Корпуса микросхем — Просто о технологиях
Типы корпусов микросхем
Бывало ли у вас такое, что придя в радиомагазин, вы говорили продавцу:
— Любезнейший, а дайте-ка мне ХХХХХХХ микросхему.
— Да, конечно, а Вам в каком корпусе?
— !?
Чтобы не попасть в такую дурацкую ситуацию и смотреться в глазах продавца мега-профи электронщиком, разберем в каких «домиках» живут всеми нами любимые и популярные микросхемы.
Итак, погнали
Типы корпусов импортных микросхем
Корпус – это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями!
Ниже представлены наиболее распространенные серии корпусов импортных микросхем.
Для просмотра чертежей корпусов микросхем кликните ссылку с названием типа корпуса или на соответствующую типу корпуса картинку.
DIP (Dual In-line Package, также DIL) – тип корпуса микросхем, микросборок и некоторых других электронных компонентов для монтажа в отверстия печатной платы. Имеет прямоугольную форму с двумя рядами выводов по длинным сторонам. Может быть выполнен из пластика (PDIP) или керамики (CDIP). Обычно в обозначении также указывается число выводов.
SOIC или просто SO (small-outline integrated circuit), а также SOP (Small-Outline Package) корпус микросхем , предназначенный для поверхностного монтажа, занимающий на печатной плате на 30-50% меньше площади чем аналогичный корпус DIP, а также имеющий на 50-70% меньшую толщину. Обычно в обозначении также указывается число выводов.
SIP (Single In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы, с одним рядом выводов по длинной стороне. Обычно в обозначении также указывается число выводов.
QFP (Quad Flat Package) — плоский корпус с четырьмя рядами контактов. Представляет собой квадратный корпус с расположенными по краям контактами. Существуют также другие варианты: TQFP (Thin QFP) — с малой высотой корпуса, LQFP (Low-profile QFP) и многие другие.
LCC (Leadless Chip Carrier) представляет собой низкопрофильный квадратный керамический корпус с расположенными на его нижней части контактами, предназначенный для поверхностного монтажа.
PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) представляют собой квадратный корпус с расположенными по краям контактами, предназначенный для установки в специальную панель (часто называемую «кроваткой»).
TSOP (Thin Small-Outline Package) тонкий малогабаритный корпус, разновидность SOP корпуса микросхем. Часто применяется в области DRAM, особенно для упаковки низковольтных микросхем из-за их малого объёма и большого количества штырьков.
ZIP (Zigzag-In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы со штырьковыми выводами, расположенными зигзагообразно.
Корпуса микросхем
Корпус интегральной микросхемы (ИМС) — это герметичная конструкции, предназначенная для защиты кристалла интегральной схемы от внешних воздействий и для электрического соединения с внешними цепями. Длина корпуса микросхем зависит от числа выводов. Давайте рассмотрим некоторые типы корпусов, которые наиболее часто применяются радиолюбителями.
DIP (Dual In-line Package) – тип корпуса микросхем, микросборок и некоторых других электронных компонентов для монтажа в отверстия печатной платы, является самым распространенным типом корпусов. Имеет прямоугольную форму с двумя рядами выводов по длинным сторонам. Может быть выполнен из пластика или керамики.
В обозначении корпуса указывается число выводов. В корпусе DIP могут выпускаться различные полупроводниковые или пассивные компоненты — микросхемы, сборки диодов, ТТЛ-логика, генераторы, усилители, ОУ и прочие… Компоненты в корпусах DIP обычно имеют от 4 до 40 выводов, возможно есть и больше. Большинство компонентов имеет шаг выводов 2.
54 миллиметра и расстояние между рядами 7.62 или 15.24 миллиметра.
Одной из разновидностью корпуса DIP является корпус QDIP на таком корпусе 12 выводов и обычно имеются лепестки для крепления микросхемы на радиатор, вспомните микросхему К174УН7.
Разновидностью DIP является PDIP – (Plastic Dual In-line Package) – корпус имеет форму прямоугольника, снабжен выводами, предназначенными преимущественно для монтажа в отверстия.
Существуют две разновидности корпуса: узкая, с расстоянием между выводами 7.62 мм и широкая, с расстоянием между выводами 15.24 мм. Различий между DIP и PDIP в плане корпуса нет, PDIP обычно изготавливается из пластика, CDIP – из керамики.
Если у микросхемы много выводов, например 28 и более, то корпус может быть широким.
SIP (Single In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы, с одним рядом выводов по длинной стороне. Обычно в обозначении также указывается число выводов. Нумерация выводов данных типов микросхем начинается слева, если смотреть на маркировку спереди.
ТО92 – распространённый тип корпуса для маломощных транзисторов и других полупроводниковых приборов с двумя или тремя выводами, в том числе и микросхем, например интегральных стабилизаторов напряжения. В СССР данный тип корпуса носил обозначение КТ-26.
TO220 — тип корпуса для транзисторов, выпрямителей, интегральных стабилизаторов напряжения и других полупроводниковых приборов малой и средней мощности. Нумерация выводов для разных элементов может отличаться, у транзисторов одно обозначение, у стабилизаторов напряжения другое…
PENTAWATT – Содержит 5 выводов, в таких корпусах выпускаются, например усилители НЧ (TDA2030, 2050…), или стабилизаторы напряжения.
DPAK – (TO-252, КТ-89) корпус для размещения полупроводниковых устройств. D2PAK аналогичен корпусу DPAK, но больше по размеру; в основном эквивалент TO220 для SMD-монтажа, бывают трёх, пяти, шести, семи или восьмивыводные.
SO (Small Outline) пластиковый корпус малого размера. Корпус имеет форму прямоугольника, снабжен выводами, предназначенными для монтажа на поверхность. Существуют две разновидности корпуса: узкая, с шириной корпуса 3.9 мм (0.15 дюйма) и широкая, с шириной корпуса 7.5 мм (0.3 дюйма).
SOIC (Small-Outline Integrated Circuit) – предназначен для поверхностного монтажа, по сути это то же, что и SO. Имеет форму прямоугольника с двумя рядами выводов по длинным сторонам. Как правило, нумерация выводов одинаковых микросхем в корпусах DIP и SOIC совпадает.
Помимо сокращения SOIC для обозначения корпусов этого типа могут использоваться буквы SO, а также SOP (Small-Outline Package) и число выводов. Такие корпуса могут иметь различную ширину. Обычно обозначаются как SOxx-150, SOxx-208 и SOxx-300 или пишут SOIC-xx и указывают какому чертежу он соответствует.
Данный тип корпусов схож с QSOP.
Также существует версия корпуса с загнутыми под корпус (в виде буквы J) выводами. Такой тип корпуса обозначается как SOJ (Small-Outline J-leaded).
QFP (Quad Flat Package) – семейство корпусов микросхем, имеющих планарные выводы, расположенные по всем четырём сторонам. Форма основания микросхемы — прямоугольная, а зачастую используется квадрат.
Корпуса обычно различаются только числом выводов, шагом, размерами и используемыми материалами.
BQFP отличается расширениями основания по углам микросхемы, предназначенными для защиты выводов от механических повреждений до запайки.
В это семейство входят корпуса TQFP (Thin QFP), QFP, LQFP (Low-profile QFP).
Микросхемы в таких корпусах предназначены только для поверхностного монтажа; установка в разъём или монтаж в отверстия штатно не предусмотрена, хотя переходные коммутационные устройства существуют.
Количество выводов QFP микросхем обычно не превышает 200, с шагом от 0,4 до 1,0 мм. Габаритные размеры корпусов и расстояние между выводами можно посмотреть тут.
QFN (Quad-flat no-leads) – у таких корпусов, так же как и у корпусов SOJ, вывода загнуты под корпус. Габаритные размеры и расстояние между выводами корпусов QFN можно посмотреть тут. Данный корпус схож с типом корпусов MLF, у них вывода расположены по периметрии и снизу.
TSOP (Thin Small-Outline Package) – данные корпуса очень тонкие, низкопрофильные, являются разновидностью SOP микросхем.
Применяются в модулях оперативной памяти DRAM и для чипов флеш-памяти, особенно для упаковки низковольтных микросхем из-за их малого объёма и большого количества штырьков (контактов).
В более современных модулях памяти такие корпуса уже не применяются, их заменили корпуса типа BGA. Обычно различают два типа корпусов, они представлены ниже на фото.
PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) – представляют собой квадратный корпус с расположенными по краям контактами, предназначенный для установки в специальную панель (часто называемую «кроваткой»). В настоящее время широкое распространение получили микросхемы флэш-памяти в корпусе PLCC, используемые в качестве микросхемы BIOS на системных платах. Габаритные размеры корпусов и расстояние между выводами можно посмотреть тут.
ZIP (Zigzag-In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы со штырьковыми выводами, расположенными зигзагообразно.
Бывают ZIP12, ZIP16, ZIP17, ZIP19, ZIP20, ZIP24, ZIP40 цифры означают количество выводов и тип корпуса, кроме этого они различаются габаритами корпусов, а так же расстоянием между выводами.
Габаритные размеры корпусов и расстояние между выводами можно посмотреть тут.
Статья не найдена!
Page 2
- Общий раздел
- Электроприводы
- Микросхемы
Page 3
На странице:
Сортировка:
Широтно импульсная модуляция (ШИМ)
Широтно-импульсная модуляция – ШИМ (в английском варианте pulse-width modulation (PWM)) — процесс представления сигнала в виде череды импульсов с постоянной частотой и управления уровнем этого сигнала путём изменения скважности данных импульсов. Определение звучит сложно, но на самом д..
Page 4
На странице:
Сортировка:
Серводвигатель (устройство и принцип работы)
Сервопривод (лат.servus – слуга, помощник; следящий привод) — привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения. Сервопривод чаще всего встречается в робототехнике. Без него невозможно обойтись, особенно когда..
Page 5
На странице:
Сортировка:
В настоящее время по всему миру выпускается невероятное количество микросхем со всевозможными функциями. Насчитывается десятки тысяч различных микросхем от десятков производителей. Но очевидно, что требуется определенная стандартизация корпусов микросхем для того, чтобы разработчики могли удобно их ..
В мире существует несметное количество различных моделей микросхем. Логично, что их необходимо каким-то образом различать. Для этих целей предусмотренна маркировка, которая всегда наносится на верхнюю часть корпуса микросхемы (рисунок 1). Рисунок 1 Маркировка дает возможность однозначно оп..
КУПИТЬ: NE555 Документация Устройства: NE555.pdf В этой статье мы рассмотрим такую выдающуюся микросхему, как 555-й таймер (обычно обозначается как NE555, но у разных производителей обозначение может быть немного разным). По мере рас..
Триггер (Разновидности триггеров)
Если говорить о триггерах обобщенно, то триггер – это целый класс цифровых устройств, которые могут длительное время находиться в одном из двух устойчивых состояний. Переходят они из одного устойчивого состояния в другое под воздействием внешних сигналов. Первое устойчивое состояние — это когд..
С момента изобретения транзистора и появления электронной промышленности ученые и инженеры столкнулись с необходимостью разработки и производства компактных схем в одном корпусе. Результатом такой работы стало практически одновременное (в 1960-х годах) появление нескольких технологий создания микрос..
Page 6
В этом разделе нет статей.
Page 7
В этом разделе нет статей.
Page 8
Микросхемы и их функционирование
Большинство микросхем имеют корпус, то есть прямоугольный контейнер (пластмассовый, керамический, металлокерамический) с металлическими выводами (ножками). Предложено множество различных типов корпусов, но наибольшее распространение получили два основных типа:
Рис. 2.8. Примеры корпусов DIL и Flat
- Корпус с двухрядным вертикальным расположением выводов, например, DIP (Dual In Line Package, Plastic) — пластмассовый корпус, DIC (Dual In Line Package, Ceramic) — керамический корпус. Общее название для таких корпусов — DIL (рис. 2.8). Расстояние между выводами составляет 0,1 дюйма (2,54 мм). Расстояние между рядами выводов зависит от количества выводов.
- Корпус с двухрядным плоскостным расположением выводов, например, FP (Flat-Package, Plastic) — пластмассовый плоский корпус, FPC (Flat-Package, Ceramic) — керамический плоский корпус. Общее название для таких корпусов — Flat (рис. 2.8). Расстояние между выводами составляет 0,05 дюйма (1,27 мм) или 0,025 дюйма (0,628 мм).
Номера выводов всех корпусов отсчитываются начиная с вывода, помеченного ключом, по направлению против часовой стрелки (если смотреть на микросхему сверху). Ключом может служить вырез на одной из сторон микросхемы, точка около первого вывода или утолщение первого вывода (рис. 2.8).
Первый вывод может находиться в левом верхнем или в правом нижнем углу (в зависимости от того, как повернут корпус). Микросхемы обычно имеют стандартное число выводов из ряда: 4, 8, 14, 16, 20, 24, 28,.
… Для микросхем стандартных цифровых серий используются корпуса с количеством выводов начиная с 14.
Назначение каждого из выводов микросхемы приводится в справочниках по микросхемам, которых сейчас имеется множество. Правда, лучше ориентироваться на справочники, издаваемые непосредственно фирмами-изготовителями. В данном курсе назначение выводов не приводится.
Отечественные микросхемы выпускаются в корпусах, очень похожих на DIL и Flat, но расстояния между их выводами вычисляются по метрической шкале и поэтому чуть-чуть отличаются от принятых за рубежом. Например, 2,5 мм вместо 2,54 мм, 1,25 мм вместо 1,27 мм и т.д.
Для корпусов с малым числом выводов (до 20) это не слишком существенно, но для больших корпусов расхождение в расстоянии может стать существенным. В результате на плату, рассчитанную на зарубежные микросхемы, нельзя поставить отечественные микросхемы, и наоборот.
Одиночный цифровой сигнал не слишком информативен, ведь он может принимать только два значения: нуль и единица. Поэтому в тех случаях, когда необходимо передавать, обрабатывать или хранить большие объемы информации, обычно применяют несколько параллельных цифровых сигналов.
При этом все эти сигналы должны рассматриваться только одновременно, каждый из них по отдельности не имеет смысла. В таких случаях говорят о двоичных кодах, то есть о кодах, образованных цифровыми (логическими, двоичными) сигналами. Каждый из логических сигналов, входящих в код, называется разрядом .
Чем больше разрядов входит в код, тем больше значений может принимать данный код.
В отличие от привычного для нас десятичного кодирования чисел, то есть кода с основанием десять, при двоичном кодировании в основании кода лежит число два (рис. 2.9). То есть каждая цифра кода (каждый разряд) двоичного кода может принимать не десять значений (как в десятичном коде: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а всего лишь два — 0 и 1.
Система позиционной записи остается такой же, то есть справа пишется самый младший разряд, а слева — самый старший. Но если в десятичной системе вес каждого следующего разряда больше веса предыдущего в десять раз, то в двоичной системе (при двоичном кодировании) — в два раза.
Каждый разряд двоичного кода называется бит (от английского “Binary Digit” — “двоичное число”).
Рис. 2.9. Десятичное и двоичное кодирование
В табл. 2.3 показано соответствие первых двадцати чисел в десятичной и двоичной системах.
Из таблицы видно, что требуемое количество разрядов двоичного кода значительно больше, чем требуемое количество разрядов десятичного кода.
Максимально возможное число при количестве разрядов, равном трем, составляет при десятичной системе 999, а при двоичной — всего лишь 7 (то есть 111 в двоичном коде).
В общем случае n-разрядное двоичное число может принимать 2n различных значений, а n-разрядное десятичное число — 10n значений. То есть запись больших двоичных чисел (с количеством разрядов больше десяти) становится не слишком удобной.
Таблица 2.3. Соответствие чисел в десятичной и двоичной системах
Десятичная системаДвоичная системаДесятичная системаДвоичная система
10
1010
1
1
11
1011
2
10
12
1100
3
11
13
1101
4
100
14
1110
5
101
15
1111
6
110
16
10000
7
111
17
10001
8
1000
18
10010
9
1001
19
10011
Для того чтобы упростить запись двоичных чисел, была предложена так называемая шестнадцатиричная система (16-ричное кодирование). В этом случае все двоичные разряды разбиваются на группы по четыре разряда (начиная с младшего), а затем уже каждая группа кодируется одним символом.
Каждая такая группа называется полубайтом (или нибблом, тетрадой ), а две группы (8 разрядов) — байтом. Из табл. 2.3 видно, что 4-разрядное двоичное число может принимать 16 разных значений (от 0 до 15). Поэтому требуемое число символов для шестнадцатиричного кода тоже равно 16, откуда и происходит название кода.
В качестве первых 10 символов берутся цифры от 0 до 9, а затем используются 6 начальных заглавных букв латинского алфавита: A, B, C, D, E, F.
Рис. 2.10. Двоичная и 16-ричная запись числа
Типы корпусов микросхем
Доброго времени суток, в статье вы узнаете, какие типы корпусов микросхем бывают.
В статье будут продемонстрированы следующие типы корпусов DIP, SIP, ZIP, SOIC, PLCC, PGA и BGA.
Демонстрируемые корпуса идут с разъяснениями и достоинствами и недостатками. А какие нравятся больше или меньше выбирать вам.
Эта статья является особо полезна для начинающих радиолюбителей, что бы не выглядеть глупо в магазине при покупке микросхемы стоит прочесть статью и узнать какие корпуса бывают.
И так начнём.
DIP корпус
DIP – это Dual In-Line Package в переводе с английского, корпус с двумя рядами выводов по длинным сторонам микросхемы. Корпуса для много выводных микросхем пользуются большим спросом, но в прошлом популярность такого корпуса зашкаливала. Ниже на картинке представлен вид корпуса:
В наименовании корпуса также присутствует цифровое обозначение, которое зависит от количества выводов микросхемы, и ставятся сразу после слова. Например, микросхема, а точнее, микроконтроллер atmega8 имеет 28 выводов:
И так, ее корпус будет называться DIP28.
У следующей микро системы корпус имеет название DIP16.
Логично будет считать количество выводов на одной стороне и умножать на двое.
Ещё в советское время корпус DIP пользовался спросом, так как в корпусе DIP производили логические микросхемы, операционные усилители и много различных устройств служащих на благо человека.
Но в наши время корпус DIP не потерял свою популярность и актуальность в применении, сто очень важно.
С помощью его продолжают производить простые аналоговые микросхемы, а также во многих микроконтроллерах новейшего производства.
Производится корпус DIP из пластика который после имеет название PDIP, а также из керамики с последующим названием CDIP. Большинство корпусов производится из пластика, из за его дешёвой стоимости на рынке по сравнению с керамическим. Но по качеству керамический по ощущениям твёрд как камень.
Пример корпуса CDIP представлен ниже:
Так же имеются модификации DIP корпуса: HDIP, SDIP.
HDIP -Heat-dissipating DIP является тепло рассеивающим из корпусов DIP. Такие микросхемы пропускают через себя большой ток, поэтому сильно нагреваются. Чтобы отвести излишки тепла, на такой микросхеме должен быть радиатор или его подобие, например, как здесь два крылышка-радиатора посерединке микросхемы представленной ниже:
SDIP – Small DIP маленький DIP. Микросхема в корпусе DIP, но c маленьким расстоянием между ножками микросхемы. Рисунок представлен ниже:
SIP корпус
SIP корпуса- это Single In line Package – плоский корпус с выводами с одной стороны. Очень удобен при монтаже и занимает мало места. Количество выводов также пишется после названия корпуса. Например, микруха снизу в корпусе SIP8.
У SIP тоже есть модификации – это HSIP (Heat-dissipating SIP). То есть тот же самый корпус, но уже с радиатором, можно увидеть ниже:
ZIP Корпус
ZIP – это корпуса Zigzag In line Package – плоский корпус с выводами, расположенными зигзагообразно. Ниже представлен корпус ZIP6. Цифра – это количество выводов:
А также, корпус; с радиатором HZIP представлен ниже:
Только что мы с вами рассмотрели основной класс In line Package микросхем. Эти микросхемы предназначены для сквозного монтажа в отверстиях в печатной плате.
Например, микросхема DIP14, установленная на; печатной плате, фото представлено ниже:
И ее выводы с обратной стороны платы, уже без припоя.
Кто-то все таки умудряется запаять микросхемы DIP, как микросхемы для поверхностного монтажа, о них чуть ниже, загнув выводы под углом в 90 градусов, или полностью их выпрямив. Это откровенно говоря извращение, но работает.
Переходим к другому классу микросхем – микросхемы для поверхностного монтажа или, так называемые SMD компоненты. Еще их называют планарными радиокомпонентами.
Такие микросхемы запаиваются на поверхность печатной платы, под выделенные для них печатные проводники. Видите прямоугольные дорожки в ряд? Это печатные проводники или в народе пятачки. Вот именно на них запаиваются планарные микросхемы.
SOIC корпус
Самым большим представителем этого класса микросхем являются микросхемы в корпусе SOIC – Small-Outline Integrated Circuit, это маленькая микросхема с выводами по длинным сторонам. Она очень напоминает DIP, но обратите внимание на ее выводы. Они параллельны поверхности самого корпуса, смотрите ниже:
Фото с изображением как запаивается на плате, смотреть ниже:
Ну и как обычно, цифра после “SOIC” обозначает количество выводов этой микросхемы. На фото выше микросхемы в корпусе SOIC16.
SOP корпус
SOP – Small Outline Package, это почти то же самое, что и SOIC, но расстояние между выводами SOPa намного меньше, чем у SOICa.
Так же присутствует модификацией корпуса SOP, PSOP – пластиковый корпус SOP. Чаще всего именно он и используется.
HSOP – теплорассеивающий SOP. Маленькие радиаторы посередине служат для отвода тепла.
SSOP – Shrink Small Outline Package, это” сморщенный” SOP. То есть еще меньше, чем SOP корпус
TSSOP – Thin Shrink Small Outline Package, это тонкий SSOP. Тот же самый SSOP, но “размазанный” скалкой. Его толщина меньше, чем у SSOP. В основном в корпусе TSSOP делают микросхемы, которые прилично нагреваются. Поэтому, площадь у таких микросхем больше, чем у обычных. Говоря простым языком, корпус-радиатор.
SOJ – тот же SOP, но ножки загнуты в форме буквы “J” под саму микросхему. В честь таких ножек и назвали корпус SOJ, смотреть ниже:
Ну и как обычно, количество выводов обозначается после типа корпуса, например SOIC16, SSOP28, TSSOP48 и тд.
QFP корпус
QFP – Quad Flat Package, это четырехугольный плоский корпус. Главное отличие от собрата SOIC в том, что выводы размещены на всех сторонах такой микросхемы
Модификации
PQFP – пластиковый корпус QFP. CQFP – керамический корпус QFP. HQFP – теплорассеивающий корпус QFP.
TQFP – Thin Quad Flat Pack, это тонкий корпус QFP. Его толщина намного меньше, чем у его собрата QFP
PLCC корпус
PLCC – Plastic Leaded Chip Carrier и СLCC – Ceramic Leaded Chip Carrier, это соответственно пластиковый и керамический корпус с расположенными по краям контактами, предназначенными для установки в специальную панельку, в народе называемую “кроваткой”. Типичным представителем является микросхема BIOS в ваших компьютерах.
Вот так примерно выглядит “кроватка” для таких микросхем
А вот так микросхема “лежит” в кроватке.
Иногда такие микросхемы называют QFJ, как вы уже догадались, из-за выводов в форме буквы “J” Ну и количество выводов ставится после названия корпуса, например PLCC32.
PGA корпус
Представляет из себя прямоугольный или квадратный корпус, в нижней части которого расположены выводы-штырьки, смотреть ниже:
Такие микросхемы устанавливаются также в специальные кроватки, которые зажимают выводы микросхемы с помощью специального рычажка.
В корпусе PGA в основном делают процессоры на ваши персональные компьютеры.
Корпус BGA
BGA – Ball Grid Array, это матрица из шариков.
Как мы видим, здесь выводы заменены припойными шариками. На одной такой микросхеме можно разместить сотни шариков-выводов. Экономия места на плате просто фантастическая. Поэтому микросхемы в корпусе BGA применяют в производстве мобильных телефонов, планшетах, ноутбуках и в других микроэлектронных девайсах. О том, как перепаивать BGA, я еще писал в статье Пайка BGA микросхем.
В красных квадратах я пометил микросхемы в корпусе BGA на плате мобильного телефона. Как вы видите, сейчас вся микроэлектроника строится именно на BGA микросхемах.
Технология BGA является апогеем микроэлектроники. В настоящее время мир перешел уже на технологию корпусов microBGА, где расстояние между шариками еще меньше, и можно уместить даже тысячи(!) выводов под одной микросхемой!
Вот мы с вами и разобрали основные виды корпусов современных микросхем.Ничего страшного нет в том, что вы назовете микросхему в корпусе SOIC SOPом или SOP назовете SSOPом. Также ничего страшного нет и в том, чтобы назвать корпус QFP TQFPом. Границы между ними размыты и это просто условности. Но вот если микросхему в корпусе BGA назовете DIP, то это уже будет жОский касяк.
Начинающим радиолюбителям стоит просто запомнить четыре самых важных корпуса для микросхем – это DIP, SOIC, SOP и QFP безо всяких модификаций и стоит также знать их различия. В основном именно эти типы корпусов микросхем радиолюбители используют чаще всего в своей практике.
Если вам понравилась статья, оставляйте свои комментарии со своими пожеланиями и мнением. Так же у вас есть возможность подписаться на рассылку свежих новостей (справа под меню).
РЕКОМЕНДУЕМ
Корпуса микросхем
Типы корпусов микросхем
Бывало ли у вас такое, что придя в радиомагазин, вы говорили продавцу:
— Любезнейший, а дайте-ка мне ХХХХХХХ микросхему.
— Да, конечно, а Вам в каком корпусе?
— !?
Чтобы не попасть в такую дурацкую ситуацию и смотреться в глазах продавца мега-профи электронщиком, разберем в каких «домиках» живут всеми нами любимые и популярные микросхемы.
Итак, погнали
Источник: https://www.ruselectronic.com/tipy-korpusov-mikroskhem/
Типы корпусов импортных микросхем
Корпус – это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями!
Ниже представлены наиболее распространенные серии корпусов импортных микросхем.
Для просмотра чертежей корпусов микросхем кликните ссылку с названием типа корпуса или на соответствующую типу корпуса картинку.
DIP (Dual In-line Package, также DIL) – тип корпуса микросхем, микросборок и некоторых других электронных компонентов для монтажа в отверстия печатной платы. Имеет прямоугольную форму с двумя рядами выводов по длинным сторонам. Может быть выполнен из пластика (PDIP) или керамики (CDIP). Обычно в обозначении также указывается число выводов. | SOIC или просто SO (small-outline integrated circuit), а также SOP (Small-Outline Package) корпус микросхем , предназначенный для поверхностного монтажа, занимающий на печатной плате на 30-50% меньше площади чем аналогичный корпус DIP, а также имеющий на 50-70% меньшую толщину. Обычно в обозначении также указывается число выводов. |
SIP (Single In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы, с одним рядом выводов по длинной стороне. Обычно в обозначении также указывается число выводов. | QFP (Quad Flat Package) — плоский корпус с четырьмя рядами контактов. Представляет собой квадратный корпус с расположенными по краям контактами. Существуют также другие варианты: TQFP (Thin QFP) — с малой высотой корпуса, LQFP (Low-profile QFP) и многие другие. |
LCC (Leadless Chip Carrier) представляет собой низкопрофильный квадратный керамический корпус с расположенными на его нижней части контактами, предназначенный для поверхностного монтажа. | PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) представляют собой квадратный корпус с расположенными по краям контактами, предназначенный для установки в специальную панель (часто называемую «кроваткой»). |
TSOP (Thin Small-Outline Package) тонкий малогабаритный корпус, разновидность SOP корпуса микросхем. Часто применяется в области DRAM, особенно для упаковки низковольтных микросхем из-за их малого объёма и большого количества штырьков. | SSOP (Shrink small-outline package) (уменьшенный малогабаритный корпус) разновидность SOP корпуса микросхем , предназначенного для поверхностного монтажа. Выводы расположены по двум длинным сторонам корпуса. |
ZIP (Zigzag-In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы со штырьковыми выводами, расположенными зигзагообразно. |
Источник: https://www.chipdip.ru/info/import-ic-packages
Корпуса микросхем
Корпус интегральной микросхемы (ИМС) — это герметичная конструкции, предназначенная для защиты кристалла интегральной схемы от внешних воздействий и для электрического соединения с внешними цепями. Длина корпуса микросхем зависит от числа выводов. Давайте рассмотрим некоторые типы корпусов, которые наиболее часто применяются радиолюбителями.
DIP (Dual In-line Package) – тип корпуса микросхем, микросборок и некоторых других электронных компонентов для монтажа в отверстия печатной платы, является самым распространенным типом корпусов. Имеет прямоугольную форму с двумя рядами выводов по длинным сторонам. Может быть выполнен из пластика или керамики.
В обозначении корпуса указывается число выводов. В корпусе DIP могут выпускаться различные полупроводниковые или пассивные компоненты — микросхемы, сборки диодов, ТТЛ-логика, генераторы, усилители, ОУ и прочие… Компоненты в корпусах DIP обычно имеют от 4 до 40 выводов, возможно есть и больше. Большинство компонентов имеет шаг выводов 2.
54 миллиметра и расстояние между рядами 7.62 или 15.24 миллиметра.
Одной из разновидностью корпуса DIP является корпус QDIP на таком корпусе 12 выводов и обычно имеются лепестки для крепления микросхемы на радиатор, вспомните микросхему К174УН7.
Разновидностью DIP является PDIP – (Plastic Dual In-line Package) – корпус имеет форму прямоугольника, снабжен выводами, предназначенными преимущественно для монтажа в отверстия.
Существуют две разновидности корпуса: узкая, с расстоянием между выводами 7.62 мм и широкая, с расстоянием между выводами 15.24 мм. Различий между DIP и PDIP в плане корпуса нет, PDIP обычно изготавливается из пластика, CDIP – из керамики.
Если у микросхемы много выводов, например 28 и более, то корпус может быть широким.
SIP (Single In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы, с одним рядом выводов по длинной стороне. Обычно в обозначении также указывается число выводов. Нумерация выводов данных типов микросхем начинается слева, если смотреть на маркировку спереди.
ТО92 – распространённый тип корпуса для маломощных транзисторов и других полупроводниковых приборов с двумя или тремя выводами, в том числе и микросхем, например интегральных стабилизаторов напряжения. В СССР данный тип корпуса носил обозначение КТ-26.
TO220 — тип корпуса для транзисторов, выпрямителей, интегральных стабилизаторов напряжения и других полупроводниковых приборов малой и средней мощности. Нумерация выводов для разных элементов может отличаться, у транзисторов одно обозначение, у стабилизаторов напряжения другое…
PENTAWATT – Содержит 5 выводов, в таких корпусах выпускаются, например усилители НЧ (TDA2030, 2050…), или стабилизаторы напряжения.
DPAK – (TO-252, КТ-89) корпус для размещения полупроводниковых устройств. D2PAK аналогичен корпусу DPAK, но больше по размеру; в основном эквивалент TO220 для SMD-монтажа, бывают трёх, пяти, шести, семи или восьмивыводные.
SO (Small Outline) пластиковый корпус малого размера. Корпус имеет форму прямоугольника, снабжен выводами, предназначенными для монтажа на поверхность. Существуют две разновидности корпуса: узкая, с шириной корпуса 3.9 мм (0.15 дюйма) и широкая, с шириной корпуса 7.5 мм (0.3 дюйма).
SOIC (Small-Outline Integrated Circuit) – предназначен для поверхностного монтажа, по сути это то же, что и SO. Имеет форму прямоугольника с двумя рядами выводов по длинным сторонам. Как правило, нумерация выводов одинаковых микросхем в корпусах DIP и SOIC совпадает.
Помимо сокращения SOIC для обозначения корпусов этого типа могут использоваться буквы SO, а также SOP (Small-Outline Package) и число выводов. Такие корпуса могут иметь различную ширину. Обычно обозначаются как SOxx-150, SOxx-208 и SOxx-300 или пишут SOIC-xx и указывают какому чертежу он соответствует.
Данный тип корпусов схож с QSOP.
Также существует версия корпуса с загнутыми под корпус (в виде буквы J) выводами. Такой тип корпуса обозначается как SOJ (Small-Outline J-leaded).
QFP (Quad Flat Package) – семейство корпусов микросхем, имеющих планарные выводы, расположенные по всем четырём сторонам. Форма основания микросхемы — прямоугольная, а зачастую используется квадрат.
Корпуса обычно различаются только числом выводов, шагом, размерами и используемыми материалами.
BQFP отличается расширениями основания по углам микросхемы, предназначенными для защиты выводов от механических повреждений до запайки.
В это семейство входят корпуса TQFP (Thin QFP), QFP, LQFP (Low-profile QFP).
Микросхемы в таких корпусах предназначены только для поверхностного монтажа; установка в разъём или монтаж в отверстия штатно не предусмотрена, хотя переходные коммутационные устройства существуют.
Количество выводов QFP микросхем обычно не превышает 200, с шагом от 0,4 до 1,0 мм. Габаритные размеры корпусов и расстояние между выводами можно посмотреть тут.
QFN (Quad-flat no-leads) – у таких корпусов, так же как и у корпусов SOJ, вывода загнуты под корпус. Габаритные размеры и расстояние между выводами корпусов QFN можно посмотреть тут. Данный корпус схож с типом корпусов MLF, у них вывода расположены по периметрии и снизу.
TSOP (Thin Small-Outline Package) – данные корпуса очень тонкие, низкопрофильные, являются разновидностью SOP микросхем.
Применяются в модулях оперативной памяти DRAM и для чипов флеш-памяти, особенно для упаковки низковольтных микросхем из-за их малого объёма и большого количества штырьков (контактов).
В более современных модулях памяти такие корпуса уже не применяются, их заменили корпуса типа BGA. Обычно различают два типа корпусов, они представлены ниже на фото.
PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) – представляют собой квадратный корпус с расположенными по краям контактами, предназначенный для установки в специальную панель (часто называемую «кроваткой»). В настоящее время широкое распространение получили микросхемы флэш-памяти в корпусе PLCC, используемые в качестве микросхемы BIOS на системных платах. Габаритные размеры корпусов и расстояние между выводами можно посмотреть тут.
ZIP (Zigzag-In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы со штырьковыми выводами, расположенными зигзагообразно.
Бывают ZIP12, ZIP16, ZIP17, ZIP19, ZIP20, ZIP24, ZIP40 цифры означают количество выводов и тип корпуса, кроме этого они различаются габаритами корпусов, а так же расстоянием между выводами.
Габаритные размеры корпусов и расстояние между выводами можно посмотреть тут.
Источник: http://cxem.net/beginner/beginner103.php
Статья не найдена!
Page 2
- Общий раздел
- Электроприводы
- Микросхемы
Page 3
На странице:
Сортировка:
Широтно импульсная модуляция (ШИМ)
Широтно-импульсная модуляция – ШИМ (в английском варианте pulse-width modulation (PWM)) — процесс представления сигнала в виде череды импульсов с постоянной частотой и управления уровнем этого сигнала путём изменения скважности данных импульсов. Определение звучит сложно, но на самом д..
Page 4
На странице:
Сортировка:
Серводвигатель (устройство и принцип работы)
Сервопривод (лат.servus – слуга, помощник; следящий привод) — привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения. Сервопривод чаще всего встречается в робототехнике. Без него невозможно обойтись, особенно когда..
Page 5
На странице:
Сортировка:
В настоящее время по всему миру выпускается невероятное количество микросхем со всевозможными функциями. Насчитывается десятки тысяч различных микросхем от десятков производителей. Но очевидно, что требуется определенная стандартизация корпусов микросхем для того, чтобы разработчики могли удобно их ..
В мире существует несметное количество различных моделей микросхем. Логично, что их необходимо каким-то образом различать. Для этих целей предусмотренна маркировка, которая всегда наносится на верхнюю часть корпуса микросхемы (рисунок 1). Рисунок 1 Маркировка дает возможность однозначно оп..
КУПИТЬ: NE555 Документация Устройства: NE555.pdf В этой статье мы рассмотрим такую выдающуюся микросхему, как 555-й таймер (обычно обозначается как NE555, но у разных производителей обозначение может быть немного разным). По мере рас..
Триггер (Разновидности триггеров)
Если говорить о триггерах обобщенно, то триггер – это целый класс цифровых устройств, которые могут длительное время находиться в одном из двух устойчивых состояний. Переходят они из одного устойчивого состояния в другое под воздействием внешних сигналов. Первое устойчивое состояние — это когд..
С момента изобретения транзистора и появления электронной промышленности ученые и инженеры столкнулись с необходимостью разработки и производства компактных схем в одном корпусе. Результатом такой работы стало практически одновременное (в 1960-х годах) появление нескольких технологий создания микрос..
Page 6
В этом разделе нет статей.
Page 7
В этом разделе нет статей.
Page 8
Источник: http://academy.evolvector.ru/index.php?route=product/product&product_id=68
Микросхемы и их функционирование
Большинство микросхем имеют корпус, то есть прямоугольный контейнер (пластмассовый, керамический, металлокерамический) с металлическими выводами (ножками). Предложено множество различных типов корпусов, но наибольшее распространение получили два основных типа:
Рис. 2.8. Примеры корпусов DIL и Flat
- Корпус с двухрядным вертикальным расположением выводов, например, DIP (Dual In Line Package, Plastic) — пластмассовый корпус, DIC (Dual In Line Package, Ceramic) — керамический корпус. Общее название для таких корпусов — DIL (рис. 2.8). Расстояние между выводами составляет 0,1 дюйма (2,54 мм). Расстояние между рядами выводов зависит от количества выводов.
- Корпус с двухрядным плоскостным расположением выводов, например, FP (Flat-Package, Plastic) — пластмассовый плоский корпус, FPC (Flat-Package, Ceramic) — керамический плоский корпус. Общее название для таких корпусов — Flat (рис. 2.8). Расстояние между выводами составляет 0,05 дюйма (1,27 мм) или 0,025 дюйма (0,628 мм).
Номера выводов всех корпусов отсчитываются начиная с вывода, помеченного ключом, по направлению против часовой стрелки (если смотреть на микросхему сверху). Ключом может служить вырез на одной из сторон микросхемы, точка около первого вывода или утолщение первого вывода (рис. 2.8).
Первый вывод может находиться в левом верхнем или в правом нижнем углу (в зависимости от того, как повернут корпус). Микросхемы обычно имеют стандартное число выводов из ряда: 4, 8, 14, 16, 20, 24, 28,.
… Для микросхем стандартных цифровых серий используются корпуса с количеством выводов начиная с 14.
Назначение каждого из выводов микросхемы приводится в справочниках по микросхемам, которых сейчас имеется множество. Правда, лучше ориентироваться на справочники, издаваемые непосредственно фирмами-изготовителями. В данном курсе назначение выводов не приводится.
Отечественные микросхемы выпускаются в корпусах, очень похожих на DIL и Flat, но расстояния между их выводами вычисляются по метрической шкале и поэтому чуть-чуть отличаются от принятых за рубежом. Например, 2,5 мм вместо 2,54 мм, 1,25 мм вместо 1,27 мм и т.д.
Для корпусов с малым числом выводов (до 20) это не слишком существенно, но для больших корпусов расхождение в расстоянии может стать существенным. В результате на плату, рассчитанную на зарубежные микросхемы, нельзя поставить отечественные микросхемы, и наоборот.
Одиночный цифровой сигнал не слишком информативен, ведь он может принимать только два значения: нуль и единица. Поэтому в тех случаях, когда необходимо передавать, обрабатывать или хранить большие объемы информации, обычно применяют несколько параллельных цифровых сигналов.
При этом все эти сигналы должны рассматриваться только одновременно, каждый из них по отдельности не имеет смысла. В таких случаях говорят о двоичных кодах, то есть о кодах, образованных цифровыми (логическими, двоичными) сигналами. Каждый из логических сигналов, входящих в код, называется разрядом .
Чем больше разрядов входит в код, тем больше значений может принимать данный код.
В отличие от привычного для нас десятичного кодирования чисел, то есть кода с основанием десять, при двоичном кодировании в основании кода лежит число два (рис. 2.9). То есть каждая цифра кода (каждый разряд) двоичного кода может принимать не десять значений (как в десятичном коде: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а всего лишь два — 0 и 1.
Система позиционной записи остается такой же, то есть справа пишется самый младший разряд, а слева — самый старший. Но если в десятичной системе вес каждого следующего разряда больше веса предыдущего в десять раз, то в двоичной системе (при двоичном кодировании) — в два раза.
Каждый разряд двоичного кода называется бит (от английского “Binary Digit” — “двоичное число”).
Рис. 2.9. Десятичное и двоичное кодирование
В табл. 2.3 показано соответствие первых двадцати чисел в десятичной и двоичной системах.
Из таблицы видно, что требуемое количество разрядов двоичного кода значительно больше, чем требуемое количество разрядов десятичного кода.
Максимально возможное число при количестве разрядов, равном трем, составляет при десятичной системе 999, а при двоичной — всего лишь 7 (то есть 111 в двоичном коде).
В общем случае n-разрядное двоичное число может принимать 2n различных значений, а n-разрядное десятичное число — 10n значений. То есть запись больших двоичных чисел (с количеством разрядов больше десяти) становится не слишком удобной.
10 | 1010 | ||
1 | 1 | 11 | 1011 |
2 | 10 | 12 | 1100 |
3 | 11 | 13 | 1101 |
4 | 100 | 14 | 1110 |
5 | 101 | 15 | 1111 |
6 | 110 | 16 | 10000 |
7 | 111 | 17 | 10001 |
8 | 1000 | 18 | 10010 |
9 | 1001 | 19 | 10011 |
Для того чтобы упростить запись двоичных чисел, была предложена так называемая шестнадцатиричная система (16-ричное кодирование). В этом случае все двоичные разряды разбиваются на группы по четыре разряда (начиная с младшего), а затем уже каждая группа кодируется одним символом.
Каждая такая группа называется полубайтом (или нибблом, тетрадой ), а две группы (8 разрядов) — байтом. Из табл. 2.3 видно, что 4-разрядное двоичное число может принимать 16 разных значений (от 0 до 15). Поэтому требуемое число символов для шестнадцатиричного кода тоже равно 16, откуда и происходит название кода.
В качестве первых 10 символов берутся цифры от 0 до 9, а затем используются 6 начальных заглавных букв латинского алфавита: A, B, C, D, E, F.
Рис. 2.10. Двоичная и 16-ричная запись числа
Источник: http://www.intuit.ru/studies/courses/104/104/lecture/3031?page=4
Типы корпусов микросхем
Доброго времени суток, в статье вы узнаете, какие типы корпусов микросхем бывают.
В статье будут продемонстрированы следующие типы корпусов DIP, SIP, ZIP, SOIC, PLCC, PGA и BGA.
Демонстрируемые корпуса идут с разъяснениями и достоинствами и недостатками. А какие нравятся больше или меньше выбирать вам.
Эта статья является особо полезна для начинающих радиолюбителей, что бы не выглядеть глупо в магазине при покупке микросхемы стоит прочесть статью и узнать какие корпуса бывают.
И так начнём.
DIP корпус
DIP – это Dual In-Line Package в переводе с английского, корпус с двумя рядами выводов по длинным сторонам микросхемы. Корпуса для много выводных микросхем пользуются большим спросом, но в прошлом популярность такого корпуса зашкаливала. Ниже на картинке представлен вид корпуса:
В наименовании корпуса также присутствует цифровое обозначение, которое зависит от количества выводов микросхемы, и ставятся сразу после слова. Например, микросхема, а точнее, микроконтроллер atmega8 имеет 28 выводов:
И так, ее корпус будет называться DIP28.
У следующей микро системы корпус имеет название DIP16.
Логично будет считать количество выводов на одной стороне и умножать на двое.
Ещё в советское время корпус DIP пользовался спросом, так как в корпусе DIP производили логические микросхемы, операционные усилители и много различных устройств служащих на благо человека.
Но в наши время корпус DIP не потерял свою популярность и актуальность в применении, сто очень важно.
С помощью его продолжают производить простые аналоговые микросхемы, а также во многих микроконтроллерах новейшего производства.
Производится корпус DIP из пластика который после имеет название PDIP, а также из керамики с последующим названием CDIP. Большинство корпусов производится из пластика, из за его дешёвой стоимости на рынке по сравнению с керамическим. Но по качеству керамический по ощущениям твёрд как камень.
Пример корпуса CDIP представлен ниже:
Так же имеются модификации DIP корпуса: HDIP, SDIP.
HDIP -Heat-dissipating DIP является тепло рассеивающим из корпусов DIP. Такие микросхемы пропускают через себя большой ток, поэтому сильно нагреваются. Чтобы отвести излишки тепла, на такой микросхеме должен быть радиатор или его подобие, например, как здесь два крылышка-радиатора посерединке микросхемы представленной ниже:
SDIP – Small DIP маленький DIP. Микросхема в корпусе DIP, но c маленьким расстоянием между ножками микросхемы. Рисунок представлен ниже:
SIP корпус
SIP корпуса- это Single In line Package – плоский корпус с выводами с одной стороны. Очень удобен при монтаже и занимает мало места. Количество выводов также пишется после названия корпуса. Например, микруха снизу в корпусе SIP8.
У SIP тоже есть модификации – это HSIP (Heat-dissipating SIP). То есть тот же самый корпус, но уже с радиатором, можно увидеть ниже:
ZIP Корпус
ZIP – это корпуса Zigzag In line Package – плоский корпус с выводами, расположенными зигзагообразно. Ниже представлен корпус ZIP6. Цифра – это количество выводов:
А также, корпус; с радиатором HZIP представлен ниже:
Только что мы с вами рассмотрели основной класс In line Package микросхем. Эти микросхемы предназначены для сквозного монтажа в отверстиях в печатной плате.
Например, микросхема DIP14, установленная на; печатной плате, фото представлено ниже:
И ее выводы с обратной стороны платы, уже без припоя.
Кто-то все таки умудряется запаять микросхемы DIP, как микросхемы для поверхностного монтажа, о них чуть ниже, загнув выводы под углом в 90 градусов, или полностью их выпрямив. Это откровенно говоря извращение, но работает.
Переходим к другому классу микросхем – микросхемы для поверхностного монтажа или, так называемые SMD компоненты. Еще их называют планарными радиокомпонентами.
Такие микросхемы запаиваются на поверхность печатной платы, под выделенные для них печатные проводники. Видите прямоугольные дорожки в ряд? Это печатные проводники или в народе пятачки. Вот именно на них запаиваются планарные микросхемы.
SOIC корпус
Самым большим представителем этого класса микросхем являются микросхемы в корпусе SOIC – Small-Outline Integrated Circuit, это маленькая микросхема с выводами по длинным сторонам. Она очень напоминает DIP, но обратите внимание на ее выводы. Они параллельны поверхности самого корпуса, смотрите ниже:
Фото с изображением как запаивается на плате, смотреть ниже:
Ну и как обычно, цифра после “SOIC” обозначает количество выводов этой микросхемы. На фото выше микросхемы в корпусе SOIC16.
SOP корпус
SOP – Small Outline Package, это почти то же самое, что и SOIC, но расстояние между выводами SOPa намного меньше, чем у SOICa.
Так же присутствует модификацией корпуса SOP, PSOP – пластиковый корпус SOP. Чаще всего именно он и используется.
HSOP – теплорассеивающий SOP. Маленькие радиаторы посередине служат для отвода тепла.
SSOP – Shrink Small Outline Package, это” сморщенный” SOP. То есть еще меньше, чем SOP корпус
TSSOP – Thin Shrink Small Outline Package, это тонкий SSOP. Тот же самый SSOP, но “размазанный” скалкой. Его толщина меньше, чем у SSOP. В основном в корпусе TSSOP делают микросхемы, которые прилично нагреваются. Поэтому, площадь у таких микросхем больше, чем у обычных. Говоря простым языком, корпус-радиатор.
SOJ – тот же SOP, но ножки загнуты в форме буквы “J” под саму микросхему. В честь таких ножек и назвали корпус SOJ, смотреть ниже:
Ну и как обычно, количество выводов обозначается после типа корпуса, например SOIC16, SSOP28, TSSOP48 и тд.
QFP корпус
QFP – Quad Flat Package, это четырехугольный плоский корпус. Главное отличие от собрата SOIC в том, что выводы размещены на всех сторонах такой микросхемы
Модификации
PQFP – пластиковый корпус QFP. CQFP – керамический корпус QFP. HQFP – теплорассеивающий корпус QFP.
TQFP – Thin Quad Flat Pack, это тонкий корпус QFP. Его толщина намного меньше, чем у его собрата QFP
PLCC корпус
PLCC – Plastic Leaded Chip Carrier и СLCC – Ceramic Leaded Chip Carrier, это соответственно пластиковый и керамический корпус с расположенными по краям контактами, предназначенными для установки в специальную панельку, в народе называемую “кроваткой”. Типичным представителем является микросхема BIOS в ваших компьютерах.
Вот так примерно выглядит “кроватка” для таких микросхем
А вот так микросхема “лежит” в кроватке.
Иногда такие микросхемы называют QFJ, как вы уже догадались, из-за выводов в форме буквы “J” Ну и количество выводов ставится после названия корпуса, например PLCC32.
PGA корпус
Представляет из себя прямоугольный или квадратный корпус, в нижней части которого расположены выводы-штырьки, смотреть ниже:
Такие микросхемы устанавливаются также в специальные кроватки, которые зажимают выводы микросхемы с помощью специального рычажка.
В корпусе PGA в основном делают процессоры на ваши персональные компьютеры.
Корпус BGA
BGA – Ball Grid Array, это матрица из шариков.
Как мы видим, здесь выводы заменены припойными шариками. На одной такой микросхеме можно разместить сотни шариков-выводов. Экономия места на плате просто фантастическая. Поэтому микросхемы в корпусе BGA применяют в производстве мобильных телефонов, планшетах, ноутбуках и в других микроэлектронных девайсах. О том, как перепаивать BGA, я еще писал в статье Пайка BGA микросхем.
В красных квадратах я пометил микросхемы в корпусе BGA на плате мобильного телефона. Как вы видите, сейчас вся микроэлектроника строится именно на BGA микросхемах.
Технология BGA является апогеем микроэлектроники. В настоящее время мир перешел уже на технологию корпусов microBGА, где расстояние между шариками еще меньше, и можно уместить даже тысячи(!) выводов под одной микросхемой!
Вот мы с вами и разобрали основные виды корпусов современных микросхем.Ничего страшного нет в том, что вы назовете микросхему в корпусе SOIC SOPом или SOP назовете SSOPом. Также ничего страшного нет и в том, чтобы назвать корпус QFP TQFPом. Границы между ними размыты и это просто условности. Но вот если микросхему в корпусе BGA назовете DIP, то это уже будет жОский касяк.
Начинающим радиолюбителям стоит просто запомнить четыре самых важных корпуса для микросхем – это DIP, SOIC, SOP и QFP безо всяких модификаций и стоит также знать их различия. В основном именно эти типы корпусов микросхем радиолюбители используют чаще всего в своей практике.
Если вам понравилась статья, оставляйте свои комментарии со своими пожеланиями и мнением. Так же у вас есть возможность подписаться на рассылку свежих новостей (справа под меню).
РЕКОМЕНДУЕМ
Источник: http://proelektrik.ucoz.ru/publ/stati/tipy_korpusov_mikroskhem/3-1-0-194
DIP (Dual In-line Package, также DIL) — тип корпуса микросхем, микросборок и некоторых других электронных компонентов для монтажа в отверстия печатной платы. Имеет прямоугольную форму с двумя рядами выводов по длинным сторонам. Может быть выполнен из пластика (PDIP) или керамики (CDIP). Обычно в обозначении также указывается число выводов. |
SOIC или просто SO (small-outline integrated circuit), а также SOP (Small-Outline Package) корпус микросхем , предназначенный для поверхностного монтажа, занимающий на печатной плате на 30-50% меньше площади чем аналогичный корпус DIP, а также имеющий на 50-70% меньшую толщину. Обычно в обозначении также указывается число выводов. |
SIP (Single In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы, с одним рядом выводов по длинной стороне. Обычно в обозначении также указывается число выводов. |
QFP (Quad Flat Package) — плоский корпус с четырьмя рядами контактов. Представляет собой квадратный корпус с расположенными по краям контактами. Существуют также другие варианты:TQFP (Thin QFP) — с малой высотой корпуса,LQFP (Low-profile QFP) и многие другие. |
LCC (Leadless Chip Carrier) представляет собой низкопрофильный квадратный керамический корпус с расположенными на его нижней части контактами, предназначенный для поверхностного монтажа. |
PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) представляют собой квадратный корпус с расположенными по краям контактами, предназначенный для установки в специальную панель (часто называемую «кроваткой»). |
TSOP (Thin Small-Outline Package) тонкий малогабаритный корпус, разновидность SOP корпуса микросхем. Часто применяется в области DRAM, особенно для упаковки низковольтных микросхем из-за их малого объёма и большого количества штырьков. |
SSOP (Shrink small-outline package) (уменьшенный малогабаритный корпус) разновидность SOP корпуса микросхем , предназначенного для поверхностного монтажа. Выводы расположены по двум длинным сторонам корпуса. |
ZIP (Zigzag-In-line Package) — плоский корпус для вертикального монтажа в отверстия печатной платы со штырьковыми выводами, расположенными зигзагообразно. |
Корпуса микросхем типа DIP, SO и SOP | Электронные компоненты
Корпуса микросхем DIP, SO, SOP и панельки/
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP14.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP16.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP18.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP20.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP22.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP24.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP28.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP32.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP36.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP4.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP40.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP42.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP48.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP6.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпус DIP/Корпус DIP8.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SO-14 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SO-24 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SO-28 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SO-4 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SO-6 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SO-8 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-14 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-16 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-20 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-24 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-28 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-30 (0,80 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-32 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-38 (1.00 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-44 (1.27 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Корпуса SO и SOP/Корпус SOP-64 (0.80 мм).STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCL-24.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCL-28.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCL-32.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCL-36.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCL-38.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCL-40.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCL-42.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCL-48.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM-18.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM-20.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM-24.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM-28.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM-32.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM-36.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM-40.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM-42.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM-48.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-14.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-16.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-18.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-20.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-22.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-24.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-28.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-32.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-6.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS-8.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-14.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-16.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-18.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-20.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-22.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-24.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-28.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-32.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-6.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Step AP214/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM-8.STEP
Корпуса микросхем DIP, SO, SOP и панельки/Корпус DIP.SLDPRT
Корпуса микросхем DIP, SO, SOP и панельки/Корпус SO, SOP.SLDPRT
Корпуса микросхем DIP, SO, SOP и панельки/Панельки для DIP (SCS, SCL, SCMS, SCML)/
Корпуса микросхем DIP, SO, SOP и панельки/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCL.SLDPRT
Корпуса микросхем DIP, SO, SOP и панельки/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCLM.SLDPRT
Корпуса микросхем DIP, SO, SOP и панельки/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCS.SLDPRT
Корпуса микросхем DIP, SO, SOP и панельки/Панельки для DIP (SCS, SCL, SCMS, SCML)/Панелька SCSM.SLDPRT
Корпус микросхем SO
Описан пластиковый корпус малого размера (Plastic Small Outline Package — SO), приведен чертеж с габаритными размерами и рекомендуемые схемы площадок печатной платы для различных способов монтажа.
Корпус: SO — Plastic Small Outline Package (Пластиковый корпус малого размера)
Описание: Корпус в плане имеет форму прямоугольника, снабжен выводами, предназначенными для монтажа на поверхность. Существуют две разновидности корпуса: узкая, с шириной корпуса 3,9 мм (0,15 дюйма) и широкая, с шириной корпуса 7,5 мм (0.3 дюйма).
Чертеж корпуса с основными размерами (в мм.)
Длина корпуса зависит от числа выводов, значения приведены в этой таблице:
Число выводов | 8 | 14 | 16 | 18 | 20 | 24 | 28 |
---|---|---|---|---|---|---|---|
Длина (мм), узкий корпус | 4,9 | 8,7 | 9,9 | – | – | – | – |
Длина (мм), широкий корпус | – | – | 10,3 | 11,6 | 12,8 | 15,4 | 17,9 |
Если корпуса данного типа (узкий или широкий) для данного числа выводов не существует, в таблице стоит прочерк.
Ориентировочные размеры шаблона посадочного места для поверхностного монтажа приведены на рисунке (размеры в мм.).
Корпуса QFP, LQFP, TQFP. Чертежи корпусов импортных микросхем.
QFP28
QFP32
QFP44
QFP48
QFP64
QFP68
QFP80
QFP100
QFP120
QFP124
QFP144
QFP160
QFP164
QFP176
QFP196
QFP208
TQFP64
TQFP80
TQFP100
TQFP120
TQFP168
LQFP32
LQFP48
LQFP64
LQFP80
LQFP100
LQFP120
LQFP144
Все типы корпусов импортных микросхемПечатать
10-Lead MSOP w/ EP (rh-10-1) | pdf Чертеж внешних соединений pdf | PDF Сведения о материалах PDF |
10-Lead Mini Small Outline Package with Exposed Pad (RH-10-3) | PDF Чертеж внешних соединений PDF |     |
8-Lead MSOP w/ EP (rh-8-1) | pdf Чертеж внешних соединений pdf | pdf Сведения о материалах pdf |
8-Lead MSOP (3mm x 3mm w/ EP) (rh-8-3) | PDF Чертеж внешних соединений PDF | PDF Сведения о материалах PDF |
8-Lead MSOP (3mm x 3mm w/ EP) (rh-8-4) | PDF Чертеж внешних соединений PDF | PDF Сведения о материалах PDF |
10-Lead MSOP (rm-10) | pdf Чертеж внешних соединений pdf | pdf Сведения о материалах pdf |
8-Lead MSOP (rm-8) | pdf Чертеж внешних соединений pdf | pdf Сведения о материалах pdf |