Motorhelp.ru диагностика и ремонт двигателя
Основные понятия и сокращенияДроссельная заслонка (ДС) – металлическая пластина, жестко соединенная с педалью «газа». При нажатии педали она открывается и в карбюратор или во входной коллектор системы впрыска засасывается больше воздуха, вызывая увеличение оборотов коленчатого вала двигателя.
Топливно-воздушная смесь (ТВС) или горючая смесь – смесь бензина с воздухом приготовляемая карбюратором или системами впрыска, и подаваемая в предклапанную зону Двигателя внутреннего сгорания (ДВС).
Рабочая смесь – смесь ТВС с остаточными газами, которая поджигается свечами зажигания и сгорает в камере сгорания двигателя, приводя в движение поршни и коленчатый вал.
Угол поворота коленчатого вала (УПКВ) – поскольку скорость вращения коленчатого вала изменяется в зависимости от скорости автомобиля, то и длительность процессов, происходящих в работающем двигателе тоже непостоянна и зависит от скорости вращения коленчатого вала. В связи с этим величиной однозначно характеризующей длительность отдельных этапов работы ДВС является УПКВ. Например, полный цикл работы четырехтактного ДВС составляет два оборота коленчатого вала, или 720º УПКВ.
— если УОЗ слишком велик, то максимальная энергия горения выделяется в тот момент, когда поршень уже прошел ВМТ и под действием инерции маховика идет назад. При этом энергия горения рабочей смеси воздействует на поршень не все время рабочего хода, а только его часть, что значительно снижает мощность двигателя и приводит к перерасходу топлива.
Установочный УОЗ определяется по характеристикам двигателя и выставляется или корректируется вручную при установке зажигания. Поправка УОЗ многофункциональна. Она зависит от частоты вращения коленчатого вала, температуры охлаждающей жидкости, качества топлива и т.д.
Подробнее про УОЗ здесь.
Детонация – взрывное воспламенение рабочей смеси и ее сгорание со скоростью значительно превышающей обычную скорость сгорания. Сопровождается характерным металлическим стуком и перегревом двигателя. Может привести к повреждению поршней, зеркала цилиндра, клапанов и свечей зажигания.
Рабочий цикл двигателя
Объем, освобождаемый поршнем при движении от верхней мертвой точки ВМТ к нижней мертвой точке НМТ, называется рабочим объемом цилиндра. Суммарный рабочий объем всех цилиндров называется литражом двигателя. Объем над поршнем в ВМТ называется объемом камеры сгорания КС. Отношение полного рабочего объема к объему КС называется степенью сжатия. Характеристики работы блока цилиндров представлены в таблице 1.
Моменты открытия и закрытия клапанов, выражаемые в углах поворота коленчатого вала УПКВ, называется фазами газораспределения. Момент, когда открыты оба клапана, называется углом перекрытия клапанов в районе ВМТ. Сжатие необходимо для создания оптимальных условий горения, для увеличения температуры перепада цикла, для увеличения КПД ДВС.
Название такта | Угол поворота коленчатого вала | Впускной клапан | Выпускной клапан | Температура КС, ºC | Давление в КС, атм. |
---|---|---|---|---|---|
Впуск | 0…180 | Открыт | Закрыт | 80-120 | 0….8 |
Сжатие | 180…360 | Закрыт | Закрыт | 200-400 | 6-12 |
Раб. ход | 360….540 | Закрыт | Закрыт | 2000 | 40-50 |
Выпуск | 540…720 | Закрыт | Открыт | 500-600 | 0,1 — 1,2 |
Процесс сгорания топлива
І. Момент подачи искры – угол задержки зажигания. Период задержки воспламенения 4…6º УПКВ зависит от химического состава топлива и состава ТВС. При увеличении этого времени ухудшается стабильность воспламенения. На этот период влияет состав ТВС, степень сжатия, количество остаточных газов, обороты, нагрузка, энергия искры.
II. Период эффективного горения – 20…30º УПКВ – зависит от состава ТВС, угла опережения зажигания, нагрузки, степени сжатия, формы КС, скорости завихрения потока, степенью нарастания давления. Если Р25º УПКВ, то горение идет медленно.
Начальная температура воспламенения топливно-воздушной смеси (ТВС)
При увеличении температуры ТВС увеличивается скорость распространения фронта пламени за счет увеличения скорости химических реакций.
Форма КС влияет на длину фронта пламени и на теплообмен. Чем меньше отношение площади КС к ее объему, тем меньше потери тепла, следовательно, скорость распространения фронта пламени выше.
Угол опережения зажигания должен обеспечить окончание сгорания вблизи ВМТ (10…15º УПКВ), поэтому момент воспламенения смеси должен меняться в зависимости от состава ТВС и нагрузки. При увеличении оборотов двигателя угол опережения зажигания увеличивается.
Основная характеристика ТВС
Расчет состава смеси базируется на соблюдении стехиометрического соотношения количества топлива и воздуха: на один килограмм бензина требуется 14,7 кг воздуха. Коэффициент избытка воздуха равен:
где – количество воздуха, поступившее во впускной коллектор
λ>1 – обедненная смесь
λλ=1 – нормальная смесь
Характерные режимы работы двигателя
1. Запуск холодного двигателя. Процесс воспламенения характеризуется плохой испаряемостью и плохим перемешиванием, поэтому при λ=0,4 состав смеси в цилиндре будет близок к нормальному.
2. Холостой ход. Характеризуется хорошей испаряемостью, но плохим перемешиванием. Кроме того, цилиндры плохо вентилируются и количество остаточных газов довольно велико λ=0,8.
3. Режим средних нагрузок: 20…80% мощности. Характеризуется хорошим испарением и перемешиванием, но не требует максимальной мощности, поэтому λ=1,1…1,5.
5. Режим ускорения. Характеризуется быстрым переходом к увеличенной нагрузке, что требует кратковременного обогащения смеси.
Валентин Пашинцев
Москва
Также вы можете посмотреть видео как работает двигатель внутреннего сгорания.скачать dle 10.6фильмы бесплатно
Устройство и теория двигателей внутреннего сгорания
Устройство и теория двигателей внутреннего сгорания
В данной статье разберем устройство и теорию двигателей внутреннего сгорания, рассмотрим из чего они состоят и как работают. Вы найдете основные понятия и термины, описывается конструкция и работа двигателя.Автомобильные двигатели различают:
- по способу приготовления горючей смеси — с внешним смесеобразованием (карбюраторные, инжекторные, газовые двигатели) и с внутренним смесеобразованием (дизели),
- по роду применяемого топлива — бензиновые (работающие на бензине), газовые (на горючем газе) и дизели (работающие на дизельном топливе),
- по способу охлаждения — с жидкостным и воздушным охлаждением,
- расположению цилиндров — рядные и V-образные,
- по способу воспламенения горючей (рабочей) смеси—с принудительным зажиганием от электрической искры (карбюраторные и инжекторные двигатели) или с самовоспламенением от сжатия (дизели).
Бензиновые – это двигатели, работающие на бензине, с принудительным зажиганием. Приготовление топливно-воздушной смеси, и её дозирование осуществляют карбюраторные и инжекторные системы питания. Смесь в цилиндре воспламеняется в конце такта сжатия, принудительно от электрической искры.
Дизельные — это двигатели, работающие на дизельном топливе с воспламенением от сжатия. В дизельных двигателях смесь приготавливается непосредственно в цилиндре из воздуха и топлива, подаваемых в цилиндр раздельно. Воспламенение топливно-воздушной смеси в цилиндре происходит самопроизвольно от воздействия высокой температуры при сжатии. Исключением является система непосредственного впрыска бензина, где зажигание смеси осуществляется от электрической искры.
Газовые — это двигатели, которые работают на пропано-бутановом газе, с принудительным зажиганием. Перед подачей в цилиндры двигателя, газ смешивается с воздухом. По принципу работы такие двигатели практически не отличаются от бензиновых и мы не будем их рассматривать. Однако, если вы переоборудовали свой автомобиль «на газ», то советую изучить статью Газобаллонное оборудование. Схема ГБО.
Основные механизмы двигателя внутреннего сгорания:
- кривошипно-шатунный механизм,
- газораспределительный механизм,
- система питания (топливная),
- система выпуска отработавших газов,
- система зажигания,
- система охлаждения,
- система смазки.
Устройство двигателя внутреннего сгорания
Для начала, возьмем простейший одноцилиндровый двигатель и разберемся с его устройством и работой. Рассмотрим протекающие в нем процессы, и выясним откуда все-таки берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.Одна из основных деталей двигателя — цилиндр 6, в котором находится поршень 7, соединенный через шатун 9 с коленчатым валом 12. При перемещении поршня в цилиндре вверх и вниз его прямолинейное движение шатун и кривошип преобразуют во вращательное движение коленчатого вала.
На конце вала закреплен маховик 10, который необходим для равномерности вращения вала при работе двигателя. Сверху цилиндр плотно закрыт головкой, в которой находятся впускной 5 и выпускной клапаны, закрывающие соответствующие каналы.
Клапаны открываются под действием кулачков распределительного вала 14 через передаточные детали 15. Распределительный вал приводится во вращение шестернями 13 от коленчатого вала. Поршень, свободно перемещаясь в цилиндре, занимает два крайних положения.
Для нормальной работы двигателя в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Для уменьшения затрат работы на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.
Понятия и термины при работе двигателя
Верхняя мертвая точка (ВМТ) — это крайнее верхнее положение поршня.Нижняя мертвая точка (НМТ) — это крайнее нижнее положение поршня.
Ход поршня — это расстояние, пройденное от одной мертвой точки до другой. За один ход поршня коленчатый вал повернется на полоборота.
Камера сгорания (сжатия) — это пространство между головкой цилиндра и поршнем, расположенным в ВМТ.
Рабочий объем цилиндра — это пространство, освобождаемое поршнем при перемещение его из ВМТ в НМТ.
Рабочий объем двигателя — это сумма рабочих объемов всех цилиндров двигателя. При малых объемах (до 1 л.) его выражают в кубических сантиметрах, а при больших — в литрах.
Полный объем цилиндра — сумма объема камеры сгорания и рабочего объема.
Степень сжатия — это число, показывающее, во сколько раз полный объем цилиндра больше объема камеры сгорания. В бензиновых двигателях степень сжатия бывает от 8 до 12, а в дизелях — от 14 до 18. Степень сжатия не стоит путать с компрессией, т.к. это два разных понятия.
Такт — процесс (часть цикла), который происходит в цилиндре за один ход поршня. Двигатель, у которого рабочий цикл происходит за четыре хода поршня, называют четырехтактным.
Как работает двигатель внутреннего сгорания
При работе поршневого двигателя внутреннего сгорания поршень совместно с верхней головкой шатуна движется в цилиндре поступательно (вверх – вниз), при этом коленчатый вал совместно с нижней головкой шатуна совершает вращательные движения. У подавляющего большинства двигателей, если смотреть на двигатель со стороны шкива, вращение коленчатого вала осуществляется по часовой стрелке. За один оборот коленчатого вала (360°) поршень в цилиндре совершает два хода (один ход вверх и один вниз).Рабочий цикл четырехтактного двигателя: а) впуск, б) сжатие, в) рабочий ход, г) выпуск.
Работа двигателя складывается из совокупности процессов, протекающих в цилиндрах двигателя с определённой последовательностью. Эти процессы называют рабочим циклом и состоит из тактов впуска, сжатия, рабочего хода и выпуска. Подробнее в статье Принцип работы ДВС. Рабочие циклы двигателя.
Об устройстве двигателя также рассказано в данных статьях:
- Дизельные двигатели. Устройство и принцип работы
- Как работает двигатель (из цикла передачи ‘как это устроено’)
Принцип работы двигателя внутреннего сгорания (ДВС)
Принцип действия двигателя внутреннего сгорания (ДВС) показан на рисунке, где для наглядности совмещена индикаторная диаграмма четырехтактного двигателя и его принципиальная схема.
Поршень, перемещаемый в цилиндре диаметром D, шарнирно соединен с шатуном, который в свою очередь шарнирно соединен с кривошипом коленчатого вала. В головке цилиндра установлены впускной к1, и выпускной к2 клапаны, которые связывают полость внутри цилиндра с окружающей средой. Поршень совершает возвратно-поступательное движение (ход поршня S), а коленчатый вал — вращательное. Так как двигатель четырехтактный, одному обороту коленчатого вала соответствуют два хода поршня.
Рис. Индикаторная диаграмма работы четырехтактного ДВС и его принципиальная схема
При движении поршня от клапанов внутрь цилиндра через впускной клапан к1 засасывается горючая смесь (кривая О—1′). Прямая a—а’ соответствует давлению окружающей среды. При впуске не происходит изменение параметров состояния смеси (р, v и Т), меняются лишь масса (G) и объем (V) смеси. При обратном движении поршня горючая смесь сжимается по адиабате (кривая 1’—2). Происходит изменение состояния смеси, параметры p, v и Т при постоянном количестве смеси, заключенной в цилиндре, при сжатии изменяются. Клапаны при этом закрыты.
По окончании сжатия смесь зажигается и очень быстро сгорает. Прямая 2—3 соответствует изменению состояния рабочего тела, причем происходит изменение как термодинамических параметров, так и химического состава рабочего тела. До вспышки (точка 2) рабочее тело представляло собой горючую смесь, в конце горения (точка 3) это уже продукт горения.
На этом этапе происходит очень резкое увеличение давления (р) и температуры (Т). Теплотой, выделившейся в результате сгорания смеси, нагреваются продукты сгорания, их давление и температура увеличиваются.
Когда поршень делает третий ход, происходит процесс расширения газов (кривая 3—4), осуществляется адиабатный процесс изменения состояния продуктов сгорания.
При четвертом ходе поршня, который совпадает по направлению со вторым, из цилиндра удаляются продукты сгорания через выпускной клапан к2. Причем начало этого процесса совпадает с концом процесса расширения (прямая 4—1). Избыточное давление в цилиндре падает. При этом не происходит изменения состояния рабочего тела, так как падает давление с р4 до р1 не в результате охлаждения рабочего тела посредством теплообмена в холодильнике, а путем выпуска рабочего тела, т.е. без теплообмена.
Далее, при движении поршня в сторону клапанов происходит принудительное удаление остатков продуктов сгорания из цилиндра (кривая 1—0)у меняется масса (G) и объем (V) рабочего тела. Далее цикл повторяется.
Таким образом, цикл двигателя внутреннего сгорания формируется четырьмя возвратно-поступательными ходами поршня, называемыми тактами двигателя. Поэтому данный двигатель называется четырехтактным.
Если у двигателя отсутствуют такты впуска и выпуска, то он называется двухтактным, и его вал делает один оборот за цикл. Цикл двухтактного двигателя состоит из тех же процессов, что и для четырехтактного, а название тактов определяется основными процессами, которые протекают в цилиндре (такт расширения и такт сжатия). При этом процессы впуска свежего заряда и выпуска продуктов сгорания осуществляются соответственно в начале такта сжатия и в конце такта расширения, протекая почти одновременно. Площадь фигуры 1234 на индикаторной диаграмме соответствует работе за один цикл.
На рисунке показана индикаторная диаграмма четырехтактного двигателя внутреннего сгорания. Диаграмма термодинамического цикла отлична от индикаторной диаграммы, так как она показывает изменение состояния рабочего тела, а индикаторная — изменение давления в цилиндре в зависимости от положения поршня.
ДВС, как это видно из рисунка, не работают по замкнутому круговому процессу, но их циклы условно считают круговыми обратимыми циклами и при их исследовании используют те же термодинамические методы изучения, для чего действительные процессы, протекающие в ДВС, заменяются обратимыми термодинамически ми процессами. Составленный из термодинамических обратимых процессов цикл исследуется на термический КПД, работу и параметры состояния.
Исследование теоретических циклов позволяет определить максимальный с точки зрения термодинамики КПД в данных условиях и факторы, которые влияют на экономичность двигателя.
По принципу работы, т. е. по характеру подвода теплоты к рабочему телу циклы ДВС можно разбить на три группы:
- циклы с подводом теплоты к газу при постоянном объеме;
- циклы с подводом теплоты к газу при постоянном давлении;
- смешанные циклы — с подводом теплоты к газу частично при постоянном объеме, частично при постоянном давлении.
Термодинамические циклы исследуются одним методом, который включает в себя следующие этапы:
- по условию и характеру работы двигатели строится индикаторная диаграмма цикла;
- определяются параметры рабочего тела в характерных точках на основании формул, выражающих соотношения между параметрами состояния для процессов данного цикла;
- определяются теплота и работа цикла;
- определяется термический КПД цикла по формуле:
n = I — (q2/q1)
- выявляются факторы, влияющие на термодинамический КПД, и определяются пути его повышения.
Аксиальные двигатели внутреннего сгорания / Habr
Аксиальный ДВС Duke Engine
Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал.
Классический ДВС
Если мы хотим сделать двигатель помощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров — что, естественно, также увеличивает результирующий объём двигателя.
С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.
В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС. Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней.
У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710×480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша».
Не остались в стороне и советские инженеры. В 1916-м году появился двигатель конструкции А. А. Микулина и Б. С. Стечкина, а в 1924 г — двигатель Старостина. Об этих двигателях знают, пожалуй, только любители истории авиации. Известно, что детальные испытания, проведенные в 1924 г, выявили повышенные потери на трение и большие нагрузки на отдельные элементы таких двигателей.
Двигатель Старостина из музея авиации в Монино
Гениальный и слегка безумный инженер, изобретатель, конструктор и бизнесмен Джон Захария Делореан мечтал построить новую автомобильную империю в пику существующим, и сделать совершенно уникальный «автомобиль мечты». Все мы знаем машину DMC-12, которую называют просто DeLorean. Она не только стала звездой экрана в фильме «Назад в будущее», но и отличалась уникальными решениями во всём — начиная от алюминиевого кузова на плексигласовом каркасе и заканчивая дверями «крылья чайки». К сожалению, на фоне экономического кризиса производство машины не оправдало себя. А затем Делореан долго судился по подложному делу о наркотиках.
Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором — среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним — каждый из концов поршня должен был работать в своём цилиндре.
Чертёж из тетради Делореана
По каким-то причинам рождение двигателя не состоялось — возможно, потому, что разработка автомобиля с нуля вышло достаточно сложным предприятием. На DMC-12 устанавливали 2,8-литровый двигатель V6 совместной разработки Peugeot, Renault и Volvo мощностью 130 л. с. Пытливый читатель может изучить сканы чертежей и заметок Делореана на этой странице.
Экзотический вариант аксиального двигателя — «двигатель Требента»
Тем не менее, такие двигатели не получили широкого распространения — в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах — благодаря тому, как хорошо они вписываются в цилиндр.
Вариант под названием «Цилиндрический энергетический модуль» с двусторонними поршнями. Перпендикулярные штоки в поршнях описывают синусоиду, двигаясь по волнистой поверхности
Главная отличительная черта аксиального ДВС — компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.
Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и — ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях.
Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов — движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов.
Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше.
Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие — к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя — в зависимости от ваших целей).
Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому, это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.
Демострация малых вибраций двигателя Duke
Подрубрика сайта: Теория двигателя
Что представляет собой двигатель TSI и его характерные особенностиТеорияВ 2004 году автоконцерн VAG (Volkswagen AG) анонсировал новый двигатель TSI, который был назван настоящим прорывом в двигателестроении. Производительный
Что такое экологический класс автомобиля и как его определитьТеорияГрадация автомобильного транспорта по экологическим классам и установленные максимальные нормы выхлопов позволили значительно сократить токсичные выбросы в атмосферу.
Что такое компрессия, детонация и преждевременное воспламенение смесиТеорияСуществует несколько способов оценить работоспособность двигателя без его разборки. Наиболее простым и распространенным является измерение компрессии.
Что такое геометрические параметры двигателя: объем и степень сжатияТеорияМногим водителям известны такие понятия, как степень сжатия двигателя, компрессия и объем, но даже опытные автовладельцы порой смутно понимают значение
Что такое мощность двигателя, крутящий момент и удельный расход топливаТеорияИзобретенный более 100 лет назад поршневой двигатель внутреннего сгорания (ДВС), на сегодняшний день все еще является самым распространенным в автомобилестроении.
Как повысить мощность двигателя и зачем это нужноТеорияМощность двигателя — одна из основных характеристик автомобиля, которая определяет количество произведенной им работы. Она определяет, какой вес
Устройство и принцип работы роторного двигателяТеорияНе все знатоки автомобилестроения знают, что в разное время в разных странах мира, включая СССР, на авто ставились необычные роторные двигатели внутреннего сгорания.
Что такое фазы газораспределения и как они работаютТеорияОтрезки времени от начала момента открытия клапанов двигателя до их полного закрытия относительно мертвых точек движения поршня получили наименование фазы
Что такое рабочий цикл двигателяТеорияПроцессы, протекающие в цилиндрах двигателя при его работе, повторяются циклично. Одним таким рабочим циклом считается совокупность тактов (впуск топливовоздушной
Основные компоновочные схемы поршневых двигателей внутреннего сгоранияТеорияОдним из основных признаков, по которому классифицируют двигатели внутреннего сгорания (ДВС), является их компоновочная схема. Она определяет расположение
Двигатель внутреннего сгорания — урок. Физика, 8 класс.
Обрати внимание!
Двигатель внутреннего сгорания — распространённый вид теплового двигателя, который работает на жидком топливе (бензин, керосин, нефть) или горючем газе.
Двигатель состоит из цилиндра, в котором перемещается поршень \( 3\), соединённый при помощи шатуна \(4\) с коленчатым валом \(5\).
Два клапана, впускной \(1\) и выпускной \(2\), при работе двигателя автоматически открываются и закрываются в нужные моменты.
Через клапан \(1\) в цилиндр поступает горючая смесь, которая воспламеняется при помощи свечи \(6\), а через клапан \(2\) выпускаются отработавшие газы.
Топливо в нём сгорает прямо в цилинде.
Крайние положения поршня в цилиндре называют мёртвыми точками.
Расстояние, проходимое поршнем между мёртвыми точками, называют ходом поршня.
Такие двигатели называют четырёхтактными, т.к. рабочий цикл происходит за четыре хода или такта: впуск (а), сжатие (б), рабочий ход (в) и выпуск (г).
1 такт (впуск) — при такте впуска поршень от верхней мёртвой точки перемещается к нижней мёртвой точке. Цилиндр заполняется горючей смесью через открытый впускной клапан. Т.е. поршень всасывает горючую смесь.
2 такт (сжатие) — при такте сжатия поршень от нижней мёртвой точки перемещается к верхней мёртвой точке. Поршень движется вверх. Оба клапана плотно закрыты, и поэтому рабочая смесь сжимается. При сжатии температура смеси и давление повышаются.
3 такт (рабочий ход) — рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. А т.к. впускной и выпускной клапаны всё ещё закрыты, то расширяющимся газам остаётся только один единственный выход — давить на подвижный поршень. Поршень под действием этого давления начинает перемещаться к нижней мёртвой точке, создаётся крутящий момент.
4 такт (выпуск) — при движении поршня от нижней мёртвой точки к верхней мёртвой точке открывается выпускной клапан (впускной всё ещё закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.
После такта выпуска начинается новый рабочий цикл, всё повторяется.
Для того чтобы вращение вала было более равномерным, двигатель обычно делают многоцилиндровым: 2-, 3-, 4-, 6-, 8-цилиндровым и т.д.
Источники:
http://webmyoffice.ru/media/files/99/dvigatel-moto-2.jpg
http://usauto.ucoz.ru/news/bilet_6/2011-04-26-4
http://autooboz.info/wp-content/uploads/2007/09/dvigatel-vnutrennego-sgoraniya2.jpg
http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-2.jpg
http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-3.jpg
Теория и принцип работы двигателя Ибадуллаева: 3 новых положения в теории работы ДВС
Много важных событий произошло в России в начале 21 века, но огромный интерес автомобилистов и массу ожесточённых дискуссий в интернете породило одно из них. В Дагестане местным следователем прокуратуры был создан двигатель Ибадуллаева. Чем он так интересен? Чем же он лучше миллионов других двигателей внутреннего сгорания, эксплуатирующихся во всём мире уже много лет и спроектированных грантами мировой автомобильной индустрии? Может быть, это просто пустышка?
Содержание статьи
Краткая биография изобретателя
Ибадуллаев Гаджикадир Алиярович родился 2 марта 1957 года в Хивском районе Дагестана. После окончания школы Гаджи выбрал юридический факультет ДГУ в Махачкале. Получив профессию юриста, он распределился в прокуратуру, где стал работать следователем. В 2006 г. оставил службу в звании полковника (старшего советника юстиции) и вышел на пенсию по выслуге лет.
Он не любил обсуждать это время жизни и называл его «болото». Дело в том, что в застойные годы Гаджикадир не стеснялся работы, а после 1985 года стал «белой вороной» — не брал взяток из принципа. Не вписывался в коллектив и ушёл на пенсию, не жалея ни о чём.
Ещё работая в прокуратуре в 90-е годы, Гаджи пробовал усовершенствовать механику автомобильного двигателя. Им было получено 40 патентов на усовершенствование механизмов и системы питания бензиновых двигателей. Но, подумав, он пришёл к выводу, что повышение КПД механики двигателя большого эффекта не даст.
Этот показатель у лучших экземпляров моторов уже достигал 80 %. Он сообразил, что термический КПД двигателя лучше всего привести к максимуму, используя увеличение степени сжатия горючей смеси, и решил продолжать в этом направлении.
Гаджикадир выдвинул гипотезу, что, если поднимать степень сжатия двигателя до определённого предела, будет происходить пропорциональный рост КПД. У серийных движков она около 10. Но теория моторостроения не разрешает повышать эту степень выше 14 — возникнет детонация, разрушающая двигатель. Было необходимо как-то победить её.
Изготовление первого мотора
Гаджи занялся теорией. К сожалению, техническое образование у него отсутствовало. Знаний для победы над детонацией не хватало. Возникла необходимость искать поддержку у учёных и производственников. Именно её изобретатель и стал искать.
В конце 2001 года Ибадуллаев познакомился с профессором Николаем Иващенко, заведующим кафедрой МГТУ имени Баумана. Профессор и его коллеги сразу признались, что дилетант несёт совершенный бред и они выслушали его только из-за того, что следователь ставит вопросы интересно и оригинально.
После нескольких встреч и бурных споров учёные согласились, что тема значительной экономии топлива и увеличения удельной мощности двигателя может заинтересовать производственников. Ссылаясь на их авторитет, Гаджи попытался найти поддержку у конструкторов ВАЗа и ГАЗа в создании действующего изделия.
Его сначала внимательно выслушивали и вежливо поддакивали, но, когда юрист приехал в Тольятти в четвёртый раз, ему посоветовали больше не приезжать, так он надоел. Конструкторы оказались уверенными в себе профессионалами. Они заявили, что скорее возьмутся за вечный двигатель, чем пытаться безнадёжно бороться с детонацией.
Уговорить кого-нибудь сделать тестовый экземпляр Гаджикадиру не посчастливилось и он осенью 2002 года был вынужден своими руками создать мотор Ибадуллаева, используя в качестве основы двигатель БМВ-525. Сжатие получилось равным 17.
Сначала он двигался на машине осторожно, установив ограничитель хода педали акселератора, но скоро понял, что опасения напрасны и ограничитель снял. За полгода двигатель пробежал 5 000 км.
В 2003 г. Гаджи познакомился с Беккером В. Я. — директором торгового предприятия по продаже автозапчастей, который поверил в изобретателя и оказал ему материальную поддержку в создании двигателя на базе ВАЗовского мотора. ВАЗ-2110 для испытаний был приобретён знакомым бывшего следователя.
В июне 2003 года был изготовлен и протестирован мотор с коэффициентом сжатия 19. Через месяц Гаджи на автомобиле с этим двигателем съездил в Москву, проехав около 2 000 км, не превышая скорость 120 км/час со средним расходом топлива марки АИ-95 около 4,63 литра на 100 км.
После этих успехов дагестанца легко решились вопросы дальнейшей оплаты работ, получения бокса, запчастей и прочих расходов. Был создан второй двигатель для стендовых испытаний. Автору удалось решить и проблему получения стенда для испытаний в МАДИ (ГТУ).
За 3 года на стенде были решены вопросы калибровок, программирования и прочих настроек. За это время двигатель много раз разбирался и продемонстрировал идеальное состояние без признаков износа.
По завершении стендовых испытаний стало очевидно, что для этого двигателя требуются очень мощные свечи и катушки с повышенным напряжением, а также новая программа. Изобретатель пытался договориться с московским представительством фирмы «Бош» об изготовлении этих компонентов, но на оплату (более 3 млн евро за программу и 1,5 млн евро за свечи и катушку) денег у него не было.
Проблема решилась чудесным образом. Московский изобретатель Павел Воронов предложил Гаджи коммутатор собственного изготовления и катушки, выдававшие необходимые для двигателя 80 кВ вместо стандартных 20 кВ.
После демонстрации работы двигателя у многих зрителей, знакомых с термодинамикой, начинали возникать подозрения, что им показывают какой-то фокус. Они начинали искать, где спрятаны секреты, то ли в особом бензине, то ли в подаче топлива. Настолько невероятна была теория Ибадуллаева, реализованная в «железе».
Создание теории Ибадуллаева
Следующий важный этап истории его открытия произошёл осенью 2007 года, когда на Международную конференцию «Двигатель-2007», посвящённую юбилею школы моторостроения Бауманки, буквально ворвался Гаджикадир.
Он объявил, что приехал на автомобиле, у которого мотор работает со степенью сжатия 25 без каких-либо признаков детонации. Двигатель подвергли тщательной проверке с замером всех заявленных параметров, дилетанта завалили вопросами, на большинство которых он ответить не мог.
После обсуждений на конференции учёные признали, что изобретателем выявлен неизвестный ранее термодинамический цикл и двигатель Ибадуллаева — это реальность. Вскоре по результатам этого исследования в МГТУ был выпущен сборник статей дебютанта.
Изобретателю посоветовали объяснить результаты его работы на базе классической термодинамики. Юристу снова пришлось засесть за технические учебники. Иващенко выдал Гаджи кучу книг по теории двигателей внутреннего сгорания и согласился консультировать по курсу.
Проработка изданий непревзойдённых классиков ДВС была выполнена добросовестно. Бывший юрист книжки прочитал и понял, что общепринятые теории не способны объяснить его изобретение, придётся самому вписывать новые главы в развитие термодинамики и двигателестроения.
Под руководством профессора Гаджикадиру удалось издать свою первую брошюру про двигатель Ибадуллаева и его принцип работы. Описание работы изобретателя в книге вышло не очень понятным, так как бывший следователь не знал теории двигателестроения, а профессор суть теории Ибадуллаева так и не понял.
Последовательно исследователь формулировал свою теорию. Он выделил главные положения теории ДВС Ибадуллаева:
- Максимальный порог степени сжатия двигателя зависит не от детонации, а от возможностей технологии.
- Явление детонации определяется взаимодействием следующих факторов: температуры, давления и времени.
- При построении каждого цикла двигателя таким образом, что продолжительность задержки самовоспламенения будет превышать время окончания сжатия и начала расширения, условия для детонации не возникнут совсем.
Не хватало инструментов для анализа. Не удовлетворившись классическими постулатами теории, он сформулировал новые законы:
- перехода термодинамических процессов газа;
- перехода циклов;
- синхронизации процессов.
Гаджикадир пришёл к революционному выводу, что при работе моторов с высокой и сверхвысокой степенями сжатия в зависимости от нагрузки и оборотов будет происходить переход действительных циклов из одного в другой. Учёным были выявлены и описаны неизвестные ранее варианты термодинамических циклов:
- Ибадуллаева;
- Имам;
- Аида;
- Алияр.
Заслуженное признание учёного
В дальнейшем вошедший во вкус дилетант нашёл много нестыковок и противоречий в общепринятой теории ДВС и смог отстоять своё мнение в непримиримых дискуссиях с корифеями научного сообщества. Учёным пришлось признать её «теорией со значительными оговорками».