Site Loader

Схема мощного стабилизатора тока на 100

В литературе не часто можно встретить описания стабилизаторов тока на 100…200 А, однако в некоторых процессах (гальваника, сварка и др.) они необходимы. На первый взгляд, для стабилизации таких токов необходимы и соответствующие мощные транзисторы.

Вашему вниманию предлагается стабилизатор тока на 150 А (с плавной регулировкой от нуля до максимума), выполненный на обычных, широко распространенных транзисторах серии КТ827. Примененное схемотехническое решение позволяет легко увеличить или уменьшить максимальный стабилизируемый ток.

Принципиальная схема

Принципиальная схема предлагаемого стабилизатора тока изображена на рис. 1. Как видно, нагрузка включена несколько необычно — в разрыв провода, соединяющего отрицательный вывод диодного моста VD5…VD8 с общим проводом устройства.

Рис. 1. Принципиальная схема мощного стабилизатора тока 150А на транзисторах.

Все мощные транзисторы VT1. ..VT16 включены по схеме с общим коллектором, но каждый из них нагружен на свой уравнивающий резистор (R4…R19), также соединенный с общим проводом.

Таким образом, через подключенную к розетке XS1 нагрузку стабилизатора протекает суммарный ток всех 16 транзисторов. Ток через каждый из транзисторов VT1…VT16 выбран около 9 А, что значительно меньше предельно допустимого значения для транзисторов КТ827А…КТ827В. При падении напряжения на транзисторе 10… 11 В рассеиваемая мощность достигает 100 Вт.

Разброс параметров транзисторов и сопротивлений резисторов R4…RI9 не имеет значения, так как каждый транзистор управляется своим операционным усилителем.

Выходы ОУ DA1.1…DA8.2 через транзисторы VT17…VT32 соединены с базами транзисторов VT1…VT16, а напряжения обратных связей поданы на инвертирующие входы с эмиттеров соответствующих транзисторов. ОУ поддерживают на инвертирующих входах (и, соответственно, на эмиттерах транзисторов VT1…VT16) такие же напряжения, какие имеются у них на неинвертирующих входах.

На неинвертирующие входы всех ОУ подано стабильное управляющее напряжение с резистивного делителя R2, R3, подключенного к выходу интегрального стабилизатора DA11. При изменении управляющего напряжения изменяется ток через каждый из резисторов R4…R19 и, соответственно, через общую нагрузку, подключенную к розетке XS1. Питаются ОУ от стабилизатора, выполненного на микросхемах DA9, DA10 и транзисторе VT33.

Детали и конструкция

Вместо составных транзисторов КТ827А в стабилизаторе тока можно применить транзисторы этой серии с индексами Б, В, Г или комбинации из двух транзисторов соответствующей мощности (например, КТ315 + КТ819 с любыми буквенными индексами).

Сдвоенные ОУ КР140УД20 заменимы на К157УД2 или на одинарные ОУ КР140УД6, К140УД7, К140УД14 и им подобные, стабилизатор 78L05 — на КР142ЕН5А, КР142ЕН5В или 78М05, транзисторы КТ315Е — на КТ3102, КТ603, диоды Д200 — на Д160. Вместо трансформатора ТПП232 (Т1) допустимо применение ТПП234, ТПП253 или любого другого с двумя вторичными обмотками на напряжение 16. ..20 В.

Резистор R1 может быть любого типа, R2 желательно применить высокостабильный, например, С2-29. Для регулирования тока нагрузки был использован переменный резистор СП5-35А (с высокой разрешающей способностью), но можно, конечно, применить и любой другой, обеспечивающий требуемую точность установки тока.

Конденсатор C3 набран из десяти конденсаторов К50-32А, С4, С6 — К50-35, остальные — любого типа. Использовать в качестве C3 один конденсатор большой емкости нельзя, так как он будет сильно перегреваться из-за того, что его выводы не рассчитаны на такие большие токи (недостаточное сечение провода).

Сдвоенные ОУ DA1…DA8, транзисторы VT17…VT32, интегральный стабилизатор напряжения DA11, резисторы R2, R3 и конденсаторы С4…С7 монтируют на печатной плате, изготовленной по чертежу, показанному на рисунке 2.

Рис. 2. Печатная плата для мощного стабилизатора тока.

Транзисторы VT1-VT16 закрепляют на теплоотводах, способных рассеять не менее 100 Вт каждый. Все 16 теплоотводов собраны в батарею, для их охлаждения применены четыре вентилятора, что позволило включать стабилизатор тока на долговременную постоянную нагрузку. Если нагрузка будет кратковременной или импульсной, можно обойтись и теплоотводами меньших размеров.

Резисторы R4…R19 изготавливают из высокоомного (манганинового или константанового) провода диаметром 1…2 мм и закрепляют на теплоотводах соответствующих им транзисторов Для охлаждения диодов VD5…VD8 используют стандартные теплоотводы, рассчитанные на установку диодов Д200 (обдув их вентилятором не требуется).

Микросхему DA9 и транзистор VT33 размещают на небольших пластинчатых теплоотводах. При монтаже стабилизатора тока нужно учитывать, что через некоторые цепи будет течь ток 150 А, поэтому их необходимо выполнить проводом соответствующего сечения.

Вторичная обмотка трансформатора Т2 должна обеспечивать напряжение около 14 В при токе нагрузки 150 А (хорошо подходит сварочный трансформатор). Падение напряжения на сопротивлении нагрузки стабилизатора должно быть не более 10 В (остальное напряжение падает на транзисторах VT1. VT16 и резисторах R4…R19).

При большем падении напряжения на нагрузке придется повысить напряжение вторичной обмотки трансформатора Т2, однако в этом случае необходимо проследить, чтобы мощность рассеяния каждого из транзисторов не превысила максимально допустимую.

Налаживание

Налаживание собранного из исправных деталей устройства сводится к установке максимального стабилизируемого тока подбором резистора R2. Это удобно сделать временно заменив последний включенным реостатом подстроечным резистором сопротивлением 1,5 — 2 кОм.

Установив его движок в положение максимального сопротивления а движок резистора R3 в верхнее (по схеме) положение и включив последовательно с нагрузкой амперметр на ток 150-200А (или просто подсоединив его к гнездам розетки XS1) включают стабилизатор в сеть и, уменьшая сопротивление подстроенного резистора, добиваются отклонения стрелки амперметра до соответствующей отметки шкалы. Затем измеряют сопротивление введенной части подстроенного резистора и заменяют его постоянным ближайшего номинала.

При максимальном токе 150А напряжение на эмиттерах транзисторов VT1 — VT16 должно быть около 1,88В. Поэтому налаживание можно проводить и по напряжению на эмиттере какого-либо из этих транзисторов, хотя точность установки тока при этом будет небольшой из-за разброса сопротивлений резисторов R4-R19.

Если необходимо увеличить или уменьшить отдаваемый в нагрузку максимальный ток можно соответственно увеличить или уменьшить число транзисторов и ОУ.

Таким образом, на основе описанного стабилизатора можно создать значительно более мощный источник тока. Подключая нагрузку к стабилизатору тока, следует помнить, что на «земляном» проводе будет плюсовой выход стабилизатора.

И. Коротков.

Стабилизатор тока для светодиодов + схемы на транзисторе, с регулятором напряжения

На чтение 10 мин Просмотров 2.7к. Опубликовано Обновлено

Содержание

  1. Как работает стабилизация по току
  2. Обзор популярных схем
  3. Импульсный стабилизатор для светодиодов
  4. Стабилизатор на КРЕН
  5. Стабилизатор тока на транзисторе
  6. Стабилизаторы на микросхемах
  7. Регулируемый стабилизатор постоянного тока

Яркость свечения светодиода зависит от протекающего через него тока. Для получения стабильной яркости надо, чтобы ток через LED не менялся со временем, а для повышения долговечности полупроводникового прибора ток в любой ситуации не должен превышать номинального значения. По этим резонам для питания светодиодов применяют стабилизаторы тока, которые можно изготовить своими руками.

Как работает стабилизация по току

Получение стабильного (не зависящего от изменений нагрузки в заданных пределах) тока основано на законе Ома. Если ток в цепи упал, драйвер увеличивает выходное напряжение до восстановления уровня тока до заданного значения. Если ток увеличился, регулятор, наоборот, снижает напряжение. Для отслеживания уровня тока часто применяется обратная связь (например, замер падения напряжения на образцовом резисторе (шунте)).

Другой способ получить стабильный ток – запитать нагрузку от стабилизатора напряжения. Если сопротивление нагрузки останется неизменным, то и ток через нее не изменится.

Второй способ проще в реализации, но его эффективность ниже. Сопротивление цепочки светодиодов в процессе эксплуатации может меняться (например, в зависимости от температуры), при этом и яркость тоже не останется неизменной. Хотя это все равно лучше, чем отсутствие драйвера совсем.

Мнение эксперта

Панков Алексей

Инженер-электрик.

Специальность: Проектирование и монтаж изделий электротехники.

Задать вопрос

Другая проблема применения стабилизаторов напряжения для получения неизменной яркости состоит в крутой ВАХ светоизлучающих диодов. Небольшое изменение напряжения дает значительный прирост или снижение тока.

Стабильность напряжения должна быть очень высокой.

Вольт-амперная характеристика светоизлучающего диода

Обзор популярных схем

Стабильный источник питания для LED (и другой нагрузки) можно собрать по разным схемам. Все зависит от требуемых характеристик и квалификации мастера.

Импульсный стабилизатор для светодиодов

Несложный, но мощный стабилизатор тока можно собрать на недорогой и доступной микросхеме 555 (NE555, КР1006ВИ1). Микросхема представляет собой таймер с двумя входами:

  • по одному входу можно регулировать частоту импульсов;
  • по второму – их длительность.

Таким способом можно организовать широтно-импульсную модуляцию (ШИМ) для регулирования и стабилизации яркости светодиодов. Метод ШИМ состоит в питании LED импульсами постоянного напряжения, постоянной частоты, но разной длительности. Чем больше длительность импульсов, тем выше средний ток через светоизлучающие диоды, а чем короче импульсы – тем ниже средний ток.

Принцип ШИМ-регулирования

Схема стабилизатора тока построена так, что частота следования импульсов на выходе остается постоянной, а длительность можно регулировать потенциометром. Если регулировка не нужна, можно вместо потенциометра впаять постоянный резистор нужного номинала. Частота следования импульсов практически не зависит от напряжения питания, а их размах – зависит. И это является недостатком схемы, потому что для стабильного свечения требуется стабильное входное напряжение.

Схема драйвера на таймер 555

Устройство питается от постоянного напряжения от 13,5 до 27 вольт (ограничения заданы диапазоном входного напряжения LM7812). Для питания пониженным напряжением надо удалить из схемы входной стабилизатор. Для питания повышенным – изменить схему стабилизации.

Стабилизатор на КРЕН

Популярные линейные интегральные стабилизаторы КРЕН (зарубежные аналоги – LM78XX, где XX – напряжение стабилизации) можно использовать для стабилизации тока в стандартном включении – путем получения стабильного напряжения. Но изменив включение микросхемы можно заставить ее стабилизировать ток.

Источник тока на КРЕН

Для стабилизации тока используется свойство микросхемы повышать уровень напряжения на выходе (вывод Out) если повышается уровень на выводе GND. Если ток в цепи по какой-либо причине уменьшается, то изменяется распределение Uвходного между нагрузкой и регулирующим элементом микросхемы. Напряжение на нагрузке увеличивается, и интегральный стабилизатор повышает напряжение на выходе, удерживая при этом ток стабильным.

Микросхему надо выбирать так, чтобы ее Uвых хватило для открывания цепочки светодиодов. Для одного LED хватит и КРЕН5А (LM7805). Для большего количества светодиодов надо применять стабилизатор с большим выходным уровнем, соответственно увеличивая напряжение питания. Резистор R1 задает ток в цепи по закону

I=Vстаб/R1+i0, где:

  • I — ток стабилизации, А;
  • Vстаб – выходное напряжение микросхемы;
  • R1 – сопротивление резистора, Ом;
  • i0 – ок покоя микросхемы, для большинства экземпляров около 8 мА.

Максимальный ток ограничивается возможностями микросхемы и не превышает 1 А, но для этого стабилизатор надо установить на радиаторе.

Окончательно выходной ток устанавливается подбором резистора R1 в процессе наладки.

Для нормальной работы микросхемы на входе надо установить оксидный конденсатор (на схеме не показан) так, чтобы длина проводников между КРЕН и конденсатором была не больше 7 см.

Окно онлайн-калькулятора

Для расчета параметров стабилизатора можно использовать онлайн-калькуляторы. Найти их можно в интернете.

Стабилизатор тока на транзисторе

Стабилизатор для светодиодов можно построить на биполярном транзисторе, включенном по схеме эмиттерного повторителя. Напряжение на базе стабилизировано стабилитроном VD, резистор R1 ограничивает ток через стабилитрон.

Схема стабилизатора на биполярном транзисторе

Если напряжение на базе транзистора неизменно, то оно неизменно и на эмиттере, а значит, стабилен и ток через R2. Так как ток коллектора практически совпадает с током эмиттера, то и ток через светоизлучающие диоды будет относительно неизменен.

Другой вариант схемы стабилизатора на транзисторе

Стабилитрон должен иметь как можно более низкое напряжение стабилизации, в противном случае будет теряться большая часть выходного уровня источника питания. Но низковольтный стабилитрон найти не так легко, поэтому хороший вариант – заменить его двумя (или более) обычными диодами в прямом включении.

Диоды задают напряжение на базе полупроводникового прибора, но надо учитывать, что примерно 0,6 вольта упадет на эмиттерном переходе транзистора. Поэтому диодов должно быть не меньше двух.

Еще один вариант схемы – использование в качестве источника опорного напряжения «программируемый стабилитрон» TL431. При включении, указанном на схеме, на эмиттере транзистора всегда будет 2,5 вольта, и ток в цепи коллектора будет равен Iколлектора=2,5/R2+Iбазы. Ток базы невелик, поэтому можно считать, что ток коллектора достаточно стабилен и задается резистором R2.

Недостатком этой схемы является зависимость тока от входного напряжения. Улучшить параметры можно получить, запитав схему стабильным напряжением, добавив стабилизатор, собранный, например, на КРЕН.

Лучшие характеристики имеет стабилизатор на полевом транзисторе.

Схема драйвера на мощном MOSFET

Преимущество такой схемы в том, что стабилизатор представляет собой двухполюсник и может быть легко подключен в любую существующую цепь. Ток задается резистором R1 и имеет сложную зависимость от сопротивления и характеристик полевого транзистора. Ток стабилизации придется подбирать экспериментально из-за большого разброса параметров полупроводниковых приборов – и это недостаток данной схемы.

Такой вариант – без резистора – является, пожалуй, оптимальной схемой драйвера светодиодных приборов системы освещения авто. В этой ситуации требует решения проблема стабильного напряжения (выбросы в бортсети намного уменьшают срок службы LED). Линейные стабилизаторы (LM7812) работают плохо. Для нормальной работы им нужно на входе не менее 14 вольт, а в бортовой сети такое напряжение бывает не всегда. Работа с пониженным же напряжением питания ведет к падению яркости свечения световых устройств. А в приведенной схеме эти недостатки минимизированы.

Стабилизаторы на микросхемах

Источник стабильного тока можно построить на операционном усилителе. Выходной каскад ОУ в большинстве случаев не рассчитан на подключение мощной нагрузки, поэтому к нему в качестве усилителя подключается мощный полевой или биполярный транзистор. Приведенная схема имеет особенность – нагрузка подключена к общему проводу. Во многих случаях это удобно.

Иной вариант схемы – когда нагрузка подключается к плюсу питания.

Другой вариант драйвера на ОУ

Для обеих вариантов характерен общий недостаток – ток в цепи нагрузки зависит от входного напряжения. В совокупности с другими минусами (необходимость организации цепей смещения ОУ или питание от двуполярного источника и т.п.) схемы получаются громоздкими и особого распространения не получили.

Регулируемый стабилизатор постоянного тока

Для регулировки тока можно постоянный резистор, задающий этот ток, заменить переменным. Например, в схеме с биполярным транзистором достаточно регулировать сопротивление в цепи эмиттера.

Недостаток такой регулировки – через потенциометр идет полный ток нагрузки. Место подвижного контакта будет со временем подгорать и переменный резистор выйдет из строя. Другое дело – схема на полевом транзисторе. В цепи стока ток практически отсутствует (реально он составляет десятки, максимум – сотни миллиампер). Поэтому на MOSFET можно построить регулируемый источник. Практическая реализация БП для LED приведена на рисунке. Схема дополнена защитой от сверхтока на биполярном транзисторе VT2.

Регулируемый источник тока на MOSFET IRF740

Можно построить регулятор, позволяющий добиться стабилизации как тока, так и напряжения, при этом обе величины можно регулировать. В этом случае устройство будет универсальным, позволяющим использовать его для питания различных наборов светоизлучающих диодов. Классическим вариантом служит стабилизатор на микросхеме TL494, представляющей собой контроллер ШИМ. Она имеет два канала для обратной связи, что позволяет организовать два канала стабилизации (для тока и для напряжения). На вывод 1 микросхемы поступает напряжение с выхода стабилизатора. Микросхема сравнивает его с опорным и дает команду на увеличение или уменьшение длительности открытого состояния ключей.

Схема импульсного стабилизатора на TL494

Для отслеживания тока последовательно с нагрузкой установлен шунт, напряжение с которого заводится на вывод 16, где оно также сравнивается с опорным уровнем. Накопительный дроссель намотан на двух склеенных желтых кольцах проводом толщиной 1 мм. Напряжение регулируется потенциометром R13, а ток – R5. Ключевые транзисторы надо установить на радиатор.

Конструкция дросселя

Сделать драйвер для светодиодного светильника несложно. Надо только выбрать схему в рамках своей квалификации, и LED прослужат намного дольше. Хотя среди рассмотренных вариантов сложных нет – если нужно сложное устройство с большим количеством регулировок, защит и т.п., проще купить готовую плату.

Семь лучших стабилизаторов, без которых нельзя обойтись

Стабилизатор защищает ваши дорогостоящие электроприборы от сбоев или поломок, вызванных внезапными скачками напряжения.

Если вы ищете лучший стабилизатор для вашего кондиционера, смарт-телевизора, холодильника или другой бытовой техники, вам не нужно искать дальше. В этой статье мы составили список отобранных лучших стабилизаторов, доступных на Amazon India, чтобы помочь вам выбрать тот, который соответствует вашим целям.

Помимо упоминания невероятных технических характеристик и уникальных особенностей этих стабилизаторов, мы предоставили справедливую и объективную оценку каждой модели, тщательно проанализировав отзывы и рейтинги покупателей. В этой статье вы можете прочитать плюсы и минусы каждой модели и найти их сравнительный анализ.

Итак, продолжайте читать и выберите тот, который лучше всего соответствует вашим требованиям и бюджету.

1. Стабилизатор Microtek EM4160 для 1,5-тонного переменного тока

Microtek EM4160 — это автоматический стабилизатор, способный выдерживать колебания напряжения до 300 В переменного тока. Он имеет функцию автозапуска, при которой вам не нужно вмешиваться в какое-либо руководство. Он основан на «Технологии экономии энергии», которая помогает вам сэкономить на счетах за электроэнергию и гарантирует, что ваши приборы, особенно сеть переменного тока, к которой подключен этот стабилизатор, останутся защищенными от всех видов колебаний мощности и проблем с напряжением.

Характеристики:

Торговая марка — Microtek

Грузоподъемность — Максимум до 1,5 тонны (12 А)

Температурный уровень — 40°C Три года

Комплектация — Один стабилизатор переменного тока, руководство пользователя, гарантийный талон

Вес — 5,7 кг

Цифровой дисплей показаний — Да

Подключение к сети — 32 А и выше

Pros CONS
Легко установить Это не может длиться длиной
.

50% от

Pros CONS
SAVES Power Бит Heavy
IT состоит из Microconterer Indious.

32% от

Pros Cons
Built-in protector for heat Only two output plugs
Safe delivery to your home  
Seven-segment digital display  

Плюсы Минусы
Последняя немецкая технология Toroidal Toroidal Transformer Это не может длиться длиной длиной
. У нее нет шума
Saves 40% Power
709.9000 .9000 .70709.70709.70709.709070709.9007.7090709090.9007.709.9007.709.

52% от

Плюсы Cons
Compactness It may have a lower voltage range capacity
Affordable to your pockets  
Display is digital  

48% от

Pros Cons
User-friendly LED system It may not last long
Weighs light  
Reliable output voltage  

35% от

.
Pros CONS
Легкий вес

22% от

Product Price
Microtek EM4160 Stabilizer For 1.5 (1500 kilograms) Ton AC ₹2,099
AULTEN Stabilizer For 2 Ton AC ₹3,998
V- Guard Crystal Plus стабилизатор для Smart TV ₹ 3500
Everest 4KVA Deluxe Stabilizer для 1,5 (1500 килограммов) тонна AC ₹ 1520
CANDALA 4KV 4KV CANDALIAR 4KV.0045 ₹4,939
V- Guard V G Stabilizer For 1.5 (1500 kilograms)Ton AC ₹1,775
V- Guard Crystal Stabilizer For 32 inches TV ₹1,799

Продукт Функция 1 Функция 2 Функция 3
Microtek Em4160. 0010 Технология экономии — энергоэффективность Защита от перегрузки, низкое и высокое напряжение отсечение 160 В до 290 В
Aulten Stabilizer для 2 тонн AC Немецкая технология энергоэффективности Германская технология энергоэффективности трансформаторы, отсечка низкого и высокого напряжения 130 В до 280 В
Стабилизатор V-Guard Crystal Plus Для Smart TV Эффективность энергопотребления Защита от тепловой перегрузки, интеллектуальная коррекция выходного напряжения, защита от скачков напряжения, защита от короткого замыкания, отключение при низком и высоком напряжении Экономия электроэнергии 40 % Тороидальные трансформаторы, защита от тепловой перегрузки 170–270 В
Стабилизатор Candes Crystal 4 кВА для 1,5 (1500 кг) тонны переменного тока0010 Экономичный Отключение при низком и высоком напряжении, защита от тепловой перегрузки, защита от скачков напряжения на металлооксидном варисторе, коррекция входного напряжения (1500 кг) Тонн переменного тока Эффективное энергосбережение Отключение при низком и высоком напряжении, защита от перегрева 170–270 В
Кристаллический стабилизатор V-Guard Для 32-дюймового телевизора Эффективное энергосбережение Защита от тепловой перегрузки, коррекция входного напряжения, защита от скачков напряжения на металлооксидном варисторе, отключение высокого напряжения От 90 до 290 В будьте в курсе последних тенденций и продуктов. У Hindustan Times есть аффилированное партнерство, поэтому мы можем получать часть дохода, когда вы совершаете покупку.

Стабилизаторы напряжения могут увеличить мощность и крутящий момент

| How-To — Интерьер и электрика

Развенчание мифов о тюнинге.

Тестирование Скотт Цунэйши

Уважаемый Импортный тюнер ,
Я пишу, чтобы предложить вам продукт для тестирования в реальности или вымысле: стабилизаторы напряжения. Кажется, что каждая JDM-компания производит их, но они никогда толком не объясняют, как они работают, просто их установка сделает вашу машину лучше во всех отношениях. Но все в сети говорят о них всякое дерьмо. Они работают? Как они работают? Стоят ли они своей цены?
Спасибо,
— Джереми Панза,

через [email protected]

Если когда-либо существовала загадочная область функциональности автомобиля, то это его электрическая система. Динамику двигателя, настройку подвески, размер тормозов и даже настройку легко понять, потому что мы можем чувствовать, наблюдать и визуализировать то, что происходит. Большее смещение равно сгоранию большего количества воздуха и топлива для большей мощности. Меньший крен кузова и более низкий центр тяжести обеспечивают лучшую управляемость. Тормоза большего размера означают большую площадь поверхности для распределения тепла и меньшее затухание тормозов. Предварительное зажигание наряду с повышенной температурой выхлопных газов? Добавьте больше топлива. Простой.

Но это не так в мире электроники, где все происходит со скоростью света, субатомными частицами, которые сообщают о своем присутствии только тогда, когда что-то замыкает или загорается. За ними последовали сомнительные продукты, которые обещают многое для автомобильной электрической системы. В конце концов, если вы не можете сказать, насколько хорошо что-то работает, вы не можете с уверенностью сказать, действительно ли продукт компании X не делает его лучше. Но именно поэтому мы здесь.

Заявление:
Стабилизаторы напряжения могут увеличить мощность и крутящий момент.

В этом месяце мы протестировали четыре самых популярных стабилизатора напряжения на рынке. Не путать с системами заземления, которые дополняют заводскую батарею автомобиля и заземление шасси. Стабилизаторы напряжения, иногда называемые «конденсаторами», подключаются непосредственно к положительной и отрицательной клеммам автомобильной батареи и предназначены для регулирования потока электричества, поступающего от аккумуляторной батареи. аккумулятора автомобиля к его электрическим компонентам, сглаживая холостой ход, улучшая выходную мощность фар и аудиооборудования, увеличивая срок службы батареи и улучшая эффективность сгорания для увеличения мощности / крутящего момента и снижения выбросов.

Первое, что нужно помнить, это то, что автомобильный аккумулятор уже действует как большой стабилизатор напряжения. Электроэнергия, вырабатываемая генератором переменного тока, по мере необходимости направляется на аккумулятор и электрические устройства. В периоды низкого потребления электроэнергии (например, фары, аудиосистема, кондиционер) избыточная электроэнергия, вырабатываемая генератором переменного тока, заряжает аккумулятор, а не проходит через систему. Но когда требования электрической системы автомобиля перевешивают то, что может генерировать генератор переменного тока (например, при низких оборотах холостого хода и/или сильном потреблении электроэнергии), электричество разряжается от аккумулятора в количествах, необходимых для компенсации слабины. Проблема в том, что традиционная свинцово-кислотная батарея не может достаточно быстро переключаться с заряда на разряд, чтобы подавить небольшие колебания напряжения или электрический «шум», которые могут неблагоприятно повлиять на электрические компоненты автомобиля. Более продвинутые (дорогие) аккумуляторы и электрические системы новых автомобилей могут почти идеально выполнять работу по стабилизации избыточного тока, но в любом случае, говорят производители комплектов стабилизаторов напряжения, можно многое выиграть, добавив послепродажную систему стабилизации. конденсаторы в смеси.

Наши испытания начались с того, что мы привязали новый (для него) 240SX 95 года Эллиотта «Мистер Супер Лап» Морана с двигателем KA24DE к роликам City of Industry, динамометрического стенда SP Engineering компании SP Engineering из Калифорнии и выполнили несколько полных пусков на третьей передаче. — дроссельная заслонка, сначала в качестве базовой линии без установленной системы напряжения, а затем снова с каждым из четырех претендентов на месте.

Первым был Raizin Pivot, чей японский производитель может похвастаться тем, что сконструировал продукт с прозрачным корпусом. Его конструкция проста: четыре конденсатора для зарядки и разрядки несанкционированного электрического тока быстрее, чем автомобильный аккумулятор, небольшая положительная и отрицательная проводка, два сменных предохранителя и светодиод, указывающий на правильность установки.

Следующим был гоночный конденсатор Buddy Club. Судя по тому, что мы могли видеть через окошко в его корпусе, он сконструирован так же, как Raizin, но с конденсаторами большего размера и дополнительными заземляющими перемычками.

Нашим третьим и последним японским претендентом была почтенная система Hyper Voltage от Sun Auto, один из первых подобных комплектов на рынке. В ней была медная проводка с покрытием из нержавеющей стали, крупнее, чем в любой другой системе, и полностью герметичный модуль, который отлично подходит для защиты от загрязнений, но не так хорош для удобства обслуживания или наблюдения за тем, как он работает. Тем не менее, он вернул лучшие пиковые числа из группы.

Наш «таинственный стабилизатор» (названный так потому, что он был подарен для испытаний без какой-либо маркировки) последним попал под микроскоп. Его алюминиевый корпус радиатора является общим для нескольких брендов, как и черно-красная проводка в стиле Home Depot. Мы не будем строить догадки, какой бренд мы думаем, что это будет.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *