Устройство, принцип работы симистора и сферы применения
Симистор — это полупроводниковый механизм. Он представляет собой трехполюсное приспособление на базе полупроводников. Такое устройство содержит 3 вывода: вывод Т1 и Т2 считаются силовыми электродами и делятся по полярности подсоединения на анод и катод; вывод G считается управляющим электродом либо затвором, даёт возможность реализовывать управление симистором.
Конструкция и принцип работы
Структура симметричного тиристора складывается из пластинки, состоящей из поочередных слоёв с электропроводами p- и n- вида и из контактов электродов главного и управляющего действия.
Всего в структуре полупроводника находится 5 слоёв p- и n-вида. Область между пластами именуется p-n-переходом, который владеет нелинейной ВАХ с незначительным противодействием в противоположном направлении, где минус — это n-прослойка, а плюс — p-прослойка и высочайшее значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжениях в несколько тысяч вольт.
Во время введения механизма в прямолинейном направлении в работу входит правая половина структуры. Левосторонняя область структуры выключена, она считается для тока с обладанием весьма высоким противодействием.
Характеристики симметричного тиристора динамического и постоянного плана при его воздействии в прямом направлении, при поступлении позитивного управляющего сигнала отвечают аналогичным данным тиристора, работающего в непосредственном направлении.
Как работает симистор? Принцип работы устройства основан на прохождении электросигнала в двух направленностях. Это даёт возможность применять симисторы в качестве электрического реле в различных схемах, где необходимо корректировать нагрузку или проход тока по цепи. Одним из бесспорных превосходств симметричного тиристора считается и тот факт, что для предоставления проходного канала не требуется присутствие постоянного уровня напряжения в управляющем ключе. Нужно только наличие его не выше определённого уровня, в зависимости от использования.
Виды
Говоря о видах устройств, необходимо принять тот факт, что это симистор считается одним из типов тиристоров. Если существуют различия по работе, в таком случае и тиристор можно представить своего рода разновидностью симистора. Отличия заключаются в управляющем катоде и в разных принципах работы данных тиристоров.
Импортные устройства обширно представлены на российском рынке. Их главное отличие от российских симисторов заключается в том, что они не требуют заблаговременной настройки в самой схеме. Это даёт возможность экономить детали и место в печатной плате. Как правило, они начинают работать одновременно уже после введения в схему. Необходимо только точно выбрать нужный симистор по всем необходимым данным.
Плюсы и минусы
После того как мы сориентировались, что такое симистор, давайте исследуем плюсы и минусы этого управляющего устройства.
К плюсам причисляют:
- В устройстве отсутствуют механические контакты.
- Продолжительный период эксплуатации, при этом поломки почти не происходят.
- Принцип работы устройств исключает искрение во время эксплуатации даже при наибольших мощностях проходящего тока.
- Низкая стоимость.
Но, как и каждое приспособление, симметричные тиристоры не лишены минусов:
- Существенное тепловыделение во время работы.
- Восприимчивость к электромагнитным помехам и шумам.
- Неумение работать при значительных частотах переменчивого тока.
- Падение напряжения до 2-х вольт в устройстве, пребывающем в открытом состоянии. При этом этот коэффициент не зависит от силы проходящего тока. Этот фактор считается препятствием для использования симисторов в маломощных конструкциях.
В то же время симметричные тиристоры при наибольших токах нагреваются, что потребует использования приспособлений для остывания корпуса. В индустрии встречается охлаждение мощных устройств активным методом — при поддержке вентилятора.
Развитие технологий
Особенностью 4-квадрантных симметричных тиристоров считается их ложное включение, что может послужить причиной к выходу из строя. Это требует использования дополнительной предохранительной цепочки, содержащей разнообразные компоненты.
Относительно недавно были изобретены 3-х-квадрантные приборы, какие обладают нужными достоинствами
- За счёт снижения числа требуемых компонентов, плата сделалась ещё более малогабаритной.
- Как следствие, понижение потерь усилия и снижение стоимости готового продукта.
- При отсутствии демпфера и дросселя стало возможно применять симметричные тиристоры в цепях с высокой частотой.
А также упрощение схемы разрешило применять 3-х-квадрантный симистор в нагревательных устройствах: подобная система меньше нагревается и не реагирует на находящуюся вокруг температуру.
Сфера использования
Принцип работы и малогабаритные размеры симисторов дают возможность использовать их почти повсюду
На сегодняшний день с формированием производства маленьких полупроводников тиристоры стали компактнее, что даёт возможность применять их в наиболее разных конструкциях и областях.
Симистор является настолько гибким и многоцелевым механизмом, что благодаря его свойству происходит переключение в проводящее положение запускаемым импульсом с позитивным либо негативным знаком, который не зависит от ключа, выражающего свойства моментальной полярности. По сущности наименования анод и катод для прибора не имеют актуальности.
Симистор используют в качестве твердотельного реле. Для него свойственно небольшое значение отправного тока, необходимого для перегрузки с большими токами. Функции ключа в этом устройстве может исполнять переключатель либо обладающее большой чувствительностью реле и другие контактные пары с током до 50 мА, при этом размер тока перегрузки может ограничиваться только признаками, на которые рассчитан симистор.
Не менее обширно применение симистора в качестве регулятора освещения и управления быстротой верчения электромотора
В индустрии мощные приборы применяются для управления станками, насосами и иным электрооборудованием, в каком месте необходимо плавное изменение протекающего тока. В быту использование симисторов ещё более широко:
- Это почти весь инструмент: от ручной дрели и шуруповерта вплоть до зарядного устройства для автоаккумуляторов.
- Многочисленные домашние электроприборы: пылесосы, вентиляторы, фены и так далее.
- В домашних компрессорных конструкциях — кондиционерах и холодильниках.
- Электронагревательные приборы: камины, духовки, СВЧ печи.
Повсеместное использование приборов стало толчком для исследования диммеров — популярного на сегодняшний день устройства для мягкой регулировки освещения. Принцип работы автоматического диммера основан на применении симистора.
Ограничения при использовании
Симистор прикладывает несколько ограничений при применении, в частности, при индуктивной перегрузке. Ограничения затрагивают скорости перемены напряжения (dV/dt) между анодами симистора и быстроты изменения рабочего тока di/dt.
Действительно, в период перехода симистора с замкнутого положения в проводящее состояние внешней цепью может быть обусловлен значительный ток. В таком случае период моментального падения усилия в выводе симистора не происходит. Таким образом, одновременно будут присутствовать напряжённость и ток, развивающие моментальную мощность, что может достичь существенных величин.
Энергия, растерянная в малом пространстве, активизирует внезапное увеличение температуры р-п переходов. В случае если критическая температура будет завышена, произойдёт разрушение симистора, вызванное излишней скоростью нарастания тока di/dt.
Кроме того, ограничения распространяются на изменения усилия 2-ух категорий: в dV/dt применительно к замкнутому симистору и в открытом симисторе (последнее, кроме того, именуется быстротой переключения).
Чрезмерная быстрота нарастания усилия, вложенного между заключениями А1 и А2 зарытого симистора, может спровоцировать его открытие при нехватке сигнала в управляющем электроде. Это проявление вызывается внутренней ёмкостью симистора. Электроток заряда этой ёмкости может быть необходимым для отпирания симистора.
Однако не это считается главной предпосылкой несвоевременного раскрытия. Максимальная величина dV/dt при переключении симистора, как принцип, очень незначительна, и очень быстрое изменение усилия в выводах симистора в период его запирания может сразу же спровоцировать за собою новое включение. Подобным образом, симистор опять отпирается, в то время как должен закрыться.
Проверка симисторов
Любой, даже наиболее надёжный прибор может выйти из строя. Не исключение и симистор. По этой причине немаловажно понимать, как можно проконтролировать его на работоспособность, для того чтобы осуществить его замену. Для этого можно применять 2 способа.
Первый способ состоит в применении 2-ух аналоговых омметров. Следующие измерения выполняют следующим способом:
- Щупы 1 омметра подсоединяют к катоду и аноду симистора. Будет комфортнее, если щупы закрепить зажимами, для того чтобы они не прыгали. В случае если ввести устройство, сопротивление станет весьма обширно: указатель будет «лежать»;
- Щупы 2 омметра подсоединяют следующим способом: единственный щуп закрепляется на аноде, а другим щупом дотрагиваются до управляющего электрода.
Если соразмерный тиристор исправен, то произойдёт его раскрывание, а противодействие в первом омметре опустится до нескольких ом.
Второй способ контроля предполагает прозвонку мультиметром. Для того чтобы измерения были надёжными, переключатель тестера устанавливается в положение «проверка диодов». Потом измерительные щупы закрепляются в аноде и катоде. В случае со щупами-иглами можно применять переходник с проволоки. В отличие от омметра, мультиметр продемонстрирует противодействие равное 1. Потом тонкой проволокой запираем отрицательный электрод и затвор. Случится отпирание полупроводника, и в экране тестера отобразится реальное противодействие симистора.
Симистор — Википедия. Что такое Симистор
Обозначение на схемах Вольт-амперная характеристика (ВАХ) симистора. Фото современных симисторовСимистор (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тиристора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.
Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзистора). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети).
Структура
Симистор имеет пятислоевую структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.
Управление
Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).
Ограничения
При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.
Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.
Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.
Устойчивость симистора к разрушению при превышении допустимой скорости нарастания тока (dI/dt) зависит от внутреннего сопротивления и индуктивности источника питания и нагрузки[1]. При работе на емкостную нагрузку необходимо внести в цепь соответствующую индуктивность.
История
К 1963 году уже были известны конструкции симисторов[2]. Мордовский научно-исследовательский электротехнический институт[3] подал заявку на авторское свидетельство на симметричный тиристор 22 июня 1963 года[4][2], то есть раньше[4], чем подана заявка на патент от американской корпорации «Дженерал электрик»[5][6].
Примечания
Ссылки
Литература
- 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
- 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).
Симистор что это такое
Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор – это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.
Тиристоры
Тиристор является переключающим полупроводниковым прибором, который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один – это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора – симистор — устройство и работа его в различных цепях.
Тиристор – это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.
Свойства тиристоров
Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:
- Тиристоры, подобно диодам, способны проводить электрический ток только в одном направлении. В этом случае они работают в схеме, как выпрямительный диод.
- Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод – у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
- Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
- Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.
Тиристор и его структура
Тиристор – это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.
Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) – это катод. К ней приложено отрицательное напряжение источника питания.
Какими свойствами обладает тиристор
Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.
В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.
Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.
Как работает отпирание тиристора
Для понимания принципа работы тиристора нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.
Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.
Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.
Как отключить тиристор
Переход в запертое состояние тиристора возможен в том случае, если к электроду управления открытого элемента не прикладывается сигнал. При этом ток спадает до определенной величины, которая называется гипостатическим током (или током удержания).
Тиристор отключится и в том случае, если произойдет размыкание в цепи нагрузки. Либо когда напряжение, которое прикладывается к цепи (внешней), меняет свою полярность. Это происходит под конец каждого полупериода в случае, когда питается схема от источника переменного тока.
Когда тиристор работает в цепи постоянного тока, запирание можно осуществить при помощи простого выключателя или кнопки механического типа. Он соединяется с нагрузкой последовательно и применяется для обесточивания цепи. Аналогичен и принцип работы регулятора мощности на симисторе, правда, имеются в схеме некоторые особенности.
Способы отключения тиристоров
Но можно выключатель соединить параллельно, тогда с его помощью происходит шунтирование тока анода, и тиристор переводится в запертое состояние. Некоторые виды тиристоров могут включаться повторно, если разомкнуть контакты выключателя. Объяснить это можно тем, что во время размыкания контактов паразитные емкости переходов тиристора накапливают заряд, создавая тем самым помехи.
Поэтому желательно располагать выключатель так, чтобы он находился между катодом и электродом управления. Это позволит гарантировать, что тиристор отключится нормально, а удерживающий ток отсечется. Иногда для удобства и повышения быстродействия и надежности применяют вместо механического ключа вспомогательный тиристор. Стоит отметить, что работа симистора во многом схожа с функционированием тиристоров.
Симисторы
А теперь ближе к теме статьи – нужно рассмотреть частный случай тиристора – симистор. Принцип работы его схож с тем, что был рассмотрен ранее. Но имеются некоторые отличия и характерные особенности. Поэтому нужно поговорить о нем более подробно. Симистор представляет собой прибор, в основе которого находится кристалл полупроводника. Очень часто используется в системах, которые работают на переменном токе.
Самое простое определение этого прибора – выключатель, но управляемый. В запертом состоянии он работает точно так же, как и выключатель с разомкнутыми контактами. При подаче сигнала на электрод управления симистора происходит переход прибора в открытое состояние (режим проводимости). При работе в таком режиме можно провести параллель с выключателем, у которого контакты замкнуты.
Когда сигнал в цепи управления отсутствует, в любой из полупериодов (при работе в цепях переменного тока) происходит переход симистора из режима открытого в закрытый. Симисторы широко используются в режиме релейном (например, в конструкциях светочувствительных выключателей или термостатов). Но они же нередко применяются и в системах регулирования, которые функционируют по принципам фазового управления напряжения на нагрузке (являются плавными регуляторами).
Структура и принцип работы симистора
Симистор – это не что иное, как симметричный тиристор. Следовательно, исходя из названия, можно сделать вывод – его легко заменить двумя тиристорами, которые включаются встречно-параллельно. В любом направлении он способен пропустить ток. У симистора имеется три основных вывода – управляющий, для подачи сигналов, и основные (анод, катод), чтобы он мог пропускать рабочие токи.
Симистор (принцип работы для «чайников» этого полупроводникового элемента предоставлен вашему вниманию) открывается, когда на управляющий вывод подается минимальное необходимое значение тока. Или в том случае, когда между двумя другими электродами разность потенциалов выше предельно допустимого значения.
В большинстве случаев превышение напряжения приводит к тому, что симистор самопроизвольно срабатывает при максимальной амплитуде питающего напряжения. Переход в запертое состояние происходит в случае смены полярности или при уменьшении рабочего тока до уровня ниже, чем ток удержания.
Как отпирается симистор
При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.
Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.
Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.
Какие накладываются ограничения при использовании симисторов
Его сложно использовать, когда нагрузка индуктивного типа. Скорость изменения напряжения и тока ограничивается. Когда симистор переходит из запертого режима в открытый, во внешней цепи возникает значительный ток. Напряжение не падает мгновенно на силовых выводах симистора. А мощность будет мгновенно развиваться и достигает довольно больших величин. Та энергия, которая рассеивается, за счет малого пространства резко повышает температуру полупроводника.
В случае превышения критического значения происходит разрушение кристалла, ввиду чрезмерно быстрого нарастания силы тока. Если к симистору, который находится в запертом состоянии, приложить некоторое напряжение и резко его увеличить, то произойдет открытие канала (при отсутствии сигнала в цепи управления). Такое явление можно наблюдать по причине того, что происходит накапливание заряда внутренней паразитной емкостью полупроводника. Причем ток заряда имеет достаточное значение, чтобы отпереть симистор.
Современные тенденции в технике любого типа и вида — замена механических и электромеханических элементов на электронные или полупроводниковые. Они имеют более миниатюрные размеры, работают надежнее, позволяют реализовать более широкую функциональность. Во многих электронный устройствах применяется тиристор, или его подвид — симистор. О том, что это за прибор, как он работает и для чего используется и будем говорить.
Что это за устройство, его обозначение
Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.
В открытом состоянии симистор проводит ток в обоих направлениях.
На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.
Внешний вид симистора и его обозначение на схемах
Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.
Где используется и как выглядит
Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.
Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.
Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два
По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).
Принцип работы симистора
Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.
Схема реле на симисторе (триаке)
В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.
При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.
Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.
Сигналы управления
Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.
Схема подачи напряжения для управления симистором
Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.
Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).
Как проверить симистор
Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии. Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит». В переводе это «техническая спецификация». По имеющимся в описании таблицам и рисункам легко понять, где расположены силовые выходы (T1 и T2), а где затвор (G).
Пример цоколевки. Все можно понять и без знания языка
С мультиметром
Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.
Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.
С лампочкой и батарейкой
Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый. Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.
Как проверить симистор без мультиметра
Собираем схему. Подключаем провода в таком порядке:
- Красный одним концом на плюс кроны, вторым — на вывод Т1.
- Синий — на минус кроны и на Т2.
- Желтый провод одним краем цепляем к затвору G.
После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.
Как избежать ложных срабатываний
Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:
- Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
- Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).
Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора
Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.
Особенности монтажа
Так же как и тиристоры, симисторы при работе греются, поэтому при сборке необходимо обеспечивать отвод тепла. Если нагрузка маломощная или питание импульсное (кратковременное подключение на промежуток менее 1 сек) допускается монтаж без радиатора. В остальных случаях необходимо обеспечить качественный контакт с охлаждающим устройством.
Есть три способа фиксации симистора на радиаторе: клепка, на винте и на зажиме. Первый вариант при самостоятельном монтаже не рекомендуется, так как существует высокая вероятность повреждения корпуса. Наиболее простой способ монтажа в домашних условиях — винтовой.
Порядок монтажа симистора
Перед тем, как начинают монтаж, осматривают корпус прибора и радиатора (охладителя) на предмет царапин и сколов. Их быть не должно. Затем поверхность протирают от загрязнений чистой ветошью, обезжиривают, накладывают термопасту. После чего вставляют в отверстие с резьбой в радиаторе и зажимают шайбу. Крутящий момент должен быть 0.55Nm- 0.8Nm. То есть, необходимо обеспечить должный контакт, но перетягивать тоже нельзя, так как есть риск повредить корпус.
Схема регулятора мощности для индуктивной нагрузки на симисторе
Обратите внимание, что монтаж симистора производится до пайки. Это снижает механическую нагрузку на отводы прибора. И еще: при установке следите за тем, чтобы корпус плотно прижимался к охладителю.
Симистор (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current ) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тиристора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.
Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзистора). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети).
Содержание
Структура [ править | править код ]
Симистор имеет пятислоевую структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.
Управление [ править | править код ]
Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).
Ограничения [ править | править код ]
При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.
Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.
Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.
Устойчивость симистора к разрушению при превышении допустимой скорости нарастания тока (dI/dt) зависит от внутреннего сопротивления и индуктивности источника питания и нагрузки [1] . При работе на емкостную нагрузку необходимо внести в цепь соответствующую индуктивность.
История [ править | править код ]
К 1963 году уже были известны конструкции симисторов [2] . Мордовский научно-исследовательский электротехнический институт [3] подал заявку на авторское свидетельство на симметричный тиристор 22 июня 1963 года [4] [2] , то есть раньше [4] , чем подана заявка на патент от американской корпорации «Дженерал электрик» [5] [6] .
Что такое симистор и как он работает – triac – что это
Симистор
Симметричный тиристор
Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).
Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.
У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?
Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.
В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).
Вот таким образом симистор изображается на принципиальных схемах.
У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).
А это эквивалентная схема симистора выполненного на двух тиристорах.
Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.
Симистор достаточно редкое явление в семье полупроводниковых приборов.
По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе.
Симисторы: принцип работы, проверка и включение, схемы
К сожалению, чаще бывает наоборот.
Как работает симистор?
Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.
Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.
Симисторный регулятор мощности
После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.
Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.
Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.
Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:
-
Невысокая стоимость.
-
По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.
-
Отсутствие контактов и, как следствие, нет искрения и дребезга.
К недостаткам можно отнести:
-
Симистор весьма чувствителен к перегреву и монтируется на радиаторе.
-
Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.
-
Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.
Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка.
Величина резистораR1 от 50 до 470 ом, величина конденсатораC1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.
Основные параметры симистора.
Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.
-
Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.
-
В импульсном режиме напряжение точно такое же.
-
Максимальный ток в открытом состоянии – 5А.
-
Максимальный ток в импульсном режиме – 10А.
-
Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.
-
Наименьший импульсный ток – 160 мА.
-
Открывающее напряжение при токе 300 мА – 2,5 V.
-
Открывающее напряжение при токе 160 мА – 5 V.
-
Время включения – 10 мкс.
-
Время выключения – 150 мкс.
Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).
Оптосимистор.
Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.
Оптосимистор MOC3023
Устройство оптосимистора
Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».
Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Симистор – Уикипедия
Симистор | |
---|---|
Различни симистори | |
Изобретен | Валентин Василенко (1963) |
Символично означение | |
Симистор в Общомедия |
Симистор (симетричен тиристор) или триак (на английски: TRIAC – triode for alternating current) е полупроводников елемент, който се използва за комутиране и регулиране на променливотокови товари, при високи стойностти на напрежение и ток в битовата и промишлена електроника и автоматика. Симисторът е изобретен от Валентин Василенко на 22 юни 1963 г. Опростено симисторът може да се представи като два триодни тиристора (тринистора), включени паралелно противоположно, но управлението на симистора се отличава от управлението на два тринистора включени противоположно паралелно.
Схема за действието на симистора. За всеки полупериод се подава само начален пусков управляващ импулс, с който се определя началото на отсечката за протичащия ток през симистора от приложеното напрежение, и предаваната от него мощност в електрическата веригаЗапушването на триаците става както и при тиристорите само с прекъсване на веригата на тока между двата анода (анода и катода при тиристора). Управляващия електрод на триака може да управлява само момента на неговото отпушване, но не и запушването му.
Характерно за симистора е, че при отпушено състояние, той има проводимост и в двете посоки. Друга характерна негова особеност е, че за поддържането на отпушеното му състояние не е необходимо да се подава непрекъснато сигнал на управляващия електрод (за разлика от транзистора). Триакът остава отворен, докато протичащия през основните му изводи ток е по-голям от определена величина, наречена ток на удържане.
За отключването на триак на неговия управляващ електрод се подава напрежение по отношение на неговия условен катод. Полярността на подаваното напрежение или трябва да е отрицателна или трябва да съвпада с полярността на условния анод. Поради тази причина се използва такъв метод на управление на триака, при който сигнала на управляващия електрод се подава към условния анод чрез токоограничителен резистор и изключвател. Често е удобно да се управлява симистора, като се задава определена сила на тока на управляващия електрод, достатъчна за отпушване на симистора.
Структура[редактиране | редактиране на кода]
Симисторите са изградени от 6 пулопроводникови области, в които са оформени 5 PN-прехода. Изводите на симистора са два анода А1 и А2 и един управляващ електрод УЕ.
Волт-амперна характеристика[редактиране | редактиране на кода]
Волт-амперната характеристика на симистора е симетрична спрямо началото на координатната система. [1]
Двупосочността на симисторите ги прави широкоприложими в безконтактните регулатори за променлив ток, за контрол на нискомощни индуктивни товари, димируеми осветителни тела и пр.
Общомедия разполага с мултимедийно съдържание засимистор — это… Что такое симистор?
симистор — сущ., кол во синонимов: 2 • тиристор (2) • триак (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
симистор — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN bidirectional thyristorTRIAC … Справочник технического переводчика
Симистор — Обозначение на схемах Эквивалентная схема симистора … Википедия
симистор — simetrinis trinistorius statusas T sritis radioelektronika atitikmenys: angl. bidirectional triode thyristor vok. Doppelwegthyristor, m rus. симистор, m; симметричный триодный тиристор, m; триак, m pranc. thyristor triode bidirectionnel, f; triac … Radioelektronikos terminų žodynas
кремниевый симистор с несимметричным управлением — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN silicon asymmetrical switchSAS … Справочник технического переводчика
Тиристор — Обозначение на схемах Тиристор полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p n переходами и имеющий два устой … Википедия
Радиодетали — Радиодетали … Википедия
Динистор — Обозначение на схемах Тиристор полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р n p n типа, обладающий в прямом направлении двумя устойчивыми состояниями состоянием низкой проводимости… … Википедия
Электронное устройство — Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения … Википедия
ДИОД — ДИОД, электронный элемент с двумя ЭЛЕКТРОДАМИ, используемый в основном как ВЫПРЯМИТЕЛЬ для преобразования переменного тока в постоянный. ПОЛУПРОВОДНИКОВЫЙ диод, который почти полностью заменил прежний электровакуумный ламповый диод (см.… … Научно-технический энциклопедический словарь
ТРАНЗИСТОР — полупроводниковый прибор, предназначенный для усиления электрического тока и управления им. Транзисторы выпускаются в виде дискретных компонентов в индивидуальных корпусах или в виде активных элементов т.н. интегральных схем, где их размеры не… … Энциклопедия Кольера