Site Loader

Содержание

Мощный стабилизатор на lm317 и транзисторе

В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.

LM317LM350LM338
Диапазон значений регулируемого выходного напряжения1,2…37В1,2…33В1,2…33В
Максимальный показатель токовой нагрузки1,5А
Максимальное допустимое входное напряжение40В35В35В
Показатель возможной погрешности стабилизации

0,1%

Максимальная рассеиваемая мощность*15-20 Вт20-50 Вт25-50 ВтДиапазон рабочих температур0° — 125°С0° — 125°С0° — 125°СDatasheetLM317.pdfLM350.pdfLM338.pdf

* — зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Мощный стабилизатор на lm317 и транзисторе

Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. Мощный стабилизатор на lm317 и транзистореНа вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I (1), где I – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Мощный стабилизатор на lm317 и транзисторе

Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн калькулятор lm317, lm350 и lm338

Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).

На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.

Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.

На рисунке 1 приведены две простых схемы стабилизаторов тока. Первая схема имеет стабилизацию тока на уровне одного ампера, а вторая, с дополнительным транзистором – 3 ампера.

Мощный стабилизатор на lm317 и транзисторе

И в том и в другом случае все полупроводниковые элементы должны быть установлены на радиаторы с площадью охлаждения соответствующей мощности, выделяемой на этих элементах. Если, например, через стабилизатор с дополнительным транзистором протекает ток величиной три ампера и при этом вольтметр, подключенный к точкам 1 и 2 схемы, показывает падение напряжения четыре вольта, то общая мощность, выделяемая в виде тепла на транзисторе

КТ818 и микросхеме LM317, будет равна Р = I •U; P = 3•4 = 12Вт. Площадь радиатора для отведения такой мощности можно определить по диаграмме. Транзистор и микросхему можно установить на один радиатор без прокладок.

Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Мощный стабилизатор на lm317 и транзисторе

Мощный стабилизатор на lm317 и транзисторе

Назначение выводов микросхемы:

Мощный стабилизатор на lm317 и транзисторе

Мощный стабилизатор на lm317 и транзисторе

Мощный стабилизатор на lm317 и транзисторе

Мощный стабилизатор на lm317 и транзисторе

Мощный стабилизатор на lm317 и транзисторе

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.

Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:

Мощный стабилизатор на lm317 и транзисторе

Источник питания на 5 Вольт с электронным включением

Мощный стабилизатор на lm317 и транзисторе

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Мощный стабилизатор на lm317 и транзисторе

Регулируемый стабилизатор напряжения на LM317

Схема включения с регулируемым выходным напряжением

Мощный стабилизатор на lm317 и транзисторе

lm317 калькулятор

Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.

Мощный стабилизатор на lm317 и транзисторе

Мощный стабилизатор на lm317 и транзистореСкачать datasheet и калькулятор для LM317 (319,9 Kb, скачано: 39 764)

Аналог LM317

К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:

  • GL317
  • SG31
  • SG317
  • UC317T
  • ECG1900
  • LM31MDT
  • SP900
  • КР142ЕН12 (отечественный аналог)
  • КР1157ЕН1 (отечественный аналог)

Мощный стабилизатор на lm317 и транзисторе

28 комментариев

Интересная статья! Спасибо!

Спасибо. Только ноги перепутали. У 317 1н-ADJ, 3н-INP, 2н — OUTP.

Смотреть мордой к себе, счет слева направо.

Ничего не попутано.На схеме всё правильно.Учите технический английский язык. 1-управляющий, 2-выход, 3-вход
На схеме всё правильно.

Регулируемый стабилизатор напряжения на LM317- схемка работает , только выводы 2 и 3 попутаны местами в схеме.

С какого перепугу они перепутаны? На схеме всё правильно.Внимательнее смотрите даташит на стабилизатор.

А в схеме Регулируемый стабилизатор напряжения на LM317 какой нужен трансформатор? На вторичной обмотке сколько вольт надо?

Разница между входным и выходным напряжением должна составлять 3,2 вольта, то есть, если тебе необходимо 12 вольт на выходе, то на вход нужно подать 15,2 вольта

Подскажите за что отвечает резистор (200 Ом — 240 Ом) между первой и второй ногой микросхемы ?
Сейчас собрал простейший стабилизатор на 5,15 V , резистор между 1 и 2 ногой — 680 Ом , между второй и третьей 220 Ом = на выходе сила тока всего 0,45 А . Для зарядки смартфона мне нужна сила тока 1 А .

Резисторы R1 и R2 — делитель напряжения. Подключите 220 Ом (R1) к 1 и 2 выводу, 680 Ом (R2) к 1 выводу и минусу питания.

Резисторы R1 и R2 можно подобрать и другого номинала?

да, рассчитать можно здесь

можно ли совместить на одной lm317, регулировку тока и напряжения,

Можно,я так делал.Сначала собираем регулятор напряжения,потом между adj и out ставим переменный резистор только большой мощности вата на 2. мультиметром настраиваеш всю поделку.а лучше использовать две 317 . 1-я как регулятор напр. 2-я как рег.тока. и вперед. Если собирать на 317-х лабораторник то можно парралельно их ставить (с ограничительными резисторами на выходе по 0.2 ом )например три или пять штук 317-х,только собирать с защитами (диоды )по полноценной схеме .у меня таких два штуки есть один на одной ,для маломощных нагрузок ,второй на двух .главное что б транс был нормальный мощью ват 30-50.и хватит за глаза .не варить же им !

Евгений, может скинешь схемку (или ссылку)на параллельное включение ЛМ 317 для ПБ? Я собрал, 5 штук поставил, греются не равномерно. Попробую поставлю выравнивающие резисторы по 0,2 Ома. Транс 150 Ватт, до 30В. Можно, конечно, купить БП на Али. Да решил молодость вспомнить (мне 68).

Большое Спасибо за статью.

Здравствуйте! Под рукой стабилизаторы 7812 и 7912.
Можно их применить для понижения напряжения с учетом вышеуказанного расчета и схемы?

Можно лишь изловчиться на напряжение более высокое, чем номинальное (для 7812 — больше 12 В). Для этого в цепь 2-го вывода включают N число диодов, тогда приблизительно получится Uвых=12+0,65N; вместо диодов можно подобрать резистор. При этом корпус микросхемы должен быть изолирован от общего провода вопреки стандартному включению.

Я так понимаю-если стабилизатор не 317 ,а на рассчитанное своё напряжение например 7812,то меньше чем 12 никак не получить,а вот больше по этой методике пожалуйста.

Сделал, работает хорошо.Регулирует от 1,2 В до 35В. После 0,5 А греется. Поставил на радиатор. Решил добавить два транзистора кт 819, поставил уравнивающие резисторы по 0,5 Ом. Регулировка от 0 до 10В — нормально. Если до 20В, то регулировка начинается от 10 и до 20, при 30В — от 20 до 30В, т.е. не от 1,3В. Может поможете? Может ещё кто посоветует. Хотелось бы сделать БП на ЛМ317 + транзисторы. Вам спасибо большое. А может сделать как советует jenya900?

Спасибо за схему,а как увеличить ток до10А?

Как ограничить напряжение на выходе максим. 9вольт, при переменном резисторе 8кОм. Спасибо

Каков температурный диапазон эксплуатации LM317T?

Купил гравёр. Сразу не запустился. Разобрал. Стоит линейный стабилизатор напряжения на LM317T. R1=100 Om, R2= последовательно 150 Om и переменное 1кОм. Между выходом и входом LM317T стоит конденсатор. Все компоненты нано. При включении заряжается ёмкость и когда напряжение достигает около 3В включается. Это где-то пол минуты. Зачем стоит ёмкость? Питание usb 5B. На выходе около 2В. Как всё это исправить? Мне нужно на выходе 3В. Менять переменное R нельзя. Можно менять R1, R2, C1.

Кто-нибудь пробовал параллелить микросхемы?

Ну пока сам не сделаешь, никто не пошевелится рассказать.
Соединил в параллель вчистую (т.е. ножка к ножке без всяких уравнивающих сопротивлений) 5 штук. Нагрузил на 3,8А (больше не требовалось), напряжение на выходе просело с 14В до 13,8В. Приемлемо.
Так что годится такой вариант.

Помогите чайнику. Если в стабилизаторе напряжения на вход подать напряжение меньше, чем установленное на выход, что будет на выходе? Нужно, чтобы схема начала пропускать ток при росте напряжения, начиная с 12 вольт.

LM217, LM317 — Регулируемые стабилизаторы напряжения — DataSheet

Описание

LM217, LM317 — монолитные интегральные схемы в корпусах TO-220, TO-220FP и D²PAK , предназначенные для использования в качестве стабилизаторов напряжения. Могут поддерживать ток в нагрузке более 1.5 А и регулируемое напряжение в диапазоне от 1.2 В до 37 В. Номинальное выходное напряжение выбирается с помощью резистивного делителя, что делает использование устройства очень простым. Отечественным аналогом является микросхема КР142ЕН12А.

Свойства

  • Выходное напряжение от 1.2 В до 37 В
  • Выходной ток 1.5 А
  • 0.1 % отклонение регулировки в линии и нагрузке
  • Изменяемое управление для высоких напряжений
  • Полный набор защиты: ограничение тока; отключение при перегреве; контроль качества SOA

Маркировка

TO-220 TO-220 D²PAK TO-220FP
LM217T LM217T-DG LM217D2T-TR
LM317T LM317T-DG LM317D2T-TR LM317P
LM317BT

 Расположение выводов

Распиновка LM217, LM317Рис. 1 Вид сверху

Купить LM317 можно здесь.

Максимальные значения

 

Абсолютные максимальные значения
Обозначение Параметр Значение Ед. изм.
VI — VO Входное напряжение 40 В
IO Выходной ток Внутренне ограничен А
TOP Рабочая температура p-n перехода для: LM217 от — 25 до 150 °C
 LM317  0 до 125
 LM317B от -40 до 125
 PD Рассеиваемая мощность Внутренне ограничена  Вт
 TSTG Температура хранения от — 65 до 150  °C

 

Тепловые характеристики
Обозначение Параметр D²PAK TO-220 TO-220FP Ед. изм.
RthJC Тепловое сопротивление кристалл-корпус 3 5 5 °C/Вт
RthJA Тепловое сопротивление кристалл-среда 62.5 50 60 °C/Вт

Схема

 

Внутренняя схема LM317Рис. 2 Внутренняя схема

Электрические характеристики

 

 

Электрические характеристики LM217

VI — VO = 5 В, IO = 500 мА, IMAX = 1.5 A и PMAX = 20 Вт, TJ = от — 55 до 150 °C, если не указано иное.

Обозначение Параметр Условия Мин. Тип. Макс. Ед. изм.
ΔVO Нестабильность выходного напряжения  в линии VI — VO = 3 — 40 В TJ = 25°C  0.01  0.02 %/В
 0.02  0.05
ΔVO Нестабильность выходного напряжения на нагрузке VO ≤5 В  IO от 10 мA до IMAX TJ = 25°C  5 15  мВ
20 50
VO ≥5 В  IO от 10 мA до IMAX TJ = 25°C  0.1  0.3   %
0.3 1
 IADJ Ток на регулирующем выводе 50 100  мкА
ΔIADJ Изменение тока на регулирующем выводе VI — VO от 2.5 до 40 В Iот 10 мА до IMAX  0.2 5  мкА
 VREF Опорное напряжение VI — VO от 2.5 до 40 В IO = от 10 мА до IMAX, P≤ PMAX  1.2  1.25 1.3 В
ΔVO/VO Выходное напряжение, температурная стабильность  1  %
 IO(min) Минимальный нагрузочный ток VI — VO = 40 В 3.5 5 мА
IO(max) Максимальный нагрузочный ток VI — VO ≤ 15 В, PD < PMAX 1.5 2.2 А
VI — VO = 40 В, PD < PMAX, TJ = 25°C 0.4
eN Выходное напряжение шумов (в процентах от VO) B = от 10 Гц до 100 кГц, TJ = 25°C 0.003 %
SVR Отклонение напряжения питания (1) TJ = 25°C, f = 120 Гц CADJ=0 65 dB
CADJ=10 мкФ 66 80

1. CADJ подключается между выводом управления и землей.

 

 

Электрические характеристики LM317

VI — VO = 5 В, IO = 500 мА, IMAX = 1.5 A и PMAX = 20 Вт, TJ = от 0 до 150 °C, если не указано иное.

Обозначение Параметр Условия Мин. Тип. Макс. Ед. изм.
ΔVO Нестабильность выходного напряжения  в линии VI — VO = 3 — 40 В TJ = 25°C  0.01  0.04 %/В
 0.02  0.07
ΔVO Нестабильность выходного напряжения на нагрузке VO ≤5 В  IO от 10 мA до IMAX TJ = 25°C  5 25  мВ
20 70
VO ≥5 В  IO от 10 мA до IMAX TJ = 25°C  0.1  0.5   %
0.3 1.5
 IADJ Ток на регулирующем выводе 50 100  мкА
ΔIADJ Изменение тока на регулирующем выводе VI — VO от 2.5 до 40 В Iот 10 мА до 500 мА  0.2 5  мкА
 VREF Опорное напряжение VI — VO от 2.5 до 40 В IO = от 10 мА до 500 мА, P≤ PMAX  1.2  1.25 1.3 В
ΔVO/VO Выходное напряжение, температурная стабильность  1  %
 IO(min) Минимальный нагрузочный ток VI — VO = 40 В 3.5 10 мА
IO(max) Максимальный нагрузочный ток VI — VO ≤ 15 В, PD < PMAX 1.5 2.2 А
VI — VO = 40 В, PD < PMAX, TJ = 25°C 0.4
eN Выходное напряжение шумов (в процентах от VO) B = от 10 Гц до 100 кГц, TJ = 25°C 0.003 %
SVR Отклонение напряжения питания (1) TJ = 25°C, f = 120 Гц CADJ=0 65 dB
CADJ=10 мкФ 66 80

1. CADJ подключается между выводом управления и землей.

 

 

Электрические характеристики LM317B

VI — VO = 5 В, IO = 500 мА, IMAX = 1.5 A и PMAX = 20 Вт, TJ = от -40 до 150 °C, если не указано иное.

Обозначение Параметр Условия Мин. Тип. Макс. Ед. изм.
ΔVO Нестабильность выходного напряжения  в линии VI — VO = 3 — 40 В TJ = 25°C  0.01  0.04 %/В
 0.02  0.07
ΔVO Нестабильность выходного напряжения на нагрузке VO ≤5 В  IO от 10 мA до IMAX TJ = 25°C  5 25  мВ
20 70
VO ≥5 В  IO от 10 мA до IMAX TJ = 25°C  0.1  0.5   %
0.3 1.5
 IADJ Ток на регулирующем выводе 50 100  мкА
ΔIADJ Изменение тока на регулирующем выводе VI — VO от 2.5 до 40 В Iот 10 мА до 500 мА  0.2 5  мкА
 VREF Опорное напряжение VI — VO от 2.5 до 40 В IO = от 10 мА до 500 мА, P≤ PMAX  1.2  1.25 1.3 В
ΔVO/VO Выходное напряжение, температурная стабильность  1  %
 IO(min) Минимальный нагрузочный ток VI — VO = 40 В 3.5 10 мА
IO(max) Максимальный нагрузочный ток VI — VO ≤ 15 В, PD < PMAX 1.5 2.2 А
VI — VO = 40 В, PD < PMAX, TJ = 25°C 0.4
eN Выходное напряжение шумов (в процентах от VO) B = от 10 Гц до 100 кГц, TJ = 25°C 0.003 %
SVR Отклонение напряжения питания (1) TJ = 25°C, f = 120 Гц CADJ=0 65 dB
CADJ=10 мкФ 66 80

1. CADJ подключается между выводом управления и землей.

 

Типовые характеристики

 

Выходной токРис. 3 Выходной ток от входного-выходного дифференциального напряженияПадение напряженияРис. 4 Падение напряжения от температуры p-n переходаОпорное напряжение Рис. 5 Опорное напряжение от температуры p-n перехода

 

Управляемый стабилизаторРис. 6 Упрощенная схема управляемого стабилизатора

Применение

 

Стабилизаторы серии LM217, LM317 поддерживают опорное напряжение  1.25 В между выходом и регулировочным выводом. Оно используется поддержания постоянного тока через делитель напряжения (см. Рис. 6), что дает выходное напряжение VO рассчитываемое по формуле:

VO = VREF (1 + R2/R1) + IADJ R2

Регуляторы были разработаны для того, чтобы уменьшить ток  IADJ  и поддерживать его постоянным в линии при изменении нагрузки. Как правило, отклонением IADJ × R2 можно пренебречь. Чтобы обеспечить выше описанные требования, стабилизатор возвращает ток покоя на выходной вывод для поддержания минимального нагрузочного тока. Если нагрузка недостаточна, то выходное напряжение будет расти. Поскольку LM217, LM317  стабилизаторы с незаземленным «плавающим» выходом и видят только разность между входным и выходным напряжением, для источников с очень высоким напряжением относительно земли, можно стабилизировать напряжение так долго, пока не будет превышена максимальная разность между входным и выходным напряжением. Кроме того, можно легко собрать программируемый стабилизатор. При подключении постоянного резистора между выходом и регулировкой, устройство может быть использовано в качестве прецизионного стабилизатора тока. Характеристики могут быть улучшены добавлением емкостей, как описано ниже:

  • На вход байпаса конденсатор 1 мкФ.
  • На вывод управления конденсатор 10 мкФ, чтобы улучшить подавление пульсаций на 15 dB (CADJ ).
  • Танталовый электролитический конденсатор на выходе, чтобы улучшить переходную характеристику. Помимо конденсаторов можно добавить защитные диоды, как показано на рис. 7. D1 используется для защиты стабилизатора от короткого замыкания на входе, D2 для защиты от короткого замыкания на выходе и разряда емкости.
Стабилизатор напряжения с защитными диодамиРис. 7 Стабилизатор напряжения с защитными диодами

 

Стабилизатор на 15 В с плавным включениемРис. 8 Стабилизатор на 15 В с плавным включениемСтабилизатор токаРис. 9 Стабилизатор тока

IO = (VREF / R1) + IADJ = 1.25 В / R1

Стабилизатор на 5 В с электронным выключениемРис. 10 Стабилизатор на 5 В с электронным выключениемСтабилизатор с цифровой регулировкой напряженияРис. 11 Стабилизатор с цифровой регулировкой напряжения

R2 соответствует максимальному значению выходного напряжения

 

Зарядка для батареи 12 ВРис. 12 Зарядка для батареи 12 В

RS устанавливает выходное сопротивление зарядки, рассчитываемое по формуле ZO = RS (1 + R2/R1). Применение RS дает возможность снизить уровень заряда при полностью заряженной батарее.

Зарядное устройство на 6 В, с ограничением по токуРис. 13 Зарядное устройство на 6 В, с ограничением по току

*R3 устанавливает максимальный ток (0.6 А для 1 Ома).

*C1 рекомендуется подключить для фильтрации входных переходных процессов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350

Изучая темы, касающиеся использования трехвыводных стабилизаторов напряжения серии LM, нигде не нашлось рекомендуемого проекта печатной платы. Поэтому будем восполнять пробел и приведем несколько правил, позволяющих добиться высоких параметров от стабилизатора. Представляем свой проект размещения элементов, прототип схемы собранной на макетной плате и результаты измерений. Уверены, что это пригодится не только новичкам, так как LM317, LM337, LM350 очень часто используются в разных блоках питания как отдельно, так и в составе приборов.

Схема включения стабилизатора

Итак, нужен был линейный стабилизатор симметричного напряжения +/- 5 В при токе порядка 2 А для питания аналоговой схемы. На входе стабилизатора используется дешевый импульсный блок питания 9 В, 3 А.

LM3ХХ — схема принципиальная подключения

К сожалению, выходные напряжения импульсных блоков питания содержат значительные пульсации — для нагрузки 2 А амплитуда пульсаций около 0.1 В.

На что обратить внимание

  1. Благодаря использованию керамических конденсаторов SMD можно их разместить очень близко к выводам микросхемы LM3xx (конденсаторы C2 и C4 в корпусах 0805, можно припаять даже непосредственно на полях пайки стабилизатора.
  2. Элементы R2 и D2 следует поставить именно в такой последовательности (R2 ближе к U1).
  3. Нижний вывод резистора R1 не подключен напрямую к массе, только заканчивается полем припоя. Необходимо подключить как можно ближе к массе, тогда будут компенсацией падения напряжения на проводах массы.
  4. В качестве диодов D1 и D3 возможно стоит применить диоды Шоттки.

После сборки по такой схеме, не удалось заметить на осциллографе никаких пульсаций на выходе при токе нагрузки до 2,5 А даже в диапазоне 50 мВ/см. Падения напряжения не заметно с нагрузкой и без.

БП на макетной плате

Печатная плата для LM3ХХ

Вот для LM317 (LM350 — это версия LM317 с более высоким током) указан рекомендуемый вид печатной платы.

Плата печатная рисунок для LM350

Большое влияние на возможное возбуждение схемы оказывает слишком большой конденсатор на выходе. В каком-то даташите даже было написано, что на выходе может быть максимум 10 мкФ low ESR, лучше танталовый. Когда-то сами в этом убедились, когда LM317 работала как источник тока. Выходное напряжение скакало от нуля до максимума. Уменьшение емкости на выходе до 10 мкФ эффективно устранило этот дефект. Кроме того, большой конденсатор на выходе может вызвать большие броски тока в нагрузке, когда что-то пойдет не так. С другой стороны, отсутствие конденсатора вызывает инерцию при изменениях тока нагрузки.

Учтите, что для микросхемы LM350 токи довольно больше, что вызывает заметное падения напряжения на дорожках. Подробнее читайте в даташите на ЛМ350.

Задача диода D1 в разрядке выходного конденсатора в ситуации, когда напряжение на LM3xx стало выше, чем раньше (например, во время регулировки).

БП на микросхеме LM350

Еще один важный момент — в блоке питания диоды D1 и D3 должны быть подобраны соответствующим образом для предохранителя так, чтобы именно предохранитель сгорел, а не они. Проще всего установить их самые большие по току, какие имеются в наличии (по схеме 6А6 на 6 ампер).

Линейный стабилизатор напряжения или тока LM317

  • Цена: $1.81 за 10 шт.

Здравствуйте. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения (или тока) LM317 по цене 18 центов за штуку. В местном магазине такой стабилизатор стоит на порядок больше, поэтому меня и заинтересовал этот лот. Решил проверить, что продаётся по такой цене и оказалось, что стабилизатор вполне качественный, но об этом ниже.
В обзоре тестирование в режиме стабилизатора напряжения и тока, а также проверка защиты от перегрева.
Заинтересовавшихся прошу…

Немного теории:

Стабилизаторы бывают линейные и импульсные.
Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади.
Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.
Недостаток — низкий КПД, большое тепловыделение.
Импульсный стабилизатор напряжения — это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть бо́льшую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения — с минимальным сопротивлением, а значит, может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогаб

Схема линейного интегрального стабилизатора с регулируемым напряжением ЛМ-317

LM317 является одной из самых распространенных интегральных микросхем стабилизаторов. Основная особенность микросхемы – возможность регулировки стабилизации в широких пределах. Характеристики ЛМ317т позволяют на ее основе конструировать различные устройства, в которых требуется наличие стабилизированного напряжения или тока в широких пределах.

Интегральный стабилизатор

Интегральный стабилизатор

Характеристики

Основная техническая характеристика стабилизатора напряжения lm317 – диапазон выходного стабилизированного напряжения, которое составляет от 1.25 до 37 В постоянного тока. При этом разность между входным и выходным потенциалом может составлять от 3 до 40 В. Потенциал на входе не должен превышать 40 В.

Ток стабилизированного источника при использовании ИМС ЛМ 317 составляет до 1.5А. Этот параметр ограничивает мощность нагрузки и может быть увеличен путем усложнения конструкции.

Устройства выпускаются в различных корпусах:

  • TO-220 – самый распространенный тип со штыревыми выводами;
  • TO-220FP – то же самое в полностью пластмассовом корпусе;
  • D2PAK – с плоскими выводами для SMD монтажа;
  • SOT223 – то же самое с иной конфигурацией корпуса;
  • TO-3 – цельнометаллический корпус.
Типы корпусов

Типы корпусов

Рабочая температура микросхемы может достигать 125⁰С, диапазон рабочих температур составляет от -60 до 150⁰С. Для lm317 характеристики сохраняются, несмотря на то, что данный элемент выпускается большим количеством производителей.

Распиновка самой распространенной lm317t в корпусе ТО-220 запоминается легко. Если расположить микросхему выводами вниз и лицевой стороной кверху, то расположение выводов будет таким:

  • Слева – управляющий вход;
  • Средний – выходное стабилизированное напряжение;
  • Правый – вход.
Распиновка микросхемы

Распиновка микросхемы

Примеры применения стабилизатора LM-317 (схемы включения)

Для микросхемы lm317 разработано множество применений. Большая часть схем включения отражена в технической документации на элемент. Там же приведены номиналы элементов.

Стабилизатор тока

Стабилизатор тока на lm317 – это одно из основных нетиповых применений микросхемы. Такая схема включения применяется для конструирования универсальных устройств заряда аккумуляторов. Также может использоваться в тех случаях, когда необходим источник стабильного тока с величиной от 10 мА до 1.5 А.

Схема отличается простотой, поскольку содержит всего два элемента: саму микросхему и токозадающий резистор. Сопротивление резистора находят по формуле:

R=1.25∙Iст.

Весь выходной ток проходит через данный резистор, поэтому он должен обладать необходимой мощностью рассеивания. Величину мощности определяют из выражения:

P=I2R.

Стабилизация тока

Стабилизация тока

Данный регулятор позволяет реализовать зарядное устройство, чтобы зарядить аккумулятор током от 50 мА до 1.5 А. Если учесть, что для большинства аккумуляторов зарядный ток выбирается как 1/10 емкости, то можно обслуживать батареи от 0.5 до 15 А∙ч.

Источник питания на 5 Вольт с электронным включением

Источник питания с электронным включением сконструирован таким образом, что при подаче логической единицы с уровнем TTL напряжение падает до минимума (1.25 В). В случае подачи логического «нуля» выход определяется резисторами R1, R2 и составляет 5 В.

Переключение основано на том, что резистор R2 зашунтирован переходом эмиттер-коллектор транзистора. При подаче высокого уровня напряжения транзистор открывается и замыкает управляющий вывод микросхемы на корпус.

Источник питания с электронным включением

Источник питания с электронным включением

Регулируемый стабилизатор напряжения на LM-317

Данная схема включения lm317 является основной. В простейшем варианте используется всего три радиоэлемента:

  • лм317;
  • опорный резистор R1;
  • регулировочный резистор R2.

Связь между сопротивлением резисторов и выходным напряжением описывается выражением:

Uвых=1.25∙(1+R2/R1).

Типовая схема позволяет регулировать напряжение выхода в пределах от 1.25 до 37 В.

Регулируемый источник питания

Регулируемый источник питания

Используя онлайн калькулятор, можно пересчитывать номиналы элементов для большинства типовых вариантов включения. Добавив несколько дополнительных компонентов, можно получить схемы с лучшими характеристиками. Например, если через диод подать на нижний вывод регулировочного резистора отрицательное смещение, то можно получить нижний предел выходного напряжения, равный нулю.

Аналоги

Большинство производителей выпускает регулируемые источники напряжения под такими же названиями, как и оригинал. В то же время можно встретить аналоги lm317 под другими наименованиями:

  • 1157ЕН1;
  • КР142ЕН12 – самый распространенный отечественный полный аналог;
  • GL317;
  • SG317.

Обратите внимание! Если в наименовании радиоэлемента стоят три цифры 317, то с большой долей вероятности это полный аналог lm317.

Цоколевка аналогов lm317 в большинстве случаев полностью совпадает с оригинальной.

Типовые схемы включения

Самые распространенные типовые схемы включения lm317 приведены в технической документации (datasheet). Кроме тех конструкций, что приведены выше, микросхема позволяет выполнить блок питания для светодиодных источников света. Как известно, светодиод требует питания  источником тока, а не напряжения.

Параметры LM-317 допускают использовать ее в качестве стабилизатора бортового оборудования в авто, в том числе для питания аудиоаппаратуры, для замены штатных источников света на светодиодные.

Радиолюбителями постоянно проводятся эксперименты по расширению возможностей типовых схем. Одно из основных направлений – как увеличить допустимую мощность нагрузки источника питания.

Важно! Мощный транзистор, включенный совместно со стабилизатором lm317, увеличивает ток выхода пропорционально статическому коэффициенту усиления.

Радиоконструкторы

Много розничных и интернет-магазинов реализуют радиоконструкторы, которые при минимуме усилий позволяют собрать на интегральных микросхемах различные устройства.

Часть конструкций поставляется в виде печатных плат и набора элементов, которые требуется впаять в плату. Некоторые устройства полностью готовы и требуют лишь подключения к конструкции и размещения в подходящем корпусе.

Радиоконструктор на LM

Радиоконструктор на LM

Datasheet, даташит

Подробное описание микросхемы, подборка параметров имеются в интернете в свободном доступе. К сожалению, русский язык в оригинальной документации отсутствует, но этот недостаток компенсируется большим количеством русскоязычных источников.

Стабилизация параметров при помощи специализированных устройств позволяет упростить схемотехнику, повысить надежность и ремонтопригодность устройств. Использование универсальных компонентов дает возможность видоизменять конструкции с минимальными усилиями.

Видео

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *