Site Loader

Водородное топливо — Техническая библиотека Neftegaz.RU

Lh3 является самым экологически чистым видом моторного топлива, поэтому его перспективы очевидны

Использование водорода в качестве топлива

В Австралии на бурых углях в штате Виктория отрабатывается технология технология газификации угля с последующим выделением водорода, вернее удаления серы, ртути и двуокиси углерода (СО2).

В Норвегии — Nel Hydrogen отрабатывает технологию использования ВИЭ для высокотемпературного электролиза для разделения воды на водород и кислород, который будет выбрасываться в атмосферу.

Kawasaki Heavy Industries разрабатывает танкер — водородовоз для транспортировки жидкого водорода ( LH2).

Реакция взаимодействия водорода с кислородом происходит с выделением тепла. Если взять 1 моль H2 (2 г) и 0,5 моль O2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

Н2 + 0,5 О2= Н2О

после завершения реакции образуется 1 моль H2O (18 г) с выделением энергии 285,8 кДж/моль.

Для сравнения: теплота сгорания ацетилена — 1300 кДж/моль, пропана — 2200 кДж/моль.

1 м³ водорода весит 89,8 г (44,9 моль), поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии.

1 кВт*ч = 3600 кДж, поэтому получим 3,56 кВт*ч электроэнергии. Целесообразность перехода на водородное топливо можно оценить, сравнив имеющийся тариф на 1 кВт*ч электричества и, к примеру, стоимость 1 м³ газа или стоимость другого энергоносителя.

При сжигании водорода получается чистая вода. То есть водородное топливо производится без вреда для окружающей среды, в отличие от газа или бензина.

Получение водорода

Для получения водорода используют химические методы, в тч реакции разложения воды электрическим током.
Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа.
Она проводится при высокой температуре:

СН4 + 2Н20 = CO2 + 4Н2 — 165 кДж

  • 1.Электролиз водных растворов солей:
2NaCl + 2h3O → h3↑ + 2NaOH + Cl2
  • 2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:
h3O + C ⇄ h3 + CO
  • 3.Из природного газа.
Конверсияс водяным паром: CH4 + H2O ⇄ CO + 3H2 (1000 °C) Каталитическое окисление кислородом: 2CH4 + O2 ⇄ 2CO + 4H2
  • 4. Крекинг и реформинг углеводородов в процессе переработки нефти.
  • 5. Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:
Zn + 2HCl → ZnCl2 + H2
  • 6.Взаимодействие кальция с водой:
Ca + 2H2O → Ca(OH)2 + H2
  • 7.Гидролиз гидридов:
NaH + H2O → NaOH + H2
  • 8.Действие щелочей на цинк или алюминий:
2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2↑ Zn + 2KOH + 2H2O → K2[Zn(OH)4] + h3↑
  • 9 .С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:
2H3O+ + 2e → H2↑ + 2H2O
  • Биореактор для производства водорода

Физические свойства

Газообразный водород может существовать в 2х формах (модификациях) — в виде орто — и пара-водорода.
В молекуле ортоводорода (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны).
Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота.
При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода.
При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25).

Без катализатора превращение происходит медленно, что дает возможность изучить свойства отдельных аллотропных форм.
Молекула водорода двухатомна — Н. При обычных условиях — это газ без цвета, запаха и вкуса.
Водород — самый легкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре.
Как самые легкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому.
Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в 7 раз выше теплопроводности воздуха.

Химические свойства

Молекулы водорода Н довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н2=2Н — 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н2 = СаН2 и с единственным неметаллом — фтором, образуя фтороводород:

F2+H2=2HF

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении.

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н2 = Cu + Н20

Записанное уравнение отражает реакцию восстановления — процесс, в результате которого от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются).

Реакция восстановления противоположна реакции окисления.

Обе эти реакции всегда протекают одновременно как 1 процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N2 + 3H2 → 2 NH3

С галогенами образует галогеноводороды:

F2 + H2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl2 + H2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H2 → CH4

Оксиды восстанавливаются до металлов:

CuO + H2 → Cu + H2O Fe2O3 + 3H2 → 2 Fe + 3H2
O WO3 + 3H2 → W + 3H2O

Геохимия водорода

Водород — самый распространенный элемент, и все элементы образуются из него в результате термоядерных и ядерных реакций.
На Земле содержание водорода понижено по сравнению с Солнцем.
Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.
В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.
В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением.
Он мигрирует в верхние слои атмосферы и улетучивается в космос.

Применение кроме энергетики:

  •  для атомно-водородной сварки,
  •  в пищевой промышленности, как пищевая добавка E949- упаковочный газ, для производства маргарина из жидких растительных масел,
  •  химической промышленности — при производстве аммиака, мыла и пластмасс,
  •  в качестве ракетного топлива,

Пожароопасность и взрывоопасность

Водород при смеси с воздухом образует взрывоопасную смесь — гремучий газ. 
Наибольшую взрывоопасность — при объемном отношении водорода и кислорода 2:1, или водорода и воздуха приближенно 2:5, так как в воздухе кислорода содержится примерно 21%.

Водород пожароопасен.

Новые технологии разложения воды в США и России | C.O.K. archive | 2017

Американские исследователи из Университета Хьюстона обнаружили катализатор, который активно ускоряет реакцию разложения воды на водород и кислород и, в отличие от аналогов, состоит из легкодоступных и недорогих материалов. Для его производства не используются драгоценные металлы, и работает он намного эффективнее, чем известные катализаторы. Такой материал позволил бы решить одну из основных проблем использования воды для производства водорода как одного из наиболее перспективных источников «чистой» энергии.

Новые технологии разложения воды в США и России. 6/2017. Фото 1

«Водород — это самый “чистый” энергоноситель, которым мы располагаем на Земле, — говорит Пол Чу (Paul Chu), профессор, заведующий кафедры физики Университета Хьюстона, директор-основатель и руководитель исследовательских работ Техасского центра исследований сверхпроводимости Университета Хьюстона (Texas Center for Superconductivity at UH, TcSUH). — Вода могла бы быть бесконечным источником водорода, если бы мы научились эффективно разрывать прочную химическую связь водорода с кислородом в воде с помощью электрического тока и соответствующего катализатора».

Новый катализатор был получен исследовательской группой Пола Чу при Университете Хьюстона, в которую также входят профессор физики Жифенг Рен (Zhifeng Ren) и доцент Шуо Чен (Shuo Chen), ведущие исследователи TcSUH, научные сотрудники Хайчин Чжоу (Haiqing Zhou) и Фанг Юй (Fang Yu), а также аспиранты Джинджинг Сан (Jingying Sun) и Ран Хей (Ran He).

Катализатор, состоящий из метафосфата железа, в кристаллическом виде выращенного на электропроводящей никелевой подложке, имеющей губчатую структуру, намного более эффективен и дёшев, чем любые аналоги.

«Наш материал позволяет отлично сэкономить, и он намного более эффективен, превосходя имеющиеся катализаторы», — говорит Жифенг Рен, профессор физики Онкологического центра имени М. Д. Андерсона при Университете Хьюстона и ведущий автор статьи о результатах работы исследовательской группы Пола Чу. Катализатор также долговечен, на испытаниях он успешно проработал более 20 часов и выдержал 10 тыс. рабочих циклов. «Некоторые катализаторы обладают выдающимися характеристиками, но они стабильны только один-два часа, — рассказывает Жифенг Рен. — Такие материалы практически бесполезны».

Реакция разложения воды на водород и кислород теоретически очень проста, но на практике она представляет из себя сложный процесс, требующий двух отдельных химических взаимодействий — реакции выделения водорода и реакции выделения кислорода, каждая из которых протекает на отдельном электроде. И, хотя эффективные водородные катализаторы доступны, отсутствие недорогого и действенного кислородного катализатора создаёт учёным значительные трудности в области водородной энергетики.

Новые технологии разложения воды в США и России. 6/2017. Фото 2

Водород имеет ряд значительных преимуществ. «Водород, полученный посредством разложения воды электрохимическим процессом “водного электролиза”, считается наиболее экологически безопасным энергоносителем, способным заменить ископаемое топливо и удовлетворить растущий спрос всего человечества на электроэнергию, поскольку вода является одновременно и единственным сырьём, и “продуктом сгорания” — ведь экологичная “водородная энергия” получается путём преобразования этого химического элемента обратно в воду», — поясняют исследователи. При этом, в отличие от солнечной энергии, ветра и других видов «зелёной» энергии, водород относительно легко хранить.

В настоящее время водород получают тремя основными промышленными способами: паровой обработкой угля в специальных газогенераторах, газопаровой конверсией природного газа и электролизом воды, особенно если нужен сверхчистый водород.

При первом способе над раскалённым добела коксом (углём, нагреваемым без доступа кислорода) пропускают водяной пар, при этом из-за высокой температуры атомы водорода в воде замещаются на атомы углерода — образуется смесь угарного газа (CO) и водорода (H2), которую затем разделяют или используют как есть. Во втором случае, также при высокой температуре (около 1000 °C), осуществляется превращение метана с водяным паром, углекислым газом (CO2) или смесью водяного пара и углекислого газа в присутствии катализатора на основе никеля с добавками оксидов магния, алюминия и других металлов, причём образующуюся смесь водорода и угарного газа нужно затем дополнительно обрабатывать водяным паром. Водород также получают как побочный продукт производства хлора и гидроксидов щелочных металлов, которое осуществляется электролизом растворов их хлоридов.

Все эти методы сложны, крайне энергозатратны и связаны с выработкой вредного угарного газа, а также сажи, то есть имеют существенный «углеродный след», несмотря на то, что исходное сырьё в данных процессах сгорает относительно «чисто».

Исследовательница Шуо Чен отмечает, что известные на сегодняшний день катализаторы, ускоряющие реакцию выделения кислорода при электролизе воды, используют благородные металлы — иридий, платину или рутений. Но эти материалы дороги и недоступны.

«В своём исследовании мы обнаружили дешёвый, высокоэффективный и стабильный катализатор, основанный на широко распространённых химических элементах, который поразительным образом превосходит все благородные металлы, — подытоживает Шуо Чен. — Наше открытие может привести к гораздо более экономичному промышленному производству водорода простым электрохимическим разложением (электролизом) воды».

Отметим, что разложение воды на составные элементы может осуществляться и с помощью фотокатализа, который использует силу солнца. Однако прямое воздействие солнца на воду слишком неэффективно, так как вода поглощает лишь небольшую часть спектра солнечного излучения. Шуо Чен поясняет, что в идеале солнечные батареи будут использоваться для выработки электроэнергии, которая вместе с соответствующим катализатором позволит легко и эффективно разлагать воду для получения такого нужного человечеству химического элемента, как водород.

 

Отечественная технология получения водорода

Рассказывает И. В. Мещерин, к.т.н., доцент кафедры газохимии РГУ нефти и газа им. И. М. Губкина, председатель Комитета по технологическому проектированию в НОПРИЗ, президент Национальной палаты инженеров:

— Известно, что производство водорода в основном осуществляется крупнотоннажными системами с единичной объёмной производительностью в диапазоне 10–100 тыс. Нм³/ч [1]. От 1 до 5 % получаемого водорода находит применение в малотоннажных, наукоёмких отраслях промышленности: электронной, электротехнической, стекольной, фармацевтической, пищевой; выплавке металлов и сплавов высокой чистоты; синтезе химически высокоактивных веществ и других отраслях. Водород является ценным химическим реагентом, и его получение и концентрирование из топливных, остаточных, сбросных газов позволяет значительно повысить экономическую эффективность производства. Водород почти не встречается в природе в чистом виде, но потребление данного газа во всём мире неуклонно растёт. Для производства водорода необходимо специальное оборудование, отличительной чертой которого является компактность и надёжность.

Децентрализованное (то есть малотоннажное) производство водорода требует создания высокоэффективных технологий с уровнем единичной объёмной производительности в диапазоне от 10 до 1000 Нм³/ч [2].

Данный аспект в сегодняшней ситуации может иметь существенное влияние на экономическую эффективность производств, в которых используется водород. В условиях экономического кризиса поиск технологий получения водорода с меньшими затратами является актуальной задачей. В настоящий момент внутрироссийские регулируемые цены на природный газ продолжают оставаться одними из самых низких в мире, даже с учётом более чем двукратного падения цен на природный газ на европейском рынке. Одним из альтернативных решений могут быть технологии получения водорода из природного газа.

Изучение конкретной проблематики производилось сотрудниками кафедры газохимии РГУ нефти и газа (НИУ) имени И. М. Губкина в условиях завода по производству кварцевого стекла — ООО «Технокварц» в городе Гусь-Хрустальный.

Компания ООО «Технокварц» производит водород для производственных нужд с помощью блока электролизёров БЭУ-250, состоящий из шести электролизёров СЭУ-40. Этой производительности достаточно для обеспечения существующего объёма потребления водорода в технологии наплава кварцевого стекла. Целью работы являлся поиск экономически более эффективного метода получения водорода на базе ресурсов завода.

Промышленное производство кварцевого стекла связано с развитием экстремальных процессов со специфическими условиями, главным образом в космической и электронной технике, производстве чистых, особо чистых веществ, редких металлов, высокотемпературных неорганических соединений и т.п.

В результате анализа существующих методов получения водорода был выбран, как наиболее целесообразный, метод паровой конверсии природного газа. При помощи д.т.н., профессора М. Х. Сосны был произведён технологический расчёт блока конверсии для установки получения водорода. Входными данными послужили составы входящих потоков, их объёмы, температуры, давления, доля водяного пара, а также длина реактора, его диаметр и толщина стенки (расчёт реактора в 2016 году выполняла Мария Давыдова, технолог газохимии и магистрантка РГУ нефти и газа им. И. М. Губкина). В результате обработки полученных данных получен материальный баланс процесса (табл. 1), конверсия метана составила 92,6 %. Был также проработан вопрос изготовления реактора из кварцевого стекла.

Новые технологии разложения воды в США и России. 6/2017. Фото 3

Ниже приводится эскиз гипотетического мини-, микрореактора проточного типа из кварцевого стекла в горизонтальном исполнении для проведения химических процессов. Основой реактора служит модуль, представленный на рис. 1. Зоны 1 и 2 служат для подачи исходных компонентов, реакционная зона 3 предназначена для размещения катализаторов, нагрева рабочей смеси до температуры реакции, воздействия ВЧ-, ВУФи СВЧизлучения или иного технологического воздействия. Конфигурация зоны 3 может формироваться по требованиям ведения химических реакций. Зона 4 организована как циклон для разделения и закалки продуктов реакции, в том числе и как газовая центрифуга. Единичные модули в расчётном количестве собираются в батарею, как показано на рис. 2. По усмотрению разработчиков промышленные модули могут быть спроектированы и в вертикальном исполнении цилиндрической или иной формы.

Новые технологии разложения воды в США и России. 6/2017. Фото 4

Экономическая эффективность достигается за счёт того, что используется относительно недорогой природный газ, по сравнению с дорогой электроэнергией, себестоимость оборудования из кварцевого стекла на 25–40 % меньше, чем из металла.

Возможность развития конкретной технологии и отладки её внутри предприятия открывает новый метод получения водорода для малотоннажных производств. Кроме того, появление нового перспективного ассортимента товарной продукции существенно усовершенствует технологии обработки кварцевого стекла, дополнительно будет способствовать улучшению экономических показателей кварцевого производства.

Новые технологии разложения воды в США и России. 6/2017. Фото 5

Поскольку паровая конверсия природного газа в комплексе с аппаратурным оформлением процесса является составной частью синтеза материалов по реакциям Фишера-Тропша, перед ООО «ТехноКварц» возникает перспектива нового направления — изготовление высокоэффективных минии микроканальных кварцевых реакторов для других сегментов отрасли газохимии.

Есть ли способ разделение воды на кислород и водород без нагревания и электричества?

Есть. Рассмотрим все способы получения водорода из воды… Вода – очень устойчивое соединение. Для разложения воды на водород и кислород чаще всего используют электрический ток. Реакцию разложения вещества под действием электрического тока называют электролизом. Разложить воду можно так же нагрев ее до высокой температуры ( выше 2500 °С. ). Впервые водород из воды выделил французский химик А. Лавуазье. Он пропускал водяной пар через железную трубу, раскаленную докрасна в пламени. При высокой температуре вода взаимодействует с железом, образуя железную окалину Fe3O4, а водород выделяется в свободном виде. Металлы, расположенные в ряду активности левее магния, вытесняют водород из воды уже при комнатной температуре. К их числу относится натрий. Реакция воды и натрия сопровождается выделением теплоты. Ну и как правильно заметил Mikhail Levin, затраты на получение водорода всегда выше чем при его сгорании.

разве что химикаты какие засыпать

Если бы я такой знал, вам бы точно не сообщил. Я бы стал тогда миллиардером.

Берешь молекулу воды, атом кислорода складываешь в одну баночку, атомы водорода в другую, потом, следующую молекулу…

по любому, придется затратить больше энергии, чем потом получится при сжигании водорода.

Устройство разложения воды на кислород и водород электромагнитными полями

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Устройство разложения воды на кислород и водород содержит емкость, выполненную из изоляционного материала и имеющую входное и выходное водяные отверстия. К внешним поверхностям противоположных стенок емкости, диэлектрическая проницаемость которых превосходит диэлектрическую проницаемость воды, беззазорно примыкают водородный и кислородный электроды. В емкости имеются отверстия с установленными в них нейтрализационными сетками отрицательного и положительного потенциалов. Внутри емкости установлены термопара и датчик уровня воды. Емкость с электродами вставлена в замкнутый магнитопровод, содержащий полюса, примыкающие с внешней стороны к противоположным стенкам, не занятым электродами, емкости. При этом один полюс содержит первичную катушку, а второй — вторичную катушку, которая через выпрямители и умножители напряжения подает напряжения на электроды и нейтрализационные сетки. Технический результат: увеличение производительности разложения воды. 2 ил.

 

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии.

Известны промышленные способы и устройства разложения воды (см., например, Российские патенты №2506349, 2535304, 2496917, 2521868), у которых происходит замедленная нейтрализация ионов водорода и кислорода.

Целью изобретения является повышение скорости нейтрализации ионов водорода и кислорода, что приводит к увеличению производительности разложения воды.

В Российском патенте №2142905 сказано, что в камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток, с напряжением 6000 В. Энергия разложения при этом определяется суммарной энергией электрического поля и тепловой энергией пара. Предлагается разлагать воду электромагнитным полем, содержащим сумму энергий электрического и магнитного полей. При этом водяной конденсатор содержит диэлектрик, в качестве которого служит разлагаемая вода, при этом конденсаторные пластины изолированы от воды диэлектриком с диэлектрической проницаемостью не ниже диэлектрической проницаемости воды. При разложении холодной воды компенсацию тепловой энергии производит магнитное поле Н, вектора напряженности которого направлены перпендикулярно вектору напряженности электрического поля Е, см. фиг. 2.

На фиг. 1 изображено устройство разложения воды на кислород и водород электромагнитными полями и на фиг. 2 его электрическая схема. Оно содержит емкость 1, выполненную из изоляционного материала, причем стенки, к которым беззазорно примыкают водородный электрод 7 и кислородный электрод 8, выполнены из материала, диэлектрическая проницаемость которого превосходит диэлектрическую проницаемость воды. В емкости установлены термопара 2, датчик уровня воды 14, отверстие 4 с нейтрализационной сеткой отрицательного потенциала и отверстие 5 с нейтрализационной сеткой положительного потенциала. Через клапан 3 происходит подача воды. Через вентиль 6 удаление холодной неразложившейся воды. Емкость 1 с электродами 7 и 8 вставлена в замкнутый магнитопровод 9, имеющий полюса 12, примыкающие к стенкам емкости, первичную катушку 10 и вторичную 11. Первичная катушка мотается изолированным проводом, выполненным из электротехнической стали, а вторичная — изолированным медным проводом. С вторичной катушки снимаются два напряжения, большее из которых через выпрямитель и умножитель напряжения 13 подается на нейтрализационные сетки выходных газовых отверстий. Меньшее напряжение через выпрямитель и умножитель напряжения подается на электроды, причем с целью увеличения энергии электрического поля на выходе выпрямитель зашунтирован конденсатором С.

Работа устройства заключается в том, что при заполнении емкости водой, которое происходит до датчика уровня, который при замыкании контактов водой дает сигнал на отключение насоса подачи воды и включение напряжения питания, происходит распад молекул воды на ионы водорода и кислорода. Известно, что длина полуволны магнитного поля (магнитного потока), создаваемого, например, 50 Гц током, равна 3000 км. Этот положительный импульс за сотую долю секунды пройдет по магнитопроводу, а значит через катушки, столько раз, во сколько длина импульса больше пути, по которому проходит импульс по магнитопроводу. Поэтому, применяя магнитопровод, мы значительно увеличиваем энергию разложения воды. Кроме того электрическое поле ориентирует диполи воды вдоль действия вектора напряженности электрического поля, в то же время вектора магнитных полей, действуя попеременно в разные стороны перпендикулярно ориентации диполей, разрушают атомарные связи в молекуле воды, в результате молекула распадается на ионы водорода и кислорода, при этом тепловая энергия воды, выражающаяся в броуновском движении, содействует в распаде молекул воды. Поэтому температура неразложившейся воды падает, о чем фиксирует термопара. Положительные ионы водорода и отрицательные ионы кислорода, проходя через свои сетки, потенциалы которых значительно превышают потенциалы электродов, нейтрализуются по аналогии с электролизным процессом и атомы газов раздельно по своим каналам поступают по заданному назначению. При достижении заданной температуры, фиксируемой термопарой, напряжение питания отключается, открывается вентиль 6 и происходит откачка холодной воды после чего цикл повторяется.

Для непрерывного производства водорода и кислорода используется два устройства. Когда одно устройство сливает холодную воду и накачивает горячую, другое производит разложение воды. Такая периодическая работа устройств позволяет производить непрерывное разложение воды на кислород и водород.

Предлагаемое устройство может найти самое широкое применение, например в транспортных средствах, в хозяйственной деятельности. Например, в южных солнечных странах для получения водорода можно использовать горячую воду от солнечных коллекторов. На тепловых электростанциях горячую воду сливают на улицу. В средствах водного, железнодорожного транспорта на механическую работу затрачивается не более 27% от всей тепловой энергии сгорания водорода, остальную энергию в виде горячей воды путем нагревания холодной воды выхлопным паром направлять в устройство разложения воды, замыкая тем самым энергетический цикл, что приводит к значительному уменьшению затрат электрической энергии.

Устройство разложения воды на кислород и водород электромагнитными полями, содержащее емкость, выполненную из изоляционного материала и имеющую входное и выходное водяные отверстия, отличающееся тем, что к внешним поверхностям противоположных стенок емкости, диэлектрическая проницаемость которых превосходит диэлектрическую проницаемость воды, беззазорно примыкают водородный и кислородный электроды, причем в емкости имеются отверстия с установленными в них нейтрализационными сетками отрицательного и положительного потенциалов, а внутри емкости установлены термопара, датчик уровня воды, при этом емкость с электродами вставлена в замкнутый магнитопровод, содержащий полюса, примыкающие с внешней стороны к противоположным стенкам, не занятым электродами, емкости, при этом один полюс содержит первичную катушку, а второй — вторичную катушку, которая через выпрямители и умножители напряжения подает напряжения на электроды и нейтрализационные сетки.

Разложение воды на водород и кислород

Существуют различные способы получения водорода и кислорода, которые условно можно разделить на промышленные и лабораторные.
Один из наиболее простых и популярных методов получения и кислорода, и водорода – разложение воды на водород и кислород. Уравнение данной химической реакции имеет вид:

.

Учитывая, что разложению подверглось 100 г воды, рассчитаем её количество вещества:

;

;

;

.

Согласно уравнению реакции, вода, водород и кислород находятся в следующих мольных соотношениях:

;

.

Это означает, что количество вещества продуктов реакции будет равно:

;

.

Тогда, объемы выделившихся в ходе реакции разложения воды газов будут равняться:

;
;
.

;

.

Способ разложения воды на кислород и водород и устройства для его осуществления

Изобретение относится к способу разложения воды на кислород и водород и устройству для его осуществления. Способ осуществляют путем воздействия на воду, протекающую по межэлектродным полостям, электрическим и магнитным полями. При этом постоянное импульсное электрическое поле подается на коаксиально расположенные трубчатые изолированные водородные электроды отрицательного потенциала и на изолированные кислородные электроды положительного потенциала, разделенные межэлектродными полостями, имеющими входные и выходные водяные отверстия, объемы которых через газовые отверстия соединены с объемами водородных и кислородных электродов. В связи с чем протекающая между электродами вода под действием электрического и магнитного полей разлагается на ионы водорода и кислорода, причем ионы водорода через отверстия водородного электрода притягиваются отрицательным статическим полем, образованным отрицательной токопроводящей водородной изолированной поверхностью, внутрь водородного электрода, аналогично, ионы кислорода через отверстия кислородного электрода притягиваются положительным статическим полем, образованным положительной изолированной токопроводящей поверхностью, внутрь кислородного электрода, в которых водородные и кислородные ионы нейтрализуются соответственно отрицательными и положительными нейтрализационными поверхностями и в виде атомов выходят через каждые свои отверстия к дальнейшему использованию. Технический результат заключается в повышении производительности разложения воды за счет увеличения энергии электрического и магнитного полей. 2 н. и 2 з.п. ф-лы, 4 ил., 1 пр.

 

Изобретение относится к технике разложения воды на кислород и водород (водородной энергетике) и может быть использовано в качестве узла для преобразования тепловой энергии при сжигании водорода в механическую энергию, в частности, в транспортных средствах, где вместо бензина используется вода.

Известен способ получения водорода из воды (см. патент №2456377), в котором разложение воды происходит под действием резонансного электромагнитного поля, частота n-й гармоники которого приближается к собственной частоте воды. Недостаток способа заключается в том, что при его осуществлении происходит изменение емкостной составляющей LC контура (контуров) из-за присутствия в воде продуктов ее разложения, приводящих к изменению диэлектрической проницаемости диэлектрика водяного конденсатора, при неизменном значении индуктивной составляющей. Это явление приводит к снижению производительности из-за отклонения от резонанса в цепях с последовательными или параллельными контурами. Также в устройстве, осуществляющем способ, наблюдается незначительная площадь соприкосновения изолированных конденсаторных пластин с водой, отнесенная к единице объема рабочей камеры, что также приводит к снижению производительности разложения воды. Известен также патент №2496917 способ получения водорода из воды, включающий разложение воды электрическим полем с помощью водяного конденсатора с изолированными обкладками, на которые подается высоковольтное выпрямленное напряжение импульсной формы, а разложение воды происходит под действием электрического и магнитного полей, причем вектор напряженности магнитного поля направлен перпендикулярно вектору напряженности электрического поля, при этом вектора на воду действуют одновременно и с частотой, равной частоте гидродинамических колебаний воды. Для реализации способа используется устройство, в котором разложение воды электрическим и магнитным полями происходит с помощью, по меньшей мере, двух колебательных контуров, при этом емкость первого и связанная с ней индуктивность второго контура и соответственно емкость второго и связанная с ней индуктивность первого заряжаются и разряжаются с заданной частотой, при этом фаза входных напряжений сдвинута на 90 градусов. Недостаток способа тот, что электрическое поле действует на воду однонаправленно и периодически, причем время его действия равно времени нисходящий кривой входного напряжения, что наполовину снижает производительность разложения воды.

Техническим результатом изобретения является повышение производительности разложения воды за счет увеличения энергии электрического и магнитного полей.

Физика работы предлагаемого устройства заключается в следующим. На нижеуказанных сайтах расположена информация об известных способах разложения воды на кислород и водород https://yandex.ru/images/search?p=6&text=способы%20разложения%20воды%20на%20кислород%20и%20вод выбираем реакцию разложения воды действием электрического тока, электролиз https://im0-tub-ru.yandex.net/i?id=09c0c7751466c174d9cc9dc81648bc91-sr&n=13 где разложение воды под действием электрического тока происходит согласно уравнению 1., т.е. 2H2O=2Н2+O2. Но данное уравнение не показывает, какая энергия затрачивается на разложение воды. При нагреве воды или при разложении пара (см. патент №2142905) тепловая энергия броуновского движения не может без действия полей разлагать воду. Только при действии поля диполи воды ориентируются вдоль его вектора напряженности уменьшая броуновское движение энергия которого расслабляет дипольные атомные связи в связи с чем для окончательного их разрушения требуется уменьшенное значение электромагнитной энергии. (см. так же видео на сайте https://www.youtube.com/watch?v=-ROZ0KU5ncM Учитывая, что вода H2O является идеальным диэлектриком (электролитом) который контактирует с двумя электродами, что в комплексе представляет собой водяной конденсатор токи смещения, которого образуют энергию электрического поля, а токи индуктивности образуют энергию магнитного поля. Обе вырабатываемые токами энергии отличаются друг от друга векторными направлениями их энергий вектора, которых, действуя на дипольные молекулы воды, разрушают их, в результате чего молекулы воды распадаются на ионы водорода и кислорода. Конечно, энергетическая мощность полей должна обеспечивать разрушение молекул воды. Спрашивается причем тут электроды, если энергия электрических и магнитных полей свободно проходит через не токопроводящие стенки водяного сосуда. Новизна изобретения заключается в том, что электроды электролизера изолированы диэлектриком, диэлектрическая проницаемость которого превосходит диэлектрическую проницаемость воды 80 единиц. Так как энергия электрического поля пропорциональна емкости водяного конденсатора и квадрату напряжения подаваемого на электроды водяного конденсатора, а энергия магнитного поля пропорциональна индуктивности и квадрату тока, проходящему через индуктивность то, увеличивая эти величины, можем регулировать производительность получения ионов кислорода и водорода.

Следует отметить, что при электролизе и предлагаемом изобретении общим является то, что при разложении воды на ионы участвует электрическое поле, а это значит, как указывалось выше, что изоляция электродов значения не имеет. Она лишь препятствует участию в реакции электродных металлов и исключает прохождению тока через воду, содержащую растворенные в ней примеси. При изоляции электродов исключается нагрев воды, что позволяет при сжигании водорода не используемую тепловую энергию использовать повторно для получения водорода и кислорода, замыкая тем самым энергетический цикл, что значительно увеличивает КПД устройства.

На фиг 1, 2, 3, 4 изображены устройства разложения воды на кислород и водород. Они содержит диэлектрический корпус 7 имеющий отверстия 3 входа воды (пара) и отверстия 4 для выхода не разложивсейся воды. Корпус содержит трубчатые полые (объемные) полости, представляющие отрицательные водородные электроды 23 и коаксиально водородным электродам попеременно через межэлектродное пространство 22 расположены трубчатые полые (объемные) полости представляющие положительные кислородные электроды 24. Диэлектрические перегородки содержащие газовые отверстия 6 разделяющие межэлектродные полости от водородных электродов 23 содержат токопроводящие отрицательные поверхности 25 а диэлектрические перегородки содержащие отверстия 6 разделяющие межэлектродные полости от кислородных электродов 24 содержат токопроводящие положительные поверхности 26. Кроме того объемы водородных электродов 23 перед выходом водорода через отверстия 19 содержат нейтрализационные отрицательные поверхности 14 а объемы кислородных электродов 24 перед выходом через выходные отверстия 18 кислорода содержат нейтрализационные положительные поверхности 15. Отрицательный и положительный потенциал на токопроводящие поверхности 25, 26 подается одновременно и представляет собой импульсное выпрямленное напряжение см. Фиг 2. Положительный потенциал на кислородную нейтрализационную поверхность 15 и отрицательный потенциал на водородную нейтрализационную поверхность 14 потенциалы которых представляют импульсное выпрямленное напряжение, импульсы которого подаются между импульсами подаваемыми на токопроводящие поверхности 25 и 26. Отверстия 6 расположенные на электродах служат для перемещения газовых ионов в электродные полости а также не разложивсейся воды к выходному отверстию 4. Подавая, на токопроводящие поверхности 25 и 26 импульсное напряжение и последовательно между этими импульсам подавая импульсное напряжение на нейтрализационные сетки 14 и 15 получаем нейтрализацию ионов водорода и кислорода которые под давлением через отверстия 19 и 18 поступают к дальнейшему использованию. Электроды 23 и 24 представляют полые обкладки водяного конденсатора. Эти водяные конденсаторы, которые с целью увеличения энергии электрического поля соединяем, параллельно получая один суммарный конденсатор, диэлектрическая проницаемость изоляции которого должна превышать диэлектрическую проницаемость воды. Образованный конденсатор, имеющий значительные электродную поверхность, диэлектрическую проницаемость, минимальное расстояние между электродами значительно увеличивает производимую им энергию электрического поля, что приводит к значительному увеличению производительности устройства разложения воды (пара) на кислород и водород. При подаче регулированного постоянного импульсного напряжения создается возможность регулировать производительность разложения воды и как следствие исключать выход

не разложившейся воды. Для максимального снижения, подаваемого на конденсатор постоянного напряжения с целью, обеспечения увеличения диапазона регулирования энергии электрического поля, используем энергию магнитного поля, вектор напряженности которого направлен перпендикулярно вектору электрического поля. Для этого используем трансформаторный излучатель, магнитопровод которого представляет собой замкнутый контур, выполненный из электротехнической стали с последовательно механически связанными спиралевидными (аналогично катушки индуктивности) частями 8 и линейной чатью 13, представляющие в сечении прямоугольную или круглую форму. Эффективность излучающего трансформатора заключается в том, что при длине волны в три тысячи километров магнитный поток через трансформаторные витки проходит столько раз, сколько длина магнитопровода укладывается в длине волны. Магнитный поток излучающего трансформатора представляет поток, проходящего через сталь и воду, для этого необходимо, чтобы спиралевидные витки трансформатора с левой и правой сторон имели противоположную обмотку. При подаче 50 герцового напряжения на первичную катушку 11 трансформатора происходит 100 герцовое изменение направления векторов магнитных напряженностей направленных перпендикулярно векторам электрического поля, что приводит к интенсификации разложения воды. Вторичная катушка 12 трансформатора через диоды производит последовательную подачу импульсов необходимой полярности на токопроводящие поверхности 24, 25 и нейтрализационные сетки 14, 15 см. фиг 2. Регулировка магнитной энергии может осуществляться катушкой 5 обратной связи на фиг 1 условно не показана. Эта катушка является нагрузкой вторичной катушки трансформатора и играет роль первичной. При совпадении векторов магнитных напряженностей катушек первичной и обратной связи получаем положительную обратную связь и наоборот при не совпадении векторов получаем отрицательную обратную связь.

Работа устройства заключается в том, что разложение происходит при действии на воду, протекающую по межэлектродным полостям электрического и магнитного поля при этом постоянное импульсное электрическое поле образуется путем подачи на объемные изолированные водородные электроды отрицательного потенциала и подачи на объемные изолированные кислородные электроды положительного потенциала, а вектор напряженности электрического поля направленный перпендикулярно вектору магнитного поля который образуется замкнутым магнитопроводом содержащим два спиралевидной формы закручивания с протекающей между закручиваниями водой и имеющими по отношению к воде противоположные полюса, таким образом, протекающая между электродами вода под действием электрического и магнитного полей разлагается на ионы водорода и кислорода при этом ионы водорода через отверстия 6 водородного электрода притягиваются отрицательным статическим полем образованным отрицательной токопроводящей водородной изолированной поверхностью внутрь водородного электрода аналогично ионы кислорода через отверстия 6 кислородного электрода притягиваются положительным статическим полем образованным положительной изолированной токопроводящей поверхностью, в которых водородные и кислородные ионы нейтрализуются соответственно отрицательными и положительными нейтрализационными поверхностями и в виде атомов выходят через каждые свои отверстия к дальнейшему практическому использованию. Электрическое поле, образовываемое токопроводящими поверхностями, имеет выпрямленный импульсный характер, между импульсами которого одновременно подаются на нейтрализационную не изолированную водородную поверхность, находящуюся в водородной полости отрицательный потенциал и на нейтрализационную не изолированную кислородную поверхность, находящуюся в кислородной полости положительный потенциал. При отсутствии в объемах электродов нейтрализационных поверхностей токопроводящие поверхности в промежутке между входными и выходными газовыми отверстиями имеют не изолированную внутреннюю поверхность.

Согласно фиг 4 объемные водородные и кислородные электроды с межэлэктодными полостями могут иметь в горизонтальном и вертикальных сечениях прямоугольную форму.

1. Способ разложения воды на кислород и водород, осуществляемый путем воздействия на воду, протекающую по межэлектродным полостям, электрическим и магнитным полями, отличающийся тем, что постоянное импульсное электрическое поле подается на коаксиально расположенные трубчатые изолированные водородные электроды отрицательного потенциала и на изолированные кислородные электроды положительного потенциала, разделенные межэлектродными полостями, имеющими входные и выходные водяные отверстия, объемы которых через газовые отверстия соединены с объемами водородных и кислородных электродов, при этом протекающая между электродами вода под действием электрического и магнитного полей разлагается на ионы водорода и кислорода, причем ионы водорода через отверстия водородного электрода притягиваются отрицательным статическим полем, образованным отрицательной токопроводящей водородной изолированной поверхностью, внутрь водородного электрода, аналогично, ионы кислорода через отверстия кислородного электрода притягиваются положительным статическим полем, образованным положительной изолированной токопроводящей поверхностью, внутрь кислородного электрода, в которых водородные и кислородные ионы нейтрализуются соответственно отрицательными и положительными нейтрализационными поверхностями и в виде атомов выходят через каждые свои отверстия к дальнейшему использованию.

2. Способ по п.1, отличающийся тем, что электрическое поле, образуемое токопроводящими поверхностями, имеет выпрямленный импульсный характер, между импульсами которого одновременно подаются на нейтрализационную не изолированную водородную поверхность, находящуюся в водородной полости, отрицательный потенциал и на нейтрализационную не изолированную кислородную поверхность, находящуюся в кислородной полости, положительный потенциал.

3. Устройство для осуществления способа по любому из пп.1, 2, отличающееся тем, что содержит трубчатые коаксиально расположенные объемные водородные и кислородные изолированные электроды, разделенные межэлектродными полостями, имеющими входные и выходные водяные отверстия, объемы которых через газовые отверстия соединены с объемами водородных и кислородных электродов, имеющих соответственно нейтрализационные поверхности и выходные водородные и кислородные газовые отверстия.

4. Устройство по п.3, отличающееся тем, что объемные водородные и кислородные электроды с межэлектродными полостями имеют в горизонтальном и вертикальном сечениях прямоугольную форму.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *