Site Loader

ВОДОРОД ВМЕСТО УГЛЕВОДОРОДОВ | Наука и жизнь

Водород — самое экологически чистое топливо на Земле: при его сгорании образуется только вода. В качестве энергоносителя водород можно использовать для получения электричества и тепла в промышленности, в быту, на транспорте. В частности, с помощью водородных топливных элементов, в которых происходит прямое преобразование химической энергии в электричество, уже созданы опытные образцы электромобилей (см. «Наука и жизнь № 8, 2003 г.). Существует также много способов безопасного хранения и транспортировки водорода. А не нанесут ли вреда природе технологические процессы получения водорода?

В настоящее время водород в промышленных масштабах получают паровой конверсией метана (природного газа). При температуре 750-850оС в присутствии водяного пара метан и вода расщепляются на водород и монооксид углерода, затем при 200-250°С происходит превращение монооксида углерода и воды в водород и диоксид углерода. Оба процесса эндотермические, и для их поддержания приходится сжигать около половины объема исходного газа, из-за чего экологический эффект оказывается очень низким.

Предлагается использовать для нагрева и подвода тепла высокотемпературные ядерные реакторы с гелиевым теплоносителем. Таким образом можно экономить углеводородное сырье и поставлять на рынки развивающихся стран водородное топливо вместо ядерных реакторов.

Дальнейшее развитие атомно-водородной энергетики пойдет по пути использования в качестве сырья не метана, а воды. Здесь могут быть использованы электролиз, а также термохимические и комбинированные методы получения водорода.

Известный способ термического разложения воды, которое происходит при температуре 2500°С, вряд ли применим, поскольку сложно предотвратить последующую рекомбинацию молекул воды. Однако возможен термохимический процесс разложения воды при температурах порядка 1000°С в присутствии соединений брома и йода. Правда, здесь требуется подведение тепла, и кпд составляет около 50%. На отдельных стадиях процесса наряду с термическим воздействием используется электролиз.

Электролитический водород получить проще всего, но экономически это невыгодно: на получение одного кубометра водорода требуется 4,8 киловатт-часа энергии. Если проводить электролиз перегретого пара, то эффективность процесса повышается, и на получение кубометра водорода уходит около 2,5 киловатт-часа.

В настоящее время «Курчатовский институт» и американская компания «GA» совместно разрабатывают очень перспективный проект газовой турбины-модульного гелиевого реактора. При генерации электричества с использованием прямого газотурбинного цикла можно достичь кпд, равного 50%.

Вода, разложение термическое — Справочник химика 21

    Объяснение. Когда спираль не накалена, разложение паров воды не наблюдается. По мере усиления нагревания спирали реакция сдвигается в сторону разложения молекул воды. Разложение молекул воды происходит в непосредственной близости от раскаленной поверхности платиновой спирали. За счет процессов диффузии, а также за счет движения вверх молекул пара, продукты термической диссоциации выносятся из зоны реакции в газоизмерительную трубку. Здесь в пневматической ванне пары воды конденсируются, а газообразные кислород и водород поступают в измерительную бюретку. Опыт наглядно показывает зависимость скорости термической диссоциации воды от температуры. Чем выше температура поверхности платины, играющей в данном процессе роль катализатора, тем больше образуется в единицу времени гремучего газа. Следователь- 
[c.104]

    Физический смысл гН можно уяснить из следующего. Вода подвергается термическому разложению на водород и кислород [c.71]

    Гидрирование в эмульсиях, например восстаиовление ароматических динитросоединений в водной эмульсии. При этом улучшаются условия отвода реакционного тепла, облегчается выделение растворимого в воде диамина, предотвращается разложение термически нестабильных динитросоединений. 

[c.516]

    Удаление внешней влаги, называемое сушкой, протекает даже и при комнатной температуре. С повышением температуры этот процесс становится еще интенсивнее и практически заканчивается при 105—110°С. В температурном интервале 100—200 «С из угля выделяются окклюдированные газы и начинаются процессы собственно термической деструкции в наиболее термически нестойких твердых топливах — торфах и некоторых молодых бурых углях. Основным продуктом этого процесса является вода, которая называется пирогенетической водой или водой разложения. Довольно трудно установить, когда заканчивается выделение гигроскопической влаги и начинается образование пирогенетической воды. В большинстве случаев это невозможно и поэтому нельзя с уверенностью определить начало термической деструкции. 

[c.243]

    Для выражения степени окисленности можно использовать а) степень окисленности, вычисляемую на основе элементарного состава б) теплоту сгорания в) выход газа и воды при термическом разложении. [c.15]

    Желто-коричневый, плавится без разложения, термически устойчивый. Плохо растворяется в холодной воде. Кристаллогидратов не образует. Не реагирует с разбавленными кислотами. Разлагается кипящей водой, царской водкой , щелочами, гидратом аммиака. Проявляет слабые окислительно-восстановительные свойства. Получение см. 88 , 887 . 

[c.447]

    Белый, плавится без разложения. Термически устойчивый. Безводный порошкообразный К28 пирофорен в сухом воздухе. Хорошо растворяется в воде (сильный гидролиз по аниону). Реакционноспособный во влажном состоянии окисляется кислородом воздуха, присоединяет серу. Разлагается кислотами. Типичный восстановитель. Получение см. 43 , 63  [c.37]


    Разложение воды. Процесс термического разложения воды можно описать следующими реакциями  [c.330]

    Белый, плавится без разложения, термически устойчивый. Хорошо растворяется в воде (гидролиз по аниону), создает сильнощелочную среду, переводит в раствор цинк и алюминий. Частично разлагается концентрированной серной кислотой. Вступает в реакции обмена. Получение см. 28, 29 330, 332.  

[c.174]

    В обычном состоянии этот неметалл с формулой Э2 — бесцветный газ, не имеющий запаха и вкуса, негорючий и малорастворимый в воде, не поддерживающий горение и вообще химически весьма инертный. Только с литием он уже при комнатной температуре образует соединение ЫдЭ, а при нагревании реагирует с магнием, окисляя его до Получить Эд в лаборатории можно из его соединения ЭНд (действуя бромной водой) или термическим разложением соли состава (ЭН )(Э02). Что такое 

[c.232]

    Красно-фиолетовый, плавится и кипит без разложения, термически устойчивый. Не растворяется в холодной воде, не реагирует с разбавленными кислотами. Разлагается кипящей водой. Восстанавливается кальцием, окисляется кислородом. Получение см. 688.  [c.345]

    Белый, плавится без разложения, термически устойчивый. Хорошо растворяется в холодной воде (гидролиз по аниону). Реагирует с горячей водой, кислотами. Вступает в реакции обмена. Образует изополисоединения. Получение см. 332, 342″, 344  [c.179]

    Не всегда при добавлении воды разложение сопровождается образованием тетрагалогенида кремния разложение водой может наступить раньше, чем начнется термическое разложение вещества, при этом некоторые вещества переходят в полимерные соединения кремния, которые при термическом разложении образуют Si . Карбид кремния образуется также при сожжении соединений, содержащих у одного атома кремния три атома галогена или атомы галогена и водорода. Такие соединения сжигаются при добавлении к навеске небольшого количества хромированного асбеста, асбеста и воды. 

[c.53]

    Устойчивость к воздействию высоких температур — одно из характерных свойств амфиболовых асбестов. В настоящее время вопрос о поведении амфиболов при нагревании изучен достаточно широко. Термоаналитические исследования как природных, так и искусственных амфиболов химического состава, проведенные в различных газовых средах и в вакууме, в статических и динамических условиях [28], позволили выявить влияние этих параметров на процесс выделения воды, последовательность термических превращений, их механизм и изучить продукты разложения, С привлечением современных методов исследования рассмотрены многие другие вопросы, касающиеся окисления железа, явлений упорядочения и структурных превращений при нагревании. 

[c.137]

    Запах сточных вод населенных мест, представляющий собой смесь запаха фекалий с запахами разложения жиров, белков, мыла и т. д., является довольно характерным. Он зависит от разложения хозяйственно-бытовых стоков и от того, какие в воде преобладают процессы — окислительные или восстановительные. Подобный запах могут иметь также некоторые сточные воды предприятий пищевой промышленно

Вода горит! А также ЭГЭ и волны-убийцы / Habr

Водяная спичка — устройство для поджигания воды и проведения интересных опытов с взрывами.
Это конечно не термоядерный взрыв, но что водородный, это точно! Опыт безопасен, так как водород сгорает мгновенно, без накопления опасных объемов.
Предполагаю, что подобная буря в стакане, в масштабах планеты является источником возникновения интересных явлений — волн-убийц и цунами неизвестного происхождения, которые появляются буквально из ниоткуда, обрушиваются на судно и так же бесследно исчезают. На данный момент отсутствует внятное объяснение причин возникновения таких волн.

Возможно, все происходит так…


Анимация “Водяной”

При попадании молнии на поверхность Мирового океана, происходит водородный взрыв, а при удачном сочетании глубины воды и рельефа дна, направления удара и величины напряжения, продолжительности импульса и длительности его фронта — формируется огромная одиночная волна в результате импульсного электролиза поверхностного слоя воды, рассматриваемого в этой статье. Не последнюю роль в явлении играет резонанс.
В районе Бермудского треугольника эти условия выполняются наиболее часто, поэтому он получил свою печальную известность.
Примерно одна миллионная из 250 миллионов молний, ежегодно бьющих по поверхности Мирового океана, рождает супер-волну.
Белая волна — насыщенная газами вода, в которую попадают экипажи низколетящих летательных аппаратов, не является вымыслом и она присутствует в опытах. Вписывается в эту теорию и возникающий при ударе молнии электромагнитный импульс (ЭМИ), выводящий из строя навигационное оборудование.
В отличие от других экзотических способов поджигания воды, рассматриваемый вариант прост и имеет 100% повторяемость. Опыт показывает огромную скорость и производительность электролиза воды при коротком импульсном воздействии, а также позволяет безопасно исследовать электрогидравлический эффект и молнию в лабораторных условиях. Прибор можно использовать для изучения условий формирования блуждающих волн. В дальнейшем станет реальностью создание автоматических устройств, которые сгенерируют встречную волну для гашения разрушительных цунами и волн-убийц в охраняемых прибрежных зонах.

Предположение проверено и подтверждено на небольшом макете. GIF-анимация “Водяной” — формы волн: “одиночная башня”, “белая стена”, а также чудо-юдо с глазами и другие красивые элементы из воды, полученные при начальном для возникновения эффекта напряжении 145 вольт, показаны в тексте выше.
Любой желающий может повторить опыт и проверить предположение.

При нахождении электрода на поверхности жидкости, легко достигается эффект горения воды.


Анимация “Вода горит”

Огниво для воды.
Более года назад вышла статья “Импульсный электролиз на Google Science Fair”, где в опытах по поджиганию воды использовался батарейный вариант импульсного электролизера. С тех пор утекло много соленой воды и был создан новый вариант устройства под названием водяная спичка (ВС). Батарейный вариант из прошлой статьи будет ВС-1, сегодняшний сетевой — ВС-2.
Ключевыми особенностями устройств являются:
— тонкий электрод — чем тоньше, тем лучше;
— работа на поверхности жидкости или в глубине, при помощи изолированного по длине катода;
— импульсный режим работы;
— короткое время импульса и длительная пауза;
— крутой фронт импульса;
— вода с большой соленостью в качестве рабочей жидкости.

Водород выделяется из воды при импульсном воздействии на поверхностный слой с использованием тонкого катода (отрицательный электрод, если кто не знает, да и сам постоянно забываю) и мгновенно сгорает в присутствии кислорода. Процесс выделения/сгорания очень быстрый, поэтому имеет взрывообразный характер. К счастью жителей планеты, процесс является затухающим — сколько водорода выделяется за время импульса, столько и сгорает. Устройство использует соленую воду, так как пресная требует большие напряжения для создания аналогичных размеров водородного пламени.
Работа прибора основана на электрогидравлическом эффекте (ЭГЭ), открытом великим российским ученым Юткиным. Чтобы никому не было обидно, можно утверждать, что в других странах этот эффект действовал задолго до его открытия в виде обыкновенной молнии. Но даже обычная молния до сих пор изучена не полностью — эльфы, джеты, спрайты, а также космические лучи для запуска процесса подтверждают это.
В устройствах, работающих на эффекте ЭГЭ, требуется высокое напряжение, разрядники, а также другие большие и опасные штучки. Но соленая вода и современные комплектующие позволяют собрать прибор на базе ручки от старого паяльника, используя относительно низкое рабочее напряжение. Хотя не обошлось без микроконтроллера, схема доступна для повторения любым радиолюбителем.

В предыдущем эксперименте с поджиганием воды моя роль сводилась к созданию импульсного электролизера. Результаты опытов оказались интересными, но дочка вместо исследования ЭГЭ готовится к ЕГЭ — это новомодное увлечение все больше и больше поглощает умы и время подрастающей молодежи, а также деньги их родителей. Поэтому, экспериментальных данных в этом рассказе будет мало, желающие почитать подробности могут это сделать в предыдущей статье. Я свой интерес удовлетворил созданием более мощного устройства и коротким фильмом.

Теория ЭГЭ.
Юткин в своих опытах использовал напряжение всего лишь 20…50 кВ и более, а емкость до 1 мкФ. Теория была опубликована в работе “Электрогидравлический эффект и его применение в промышленности”, в формате djVu находится тут.
То, что творится при ударе молнии в воду с ее напряжением в миллионы и миллиарды вольт трудно себе представить, так как энергия, запасенная в конденсаторе, и выделяющаяся при его разряде пропорциональна квадрату напряжения и определяется по формуле: W=СU^2/2.

По сравнению с разрядниками Юткина и тем более молнией, ВС-2 является детской игрушкой, но она позволяет исследовать явление в безопасных режимах в стакане на столе. Вышеприведенную формулу для расчета энергии можно использовать лишь частично, так как ВС-2 управляет количеством энергии, поступающей на катод, и разряд конденсатора производится не полностью.

По теории ЭГЭ считается, что причиной роста давления жидкости является расширение паровоздушной смеси, образовавшейся в результате мгновенного вскипания жидкости в канале стримера из-за его огромной температуры.
Но по результатам предыдущих опытов с ВС-1 можно сделать вывод, что источником роста давления является огромная скорость электролиза, а следовательно — выделение водорода и его последующее горение с большой скоростью (взрыв) в присутствии растворенного в воде кислорода.
То есть, при разряде происходит практически мгновенное разложение молекул воды на атомы водорода — топливо и кислорода — окислитель, и последующий взрыв гремучей смеси в зоне катода (кислород растворен в воде и пополняется из зоны анода).
Скорее всего, наблюдаемое кипение жидкости происходит в результате кавитации, после произошедшего взрыва водорода.
Чем больше плотность тока (определяется напряжением и диаметром катода), и чем короче фронт импульса, тем большее число молекул воды участвует в процессе электролиза и тем больше водорода выделяется при каждом импульсе.
Можно сделать вывод, что в ЭГЭ первичным является высокоскоростной электролиз, который порождает все последующие эффекты.

Гром — звук от молнии, является результатом взрыва водорода при разложении молекул воды, находящихся в атмосфере. Но если в атмосфере вследствие низкой плотности и высокой сжимаемости воздуха слышен лишь взрыв, то в воде образуются волны.
Каждый взрыв индивидуален. Сложный характер движения жидкости иллюстрирует фотография с “чудом-юдом”, где видна траектория движения разгоряченного после взрыва конца электрода.

Исследование импульсного электролиза на границе воздух-жидкость, а также с использованием тонкого закрытого электрода, погруженного в жидкость, позволит изучить явление более подробно. Данные опыты являются началом экспериментов, которые желательно продолжить с использованием современных научных приборов, более совершенной измерительной и записывающей техникой. Желательно провести измерение уровня ЭМИ. В некоторых фрагментах видео (особенно при использовании быстродействующего транзистора) заметно “захлебывание” звукового тракта камеры, чем это вызвано — воздействием ЭМИ на микрофон или его перегрузкой из-за резкого звука, непонятно.

Создание ВС-2.
За основу электрической схемы ВС-2 был взят импульсный электролизер ВС-1 из предыдущей разработки.
Трансформатор, показанный на схеме, любой доступный и он находится вне платы ВС-2. Можно его не использовать, если производится питание от электрической сети. Но при этом существует риск поражения электрическим током.

В качестве задающего генератора использован микроконтроллер PIC12F675, который формирует необходимую длительность импульсов.

Излишки напряжения (предполагалась работа до 800 В) гасятся на балластном резисторе, который выполнен из сборки полуваттных резисторов. Экономичность генератора импульсов и большая скважность работы способствуют низкому уровню мощности, выделяемой на данном резисторе. Последовательное соединение и большое количество резисторов препятствуют их пробою на предельных напряжениях.

Данный вариант блока питания был выбран из-за простоты, надежности, а также в связи с тем, что предполагалась работа не от сети 220 В, где можно получить на накопительных конденсаторах лишь 311 В, а от разделительного повышающего трансформатора, позволяющего значительно поднять напряжение. Из того, что имелось в наличии собрана схема из трех трансформаторов и получено переменное напряжение 544 В, из которого после выпрямления и фильтрации получается 769 В постоянного напряжения. Это уже что-то, по сравнению с 145 В, использованных в ВС-1.

Из предыдущих опытов стало понятно, что одним из факторов, влияющих на производительность установки, является минимальная длительность фронта импульса, поэтому схемотехника устройства направлена на увеличение крутизны:
— короткая длина электродов и проводов, размещение силовых элементов в непосредственной близости от электродов для уменьшения индуктивности силовой части схемы;
— мощный драйвер MOSFET TC4452, управляющий силовым транзистором;
— новейший супер-пупер транзистор в качестве скоростного ключа: CREE Z-FET™ MOSFET на карбиде кремния (SiC) CMF10120D с параметрами Qg = 47 nC, максимальным напряжением 1200 В, сопротивлением RDS(on) = 160 mΩ и импульсным током 49 А.
При отладке на макете (работа на длинных проводах) все работало отлично. После установки на ручку паяльника и сокращении длины проводников до электродов, первый экземпляр ключа не выдержал работы на высоком напряжении 769 вольт и был заменен на его брата-близнеца. При его высокой стоимости это было шоком. Разработка силовой электроники, это затратная область деятельности.
Второй экземпляр также не смог долго продержаться. Скорее всего, происходит выброс напряжения при отключении импульса, и транзистор вылетает по превышению максимального напряжения, пополняя список жертв эксперимента. Результат контрольного измерения — пробой по всем выводам. В следующий раз, при наличии большого количества транзисторов, можно поискать область безопасной работы между 311 и 769 В.

При работе устройства пробой транзистора наблюдается так: длительность импульса уже не ограничена контроллером, и на электроде, при касании поверхности воды происходит выделение значительной энергии. Электрод не выдерживает и немного сгорает, разбрызгивая частички меди — работает предохранителем. Фрагмент виден в середине фильма “Вода горит!” (ниже по курсу).

Помимо сокращения длительности фронта, другой путь увеличения добычи водорода, а следовательно высоты пламени — увеличение напряжения на электродах. Предполагалась получение напряжения импульса до 800 В, поэтому пришлось использовать пару конденсаторов. Два последовательно соединенных конденсатора 47 мкФ х 450 В дают результирующую емкость 23,5 мкФ х 900 В.

Богатырские накопительные конденсаторы, используемые в схеме, как и Илья Муромец лежали очень долго, поэтому была проведена их формовка. Для этого, на протяжении двух суток последовательно соединенные конденсаторы находились под выпрямленным сетевым напряжением 220 В. В первые сутки напряжение на них менялось следующим образом:
С1 — 241, 235, 216, 203, 196, 190, 187, 184, 179, 175, 172, 165, 162, 155, 154 В.
С2 — 065, 072, 104, 120, 127, 134, 139, 141, 145, 148, 154, 160, 159, 153, 153 В.
Суммарное напряжение на конденсаторах зависит от величины сетевого напряжения в соответствии с формулой U=220х1,414=311 В. На вторые сутки разница напряжений не превышала 1 вольта, что является показателем окончания процесса формовки.

Ручка ВС-2 взята от паяльника ЭПСН 220 В, 40 Вт. В ней имеются углубления и упоры, которые позволяют надежно зафиксировать печатную плату с элементами.

При работе устройства происходит значительный разброс капель соленой воды, поэтому компоненты устройства расположены внутри защитной пластиковой бутылки.

Как было доказано в опытах с ВС-1, высота факела пламени зависит от толщины электрода. Электроды ВС-2 изготовлены из медной проволоки диаметром 1,7 мм. Анод должен значительно превышать по размеру катод.

Тонкий медный катод диаметром 0,07 мм (меньше найти не удалось) припаян к концу несущего электрода. При уменьшении диаметра необходимо подобрать параметры импульса (напряжение, длительность, пауза), чтобы электрод практически не разрушался при коротком импульсном воздействии.

Как следует из экспериментов с ВС-1, при взрыве водорода образуется воронка и происходит колебание поверхности жидкости. При последующих импульсах волны набегают на электрод, и поверхностный взрыв превращается в подводный — происходит “захлебывание” электрода, и уменьшение высоты пламени водорода. Удержать электрод точно на поверхности в условиях сильного шторма при помощи одной руки (вторая управляет процессом фотосъемки) становится затруднительно. Чтобы облегчить задачу, в программе ВС-2 длительность импульса уменьшена вдвое — до 100 мксек, а продолжительность паузы между импульсами увеличена втрое — до 300 мсек по сравнению с программой работы ВС-1.

Программа работы ВС-2.
start:
HIGH GPIO.2 ‘ включение ключа
PAUSEUS 100 ‘ длительность импульса 100 мксек
LOW GPIO.2 ‘ отключение ключа
PAUSE 300 ‘ продолжительность паузы 300 мсек
GOTO start

Доработка программы
Если разрешить включение подтягивающих резисторов и установить миниатюрный выключатель между выводами контроллера 7 и 8, то можно сделать две частоты выходных импульсов:
@ DEVICE INTRC_OSC_NOCLKOUT, MCLR_OFF, WDT_ON, CPD_OFF, PWRT_ON, PROTECT_ON, BOD_ON ‘ BANDGAP0_ON
‘ генератор внутренний, 4МГц, GP4 и GP5 фунцционируют как порты ввода-вывода
‘ MCLR внутренне подключен к питанию, GP3 работает как канал порта ввода
‘ сторожевой таймер WDT включен
‘ CPD защита памяти данных EEPROM отключена
‘ PROTECT защита памяти программ включена
‘ ON=enabled — включен=разрешено, OFF=disabled — отключен=запрещено

INCLUDE «modedefs.bas»
DEFINE NO_CLRWDT 1 ‘ не вставлять CLRWDT
DEFINE OSC 4

‘ Настройка контроллера
OPTION_REG = %01111111 ‘ разрешим включение подтягивающие резисторы, предделитель подключаем к WDT,
‘ коэффициент деления для WDT=1:128 (при F=4 МГц время отключения около 2,8 сек)
ANSEL = 0 ‘ цифровой режим работы аналоговых входов
CMCON = %00000111 ‘ отключение компаратора

‘ Текст программы

start: ‘
CLEARWDT
HIGH GPIO.2
PAUSEUS 100 ‘ 100 мксек
LOW GPIO.2
IF GPIO.0 = 0 THEN
PAUSE 100 ‘ 100 мсек
ELSE
PAUSE 300 ‘ 300 мсек
ENDIF
GOTO start
END


Фото и видео
Брызги воды разлетаются от электрода на расстояние более метра, поэтому съемку пришлось проводить на большом удалении.
Необходимо использовать защитное стекло на объектив и желательно прикрыть фотоаппарат, так как соленая вода для электроники, это не очень хорошо.
В идеале желательно использовать высокоскоростную камеру, но за неимением таковой, съемка велась на зеркалку Nikon D7000 с объективом 18-105 мм.
Фотографирование лучше проводить в ручном режиме, так как при маленьком времени импульса автоматика не справляется.
Перед съемкой как можно точнее сфокусировать закрепленный на штативе аппарат на место предполагаемых взрывов с помощью дополнительного высококонтрастного объекта, так как поймать фокусировку по воде трудно. По пробным съемкам выставить время выдержки.
Теперь можно рассчитать вероятность получения удачного снимка:
— время импульса — 100 мксек;
— пауза между импульсами — 0,3 сек;
— скорострельность аппарата в непрерывном высокоскоростном режиме — 6 кадров в секунду;
— выдержка, выставленная для снимка — 1/100 сек.
То есть вероятность крайне низкая.
Скорость выделения водорода огромная, поэтому получить четкое изображение факела пламени с такой выдержкой нереально. Уменьшая выдержку для получения красивого снимка столба пламени, мы делаем еще меньшую вероятность попадания вспышки в кадр. Как вариант, можно попробовать приспособления для автоматической синхронизации, но эти устройства отсутствуют.
Все вспышки, пойманные за время съемки, а также другие фотографии, относящиеся к этому проекту, можно посмотреть в альбоме. При анализе снимков видно, что каждый удар индивидуален, хотя электрод расположен почти одинаково. Поэтому формирование высокой волны на море, при ударе молнии, имеет даже меньшую вероятность, чем получение удачного снимка.

С видео все проще, но рассмотреть место взрыва подробно становится затруднительным.

Видео “Вода горит!” Показаны три фрагмента работы.
1. Скоростной транзистор CMF10120D при работе с напряжением 311 В.
2. CMF10120D в момент, когда он пробит при работе с напряжением 769 В.
3. Устаревший транзистор 2SK1358 при работе с напряжением 311 В.

Гифка “водяной” вначале статьи, была сделана из старых кадров с участием ВС-1. Для модели ВС-2 закрытый электрод не изготавливался, так как будет очень большой разброс капель.

Эффективность процесса.
Одним из самых интересных вопросов — КПД при получении водорода, хотя он сразу и сгорает.
К полезной части, для оценки КПД, относятся электромагнитный импульс излучений в различных диапазонах спектра, колебание поверхности жидкости, выброс капель, звуковая волна — но это трудно оценить в виде цифр. Наиболее простым способом определения выработки является визуальная оценка объема водорода по кадрам видеосъемки или фотографиям области пламени.
Для четкого определения границ необходимо поснимать взрывы заранее известного объема водорода, а затем анализировать вспышки при проведении импульсного электролиза поверхностного слоя. Хотя опытные химики и взрывники наверняка и без предварительных взрывов смогут определить границы водорода, участвующего в процессе.

Так как разряд заряженного конденсатора при импульсе происходит не полностью, то формулу по расчету его энергии использовать некорректно.
Затраты энергии считаются по анализу осциллограммы на небольшом резисторе, включенном в цепь электрода или на токоограничительном резисторе блока питания.

При предварительных испытаниях устройства, когда супер-транзистор недолго работал при высоком напряжении, высота пламени водорода достигала трех сантиметров, но на видео это не успело попасть, и объем остался неизвестен. После выхода из строя двух современных ключей, за неимением лучшего, был установлен транзистор 2SK1358, который не отличается выдающимися параметрами, что заметно даже по характеру звука в фильме “Вода горит”. Поэтому для установки ВС-2 объем водорода не определялся, а дальнейшая работа производилась на “пониженном” напряжении 311 В. В предыдущих опытах с ВС-1 выработка определялась по размеру пламени, потребление — по падению напряжения на резисторе в цепи электрода.

Характер взрыва водорода в смеси с кислородом и чистого можно посмотреть в фильме, найденном на youtube.

Продолжение работ.
Работа по импульсному электролизу перспективна и интересна людям, у некоторых имеется желание повторить и продолжить опыты. Был замечен интерес к ней со стороны людей, уже занимающихся подобными исследованиями, что очень похвально. Результатов пока не видно, но это дело времени.
В Интернете выложено большое число видео с процессом электролиза. Как правило, электролиз проводят при неотключаемом напряжении — постоянном или переменном. При этом остро встает проблема сохранности электрода, который изготавливают из материалов, устойчивых к высокой температуре.
В случае же импульсного воздействия, как правило, производится полный разряд накопившего энергию конденсатора на водную среду, высоковольтный ключ/разрядник производит лишь включение цепи.
Фишкой установок ВС-1 и 2 является то, что можно ограничить длительность импульса до минимально возможной. При этом, благодаря маленькому диаметру электрода, плотность тока в импульсе достигает огромных величин, но короткое время воздействия не позволяет разрушить даже тонкую медную проволоку. При достаточно высокой частоте следования импульсов можно добиться визуального эффекта непрерывного горения водорода на поверхности воды.

По результатам эксперимента можно сделать вывод, что для начальных опытов достаточно выпрямленного сетевого напряжения, желательно — гальванически развязанного от сети при помощи трансформатора. Потребление энергии устройством небольшое, так как ВС-2 работает в импульсном режиме с большой скважностью.
Схему можно упростить, что уменьшит размеры устройства. Накопительный конденсатор достаточно использовать один, емкостью 10…47 мкФ на напряжение 450 В. Составной балластный резистор можно изготовить из трех-четырех последовательно соединенных резисторов.
При доработке устройства можно ввести регулировку длительности импульса, паузы, напряжения на накопительном конденсаторе, предусмотреть режим одиночных импульсов.
Изучайте, исследуйте, это действительно интересно, и выкладывайте свои результаты.

Интересный фильм “Повелители молний” был снят автором Антоном Войцеховским в рублике «ЕХперименты». В фильме, в частности, упоминается испытательный полигон ВНИЦ ВЭИ, расположенный в городе Истра. На базе этого научного заведения можно начать исследования условий возникновения волн-убийц при попадании молнии в морскую воду. Продолжить опыты можно уже на море, создав там мощную установку для получения молниеносного напряжения.

Ссылки.
1. Альбом с фотографиями.
2. ВС-2. Электрическая схема.
3. ВС-2. Печатная плата.
4. ВС-2. Программа работы.
5. ВС-2. Повышающий трансформатор, оказался практически невостребованным.

5. Расчет производительности молний
Количество молний.
Общее количество молний 1,4 миллиарда в год.
350 миллионов — 25 % молний ударяет в земной шар.
Приблизительно 250 миллионов (точнее 248,5 миллионов) — 71 % молний приходится на поверхность Мирового океана.
Количество волн-убийц.
Спутники зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 25 метров.
За год количество волн составит 173 штуки.

Итого: На 250 миллионов молний приходится 173 больших волны. Грубо можно сказать, что примерно каждая миллионная молния рождает огромную волну.


P.S.
Выступление на конференции «ХТЯиШМ–20» с обобщением результата работ.

Как оказалось «Молнии играют роль в образовании горного ландшафта».
А отсекать глыбы вполне может и ЭГЭ, что демонстрировал Юткин, в результате попадания молнии в воду, содержащуюся в каналах или пустотах горного массива.

Расщепление воды с эффективностью 100%: полдела сделано / Habr

Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии — водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз — очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.

Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции — восстановления — в видимом (солнечном) свете с энергетической эффективностью 100%, значительно превзойдя предыдущий рекорд 58,5%.

Осталось усовершенствовать полуреакцию окисления.

Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения — и выдают электроны.

В полуреакции окисления производятся четыре отдельных атома водорода и молекула О2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H2, производя полезную форму водорода — газ H2,

Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.

На такой эффективности каждый наностержень генерирует около 100 молекул H2 в секунду.

Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.

К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.

Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.

Научная работа опубликована в журнале Nano Letters (зеркало).

Разложение воды под действием звука описано ещё в «Юном технике»

— У ада и небес есть свои границы, защита, охрана, воины, ворота. Зачем им все это?
— Людей боятся, вот и окопались как могли…

«Непонятное устройство, стоявшее на столе Кили, имело сверху нечто вроде помеси форсунки и воронки. Кили некоторое время дул в него, а затем вылил туда порядка 18 литров воды. Через некоторое время манометр показал давление в 680 атмосфер, и Кили объявил, что вода дезинтегрировалась, а в генератор поступил так называемый «эфирный пар», способный приводить в действие любые механизмы. В доказательство Кили запустил находившийся тут же небольшой «вечный двигатель».»

«В 1884 году Кили продемонстрировал эфирную пушку, которая при немалом скоплении народа бесшумно выстрелила на 270 метров 140-граммовым ядрышком. В 1890-е Кили больше внимания стал уделять энергии, извлекаемой из чистых вибраций. без всякого эфирного пара. Последним его шоу (1897 год) стал вибрационный двигатель, имевший мощность 10 лошадиных сил при массе 91 килограмм.»

«Дезинтегратор состоял из перестраиваемого резонатора, внутренности которого Кили держал в секрете, системы камертонов, воронки для воды и приёмного устройства для звука. На демонстрациях изобретатель шумел в «микрофон», заливал воду в воронку, камертоны вибрировали, внутри резонатора что-то происходило, и подсоединённый к нему электродвигатель начинал работать.»

«камертоны вибрировали, внутри резонатора что-то происходило»

dmitrijan:Разложение воды под действием звука описано ещё в «Юном технике». Как вариант получаем пар или смесь газов. Проблема лишь в отделении водорода от кислорода, рванёт запросто.

При этом можно снимать немалый заряд за счёт распада воды. Вообще-то такие элементы делают — туда нужно влить воду, спирт или даже бензин и получить электричество. Капризное устройство однако.

Собственно просто и банально.

Хотя приспособить эти устройства пока не придумали особо куда. Можно получать водородо-кислород для двигателя. Можно увлажнять комнату, можно сушить бельё, можно греть еду.

Собственно СВЧ печка этим и занимается, за счёт разложения жидкости нагревает еду.

Ну можно облака разгонять и дождик конденсировать и лить на головы врагов или на поля.

Собственно, так или иначе этот эффект используют нынче. Хотя самое большое распространение этот эффект нашёл в нагреве еды.

Ну можно гранит или чего там на надо, сверлить.

В целом технология недалеко ушла от забивания клина и поливания оного водой, чтобы тот разбух и разломил, только технологичней.

Вода весьма хороший абразив, особенно если усилить это свойство за счёт её «вскипания». Будет резать не хуже алмазной крошки, даже лучше.

elektromexanik: И опять резонансные явления. Только их надо рассматривать немного шире. Именно как работу с эфиром.

dmitrijan: Проблема лишь достаточной точности подачи рабочего инструмента, но она решается, за счёт УЗ форсунок, которые сразу подают воду нужного вида на обрабатываемый материал.

Ну и как побочный эффект, можно крошить материал, который будет распадаться, подавая тот же УЗ на кромку. Без всякого механического воздействия материал теряет атомарные связи и распадается. Хотя зона воздействия очень узкая, потому распылить камень не получится, а вот сделать дырку, сдув «пыль», легко. Как горячим ножом резать масло.

Пока проблема в материале рабочих кромок, но технически всё это решаемо даже на уровне современной техники.

Только пропадёт антураж. Не будет романтики звука тр-ррррр, и общности людей, что хотят этот перфоратор засунуть его владельцу куда нить и поглубже.

Нечто типа «карандаша», который при надавливании на стену, выдавливает в ней отверстие.

Там даже звук неслышен.

По сути «шуруп» просто вдавливается в стену через такое устройство, которое делает материал податливым рядом с ним, а после, когда его отводят, бетон опять твердеет. Шуруп так и застревает в «камне».

Технология мало отличается от прохождения ростка через камень.

С одной стороны мы трудно и нудно ломаем тот же асфальт, прикладывая массу усилий. А с другой стороны, слабый росток может взломать нам покрытие дороги, не особо напрягаясь.

Мы забиваем гвозди так:

Быстро и сильно.

Слабый росток ломает асфальт так:

Естественно есть несколько путей решения. Можно применять силу, можно применять «хитрость».

Если мы ломимся через камень напрямую, то росток поступает философски – он ищет щель или трещинку, и начинает её расширять, постепенно ломая монолит, пробивая себе дорогу. В сути это работа клина, за счёт расширения жидкости, просачивающейся в трещину.

Т.е. если камень не имеет достаточных трещинок для просачивания жидкости, то такой камень росток не взломает. Но если накернить дырочку и пустить росток, то тогда лишь дело времени.

В сути данную технологию можно легко перенять, адаптировав, ускорив процесс сжатия-расширения жидкости многократно, например, за счёт УЗ, и тогда то, что росток делает за недели, можно сделать за секунды.

Хотя нынче данная технология применяется, но с понятной нам стороны:

По сути, отбойный молоток и делает возвратно-поступательные движения, что значительно ускоряют процесс. Однако для этого нужен крепкий наконечник.

Но вода тоже довольно твёрдая при определённых условиях. Ведь если просто в воду войти – она мягкая, а если с разбегу, то весьма твёрдая. Т.е. вместо долота можно использовать воду, но под значительной скоростью.

dmitry_9_9_9: Фукусима, прорастающие растения сквозь асфальт

elektromexanik: Такие на треногах устанавливают.

dmitrijan: И эта технология используется и водой режут.

Однако и тут есть недостатки.

Резка водой не совсем отбойный молоток.
Осталось пойти дальше и совместить технологии, и можно при помощи воды и без всякой такой-то матери вдавливать те же крепежи прямо в стену без всякого тр-рррр шума.

В сути все компоненты технологии уже есть в наличии и даже изготавливаются серийно.

elektromexanik: Тогда вода для передачи колебаний совместно стене и детали?

dmitrijan: С другой стороны, конечно, применение такой технологии напоминает не прорубание, а смягчение материала, в который проходит рабочий инструмент. Но зато можно прямо на камне выдавливать иероглифы, как вариант, пугая учёных потомков росписями тинэйджеров на стенах зданий.

Вода передаёт колебания — она отличный несжимаемый проводник колебаний. Лучший и самый доступный в нашей физике.

Причём настолько текуча, что может плотно прилегать к обрабатываемому материалу по всей обрабатываемой поверхности, оставляя за собой отполированные плоскости без каких либо следов инструмента.

Т.е. после такой обработки даже полировать не нужно и удалять мелкие дефекты и трещины, их просто не будет.

Собственно и эта технология применяется, когда на вибростолах равномерно перемешивают материал, а полотно дороги становится на порядок прочнее после такой обработки. Да и детали делают с такой «закалкой», кромки тех же шестерёнок после УВЧ значительно превосходят по износостойкости своих собратьев.

elektromexanik: Осталось сделать способ просто совмещения двух материалов. Тогда можно будет обойтись и без сварки и без клепки и прочих традиционных способов соединения.

dmitrijan: Так делают же, для металлов и камня есть такие УВЧ, когда материал сжимают и он даже не спекается, а происходит диффузия.

Так делают без склейки разные штучки, где может быть зона разных металлов с разными свойствами в одном флаконе.

Даже детали варят так.

elektromexanik: Видимо дороговата пока технология.

dmitrijan: У любой технологии своя ниша, своё применение. Если сказано, что применять для металлов, значит для металлов.

С металлом проще, у него компоненты внутри материала. Так закаливают зубья шестерни.

Причём такой ремонт можно производить, даже не снимая.

elektromexanik: Индукционный нагрев. А как с непроводящими материалами?

dmitrijan: В данном случае материал уже содержит компоненту для воздействия. Т.е. примерно как если нам нужно разогреть еду в СВЧ, то она должна содержать хоть сколько-то воды.

Соответственно для других материалов используем либо другие частоты, либо материал воздействия, типа катализатора или переходника, который преобразует воздействие.

Вода, как переходник при передаче ВЧ весьма подходит.

Т.е. если на камень мы не можем непосредственно воздействовать схожим образом, то нам ничего не мешает предварительно «смочить» нужное место, а потом оказать воздействие.

elektromexanik: Принципиальных противоречий вроде нет.

dmitrijan: Масло же мы используем, как посредник. Да и в химических реакциях есть элементы, что в реакции не участвуют, но без них реакция не получится.

Как пример. Индукционные плиты. Они могут нагревать металлы, но не еду. Как мы поступаем? Мы на индуктор ставим сковородку, на которой уже нагреваем еду.

Т.е. сковорода в данном процессе является обычным катализатором нагрева.

Индуктор ведь, в сути, тот же вибрирующий инструмент, который воздействует на материалы на определённых частотах.

Принцип отбойного молотка или клиньев меняется мало.

Даже отопление делают.

elektromexanik: Но культура производства…

Губит людей не пиво, а разгильдяйство!

dmitrijan: Причём схемка проста и легко повторима.

Характерные ряды элементов и выносной рабочий элемент, который, собственно, может быть на некотором расстоянии от самого аппарата, и представляет собой совсем простое устройство.

И сводится…

Ой, палочка с катушечкой на проводе!

elektromexanik: Ну так это только исполнительный элемент.

dmitrijan: Причём не обязательно объёмной, а может быть плоской и даже в корпусе.

Причём если промышленно для индукционных плит индукторы мотают как тот же бифиляр.

Это для наглядности свидетелям секты всё украдено и Теслы.

Так мотают и весьма, весьма витиеватые конструкции.

elektromexanik: Хотя те катушки пока остаются некой заковыристой загадкой.

dmitrijan: Т.е. ничто нам не мешает намотать индуктор хоть плоским, хоть круглым, хоть длинным. Ничего особо от этого не поменяется.

elektromexanik: Мешает только отсутствие понимание, что собственно изменяется при смене формы катушки.

Кроме формы поля.

dmitrijan: Мотать на круглое проще и технологичней, но если намотать ан плоское, то компактней.

Получаем такую длинную плоскую палку с намоткой.

Хотя мотают даже так:

И даже так:

elektromexanik: С бифилярной намоткой есть некоторая неопределённость. У Тесла это две секции которые включены последовательно и суммарная индуктивность значительно возрастает вместе с межвитковой ёмкостью. А вот встречное включение или намотка сложенным вдвое проводом вообще обнуляет классический параметр индуктивности.

dmitrijan: Хотя такая круглая удобней, но плоская лучше работает.

Есть безындукционная намотка, когда ЭДС самоиндукции нивелируется, аля лапша.

elektromexanik: А есть литцендрат, который увеличивает добротность контура.

dmitrijan: Знаменитая лапша, позволившая победить в линиях связи противную ЭДС самоиндукции.

elektromexanik: Витая пара ещё круче.

dmitrijan: Собственно такой же принцип можно применять в катушках и трансформаторах, избавившись от паразитной ЭДС самоиндукции.

Витая пара следствие лапши.

elektromexanik: Это что же получается, все кому не лень теперь смогут бесплатную розетку себе сделать? А на работу кто ходить будет?

dmitrijan: Неее, безплатной розетки не будет по любому. Но жаждущие халявы всё так же будут вздыхать про упущенную выгоду шкуры неубитого ими медведя.

elektromexanik: Как то сурово очень ))

dmitrijan: Зато каждый может осуществить и инструкция есть в картинках.

Хотя трудности могут возникнуть на шаге 2.

Но потенциально каждый, имеющий смартфон и достав инструкцию из инета, может осуществить.

elektromexanik: Вон француз то, прямо в огороде вечный двигатель собрал и даже секретов нет никаких. Вот почему никто не кинулся повторить?

Крутится на его участке и никто его не угнетает кроме жены…
http://vitanar.narod.ru/revolucio/revolucio6/revolucio6.html

dmitrijan: Дык скрывает, озорник!

elektromexanik: Или тогда не будет повода покричать, что, скрывают, преследуют, мировая закулиса и прочий бред.

dmitrijan: Народ же не очень-то рвётся же вон и тесла мобили скупать, спасая экологию.

elektromexanik: Вон в музее тоже стоит себе, посетителей развлекает.

Ну и Тестатика тихо и мирно работает аж с 80 годов.

http://friends.kz/uploads/posts/2008-02/1204007201_testatika_022.jpg

dmitrijan: Там износ рабочих поверхностей сильный.

elektromexanik: Главное что работает и никому реально это не нужно.

dmitrijan: Ну это пока не переведут всех, а до этого будут в комментах причитать, что им никто не делает и не уговаривает. Потом будут вещать, что это вредно и что у них старческое слабоумие проявилось именно поэтому, что их облучают. Ноги трясутся, руки не держат, глаза не видят – это не возраст, а происки врагов.

На заре электрификации, как-то был случай: уговорили одну помещицу провести себе электричество и повесить лампочку. Потом посмотрели счёт за энергию, и удивились, слишком мало, решили проверить. Так бабулька входит в дом, включает лампочку, доходит до стола со свечками, зажигает свечку, гасит электролампочку.

А сколько народу причитает, что в их время планшетов небыло, а нужно читать экологически чистые книги? А им когда-то говорили, что читать под одеялом с фонариком вредно. И т.д. А поколение планшетов будет уверять, что вредно носить виртуальные очки, нужно пользоваться планшетом.

Одно время уверяли, что наушники тычки жутко сажают слух, не то что большие. Кто-то скажет, что мониторы сажают зрение. Жить вообще смертельно опасно!

Комментировали: elektromexanik, dmitrijan
Сложил воедино: Владимир Мамзерев. 25.05.2017

Техническое описание + Виде-презентация(см. внизу статьи) оборудования, производящего электроэнергию и тепло путём разложения воды — 19 Липня 2013 — Хроніка акцій

Техническое описание + Виде-презентация(см. внизу статьи) оборудования, производящего электроэнергию и тепло путём разложения воды

 

 

Работает на угле, дровах, торфе. Состоит из 3 мм металлической пластины (нерж.) 15см на 20см. В центре пластины вварен цилиндр D 55 мм  высотой 15 см (труба нерж.). К цилиндру приварена трубка D6 (нерж.) в которую подаётся вода. Внутри цилиндра две камеры. Одна камера – парогенератор, вторая – катализатор. Нагретый до 600°С пар выходит наружу через подошву размером 10см на 15см (нерж.), приваренную к нижней части пластины. Вся эта конструкция устанавливается в трамбовочный короб, изготовленный из тугоплавкой стали 3мм-4мм толщ. Размер днища короба 25 см на 30 см с высотой бортов 15 см. В комплект может входить крышка-отражатель «бабочка»  —  для пиролиза. Также в комплект может входить автоматический помповый регулятор подачи воды (серийно устанавливается ручной), полированный поддон-подставка (отражатель ИК-излучения) и боковые анодированные алюминиевые отражатели инфракрасного излучения. Размеры реактора, короба, поддона-подставки и отражателей ИК-излучения могут варьироваться в зависимости от модификации.

 

Как это работает? В контейнер (короб) загружается любое углеродосодержащее твёрдое топливо. Поджигается,- и после достижения полноценного пламени открывается краник (регулятор) подачи воды. Регулятор имеет указатель скорости подачи воды в генератор. Отрегулировав подачу воды соотносительно пламени, остаётся только вовремя догружать дрова, торф или уголь, поддерживая высокую температуру.

 

Почему это работает? Испарить воду и разложить пар на водород и кислород можно путём нагрева до     2500°С. Пламя костра 600°С-800°С, что не позволяет получить водород путём нагрева. Для разложения воды на кислород и водород нужно затратить 64 ккал/моль. Сжигая полученный водород в кислороде, получим энергии ровно столько же – 64 ккал/моль. Это подтвердит любой учёный и добавит – зачем разлагать воду, если можно купить керосин.  Можно, но вода даёт тепла больше, чем керосин.  И если не идти на поводу у тех кто торгует нефтепродуктами и не сжигать полученный водород в кислороде, а провести реакцию окисления углерода кислородом, то получим прекрасное топливо СО, плюс водород.   

      Выделенный в камере катализаторе водород при сгорании в атмосфере даёт тепла 120 МДж/кг, а дрова только 12МДж/кг. К тому же, катализатор позволяет разлагать воду не при 2500°С, а и при менее низких температурах. Значит, мы затратим не 64 ккал/моль, а значительно меньше. Самое главное, температура воспламенения водорода ниже 600°С, а температура горения может достигать 2000°С и даже выше.

 

Как используем кислород?  Попадая в среду раскалённых углей, водяной пар и свободные молекулы кислорода, вступают в реакцию с углеродом по формуле С+Н2О = СО+Н2. На выходе получаем свободный водород и угарный газ. И хотя теряем в результате охлаждения горячих углей паром 31 ккал/моль, зато получаем дополнительную порцию тепла от сгорания водорода. Вода, как горючее, имеет идеальное сочетание – 12% водорода и 88% кислорода, что принципиально для данной реакции получения тепла.  В самой химической реакции углерод (дрова, уголь) не расходуется.  СО окисляется кислородом до СО2 .  Сгорание углерода до образования СО (угарный газ) даёт 26 ккал/моль, а окисляя угарный газа, кислород в

процессе реакции образования углекислого газа, добавляет ещё 68 ккал/моль!  31- 26 = 5+68 = 73 ккал/моль  и это не считая тепла, полученного после повторного выделения и сгорания водорода.

 

Вместо банального сжигания угля, дров (углерода) в атмосферном воздухе, применив УПАГ, получаем  избыток тепла за чёт применения:  1). D — металлического магнитного катализатора. 2). Катализа Н2О раскалёнными углями (углерод «крадёт” кислород у водорода).  3). Расширительного эффекта пара, при воздействии инфракрасного излучения в камере парогенератора (пар, в отличии от воды, поглощает ИК-излучение, поэтому активно разогревается и расширяется, создавая условия для отрыва молекул Н2 от О).  

       Данная модель осуществляет три химические реакции:

1) – сжигание водорода полученного в камере катализаторе.  

2) – сжигание водорода высвободившегося в результате соединения кислорода с углеродом (угарный газ).

3) – сжигание угарного газа с образованием СО2 (углекислый газ) в перегретом паре.  

 

Четвёртая реакция, восстановления (сжигания) углекислого газа (СО2) в раскалённых углях, по формуле СО2 + С = 2СО в данной конструкции не представлена.

Для данной реакции необходима дополнительная деталь – корпус. Корпус, это обычный, плотно закрывающийся, твёрдотопливный мини-котёл с высоким КПД сгорания топлива (за счёт воды).  В атмосферном воздухе 79% азота. Азот инертный газ, который препятствует горению. Восстановление СО2 (моль СО2 + моль С = два моля СО) возможно только при определённом температурном режиме каления углей и без доступа атмосферного воздуха. На выходе получаем дополнительное тепло и водяной пар (обратимая реакция). Но это уже УПАГ- М2.  Для производства подобного корпуса, необходимо создание отдельного цеха, которого у нас пока нет.

                               

Себестоимость данной конструкции при массовом серийном производстве, обходится приблизительно в 150 – 160 грн (базовая модель).  Цена реализации, исходя из возможностей рынка и глобального дефицита аналогичных товаров в данном сегменте рынка, может составлять от 800 грн и выше.

Данная модель УПАГ применяется как в открытом огне (костёр) так и в твёрдотопливных котлах.   

 

Поскольку, путь протекания химической реакции практического значения не имеет (только исходное состояние и конечный результат) в следующем ниже описании, будет рассматриваться только материальная часть. Все химические реакции проходят по выше изложенной схеме – вода разлагаясь даёт кислород, который соединяется с углеродом, а водород сгорает отдельно (независимо от вида углеродного топлива).  

 

 

Работает от баллона с сжиженным газом или от магистрального газопровода (природный газ).  Состоит из парогенератора с регулятором подачи воды, газогенератора с регулятором подачи газа, корпуса с теплоотражающим покрытием и форсунки-смесителя. Парогенератор и газогенератор выполнены из толстостенной 1мм трубки D6 — D8 (нерж.). Длинна намотки трубок 6м – 8м. Намотка представляет собой валик D55мм, где кольца витков трубки плотно прилегают друг к другу. Между обмоткой парогенератора (змеевиком) и обмоткой газогенератора, находится соединительная камера катализатор. В комплект так же входят отражатели ИК-излучения.  Баллон с сжиженным газом комплектуется «родным” заводским понижающим редуктором и газовой горелкой.  

Змеевик парогенератора разогревается газовой горелкой до 450°С – 560°С.  Пар проходя камеру катализатора частично разлагается  и вступает в реакцию с углеродом. Избыток водяного пара (80% пар – 20% газ) не даёт образоваться гремучему газу. Экономия газа – вместо 5 баллонов расходуется один.

Себестоимость ПГ ПГ порядка 230грн – 280грн.

Цена реализации не должна превышать 1100грн – 1300грн.

 

Аналогичный агрегат создан для работы на воде 85% и жидком углеродном топливе 15%.    

 

 

В термостойком корпусе с ИК-отражателями и теплоотражающим покрытием, смонтированы вертикально друг над другом четыре одинаковых змеевика парогенераторов 1, 2, 3 и 4 ступеней. Трубка намотки 6м -8м толстостенная 1мм (нерж.). Первая ступень разогревается специальной мини-горелкой, которая отключается после активации второй ступени.  Первая ступень имеет только одну форсунку – вверх. Вторая имеет две форсунки – одна вверх (разогрев третьей ступени), а одна вниз –  к первой ступени. Третья ступень 100% работает на разгон четвёртой ступени. Температура генератора четвёртой ступени превышает 1900°С, поэтому в четвёртую ступень подаётся практически только вода, без углеродного топлива. В парогенератор первой ступени топливо подаётся двумя жиклёрами 0,8 и 0,2 (вода и бензин/самогон/технический спирт). Вторая ступень заправляется так же. Третья с жиклёрами 0,9 и 0,1. Четвёртая – в зависимости от заданной температуры. Температура всех ступеней контролируется датчиками.  В систему безопасности каждой ступени входят врезки из тонкостенной трубки. Данный агрегат способен выдавать на выходе, как плазму, так и пламя умеренной температуры. Задача 4 ступени – разложение воды температурой и катализатором.    

Основное предназначение МПГ ПГ получение тепла для работы автономной отопительной системы в домах, подсобных помещениях, теплицах и т.д. Поскольку агрегат не превышает размеров 30см на 40см, он может уже в ближайшее время (при массовом промышленном производстве) вытеснить с рынка бытовых энергетических услуг, дорогие и громоздкие котлы. Обычная профильтрованная вода – денег не стоит.            

Помимо отопительной функции ПМГ ПГ с успехом может заменить централизованное снабжение домов электроэнергией. Для этого  –  ПМГ ПГ или ПП ПП или УПАГ  адоптируются под  двигатели Стерлинга, массово производимые за рубежом.  Двигатель Стерлинга работает практически бесшумно        (в отличии от ДВС), замены масла не требует, и в подзарядке аккумулятора не нуждается. К двигателю, мягкой муфтой, стыкуется генератор электрического тока и трансформатор. Генераторы любой мощности на 220V или 380V имеются в продаже в неограниченном количестве. Получаем отопление и освещение. 

Цена такого комплекта будет определятся в основном стоимостью двигателя Стирлинга. Но, этот двигатель намного проще ДВС и его производство в Украине, можно освоить за считанные недели.

 

И в заключении то, что уже сегодня позволяет сдать на свалку батареи ТЭЦ, и забыть про Алчевск:

 

Система отопления, адаптированная под любой источник тепла с температурой выше 100°С. Естественно ПМГ ПП, ПП ПП и УПАГ – подходят идеально.  Состоит из диска (нерж.) размером 30см – 40см, высокотемпературных шлангов, расширительного бочка и радиаторов (батареи). В диске создаётся расширение, срабатывает клапанная система и горячая вода, под давлением, без каких либо насосов подаётся в радиаторы. Уровень этажности – значения не имеет. ОКСГ места не занимает, энергии лишней не расходует и является полностью независимой автономной системой.   

КБ ЧРГ «УНО” готово приступить к производству этих уникальных систем, как только они будут востребованы заказчиками.                                                                                 

Ответственный за информацию:  Виктор Медведчук,  Тел.+38 (067) 404 -34 — 08;   

E-mail:  [email protected]

Способ и устройство получения водорода и кислорода из водяного пара с электрической гравитационной водородной ячейкой

Область техники.

Изобретение относится к области энергетики и может быть использовано для частичного или полного замещения углеводородного топлива на различных видах транспорта, в отопительных системах жилых и производственных помещений, в генераторах производства пара и для раздельного получения чистого кислорода и водорода для производственных, медицинских и пр. нужд.

Уровень техники.

Известны способы разложения воды на водород и кислород методом низкоамперного электролиза с применением для его осуществления импульсно-резонансного тока высокого напряжения. Наиболее известный способ — это электрическая водородная ячейка Мейера (патент США №4936961, 1990 г.). Известен способ получения водорода и кислорода из пара воды, включающий пропускание этого пара через электрическое поле, отличающийся тем, что перегретый пар воды с температурой 500-550°C пропускают через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода. Патент РФ RU 2142905, автор Ермаков В.Г. Этот способ основан на следующем: электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды; температура воспламенения водорода от 580 до 590°C, разложение воды должно быть ниже порога зажигания водорода; электронная связь между атомами водорода и кислорода при температуре 550°C ослаблена, и орбиты электронов уже искажены, для того, чтобы электроны сошли со своих орбит, и атомная связь между ними распалась, нужно электронам добавить энергию электрического поля высокого напряжения. В камере разложения перегретого пара электрическое поле создается положительным и отрицательным электродами, на которые подается постоянный ток, с напряжением 6000 B. Положительным электродом служит корпус камеры /труба/, а отрицательным электродом служит стальная труба, смонтированная по центру корпуса. Наиболее близким из аналогов к предлагаемому изобретению является патент РФ RU 2142905 автора Ермакова В.Г., который и выбран как прототип.

Недостатки.

Электрические водородные ячейки Мейера малопроизводительны, потому что в них нет механизма эффективного отвода молекул газа с электродов. Недостатком прототипа (патент РФ RU 2142905) является громоздкость установки и в связи с тем, что диссоциация пара и разделение его на атомы водорода и кислорода осуществляется под воздействием только электрического поля постоянного тока высокого напряжения, низкая производительность.

Цель изобретения.

Целью изобретения являются повышение производительности установки и уменьшение ее габаритов для более широкого применения способа, а также получение более дешевого источника энергии и тепла. Это достигается благодаря тому, что в способе получения водорода и кислорода из пара воды, при пропускании перегретого пара с температурой 500-550°C через электрическое поле постоянного тока высокого напряжения, согласно изобретению перегретый пар одновременно пропускают через электрическое поле и через гравитационное (инерционное) поле, создаваемое самим паром при его движении в электрической гравитационной водородной ячейке, вызывая тем самым более интенсивное разделение его на атомы водорода и кислорода и сепарирование смеси водорода с кислородом.

Для создания гравитационного (инерционного) поля электрическая гравитационная водородная ячейка выполнена в виде набора дисковых пластин с центральным отверстием, выполняющих функции электродов (катод и анод) и направляющих для движения пара воды по винтовой траектории, и собранных таким образом, что дисковые пластины образуют двойной шнек, при этом одноименные (четные, нечетные) дисковые пластины соединены между собой и электрически изолированы от разноименных. Пар, пропускаемый через электрическую гравитационную водородную ячейку, внутри ячейки движется между дисками (катодом и анодом) вихреобразно по винтовой траектории, создавая гравитационное (инерционное) поле.

Сущность изобретения и его отличительные (от прототипа) признаки.

На фигуре 1 изображена схема установки для получения водорода и кислорода из водяного пара с электрической гравитационной водородной ячейкой. На фигуре 2 изображен продольный разрез электрической гравитационной водородной ячейки.

На фигуре 3 изображен поперечный разрез пакета дисковых пластин электрической гравитационной водородной ячейки в районе зазора между пластинами.

Как показано на рисунках, заявляемый способ и схема содержит: электрическую гравитационную водородную ячейку 1; охладитель 2 водорода и охладитель 3 кислорода; компрессор 4 водорода и компрессор 5 кислорода; электродвигатель 6, являющийся приводом компрессоров 4 и 5; аккумулирующий баллон 7 водорода и аккумулирующий баллон 8 кислорода; парогенератор 9 с камерой сгорания, не указанной на схеме и горелкой 10; клапан 11, регулирующий подачу пара в электрическую гравитационную водородную ячейку 1; клапан 13, подающий пар на потребители. Электрическая гравитационная водородная ячейка 1 соединена трубопроводами 12, с одной стороны с камерой сгорания парогенератора 10 через клапан 11, а с другой стороны с охладителем 2 водорода и охладителем 3 кислорода, которые соединены соответственно с компрессором 4 водорода и компрессором 5 кислорода. Компрессор 4 соединен трубопроводом 12 с аккумулирующим баллоном 7 водорода, а компрессор 5 с аккумулирующим баллоном 8 кислорода. Аккумулирующие баллоны 7, 8 соединены трубопроводами 12 с горелкой 10 парогенератора 9. Электрическая гравитационная водородная ячейка 1 содержит: корпус ячейки 14 и дисковые пластины 15 с разрезом 18; трубу 16 с отверстиями по образующей для свободного входа вовнутрь водорода; изоляторы 17, изолирующие пакет дисковых пластин от корпуса; штоки 19, на которые монтируются отдельно четные и нечетные дисковые пластины; изоляторы 20, изолирующие друг от друга четные и нечетные дисковые пластины. Дисковые пластины 15, изготовленные из немагнитной нержавеющей стали, имеют разрез 18, центральное отверстие для монтажа в нем трубы 16, шесть отверстий с диаметром 4-6 мм для монтажа пластин на шток 18 мм и шесть отверстий с диаметром 10 мм для прохождения в них штоков 19 с изолятором 20. Отверстия расположены по окружности и под углом 120°, по три отверстия каждого размера в районе внешнего диаметра диска и по три отверстия каждого размера в районе внутреннего диаметра. Пакет дисковых пластин, выполняющих функции электродов (катод и анод) и направляющих для движения пара воды по винтовой траектории, и собранных таким образом, что дисковые пластины образуют двойной шнек, при этом одноименные (четные, нечетные) дисковые пластины соединены между собой и электрически изолированы от разноименных. Шаг шнеков определяется по формуле S=δ+2×C, где S — шаг шнека, δ — толщина диска равная 0,8÷1,5 мм, С — зазор между дисковыми пластинами равный 1,0÷4,5 мм. Винтовая форма дисковой пластины 15, которую имеет шнек, достигается фиксацией дисковой пластины 15 в отверстиях меньшего размера в определенных по высоте местах на штоках 19, жестко фиксированных относительно корпуса 14. Штоки 19, соединяющие одноименные дисковые пластины (четные или нечетные), обеспечивают электрическую связь между ними. Штоки 19 первого шнека проходят через дисковые пластины 15 второго шнека через изолятор 20, установленный в отверстие большего диаметра дисковой пластины 15 второго шнека и обеспечивающий изоляцию четной дисковой пластины 15 и нечетной. Прохождение штоков 19 второго шнека через дисковые пластины 15 первого шнека аналогично. К штокам 19 подводится постоянный (или импульсный резонансный, или последовательно постоянный и импульсно-резонансный) ток высокого напряжения от известных типов генераторов. Схема установки работает следующим образом: водород и кислород, находящийся в аккумулирующем баллоне 7 и аккумулирующем баллоне 8, подается через горелку 10 в камеру сгорания парогенератора 9. Соответствующее количество газов регулируется горелкой 10 известными способами. В камере сгорания смесь газов сгорает при температуре 2500-3000°C и в соответствии с формулой 2H2+O2=2H2O превращается в водяной пар. Вода, находящаяся в парогенераторе 9, отбирает тепло сгорания, охлаждает образовавшийся водяной пар и преобразуется сама в пар с определенными параметрами. Когда температура водяного пара в камере сгорания парогенератора 9 снизится до 600°C, клапан 11 открывает доступ пару в электрическую гравитационную водородную ячейку 1. Внутри ячейки пар движется между дисками (катодом и анодом) вихреобразно по винтовой траектории, создавая гравитационное (инерционное) поле. Центробежные силы гравитационного поля отбрасывают кислород на периферию электрической гравитационной водородной ячейки 1, а центростремительные силы гравитационного поля притягивают водород к ее центру. Компрессор 4 через охладитель 2 всасывает водород из электрической гравитационной водородной ячейки 1 и нагнетает его в аккумулирующий баллон 7. Компрессор 5 через охладитель 3 всасывает кислород из электрической гравитационной водородной ячейки 1 и нагнетает его в аккумулирующий баллон 7. Далее цикл повторяется. Пар, произведенный в парогенераторе 9, может быть отобран через клапан 13 и использован в потребителях различного назначения. В случае необходимости использовать водород и кислород для других целей, их отбор производится непосредственно из аккумулирующих баллонов 7 и 8. В этом случае через клапан 11, регулирующий подачу пара, поступает необходимое дополнительное количество его от парогенератора 9.


Способ и устройство получения водорода и кислорода из водяного пара с электрической гравитационной водородной ячейкой
Способ и устройство получения водорода и кислорода из водяного пара с электрической гравитационной водородной ячейкой
Способ и устройство получения водорода и кислорода из водяного пара с электрической гравитационной водородной ячейкой

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *