2. Включаем режим измерения наименьшего сопротивления (200 Ом). Прибор покажет номинальную величину R, характерную для тестируемой модели (как правило, менее одного-двух десятков Ом). Если показание отличается от спецификации (с учетом погрешности), можно констатировать неисправность радиокомпонента.
  3. Аккуратно нагреваем корпус тестируемой детали при помощи паяльника, величина R начнет резко увеличиваться. Если она осталась неизменной, элемент необходимо менять.
  4. Отключаем мультиметр от тестируемой детали, даем ей остыть, после чего повторяем действия, описанные в пунктах 1 и 2. Если сопротивление вернулось к номинальному значению, то радиокомпонент с большой долей вероятности можно признать исправным.

Как проверить датчик температуры NTC в посудомоечной машине?

Современные посудомоечные машины оснащены электронным управлением с дисплеем и сетью чувствительных датчиков. Это позволяет добиться высокой эффективности мойки при рациональном использовании ресурсов (воды, электроэнергии, моющих средств). Посудомойке можно доверить даже изделия из стекла, фарфора, керамики и других хрупких материалов. К несчастью, даже качественная техника со временем может сломаться. Проблемы с нагревом воды — распространенная причина обращения в сервисные центры.

Виды термостатов

Эти устройства служат для поддержания постоянной температуры окружающей среды (воды или воздуха). Термостаты повсеместно используются в бытовой технике, включая посудомоечные машины. Они необходимы для контроля температуры нагревания воды на разных режимах мойки. Различают 3 вида температурных датчиков: газонаполненные, биметаллические и термисторы (терморезисторы). Газонаполненные термостаты включают в себя чувствительный сенсор, баллон с трубкой, заполненной фреоном, и управляющее устройство. Когда повышается температура воды, хладагент расширяется и давит на пластину, которая размыкает контакты и выключает трубчатый электронагреватель.

Принцип работы биметаллических датчиков основан на замыкании (размыкании) контакта в процессе нагрева и остывания пластины, сделанной из 2 металлов с разным температурным коэффициентом расширения. Однако в большинстве современных посудомоек используются термисторы. Материал этих датчиков при повышении температуры измеряемого вещества меняет удельное сопротивление, подавая сигнал на модуль управления. Электронная плата, в свою очередь, отключает ТЭН. Конструктивно терморезисторы гораздо надежнее аналогов, поскольку лишены механической схемы.

Чем отличаются датчики температуры NTC и PTC?

Оба вида термисторов используются для контроля температуры, их работа основана на изменении удельного сопротивления материала при нагревании. Но реагируют на изменение внешних условий они по-разному. Сопротивление датчика NTC (Negative Temperature Coefficient) уменьшается при повышении температуры, а при понижении — увеличивается. Поэтому терморезистор NTC также называют «термометром сопротивления» с отрицательным температурным коэффициентом.

Датчик PTC (Positive Temperature Coefficient) действует наоборот: увеличивает сопротивление при повышении температуры, а при понижении оно уменьшается. Технология PTC используется в приборах, где требуется поддержание отрицательной температуры без размораживания (авторефрижераторы и промышленные морозильники). Датчики NTC намного более распространены, они устанавливаются в стиральных и посудомоечных машинах, кухонных плитах, сушильных шкафах и других устройствах.

Симптомы поломки термистора

Терморезисторы обычно находятся в поддоне посудомойки. Многие пользователи задаются вопросом: какие признаки указывают на проблему с температурным датчиком? Самые распространенные симптомы — полное отсутствие нагрева или наоборот, чрезмерный подогрев воды. Вне зависимости от выбранного температурного режима, вода может нагреваться даже до кипения.

Температура корпуса машинки также возрастает, при открывании дверцы из нее идет горячий пар. В данном случае датчик NTC по какой-то причине не срабатывает, поэтому электронная плата вовремя не отключает ТЭН.

Современная бытовая техника поддерживает функцию автоматической диагностики поломок. К примеру, в посудомоечных машинах Miele на неисправность датчика температуры указывают ошибки F01 и F02 на дисплее.

Как проверить датчик NTC?

Для этого вам потребуются инструменты для разборки посудомойки (и мебели, если техника встроенная), цифровой мультиметр с функцией термометра и емкость для горячей воды. Датчик NTC проверяется на изменение сопротивления при понижении и повышении температуры (при нагреве удельное сопротивление должно уменьшаться). Для диагностики термистора к нему присоединяются щупы мультиметра и измеряется сопротивление при разных температурах. Нормальные значения составляют: около 6000 Ом при +20 градусах, 1350 Ом при +50 градусах и примерно 1200 Ом при +60 градусах. Не следует забывать, что у всех терморезисторов есть поле допуска (в районе 5-10 %). То есть небольшие отклонения от указанных параметров являются нормой.

Для определения работоспособности датчика NTC необходимо выполнить всего 2 замера сопротивления: первый при комнатной температуре (около 20 градусов), а второй — при нагреве примерно до 50-60 градусов (для этого термистор помещают в емкость с горячей водой). Помните, что датчик не мгновенно достигает температуры воды, для этого должно пройти определенной время (примерно 4-5 минут). Если сопротивление падает с увеличением температуры, то все в порядке.

Если сопротивления на терморезисторе вообще нет, это означает, что он перегорел и нуждается в замене. Датчики NTC отличаются надежностью и довольно редко выходят из строя. Причиной поломки может быть заводской брак, механическое повреждение или естественный износ материалов в процессе эксплуатации.

Замена термистора

В случае неисправности датчика NTC посудомойка Miele сразу отреагирует на это, оповестив пользователя. Когда нагрев невозможен из-за проблем с терморезистором (F01), будут заблокированы функции подогрева воды и ополаскивания, а в конце мойки на дисплее загорится код F01 и в течение 2 минут прозвучит звуковой сигнал. Если вода не нагревается из-за отсутствия сигнала в цепи термодатчика, машина пропустит этапы нагрева и полоскания, по завершению программы выдаст ошибку F01 и акустический сигнал.

Последовательность работ по замене термистора выглядит следующим образом. Посудомойка отключается от электросети и перекрывается подача воды, после чего сливаются остатки жидкости из поддона. Встроенную модель необходимо предварительно вытащить из мебели. Затем откручиваем винты и снимаем нижнюю панель, чтобы добраться до ТЭНа (датчик обычно встроен в его основание). После этого с помощью ключа ослабляем крепление ТЭНа, предварительно сфотографировав схему подключения проводов. На следующем этапе снимаем терморезистор и измеряем сопротивление.

Если датчик неисправен, устанавливаем на его место новую деталь и подключаем провода. Затем собираем машинку и проверяем, работает ли нагрев с новым термистором. В случае, когда термодатчик и ТЭН исправны, а нагрев воды не происходит, причина может быть в модуле управления. Ремонтом электронного блока должен заниматься квалифицированный специалист. Если вы не уверены в своих силах, логичным решение будет обратиться за помощью в авторизованный сервисный центр.

Модельный ряд посудомоек Miele

Немецкий бренд предлагает вашему вниманию многофункциональные посудомоечные машины, рассчитанные на загрузку от 9 до 14 комплектов посуды. В ассортименте представлены встраиваемые и отдельностоящие (например, Miele PG8130) модели. Приборы могут встраиваться в мебельный гарнитур частично (G7310 SCi) или полностью (G7150 SCVi). Выпускаются узкие и полноразмерные посудомойки (шириной 45 и 60 см соответственно).

Интуитивно-понятный интерфейс с дисплеем открывает доступ к большому количеству автоматических программ мойки (до 13) и другим востребованным опциям. Машины отличаются продуманным внутренним зонированием, низким потреблением воды и бытовой химии. Посудомойки «Миле» работают тихо и экономично, класс энергоэффективности многих моделей даже превосходит A+++.

Техника премиум-класса

Посудомоечные машины и другие устройства изготавливаются в Германии с использованием высококачественных материалов и передовых технологий. На нашем сайте вы найдете огромное количество встраиваемых и отдельностоящих решений для кухни и дома. Все приборы оснащаются Wi-Fi модулем для объединения в домашнюю сеть (технология [email protected]). Вы сможете управлять их работой удаленно, с ноутбука или смартфона.

Надежная техника с современным дизайном как нельзя лучше подчеркнет высокий социальный статус и безупречное чувство стиля своего владельца. Официальная гарантия на всю продукцию «Миле», заказанную в фирменном интернет-магазине, составляет 24 месяца. Осуществляется доставка товаров по Москве, Московской области (курьерской службой) и другим регионам России (транспортными компаниями).

Какое сопротивление у терморезистора — Мастер Фломастер

Автор: Погребняк Дмитрий

Click here to read this article in English.

Одним из вариантов для измерения температуры является использование термисторов. Среди преимуществ термистора можно выделить большое значение температурного коэффициента, то есть значительное изменение сопротивления в зависимости от температуры (порядка 2-10% на Кельвин). Термисторы бывают двух типов: с положительным температурным коэффициентом (PTC, Positive Temperature Coefficient), то есть увеличивающие своё сопротивление с увеличением температуры, и с отрицательным (NTC, Negative Temperature Coefficient) – уменьшающие сопротивление с возрастанием температуры. Речь в данной статье пойдёт про вторые, и про их использования для измерения температуры в сочетании с микроконтроллерами AVR

Характеристика NTC термистора

Термисторы характеризуются рядом параметров, такими, как максимальный допустимый ток, точность, сопротивление при определённой температуре (как правило, при 25°С). Одним из параметров, характеризующим степень изменения сопротивления в зависимости от температуры является коэффициент температурной чувствительности, обозначаемый B. Этот коэффициент рассчитывается на основе значений сопротивления при двух конкретных значениях температур. Во многих случаях этими температурами выбираются 25°С и 100°С. Обычно температуры, использованные при вычислении коэффициента указываются после буквы, например B25/100. Коэффициент B измеряется в Кельвинах и вычисляется по следующей формуле:

где R1 и R2 — значения сопротивлений при температурах соответственно T1 и T2, выраженных в Кельвинах.

Из этой формулы следуют и обратные:

Вычисление температуры

Термисторы обладают высокой степенью нелинейности параметров, и термисторы различных моделей, даже при одинаковых значениях параметра B25/100 могут по разному изменять сопротивление в зависимости от температуры. Поэтому формула [3] может лишь приблизительно оценить температуру. Кроме того, такая формула подразумевает сложные вычисления, которые требуют много процессорного времени, что часто является неприемлемым. Более простым и эффективным подходом является хранение таблицы, в которую заносятся предварительно рассчитанные значения, возвращаемые АЦП при тех, или иных температурах. Для экономии памяти можно хранить значения только для некоторых точек, искать их в таблице двоичным поиском, а промежуточные значения получать линейной интерполяцией. Для измерений температуры окружающего воздуха с точностью до 0.3°C, достаточно хранить значения с шагом 5°C. Если значения лежат в пределах 16 бит (и занимают 2 байта), то для хранения такой таблицы для диапазона измеряемых температур от -30 до 70 градусов потребуется всего 40 байт. Точность измерений можно повысить, уменьшив шаг таблицы. Так при шаге 2°C можно добиться точности до 0.1°C на широком диапазоне измерений.

Производители термисторов, как правило, приводят таблицы показывающие изменение сопротивления в зависимости от температур. Значения в этих таблицах также привязаны к сетке температур с некоторым шагом (например, 5°C). Используя формулы [1] и [2] можно с достаточной точностью интерполировать табличные значения.

Схемы подключения

Подключение термистора

Наиболее простым вариантом подключения является схема A. При выборе номинала резистора RA примерно равным сопротивлению термистора в районе измеряемых температур, значения U будут изменяться ближе к линейным, что обеспечит большую точность при интерполяции табличных значений.

Выбирая номиналы RA и термистора, следует учесть, что протекающий через термистор ток вызывает его нагрев и, как следствие, искажение показаний. Желательно чтобы мощность на термисторе не превышала 1 мВт. А значит, при напряжении U0 = 5В, RA должен быть как минимум, 10 килоОм. Сопротивление термистора в измеряемом диапазоне должно иметь примерно тот же порядок.

Схема B призвана ограничить мощность, рассеиваемую на термисторе.

Схемы C и D являются обратными к A и B. Их имеет смысл использовать, если требуется измерять низкие температуры, когда референтное значение АЦП (Uref) ниже U0.

Подключение к АЦП микроконтроллера ATmega

Подключение АЦП микроконтроллеров ATmega

У контроллеров ATmega для снижения шумов используется отдельная линия питания для модуля АЦП. Инструкция рекомендует подключать эти входы через фильтр: индуктивность L = 10мкГн, и конденсатор C2 = 0,1мкФ.

Микроконтроллер может использовать либо внешнее референтное напряжение для АЦП, либо внутреннее (2,56В или 1,1В), либо, в качестве такового, использовать напряжение питания АЦП: AVCC. При использовании внешнего напряжения, оно должно быть подано на вход AREF. При использовании AVCC, или внутреннего напряжения 2,56В, между этим входом и землёй должен быть размещён конденсатор (на схеме C1). Инструкция не даёт чёткого указания для выбора ёмкости конденсатора, рекомендую использовать керамический конденсатор 0,1мкФ и более.

Для снижения измеряемых шумов, рекомендую термистор также подключать к фильтрованному напряжению параллельно AVCC, и настроить на использование этого напряжения в качестве референтного.

Дополнительно, для подавления шумов возникающих на линиях, можно установить конденсатор C3 в диапазоне 1-100нФ.

Следует учесть, что помимо модуля АЦП, вход AVCC запитывает также некоторые из портов ввода/вывода (как правило, на тех же выводах, что используются для АЦП). Использование этих портов на вывод и подключение к ним нагрузки может создать дополнительные шумы в работе АЦП.

Чтобы нивелировать шумы, возникающие на АЦП, рекомендую провести замеры несколько раз подряд и просуммировать полученные значения. В микроконтроллерах ATmega АЦП – 10-разрядный. Просуммировав результаты 64 подряд идущих измерений, результат остаётся в пределах 16-битного беззнакового целого, что не потребует дополнительной памяти для сохранения таблицы значений. При большем числе измерений также можно оставаться в пределах 16 бит, соответствующим образом сдвигая или деля результат.

Расчёт таблицы значений

Вашему вниманию предлагаю скрипт для онлайн расчёта таблицы значений АЦП.

Расчёт значений ведётся либо по двум значениям температур и сопротивлений, либо вводится списком, либо используется одна из предзагруженных R/T характеристик. В настоящее время загружены R/T характеристики термисторов фирмы Siemens/EPCOS. Выберите подходящую из списка.

Загруженные характеристики даны с шагом 5°С, при выборе меньшего шага сетки, значения получаются путём интерполяции по формулам [1] и [2] двух ближайших значений из таблицы.

При построении таблицы автоматически соответствующим образом обновляется пример исходного кода под ней.

Внимание! Так как параметры термисторов в значительной мере нелинейны, расчёт по двум значениям сопротивлений, либо по значению и коэффициенту будет очень приблизительным. Вычисленное значение температуры при измерении высоких, или низких температур в таком случае может значительно (на десятки градусов) отличаться от актуальной.

Чтобы узнать подходящий тип R/T характеристики для вашего термистора, скачайте документацию, данную заводом изготовителем.

Сводная таблица для некоторых моделей термисторов Siemens/Epcos приведена ниже. Нажмите на код R/T характеристики, чтобы подгрузить параметры в форму ниже:

КодСопротивление при 25°С, кОмR/T характеристикаB25/100, К
B57891S , выводной 4,5мм (datasheet, pdf)
B57891S0222+0082,210083560
B57891S0502+008520033980
B57891S0103+0081049013950
B57891S0203+0082029044300
B57891S0104+00810040034450
B57891M , выводной 3,5мм (datasheet, pdf)
B57891M0102+000110093930
B57891M0152+0001,510083560
B57891M0222+0002,210133900
B57891M0332+0003,320033980
B57891M0472+0004,720033980
B57891M0682+0006,820033980
B57891M0103+0001049013950
B57891M0153+0001520044100
B57891M0223+0002229044300
B57891M0333+0003329044300
B57891M0473+0004740124355
B57891M0683+0006840124355
B57891M0104+00010040034450
B57891M0154+00015020054600
B57891M0224+00022020054600
B57891M0334+00033020074830
B57891M0474+00047020065000
B57164K , выводной 5,5мм (datasheet, pdf)
B57164K0471+0000,4713063450
B57164K0681+0000,6813073560
B57164K0102+000110113730
B57164K0152+0001,510133900
B57164K0222+0002,210133900
B57164K0332+0003,340013950
B57164K0472+0004,740013950
B57164K0682+0006,829034200
B57164K0103+0001029044300
B57164K0153+0001510144250
B57164K0223+0002210124300
B57164K0333+0003310124300
B57164K0473+0004740034450
B57164K0683+0006820054600
B57164K0104+00010020054600
B57164K0154+00015020054600
B57164K0224+00022020074830
B57164K0334+00033020065000
B57164K0474+00047020065000
B57540G , выводной, стеклянный «капля» 0,8мм (datasheet, pdf)
B57540G0502+000, +002584023497
B57540G1103+000, +0021083073492
B57540G1103+005, +0071070033625
B57540G0203+000, +0022084154006
B57540G1303+005, +0073070023988
B57540G0503+000, +0025084034006
B57540G1104+000, +00210083044092
B57540G0234+000, +00223084054264
B57540G0145+000, +002140084064581
B57551G , выводной, стеклянный «капля» 1,8мм (datasheet, pdf)
B57551G0202+000, +002284013436
B57551G1103+000, +0021083073492
B57551G1103+005, +0071070033625
B57551G1303+005, +0073070023988
B57551G1104+000, +00210083044092
B57621С5 , SMD 3,2х1,6мм (datasheet, pdf)
B57621C5102+0621,032063450
B57621C5472+0624,713093520
B57621C5103+0621010103530
B57621C5153+0621510083560
B57621С0 , SMD 3,2х1,6мм (datasheet, pdf)
B57621C0222+0622,213083060
B57621C0332+0623,313093520
B57621C0472+0624,713093520
B57621C0103+0621010103530
B57621C0153+0621510083560
B57621C0223+0622210083560
B57621C0333+0623320033980
B57621C0473+0624720013920
B57621C0683+0626820013920
B57621C0104+06210049013950
B57621C0154+16215029034200
B57621C0224+06222029034200
B57621C0334+06233010144250
B57621C0474+06247010144250
B57703M , выводной 10мм, с «ухом» 8,5×3,7мм (datasheet, pdf)
B57703M0502G040580163988
B57703M0103G0401080163988
B57703M0303G0403080183964

Форма для он-лайн расчёта значений АЦП

Данные для таблицы
T1°СR1, cопротивление при T1килоОмT2°СR2, сопротивление при T2килоОмДанные для таблицы:R/R1
начиная с T2, с выбранным шагом сетки.
Разделитель значений — запятая.BT1/T2KСхема включения термистораНоминал резистора RAкилоОмНоминал резистора RBкилоОмРазрядность АЦПМножитель результата АЦПU0, напряжение на входеВUref, референтное напряжение АЦПВРассчитать с°С по °СШаг сеткиПостроить таблицу
T,°СR/R1R,килоОмU,ВI,мкАP,мВтU/UrefADCE,°С

Пояснения к таблице:

жирным выделены значения R/R1 и R, полученные на основе табличных. Обычным шрифтом обозначены значения полученные интерполяцией или экстраполяцией по формулам.

ADC – округлённое значение на выходе АЦП, с учётом множителя. Значения, выходящие за предел измерений АЦП, не отображаются.

I,мкА — ток в цепи.

P,мВт — мощность, рассеиваемая на термисторе.

E – эвристическая оценка возможной погрешности вычисленной температуры, вызванной использованием линейной интерполяции табличных значений, и ограниченной точностью АЦП. Позволяет выбрать параметры и схему включения таким образом, чтобы в области измеряемых значений погрешность была минимальна. Эта оценка не учитывает возможный шум, возникающий на АЦП, а также погрешность, вызванную нагревом термистора из-за протекающих токов. Погрешность можно уменьшить выбрав меньший шаг таблицы, используя АЦП большей разрядности, или путём усреднения большего числа измерений, а также подбором номиналов сопротивлений в цепи.

Код, соответствующий таблице

Пример использования

В примере ниже используется вывод на семисигментный индикатор.

Описание работы с индикатором смотрите в другой моей статье.

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

На электрических схемах терморезисторы обозначаются:

Устройство и работа

Они имеют простую конструкцию, выпускаются разных размеров и формы.

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

Основные параметры
  • ТКС – термический коэффициент сопротивления , равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы) . А если ТКС отрицательный, то термисторами (NТС-термисторы) . У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы . Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния . Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.
Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды. Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью. При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Резистор — это самый простой и одновременно самый распространённый элемент электронных схем. Поэтому если вам нужно будет произвести ремонт любого электроприбора или электронной платы, то вы наверняка столкнётесь с этим элементом. Кроме обычных, есть ещё термосопротивления. Давайте разберёмся, что это за электронные компоненты, и как их проверить мультиметром.

Разновидности резисторов

Резистор — электронный компонент, имеющий постоянное или переменное значение сопротивления. Внешне резистор представляет собой цилиндр, изготовленный из особого материала, который и определяет его сопротивление. Некоторые резисторы изготавливаются методом намотки тончайшей проволоки на диэлектрическое основание. На торцах цилиндра есть два вывода, которые служат для припаивания радиодетали к плате. Резисторы можно разделить на две группы:

  1. Постоянные — величина сопротивления задана при производстве и её нельзя изменить.
  2. Переменные, или подстроечные — максимальная величина сопротивления неизменна, но у них есть третий вывод. Этот вывод подключается к механическому узлу, который передвигает ползунок по поверхности резистора. Двигая этот ползунок, можно изменять сопротивление между неподвижным и подвижным контактами от нуля до его максимального значения.

Проверка электронным мультиметром

Следует отметить, что резисторы довольно надёжны, поэтому их проверку следует проводить после того, как вы убедились в исправности остальных элементов. В первую очередь обратите внимание на сопротивления в цепях, где ранее были обнаружены неисправные элементы.

Сама по себе процедура проверки довольно проста, но требует выполнения определённых действий.

Для проверки будем использовать электронный мультиметр. Щупы прибора должны быть подключены к разъёмам COM и VΩmA. Полярность подключения щупов к выводам проверяемого элемента не имеет значения. Переключатель тестера необходимо установить в положение омметра (сектор помечен знаком Ω). Цифры обозначают максимальный предел измеряемой величины.

Перед началом проверки соедините щупы вместе, при этом показания прибора должны быть равны нулю, что говорит об исправности прибора и проводов щупов. Если переключатель установлен на самом малом пределе измерения, то прибор может показывать величину равную единицам ома. Эту неточность нужно будет учесть при измерении малых величин. Кроме того, у резисторов есть допустимое отклонение от номинала, если точных данных найти не удалось, то погрешность в 10 процентов можно считать нормальной.

Для начала необходимо определить номинальное сопротивление у элемента, который вы собираетесь проверять. Сделать это можно несколькими способами:

  1. На элементах старого образца величина номинального сопротивления указана на корпусе резистора.
  2. На современных элементах применяется цветовая маркировка. Это набор цветных колец, нанесённых на корпус. С их помощью зашифровано сопротивление. Нужно взять таблицу цветовой маркировки и определить искомую величину.
  3. Если вы проверяете элемент с электронной платы, то возле элемента стоит его обозначение в виде буквы R и порядкового номера. Можно взять схему электронного устройства и по обозначению определить номинал. Иногда эта величина указана прямо на печатной плате.

Постоянный резистор

Проверку выполняем в такой последовательности:

  • зачищаем выводы резистора от окислов и загрязнений;
  • выставляем на мультиметре предел измерения, который несколько больше номинальной величины;
  • кладём элемент на диэлектрическую поверхность;
  • прижимаем щупы прибора к выводам резистора, при этом нельзя прикасаться к щупам пальцами.

На экране мы можем увидеть три варианта показаний:

  1. Единица на экране прибора говорит о том, что сопротивление резистора больше установленного предела измерения. Проверьте правильно ли выбран предел измерения, если ошибки нет, то присутствует обрыв между выводами элемента. Такой элемент неисправен и подлежит замене.
  2. Ноль обозначает, что выводы соединены накоротко. Элемент неисправен.
  3. Если на экране другое число, сравните его с величиной номинального сопротивления резистора. Измеренная величина не должна отличаться от номинальной больше чем на 10%. Чтобы было понятно, при проверке резистора в 1 тыс. Ом прибор может показать величину от 900 Ом до 1100 Ом, в обоих случаях элемент можно считать исправным. Когда вы измеряете величины менее ста Ом, не забудьте от полученного значения отнять сопротивление щупов.

Тестирование подстроечного резистора

У переменного резистора на корпусе три вывода. Для проверки необходимо определить, к какому выводу подключён подвижный (средний) контакт. Для этих целей можно воспользоваться справочными данными, если это невозможно, то определим его в процессе измерений:

  1. Перемещаем ручку резистора в среднее положение.
  2. Выполняем все действия, указанные для постоянных резисторов, но измерения проводим попарно между первым и вторым, вторым и третьим, третьим и первым выводами. Пара между которыми сопротивление будет максимальным — это крайние выводы. Сравниваем это значение с номинальной величиной по аналогии с постоянными резисторами. Если всё в норме, продолжаем проверку.
  3. Перемещаем ползунок в одно из крайних положений. Производим измерение между центральным и крайними выводами, должны получить ноль и номинальное значение. Если данные другие (допускается небольшая погрешность), то элемент неисправен.
  4. Повторяем измерение во втором крайнем положении ползунка, теперь показания должны поменяться местами (там, где был ноль, будет номинальное значение, и наоборот).
  5. Подключаем щупы к центральному выводу и к любому крайнему. Плавно перемещаем ручку и следим за показаниями прибора. Сопротивление должно изменяться без скачков, если прибор показывает единицу, это говорит о том, что в этом положении ползунка контакт плохой или пропадает вовсе, а следовательно, нормально работать такой резистор не будет, и его нужно менять.

Проверка элемента на плате

Иногда демонтаж элементов с платы сопряжён с рядом трудностей, поэтому будет полезно знать, как проверить резистор мультиметром, не выпаивая его. Это уже более сложная задача. Чтобы правильно выполнить проверку, необходимо изучить схему, в которой он установлен.

Дело в том, что различные компоненты и способы их подключения, относительно проверяемого резистора, влияют на показания тестера по-разному. Например, параллельно подключённый диод покажет нулевое сопротивление резистора, а параллельно подключённые сопротивления или катушки индуктивности сильно исказят показание прибора. Так как в мультиметре для измерений используется постоянное напряжение, то конденсатор на схеме можно приравнять к разрыву цепи.

В сложной схеме учесть все эти влияния трудно, поэтому измерить точную величину сопротивления не получится, но если вы подробно изучите схему, то сможете проверить резистор на наличие обрыва или короткого замыкания. Если у вас возникли сомнения в исправности элемента, для полной проверки придётся выпаять хотя бы один вывод.

У многих мультиметров есть режим прозвонки. В этом режиме прибор позволяет проверять электрические цепи с сопротивлением не больше сотни ом, при превышении этой величины цепь прозваниваться не будет и звукового сигнала не последует. Применение этого режима для проверки резисторов нецелесообразно, так как прозвонка показывает только наличие или отсутствие контакта между щупами, но никак не характеризует состояние радиодетали.

Типы терморезисторов и их тестирование

Отдельно нужно поговорить о том, что такое позистор и термистор, и как их проверить мультиметром.

Терморезистор — это радиодеталь, изготовленная на основе полупроводниковых материалов. Сопротивление этих элементов непостоянное и зависит от температуры. Терморезисторы разделяют на две группы:

  1. Термистор — элемент с отрицательным температурным коэффициентом сопротивления. Это значит, что при нагреве его сопротивление уменьшается.
  2. Позистор — имеет положительный температурный коэффициент сопротивления, то есть при нагреве его сопротивление увеличивается.

Как и в случае с обычными резисторами, перед началом проверки необходимо выяснить номинальное значение проверяемого образца. Сделать это можно при помощи справочных данных на основании маркировки терморезистора.

Но есть одна особенность, так как сопротивление зависит от температуры, то в справочниках может быть дана целая таблица температур и соответствующие им сопротивления. В этом случае нужно ориентироваться на величину сопротивления при температуре близкой к температуре окружающей среды.

Если в данных указана только одна величина сопротивления, то, как правило, она соответствует температуре в 25 градусов.

На практике сложно точно поддерживать определённую температуру, поэтому сопротивление исправного терморезистора будет несколько отличаться от номинальных данных, и это нужно учитывать при измерении.

Давайте пошагово разберём, как проверить позистор мультиметром, тогда и проверка термистора не вызовет у вас затруднений. Кроме тестера, потребуется источник тепла, например, паяльник или фен. Исправный позистор должен пройти все три поверки:

  1. Измеряем величину сопротивления позистора в ненагретом состоянии. Если сопротивление соответствует номинальному, то можно продолжать проверку. В противном случае элемент неисправен.
  2. На этом шаге проверки нам потребуется нагревать элемент, поэтому заранее предусмотрите, как вы будете производить измерения, например, установите зажимы на щупы. После того как вы подключили тестер к позистору, поднесите к нему нагретый паяльник. По мере нагрева величина сопротивления должна увеличиваться, если показания прибора не изменяются, радиодеталь испорчена.
  3. Прекратите нагревать позистор и дождитесь, когда он остынет до комнатной температуры. Измерьте его сопротивление, оно должно вернуться к исходной величине, измеренной в первом пункте.

Проверка термистора выполняется так же, как и проверка позистора, с тем лишь отличием, что во втором пункте при нагреве величина сопротивления должна уменьшаться.

Проверка SMD-элементов

Почти все современные электронные печатные платы, изготавливаются при помощи технологии монтажа на поверхность. Для такого монтажа изготавливают специальные элементы типа SMD (от английского Surface Mounted Device — прибор для монтажа на поверхность).

Эти элементы имеют миниатюрные размеры. Вместо выводов, они имеют контактные площадки, которыми радиодетали этого типа припаиваются к поверхности платы.

Если вам нужно будет проверить СМД-резисторы, то сделать это можно по методикам, описанным выше. При выпаивании этих элементов будьте предельно осторожны, чтобы не повредить и не перегреть радиодеталь, а в остальном эти элементы не отличаются от своих аналогов классического типа.

характеристики и параметры, принцип действия и классификация

Диск и чип-термисторы

Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков. Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов. Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.

Схемы подключения

Подключение термистора

Наиболее простым вариантом подключения является схема A. При выборе номинала резистора RA примерно равным сопротивлению термистора в районе измеряемых температур, значения U будут изменяться ближе к линейным, что обеспечит большую точность при интерполяции табличных значений.

Выбирая номиналы RA и термистора, следует учесть, что протекающий через термистор ток вызывает его нагрев и, как следствие, искажение показаний. Желательно чтобы мощность на термисторе не превышала 1 мВт. А значит, при напряжении U = 5В, RA должен быть как минимум, 10 килоОм. Сопротивление термистора в измеряемом диапазоне должно иметь примерно тот же порядок.

Схема B призвана ограничить мощность, рассеиваемую на термисторе.

Схемы C и D являются обратными к A и B. Их имеет смысл использовать, если требуется измерять низкие температуры, когда референтное значение АЦП (Uref) ниже U.

Подключение к АЦП микроконтроллера ATmega

Подключение АЦП микроконтроллеров ATmega

У контроллеров ATmega для снижения шумов используется отдельная линия питания для модуля АЦП. Инструкция рекомендует подключать эти входы через фильтр: индуктивность L = 10мкГн, и конденсатор C2 = 0,1мкФ.

Микроконтроллер может использовать либо внешнее референтное напряжение для АЦП, либо внутреннее (2,56В или 1,1В), либо, в качестве такового, использовать напряжение питания АЦП: AVCC. При использовании внешнего напряжения, оно должно быть подано на вход AREF. При использовании AVCC, или внутреннего напряжения 2,56В, между этим входом и землёй должен быть размещён конденсатор (на схеме C1). Инструкция не даёт чёткого указания для выбора ёмкости конденсатора, рекомендую использовать керамический конденсатор 0,1мкФ и более.

Для снижения измеряемых шумов, рекомендую термистор также подключать к фильтрованному напряжению параллельно AVCC, и настроить на использование этого напряжения в качестве референтного.

Дополнительно, для подавления шумов возникающих на линиях, можно установить конденсатор C3 в диапазоне 1-100нФ.

Следует учесть, что помимо модуля АЦП, вход AVCC запитывает также некоторые из портов ввода/вывода (как правило, на тех же выводах, что используются для АЦП). Использование этих портов на вывод и подключение к ним нагрузки может создать дополнительные шумы в работе АЦП.

Чтобы нивелировать шумы, возникающие на АЦП, рекомендую провести замеры несколько раз подряд и просуммировать полученные значения. В микроконтроллерах ATmega АЦП – 10-разрядный. Просуммировав результаты 64 подряд идущих измерений, результат остаётся в пределах 16-битного беззнакового целого, что не потребует дополнительной памяти для сохранения таблицы значений. При большем числе измерений также можно оставаться в пределах 16 бит, соответствующим образом сдвигая или деля результат.

Как проверить позистор в телевизоре

Позистор и резистор – элементы, которые способны менять свое сопротивление при нагревании. У резисторов наблюдаются незначительные повышения температуры. Позистор же блокирует поступающее к нему электрическое напряжение, поэтому его температура может сильно повышаться.

Чтобы проверить позистор на работоспособность, необходимо определить характеристики, которые считаются стандартными при работе. Если в них замечены отклонения, значит, произошла поломка. Характеристики следующие:

  1. Сопротивление номинальное. Это условие работает только при нормальной температуре помещения (не ниже 18 и не выше 27 градусов).
  2. Сопротивление определяют по точке, которая характеризует зависимость сопротивления от перепадов температуры в помещении. Этот параметр работает при повышении сопротивления в два раза относительно стандартного значения.
  3. Существует определенное максимальное напряжение. Если его превысить, есть риск, что оборудование сломается.
  4. Параметры токовой нагрузки делятся на несколько видов. Среди них: номинальное, переключение, максимум и опрокидывание. Они важны, если позистор будет использован в схеме высокой точности.

Алгоритм поиска неисправности

Визуальный осмотр

Любой ремонт начинается с внешнего осмотра платы

Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара. При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов

Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.

Не всегда пожелтевшая от температуры область на плате указывает на последствия выгорания детали. Иногда так получается в результате долгой работы прибора, при проверке все детали могут оказаться целыми.

Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:

  1. Обрыв.
  2. Короткое замыкание.
  3. Несоответствие номиналу.

Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:

Проверка резистора на обрыв

Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом — десятки кОм. А 100 кОм уже не каждая прозвонка осилит.

Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв

Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром

Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.

Проверка короткого замыкания

Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т.к. высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.

Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:

  1. Измерить омметром, прозвонкой или другим прибором участок цепи.
  2. Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
  3. Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
  4. Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
  5. Проверить результаты работы на наличие КЗ.

Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:

Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.

На видео ниже наглядно показывается, как проверить резистор мультиметром:

Дополнительная литература

Если вы используете нестандартную термистор или вы просто хотите получить больше информации о том, как они работают, проверить эти страницы из:

Вычисление Термистор Beta / Значения Rz

Это, как вы вычислить ‘Beta’ и ‘Rz’ значения для термистора. Вам нужно будет с ними, если вы планируете использовать нестандартную термистор. На следующей странице содержится Javascript калькулятор, чтобы помочь сделать вещи легко.

Расчет PIC Температуры

ПИК использует конденсатор и заряжает его через терморезистором. Он посылает температуру обратно на хост в качестве чтения таймера. Эта страница описывает, как она рассчитывается и как правильно выбрать конденсатор.

Конструкция и разновидности терморезисторов

Термисторы с аксиальными выводами

SMD-термисторы

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.

По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (NTC-термисторы, от слов «Negative Temperature Coefficient») и положительным (PTC-термисторы, от слов «Positive Temperature Coefficient» или позисторы) температурным коэффициентом сопротивления (или ТКС). Для позисторов — с ростом температуры растёт их сопротивление; для NTC-термисторов увеличение температуры приводит к падению их сопротивления.

Терморезисторы с отрицательным ТКС (NTC-термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа AIII BV, стеклообразных, легированных полупроводников (Ge и Si), и других материалов. PTC-термисторы изготовляют из твёрдых растворов на основе BaTiO3, что даёт положительный ТКС.

Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

  • номинального (при 25 °C) электрического сопротивления;
  • температурного коэффициента сопротивления.{-7}}.

    Технические характеристики

    Каждое устройство обладает набором параметров, на которые нужно обращать внимание при выборе:

    1. Номинальное сопротивление. Это значение, полученное при фиксированной температуре (стандарт – 20 градусов).
    2. ТКС – обратимое изменение сопротивления на каждый градус.
    3. Максимальная мощность рассеяния. Иногда называют просто мощностью резистора. Показывает предельное значение, которое рассеивает ТР без необратимых последствий. Показатель актуален только в условиях соблюдения температурного режима.
    4. Температурная чувствительность. Определяется в определенном диапазоне и зависит от свойств полупроводникового материала.

    Эти значения нужно учитывать для приборов с отрицательным температурным коэффициентом сопротивления.

    Отрицательный коэффициент ТКС

    Дело в том, что зависимость сопротивления от температуры у термисторов экспоненциальная. При этом номинальное сопротивление отдельного ТР может изменяться в больших пределах. Расчеты параметров полупроводниковых приборов сложнее – у позисторов принцип работы основан на линейной зависимости.

    Конструкция и материалы

    Большим преимуществом термисторов является разнообразие форм и миниатюрность. Основные конструктивные типы: бусинковые (0,1-1 мм), дисковые (2,5-18 мм), цилиндрические (3-40 мм), пленочное покрытие (толщина 0,2-1 мм). Выпускаются бусинковые термисторы диаметром до 0,07 мм с выводами толщиной 0,01 мм. Такие миниатюрные датчики позволяют измерять температуру внутри кровеносных сосудов или растительных клеток. Большинство термисторов – керамические полупроводники, изготовленные из гранулированных оксидов и нитридов металлов путем формирования сложной многофазной структуры с последующим спеканием (синтерация) на воздухе при 1100-1300 С.

    Сложные двойные и тройные структуры оксидов переходных металлов, такие как (AB)3O4, (ABC)3O4 лежат в основе термисторов. Распространенной формулой является (Ni0.2Mn0.8)3O4. Наиболее стабильными термисторами при температурах ниже 250 С являются термисторы на основе смешанных оксидов мания и никеля или магния, никеля и кобальта, имеющие отрицательный ТКС. Удельная проводимость термистора r (25 C) зависит от химического состава и степени окисления. Дополнительное управление проводимостью осуществляется добавлением очень малых концентраций таких металлов как Li и Na.

    Устройство терморезистора.

    При изготовлении бусинковых термисторов бусинки наносятся на две параллельные платиновые проволоки при температуре 1100 С, проволоки разрезаются на куски для получения необходимой конфигурации выводов. На бусинки наносится стеклянное покрытие, спекаемое при 300 С, либо бусинки герметизируются внутри миниатюрных стеклянных трубок.

    Для получения металлических контактов в дисковых термисторах, на диск наносится металлическое покрытие Pt-Pd-Ag и выводные проводники соединяются с покрытием пайкой или прессованием. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм. Поэтому может применяться двухпроводная схема включения.

    Краткие сведения из теории о терморезисторах

    Терморезистором называется полупроводниковый резистор, сопротивление которого в сильной степени зависит от температуры. Удельная электрическая проводимость полупроводников:

    В примесных (n-типа или p-типа) полупроводниках одним из слагаемых в приведенном выражении можно пренебречь.

    Подвижность носителей при нагревании изменяется сравнительно слабо, а концентрация очень сильно. Поэтому температурная зависимость удельной проводимости полупроводников подобна температурной зависимости концентрации основных носителей, а электрическое сопротивление терморезисторов может быть определено по формуле:

    где Nо – коэффициент, зависящий от типа и геометрических размеров полупроводника.

    Экспериментально коэффициент температурной чувствительности определяют по формуле:

    где Т1 и Т2 – исходная и конечная температуры рабочего температурного диапазона, R1 и R2 – сопротивления терморезистора при температуре соответственно Т1 и Т2. 

    Рис. 1 График зависимости сопротивления полупроводникового резистора от температуры.

    Чаще всего терморезисторы имеют отрицательный температурный коэффициент сопротивления. Выпускаются также терморезисторы, имеющие в сравнительно узком интервале температур положительный коэффициент и называемые позисторами. При нагревании величина сопротивления терморезисторов убывает, а позисторов возрастает в сотни и тысячи раз. В справочниках значение  аR приводится для температуры 20 оС.

    Терморезистор характеризуется определенной тепловой инерцией, зависящей от химических свойств полупроводника и конструкции элемента (площади излучающей поверхности). Тепловая инерция оценивается постоянной времени т – временем, за которое разность между собственной температурой тела и температурой среды уменьшается в е раз. 

    Если терморезистор, имеющий определённую температуру, поместить в среду с иной температурой, то его температура будет изменяться с течением времени по показательному закону:

    С остыванием терморезистора сопротивление его увеличивается (рис. 2).

    Рис 2. Процесс изменения температуры и сопротивления терморезистора при его остывании

    Оцените статью:

    Как проверить термистор мультиметром?

    Как проверить термистор с помощью мультиметра?

    Что должен показывать термистор? Термистор на самом деле ничего не «считывает», вместо этого сопротивление термистора изменяется в зависимости от температуры. Насколько изменится сопротивление, зависит от типа материала, из которого изготовлен термистор.

    Что произойдет, если термистор выйдет из строя? Когда термистор выходит из строя, он показывает неправильную температуру, или вы увидите невозможные колебания температуры.Когда термистор в автомобиле выходит из строя, система переменного тока на короткое время подает холодный воздух или вентилятор перестает нормально работать.

    Можно ли обойти термистор? Нет, если термистор сломан, его нельзя обойти. Его нужно заменить.

    Как проверить термистор мультиметром? — Связанные вопросы

    Должен ли термистор иметь обрыв?

    Термистор, о котором вы спрашиваете, является датчиком с отрицательным температурным коэффициентом.Он всегда должен измерять преемственность. Сопротивление этого датчика используется платой управления для определения температуры. При комнатной температуре сопротивление термистора обычно составляет около 12 кОм (12000 Ом).

    Какое сопротивление термистора?

    Изменение сопротивления термистора большое и отрицательное (обычно от 100 до 450 000 Ом-см), а практический рабочий диапазон термисторов относительно невелик (от -100 до + 300 ° C).

    В чем разница между термистором и термостатом?

    В общем, термостат — более грубое устройство, чем термистор.Термостат только позволяет металлам подниматься выше или давить на контакт при изменении температуры. Термистор более сложен, потому что он может считывать изменения проводимости и, таким образом, может выражать мельчайшие изменения температуры по мере изменения проводимости.

    Что вызывает отказ термистора?

    Причина таких отказов обычно связана с механическим разделением между резистивным элементом и материалом свинца, вызванным повреждением при обращении, чрезмерным нагревом, тепловым несоответствием и т. Д. Вторым наиболее распространенным видом отказа является дрейф значения сопротивления по мере старения термистора. или изменение параметра.

    Можете ли вы проверить термистор на непрерывность?

    Поскольку термисторы разработаны с учетом температурной чувствительности, их тестирование требует применения тепла. Установите мультиметр в режим сопротивления. Подключите клеммы мультиметра к проводам на термисторе. Неважно, какой вывод идет к клеммам, так как полярность не важна в этом тесте.

    Термистор — это то же самое, что датчик температуры?

    Как следует из названия, термистор (т. Е. Терморезистор) — это датчик температуры, сопротивление которого зависит от его температуры.Термисторы бывают двух типов: PTC (положительный температурный коэффициент) и NTC (отрицательный температурный коэффициент).

    Как определить термистор?

    Определение термисторов и RTD

    Красный провод — это возбуждение, а черный или белый — земля. Чтобы определить, является ли датчик термистором или RTD, а также его тип, вы должны измерить сопротивление между двумя проводами разного цвета: RTD PT100 будет иметь сопротивление 100 Ом при 0 ° C.

    Как проверить термистор waeco?

    Как проверить термистор Waeco. В холодильниках Waeco CF используется термистор на 10 кОм. Сопротивление уменьшается при повышении температуры. Таким образом, если внутренние детали термистора замкнуты, сопротивление будет нулевым (или почти нулевым).

    Что делает термисторный датчик?

    Термисторы — это термочувствительные резисторы, основная функция которых — показывать большое, предсказуемое и точное изменение электрического сопротивления при соответствующем изменении температуры тела.

    Термисторы деградируют?

    Термисторы

    TE обычно рассчитаны на работу в диапазоне от 0 до 70 ° C, что является самым жестким допуском. Преимущество сменных частей очевидно; одна часть может быть заменена на другую без снижения производительности.

    Как долго работает термистор?

    В целом, однако, можно ожидать, что термистор переменного тока прослужит около трех лет. Признаки того, что термистор переменного тока может нуждаться в замене, включают: Система дует холодным, но не холодным воздухом.

    Как обойти термистор сушилки?

    Термопредохранитель будет выглядеть как тонкая полоска белого пластика с проводом, выходящим из каждого конца. Чтобы обойти предохранитель, используйте изоленту, чтобы соединить оба конца вместе. В этом случае тепловой предохранитель будет отключен. Включите сушилку в режим нагрева не более чем на 90 секунд.

    Чем можно заменить термистор?

    Texas Instruments LMT87 — это прецизионный датчик температуры с аналоговым выходом, который может работать при температуре от -58 до 302 ° F (от -50 до 150 ° C).Это эффективная замена термисторам NTC, поскольку он обеспечивает более точные и линейные измерения при меньшем потреблении энергии.

    Все термисторы 10K одинаковы?

    Для термисторов нет отраслевых или государственных стандартов. Существует как минимум 5 различных кривых зависимости температуры от сопротивления для термисторов 10K в мире HVAC / R. Все термисторы имеют сопротивление 10000 Ом при 77 ° F или 25 ° C, но они сильно различаются по мере удаления от 77 ° F.

    Есть ли у термисторов полярность?

    Нет. Термисторы не имеют полярности. Они похожи на резисторы, но их сопротивление значительно меняется с температурой.

    Что происходит с сопротивлением термистора, когда он нагревается?

    Термистор

    Их сопротивление уменьшается с повышением температуры. При низких температурах сопротивление термистора велико, и через них может протекать небольшой ток. При высоких температурах сопротивление термистора невелико, и через них может протекать больший ток.

    Что делает термистор хорошим?

    Температурная кривая

    определяется свойствами материалов, из которых изготовлен термистор. В низкотемпературных приложениях (от -55 до прибл. 70 ° C) обычно используются термисторы с более низким сопротивлением от 2252 до 10 000 Ом). В приложениях с более высокими температурами обычно используются термисторы с более высоким сопротивлением (более 10 000 Ом).

    Как рассчитать сопротивление?

    Если вам известен общий ток и напряжение во всей цепи, вы можете найти полное сопротивление, используя закон Ома: R = V / I.Например, параллельная цепь имеет напряжение 9 вольт и общий ток 3 ампера. Общее сопротивление RT = 9 вольт / 3 ампера = 3 Ом.

    Где термистор на термостате?

    Термисторы и термостаты

    В качестве датчика температуры используется биметаллическая пластина, которая устанавливается непосредственно на опорной пластине контроллера и быстро и чувствительно реагирует на изменения температуры.

    Что такое неисправность термистора?

    Ошибка термистора срабатывает, если аналоговое напряжение, измеренное на термисторе, выходит за пределы нормального рабочего диапазона.Короткое замыкание или разрыв провода могут привести к искусственно завышенным или низким показателям, которые могут привести к появлению этого кода ошибки.

    Что такое термистор оттаивания?

    Присоединенный к испарителю термистор оттаивания определяет температуру испарителя и отправляет температурные сигналы на электронную плату управления. Электронная плата управления использует сигналы термистора размораживания для управления нагревателем размораживания во время автоматического цикла размораживания.

    Измерение температуры с помощью мультиметра

    Использование мультиметра: Глава 8

    С возвращением!

    В этом модуле вы узнаете, как использовать мультиметр для измерения температуры.Давайте прямо сейчас!

    Как вы думаете, вы уже готовы? Перейти к викторине!


    Рисунок выходных параметров

    Не все мультиметры могут измерять температуру. Прежде чем начать, проверьте, может ли ваш мультиметр измерять температуру. Если ваш измеритель может измерять температуру, вы увидите символ термометра на шкале мультиметра.

    Для измерения температуры мультиметром вы не собираетесь использовать стандартные черный и красный провода.Вместо этого вы собираетесь использовать термопару и термистор.

    Термопара представляет собой прямоугольный блок с двумя металлическими штырями. Один контакт будет иметь положительный знак (+). Другой — отрицательный (-) символ. От термопары выходит провод в оболочке. Мы используем этот провод для измерения температуры.

    Отрицательный вывод на термопаре будет вставлен в COM-порт. Положительный вывод на термопаре будет вставлен в порт измерения температуры.Символ для порта температуры — термометр. Обычно это тот же порт, который используется для подачи напряжения.

    Термопара имеет выходящий из него провод с термистором на конце провода. Термистор — это резистор, сопротивление которого зависит от температуры. Основываясь на сопротивлении термистора, мультиметр может считывать температуру.


    Как измерить температуру мультиметром?


    Давайте рассмотрим процесс измерения температуры.

    1. Сначала убедитесь, что отрицательный конец вашей термопары подключен к COM-порту.

    2. Положительный конец термопары должен быть вставлен в порт измерения температуры.

    3. Поверните циферблат, пока он не будет указывать на символ температуры. Возможно, вам потребуется использовать функциональную клавишу для доступа к измерению температуры.

    4. Когда ваш глюкометр настроен на температуру, вы увидите на экране буквы «F» или «C».Они обозначают градусы Фаренгейта и Цельсия.

    Напомним, что есть две единицы измерения температуры:

    Вам нужно будет настроить мультиметр на правильные единицы измерения.

    Чтобы переключить мультиметр между градусами Фаренгейта и Цельсия, вам нужно будет использовать кнопку диапазона. Когда ваш циферблат установлен на температуру, нажмите кнопку диапазона, чтобы изменить единицы измерения. Единица будет на дисплее. Например, единицы измерения на дисплее с переключением с «F» на «C» при нажатии кнопки диапазона.

    Убедившись, что ваш измеритель настроен правильно, удерживайте провод, выходящий из термопары. На конце этого провода находится термистор , который прибор будет использовать для измерения температуры. Прямо сейчас прибор должен отображать температуру воздуха.

    Чтобы измерить температуру объекта, прижмите кончик термистора к объекту. Дисплей измерителя начнет медленно меняться по мере того, как резистор нагревается или остывает. Подождите, пока температура не станет постоянной.Это температура объекта.


    3. Заключение


    Это накатка! Разве это не было сложно, правда?

    Чтобы получить точные результаты, очень важно научиться правильно настраивать измеритель температуры. В этом разделе вы узнали, как использовать мультиметр для измерения температуры. В следующем разделе мы рассмотрим безопасность мультиметра.

    Что вы думаете об этом уроке? Дайте нам знать в комментариях ниже и помогите нам сделать его лучше для вас.Пожалуйста, поделитесь им со всеми, кому, по вашему мнению, это может понадобиться!

    Вы также можете найти нас на Facebook , Instagram и YouTube .


    Проверьте себя!


    Вопрос № 1: Термистор — это резистор, значение сопротивления которого изменяется в зависимости от температуры.

    1. Верно

    2. Неверно

    Прокрутите вниз, чтобы найти ответ…

    Ответ: Верно

    Правда, сопротивление термисторов меняется по мере нагрева или охлаждения.

    Вопрос № 2: Вы используете стандартные красно-черные провода мультиметра для измерения температуры.

    1. True

    2. False

    Прокрутите вниз, чтобы найти ответ …

    Ответ: False

    False, вы будете использовать термопару и термистор для измерения температуры с помощью мультиметра.

    Вопрос № 3: Все мультиметры могут измерять температуру.

    1. Неверно

    2. Верно

    Прокрутите вниз, чтобы найти ответ …

    Ответ: Неверно

    Неверно, не все мультиметры могут работать с температурой. Перед подключением термопар проверьте, может ли ваш измеритель измерять температуру.

    Вопрос № 4: Для доступа к вторичным измерениям, таким как температура, вам может потребоваться какая кнопка:

    1. Функция

    2. Удержание

    3. Диапазон

    4. Мин. / Макс.

    5. Прокрутите вниз, чтобы найти ответ…

      Ответ: Функция

      Функциональная кнопка позволяет получить доступ к вторичным измерениям. То, что вы измеряете, всегда будет отображаться на дисплее мультиметра.

      Вопрос № 5: Чтобы изменить единицы измерения с Цельсия на Фаренгейт, вам может потребоваться нажать какую кнопку?

      1. Функция

      2. Удерживать

      3. Диапазон

      4. Мин / Макс

      Прокрутите вниз, чтобы найти ответ…

      Ответ: Диапазон

      Кнопка диапазона используется на некоторых измерителях для изменения единиц измерения температуры.

      Вопрос № 6: Перед тем как прикоснуться к чему-либо термистором, прибор должен отображать:

      1. Единицы

      2. Температура воздуха

      3. Тип измерения

      4. Все вышеперечисленное

      Прокрутите вниз, чтобы найти ответ …

      Ответ: Все вышеперечисленное

      Прежде чем прикасаться к чему-либо термистором, ваш счетчик должен отображать единицы измерения, температуру воздуха и температуру, которую вы измеряете.

      Вопрос № 7: Когда вы дотрагиваетесь термистором до объекта, измеритель мгновенно отображает температуру объекта.

      1. Верно

      2. Ложно

      Прокрутите вниз, чтобы найти ответ …

      Ответ: Ложь

      Ложно, прибор может показывать правильную температуру через несколько секунд. Это связано с тем, что термистору требуется несколько секунд для нагрева.

      Испытание термистора холодильника Sub-Zero с использованием стакана ледяной воды

      Здесь мы собираемся протестировать термистор Sub-Zero, используя стакан с ледяной водой.Использование ледяной воды — чрезвычайно точный тест для термисторов холодильника, поскольку он почти всегда будет ровно 32 градуса. Здесь у меня мультиметр установлен на температуру, а термостат, который идет с ним, погружен в воду. Мультиметр показывает ровно ноль градусов по Цельсию или 32 градуса по Фаренгейту. Затем мы погрузим термистор в воду, проверяя его сопротивление.

      Для начала я зажал два провода типа «крокодил», по одному на каждый провод на термисторе. Затем мы прикрепим другой конец зажимов типа «крокодил» к проводам глюкометра.Здесь мы видим, что термистор показывает около 13 600 Ом и сразу начинает увеличивать сопротивление после погружения в воду. Сопротивление термистора будет продолжать расти, пока сам термистор не достигнет 32 градусов. Следуя таблице значений сопротивления термистора, предоставленной производителем, мы сможем определить, правильно ли работает термистор. Когда значение сопротивления термистора перестает изменяться, мы знаем, что термистор достиг температуры 32 градусов.

      Если мы обратимся к таблице производителя для сопротивления при 32 градусах, мы должны получить совпадение. Если значение сопротивления термистора разомкнуто, закорочено или выходит за пределы допустимого диапазона более чем на 10% в любой момент во время этого испытания, его следует заменить. Здесь мы видим, что наш термистор достигает значения сопротивления 32 330 Ом, что идеально соответствует допустимому диапазону. После того, как термистор вынут из воды, его сопротивление должно сразу же начать уменьшаться.Если оставить его на длительное время, термистор должен достичь комнатной температуры, и его значение сопротивления должно соответствовать. Этот тест доказывает, что термистор может точно считывать как понижающиеся, так и повышающиеся температуры.

      Причина выхода из строя термистора

      Неисправности термистора

      Термисторы

      работают вместе с пользовательским потенциометром (установка котла для температуры) и печатной платой (PCB).

      Небольшой постоянный ток (DC) подается на термистор через потенциометр, после чего печатная плата знает, нужно ли подавать больше или меньше газа, чтобы обеспечить правильную температуру воды.Это будет зависеть от небольшого падения напряжения из-за изменения тока.

      Термисторы

      также сигнализируют о срабатывании, когда температура становится слишком низкой (защита от замерзания). Котел загорится, когда значение сопротивления упадет ниже определенного уровня. Термисторы можно использовать для контроля других вещей, таких как защита от накипи (перебег насоса).

      Признаки неисправности термистора котла

      • Отложения накипи / магнетита, влияющие на теплопередачу / чувствительность
      • Попадание воды в систему (вызывающее разрыв цепи / бесконечность)
      • Потеря заводской калибровки
      • Поврежденные клеммы / соединения / неисправности проводки

      Два типа термистора

      1. NTC (отрицательный температурный коэффициент)
      2. PTC (положительный температурный коэффициент)

      NTC Термистор

      Показывает уменьшение электрического сопротивления при повышении температуры воды в системе и увеличение электрического сопротивления при понижении температуры воды в системе.

      Они уменьшают сопротивление пропорционально повышению температуры. Например, 25 градусов Цельсия для начала при 12000 Ом, до 55 градусов Цельсия при 4000 Ом. По мере повышения температуры сопротивление падает.

      Типичное пусковое сопротивление находится в диапазоне 12-15 000 Ом (12-15 кОм), вплоть до 900 Ом при кипении.

      Термистор PTC

      Показывает увеличение электрического сопротивления при повышении температуры воды в системе и уменьшение электрического сопротивления при понижении температуры воды в системе.

      Это противоположность NTC. Поскольку температура увеличивается пропорционально повышению температуры. Они идентичны, если смотреть на них как NTC, просто ведут себя по-другому.

      От 10 градусов при 800 Ом до 90 градусов при 1600 Ом. Они встречаются реже, чем термисторы NTC.

      Типичная последовательность:

      По мере того, как температура воды в системе увеличивается, сопротивление термистора NTC уменьшается, и потенциометр на печатной плате затем изменяет напряжение на modureg на газовом клапане, который, в свою очередь, соответственно модулирует горелку, чтобы соответствовать потребности в тепловая нагрузка.

      Для проверки термистора:
      • Электрически изолировать органы управления котлом / системой
      • Определить температуру воды в системе (рядом с термистором) с помощью теплового лазера или зажима на тепловом датчике
      • Удалите проводов термистора (со стороны печатной платы), чтобы предотвратить паразитное сопротивление со стороны сама плата
      • Установите мультиметр на шкалу Ом для показаний сопротивления

      Примечание: только для термисторов PTC: черный провод от мультиметра должен проходить на металлический корпус датчика, а красный провод от мультиметра должен идти на выводе датчика.Показания сопротивления должны быть сопоставлены с данными из спецификации производителя, чтобы подтвердить правильность калибровки производителя.

      • Замкнутый контур менее 1 Ом = неисправен
      • Нет сопротивления / бесконечность = неисправен

      Пример значений сопротивления NTC:

      Графики зависимости сопротивления от температуры

      > Термистор NTC

      Термистор PTC

      Ожидаемые показания производителя термистора

      ресурса

      Как определить термопару, RTD и термистор

      Для измерения температуры в приложениях обычно используются три основных типа датчиков температуры.Это термопары, термисторы и RTD. Все типы работают, создавая или изменяя электрический сигнал в цепи, содержащей датчик. Помимо этого, между ними есть существенные различия.

      Если вы столкнетесь с устройством для измерения температуры в полевых условиях, то, какой тип датчика он использует, может быть не совсем очевидно. В этой статье будут описаны ключевые характеристики каждого типа датчика и объяснен простой тест, который вы можете выполнить, чтобы определить, является ли датчик температуры RTD, термопарой или термистором.

      Как определить термопару?

      Термопары — самый простой для идентификации датчик температуры. Зонд термопары имеет два провода, обозначенных цветовым кодом.

      • Термопары обычно имеют двухпроводную конструкцию. Иногда они используют 3-проводную конструкцию, если имеется заземляющий или экранирующий провод.
      • Они имеют очень низкое сопротивление (по сравнению с РДТ и термисторами).
      • В зависимости от типа термопары провода термопары могут быть магнитными.
      • Провода и удлинители термопар имеют цветовую маркировку. Цвета проводов указывают на тип термопары.
      При идентификации термопары важно определить калибровку. Самая популярная калибровка — тип K, тогда как тип T в основном используется в США.

      ПР-21СЛ РДТ См. Полный стандарт цветового кода термопары.

      Обозначение термисторов и RTD

      Термисторы и RTD имеют два, три или четыре провода: красный и белый или красный и черный.Красный провод — это возбуждение, а черный или белый — земля.

      Чтобы определить, является ли датчик термистором или RTD, а также его тип, необходимо измерить сопротивление между двумя проводами разного цвета:

      • RTD PT100 будет иметь сопротивление 100 Ом при 0 ° C
      • RTD PT1000 будет иметь сопротивление 1000 Ом при 0 ° C.
      Если зонд имеет гораздо более высокое значение сопротивления, то это должен быть термистор. Однако будет сложнее определить тип термистора, если вы не знаете кривую сопротивления-температуры элемента.Как я объяснил ранее, для термисторов нет стандарта; показания различаются в зависимости от производителя.

      Примеры

      Контрольный пример № 1:

      В этом примере у нас есть зонд в металлической оболочке с длинным изолированным кабелем и двухпроводной конструкцией. Один провод окрашен в красный цвет изоляции. Другой провод окрашен в желтую изоляцию. Согласно таблице цветовых кодов термопары, термопара типа K имеет провод с красной изоляцией и провод с желтой изоляцией. Похоже, это может быть термопара, но давайте поищем больше доказательств.

      Для определения сопротивления датчика используйте мультиметр, установленный на Ом. Термопара должна иметь очень низкое сопротивление. Подсоедините отрицательный вывод к красному проводу, а положительный — к желтому. В этом случае показание будет около трех Ом. Таким образом, можно сделать вывод, что этот датчик является термопарой.

      Тестовый набор № 2:

      Этот датчик неизвестного типа имеет металлическую оболочку, кабель и двухпроводную конструкцию. Один провод имеет черную изоляцию, а другой — красный, что не соответствует ни одной из цветовых комбинаций на диаграмме термопары.

      Используя мультиметр, установленный на Ом, мы обнаруживаем, что сопротивление датчика составляет 3,023 кОм. Поскольку резистивные датчики сопротивления и термопары не имеют такого высокого сопротивления, датчик должен быть термистором.

      Тестовый набор № 3:

      В третьем примере датчик заключен в зонд с металлической оболочкой, без переходного соединения и с кабелем на конце. Имеет трехпроводную конструкцию.

      Когда положительный провод омметра подсоединен к красному проводу на проводке датчика, а отрицательный вывод подсоединен к белому проводу на сенсоре, мы получаем показание около 110 Ом.Этот датчик, вероятно, является RTD, потому что термистор или термопара не имеют такого низкого сопротивления.

      Чтобы подтвердить, что датчик является RTD, мы можем переместить отрицательный вывод на другой провод на датчике. Мы должны получить показание сопротивления (или очень близкое к нему), если датчик действительно является RTD. Фактически, мы получаем 0,6 Ом, что является довольно близким приближением к нулю.

      Эту процедуру можно повторять всякий раз, когда вам нужно идентифицировать датчик температуры.

      Если у вас есть дополнительные вопросы о том, как использовать термопары, термисторы или RTD в ваших приложениях, свяжитесь с нами сегодня.Член нашей команды будет рад помочь.

      Техническое обучение Техническое обучение Руководство по термистору для 3D-принтера

      — Замена, проблемы и многое другое — 3D Printerly

      Термистор на вашем 3D-принтере выполняет важную функцию, хотя некоторые люди могут запутаться в том, что именно он делает и как помогает.Я написал эту статью, чтобы направить людей на правильный путь в термисторах, чтобы они могли лучше понять это.

      В этой статье мы расскажем вам все о термисторах. Мы покажем вам все, что вам нужно знать, от того, как откалибровать термистор, до того, как его заменить.

      Итак, давайте начнем с простого вопроса: «Что делают термисторы?».

      Что делает термистор в 3D-принтере?

      Термистор — важный компонент принтеров FDM.Прежде чем говорить о его работе, давайте определимся, что такое термистор.

      Термисторы — сокращенно от «Терморезисторы» — это электрические устройства, сопротивление которых зависит от температуры. Термисторы бывают двух типов:

      • Термисторы с отрицательным температурным коэффициентом (NTC) : Термисторы, сопротивление которых уменьшается с увеличением температуры.
      • Термисторы с положительным температурным коэффициентом (PTC) : Термисторы, сопротивление которых увеличивается с увеличением температуры.

      Чувствительность термисторов к изменениям температуры делает их пригодными для применения в чувствительных к температуре приложениях. Эти приложения включают компоненты схем и цифровые термометры.

      Как термистор используется в 3D-принтерах?

      Термисторы в 3D-принтерах служат датчиками температуры. Они находятся в чувствительных к температуре областях, таких как горячий конец и подогреваемая кровать. В этих областях они контролируют температуру и передают данные обратно на микроконтроллер.

      Термистор также служит устройством управления. Микроконтроллер принтера использует обратную связь термистора, чтобы контролировать температуру печати и поддерживать ее в желаемом диапазоне.

      В 3D-принтерах

      в основном используются термометры NTC.

      Как заменить и прикрепить термистор к 3D-принтеру?

      Термисторы в 3D-принтерах — очень хрупкие инструменты. Они могут легко сломаться или потерять чувствительность. Термисторы управляют важными частями принтеров, поэтому необходимо постоянно следить за тем, чтобы они находились в идеальном состоянии.

      Термисторы

      в 3D-принтерах часто находятся в труднодоступных местах, поэтому их удаление может быть немного сложным. Но не волнуйтесь, пока вы проявляете осторожность и внимательно следуете инструкциям, все будет в порядке.

      Два основных компонента 3D-принтера содержат термисторы — горячий конец и нагретый стол для печати. Мы расскажем, как заменить термисторы в обоих.

      Что вам понадобится

      • Набор отверток
      • Пинцет
      • Набор шестигранных ключей
      • Плоскогубцы
      • Каптоновая лента

      Замена термистора на хот-энде

      При замене термистора в хотэнде существуют уникальные процедуры для разных принтеров.Но для большинства моделей эти процедуры одинаковы с небольшими вариациями. Давайте пройдемся по ним:

      Шаг 1: Проконсультируйтесь с таблицей данных вашего принтера и приобретите для него соответствующий термистор. Подробнее об этом читайте в статье.

      Шаг 2 : Перед началом убедитесь, что вы следуете соответствующим советам по безопасности.

      • Убедитесь, что 3D-принтер выключен и отключен от всех источников питания.
      • При необходимости заземлитесь.
      • Прежде чем пытаться разобрать горячий конец, убедитесь, что он остыл до комнатной температуры.

      Шаг 3 : Снимите хотэнд с рамы принтера.

      • В этом может не быть необходимости, если позиция термистора доступна снаружи.
      • Удалите все винты, удерживающие горячий конец и его провода на месте.

      Шаг 4 : Снимите старый термистор с горячего конца.

      • Ослабьте винт, удерживающий его на блоке, и снимите его.
      • Иногда на блоке может быть запекшийся пластик, препятствующий этому. Вы можете использовать тепловую пушку, чтобы растопить это.

      Шаг 6: Отсоедините термистор от микроконтроллера.

      • Откройте блок обработки принтера.
      • Получите доступ к микроконтроллеру и удалите соединение термистора с помощью пинцета.
      • Будьте осторожны и удалите правильный провод. Проконсультируйтесь со спецификациями вашего производителя, чтобы убедиться, что вы знаете, какой провод нужно отсоединять.

      Шаг 7 : Установите новый термистор

      • Вставьте конец нового датчика в микроконтроллер.
      • Осторожно вставьте головку нового термистора в отверстие горячего конца.
      • Слегка прикрутите его. Будьте осторожны, не затягивайте винт слишком сильно, чтобы не повредить термистор.

      Шаг 8: Завершить

      • Закройте блок обработки принтера.
      • Вы можете использовать каптоновую ленту, чтобы прочно удерживать провода вместе во избежание их движения.
      • Снова прикрепите горячий конец к раме принтера.

      Замена термистора на печатной платформе

      Если ваш 3D-принтер оснащен подогреваемой печатной платформой, велика вероятность, что в нем также есть термистор. Шаги по замене термистора на печатной платформе варьируются от модели к модели, но в основном они похожи. Давайте, как вам:

      Шаг 1: Перед запуском следуйте соответствующим советам по безопасности.

      Шаг 2: Снимите платформу для печати

      • Отсоедините печатную платформу от блока питания.
      • Выверните все винты, крепящие его к раме принтера.
      • Поднимите его и снимите с рамы

      Шаг 3: Снимите изоляцию, закрывающую термистор.

      Шаг 4: Снимите термистор

      • Термистор можно расположить по-разному. Его можно прикрепить к станине каптоновым скотчем или закрепить винтом.
      • Удалите винты или ленту, чтобы освободить термистор.

      Шаг 5: Замените термистор

      • Отрежьте ножки старого термистора от провода датчика.
      • Присоедините новый термистор к проводу, соединив их вместе.
      • Закройте соединение изолентой

      Шаг 6: Завершить

      • Присоедините термистор обратно к станине
      • Заменить изоляцию
      • Привинтите платформу обратно к раме принтера.

      Как проверить сопротивление датчика температуры?

      Сопротивление не является величиной, которую можно измерить напрямую.Чтобы определить сопротивление термистора, вам нужно вызвать ток в термисторе и измерить результирующее сопротивление. Вы можете сделать это с помощью мультиметра.

      Примечание. Это термистор, поэтому показания могут меняться в зависимости от температуры. Лучше всего читать при комнатной температуре (25 ℃).

      Давайте рассмотрим, как проверить сопротивление.

      Что вам понадобится:

      • Мультиметр
      • Щупы мультиметра

      Шаг 1 : Откройте ножки термистора (снимите изоляцию из стекловолокна).

      Шаг 2 : Установите диапазон мультиметра на номинальное сопротивление термистора.

      Шаг 3: Прикрепите щупы мультиметра к обеим ножкам, и мультиметр должен показать сопротивление.

      Большинство термисторов для 3D-печати имеют сопротивление 100 кОм при комнатной температуре.

      Как откалибровать термистор вашего 3D-принтера

      Не откалиброванный термистор очень плох для 3D-печати. Без точного измерения и контроля температуры горячий конец и подогреваемый слой не могут нормально функционировать.Итак, в рамках планового обслуживания вы должны убедиться, что ваш хотэнд всегда правильно откалиброван.

      Давайте покажем вам, как это сделать:

      Что вам понадобится:

      • Мультиметр с термопарой

      Шаг 1 : Проверьте термопару мультиметра.

      • Прокипятите небольшое количество воды.
      • Окуните термопару в воду.
      • Если он точный, он должен показывать 100 ℃.

      Шаг 2 : Откройте микропрограмму принтера.

      • В программном файле принтера будет файл Arduino, управляющий хот-эндом.
      • Вы можете узнать у производителя или на интернет-форумах, где находится файл для вашего принтера.

      Шаг 3 : Присоедините термопару мультиметра к горячему концу.

      • Найдите пространство между горячим концом и соплом и воткните его.

      Шаг 4 : Откройте таблицу температур во встроенном ПО.

      • Это таблица, содержащая значения сопротивления термистора в зависимости от температуры.
      • Принтер использует этот файл для определения температуры по измеренному сопротивлению.
      • Скопируйте эту таблицу и удалите столбец температуры в новой таблице.

      Шаг 5 : Заполните таблицу.

      • Установите горячий конец на значение температуры из старой таблицы.
      • Измерьте правильное значение температуры на мультиметре.
      • Введите это показание в значение сопротивления в новой таблице, соответствующее значению в старой таблице.
      • Повторите эти шаги для всех значений сопротивления.

      Шаг 6: Замените стол.

      • После определения точной температуры для всех значений сопротивления удалите старую таблицу и замените ее новой.

      Как узнать, неисправен ли термистор на 3D-принтере?

      Признаки неисправности термистора различаются от принтера к принтеру.Это может быть настолько четкое, как мигающее диагностическое сообщение на интерфейсе принтера, так и серьезное, как превышение температуры.

      Мы составили список наиболее распространенных признаков, указывающих на проблему с термистором вашего 3D-принтера. Давайте пройдемся по ним:

      Термический побег

      Thermal Runaway — это наихудший сценарий неисправности термистора. Это происходит, когда неисправный датчик подает на принтер неправильную температуру. Затем принтер продолжает бесконечно передавать мощность на картридж нагревателя, пока он не расплавит горячий конец.

      Температурный разгон может быть очень опасным. Это может привести к пожару, который может разрушить не только ваш принтер, но и окружающие его участки. К счастью, большинство производителей включили средства защиты микропрограмм, чтобы этого не произошло.

      Температура печати выше обычной

      Материалы обычно имеют рекомендованную температуру печати. Если принтеру требуется температура выше номинальной для выдавливания материалов, термистор может быть неисправен.

      Вы можете запустить диагностический тест термистора, чтобы выяснить это.

      Симптомы неисправного термистора также могут включать:

      • Большое количество ошибок печати из-за проблем с температурой.
      • Дикие колебания показаний температуры.

      Если ваш термистор треснет, он выйдет из строя, поэтому вы должны предотвратить это. В большинстве случаев термистор сломается из-за того, что винт, который держит их слишком туго, закорачивает их.

      Винт должен быть немного ослаблен, примерно на пол-оборота от затяжки, поскольку термистор нужно просто удерживать на месте, а не плотно прижимать к хотэнду.

      Хорошо, что термисторы довольно дешевы.

      Лучшая замена термистора для вашего 3D-принтера

      При выборе термистора для вашего 3D-принтера необходимо учитывать несколько ключевых факторов, чтобы выбрать подходящий. Давайте пройдемся по ним.

      Наиболее важным из этих факторов является сопротивление, сопротивление термистора имеет значение. Он определяет диапазон температуры, которую термистор может измерять. 3 Сопротивление термисторов 3D-принтера обычно составляет 100 кОм.

      Температурный диапазон — еще один важный фактор. Он определяет величину температуры, которую ваш термистор сможет измерить. Приемлемый диапазон температур для принтера FDM должен составлять от -55 ℃ до 250 ℃.

      Наконец, последний фактор, на который следует обратить внимание, — это качество сборки. Качество термистора зависит от материала, из которого он изготовлен. Материалы могут иметь большое влияние на чувствительность и долговечность.

      Чтобы добиться наилучшего качества, рекомендуется использовать алюминиевые термисторы с подходящей изоляцией, такой как стекловолокно для ножек.Это связано с тем, что алюминий очень теплопроводен, а стекловолокно — нет.

      Используя все перечисленные выше факторы в качестве критерия, мы составили список лучших термисторов для вашего 3D-принтера на рынке. Давай посмотрим.

      HICTOP 100 кОм NTC 3950 Термисторы

      Многие люди отмечают, насколько полезны термисторы HICTOP 100 кОм NTC 3950 после их использования на своих 3D-принтерах. Его более чем достаточно длины, чтобы удовлетворить ваши потребности, и он идеально подходит для вашего 3D-принтера.

      Вы должны заранее убедиться, что ваша прошивка установлена ​​правильно.

      Если у вас были термисторы на вашем Ender 3, 3D-принтере Anet или многих других, то это должно вам подойти.

      Эти термисторы без проблем помещаются на кровать Prusa i3 Mk2s. Допустимый диапазон температур до 300 ° C, после чего вам понадобится термопара.

      Датчик температуры термистора NTC 3D-принтера Creality

      Еще один набор термисторов, который вы можете выбрать, — это термисторы Creality NTC, которые перечислены ниже Ender 3, Ender 5, CR-10, CR-10S и другие.В принципе, любой 3D-принтер, в котором используется термистор, подходит для этого.

      Он идеально подходит для вашей кровати с подогревом или экструдера по вашему желанию.

      Он имеет стандартный 2-контактный гнездовой разъем с длиной провода 1 м или 39,4 дюйма. В комплекте 5 терморезисторов с точностью измерения температуры ± 1%.

      Вы должны установить номер датчика температуры на «1» в Marlin для достижения наилучших результатов.

      Если на вашем 3D-принтере возникла ошибка минимальной температуры, она определенно может прийти на помощь.

      Большинство людей имели положительный опыт работы с ними, поскольку они подходят и работают нормально, а также имеют запасные части на всякий случай.

      Один пользователь, купивший Ender 5 Plus, показал температуру -15 ° C или 355 ° C макс. температура изменила их термистор на эти и решила проблему.

      Некоторые люди жаловались, что они могут немного не хватать Ender 3, и требовали, чтобы проводка для вентиляторов и картриджа нагревателя была обмотана петлей над сборкой, чтобы использовать гильзу и удерживать ее вместе.

      Вы можете соединить термистор, а затем при необходимости припаять его.

      Другие использовали его как прямую замену вилки на Ender 3.

      Как проверить, правильно ли работает термистор

      3 июня 2021 г.

      Термистор — это тип чувствительных компонентов. Термистор подразделяется на термистор с положительным температурным коэффициентом (PTC) и термистор с отрицательным температурным коэффициентом (NTC) в зависимости от температурного коэффициента.В этой статье мы поговорим о том, как проверить сопротивление термисторов при разных температурах.

      Предполагаемое сопротивление термистора измеряется специальным прибором при температуре 25 градусов Цельсия. В нормальных условиях его также можно проверить мультиметром. Однако при использовании мультиметра из-за большого рабочего тока формируется тепловой эффект, который часто приводит к несоответствию измеренного значения заявленному значению сопротивления. Если требуется измерить только сопротивление термистора для определения его типа и того, может ли он нормально работать, мультиметр можно использовать для проверки следующими способами:

      Проверка комнатной температуры :

      Установите мультиметр на омметра, и дайте двум измерительным проводам коснуться двух контактов термистора.Показания мультиметра — это значение сопротивления термистора при комнатной температуре. При условии правильного выбора омметра, если показание равно нулю или бесконечности, это означает, что термистор поврежден.

      Проверка высокой температуры :

      Поднесите электрический паяльник к термистору. Если сопротивление, отображаемое мультиметром, изменилось с нормального значения температурного сопротивления и вернулось к нормальному значению температурного сопротивления при удалении электрического паяльника, то термистор все еще работает.

      Проверка при низкой температуре :

      Зажмите два контакта термистора зажимом мультиметра и поместите термистор в холодильник. Обычно для термистора с отрицательным температурным коэффициентом значение сопротивления, отображаемое мультиметром, больше, чем значение сопротивления при комнатной температуре; для терморезистора с положительным температурным коэффициентом значение сопротивления, отображаемое мультиметром, ниже значения сопротивления при комнатной температуре.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *