Трение — это… Что такое Трение?
Тре́ние — процесс взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде. По-другому называется фрикционным взаимодействием (англ. friction). Изучением процессов трения занимается раздел физики, который называется механикой фрикционного взаимодействия, или трибологией.
Трение главным образом имеет электронную природу при условии, что вещество находится в нормальном состоянии. В сверхпроводящем состоянии вдалеке от критической температуры основным «источником» трения являются фононы, а коэффициент трения может уменьшиться в несколько раз[ссылка 1].
Сила трения
Виды
При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:
- Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.
- Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.
- Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.
В физике взаимодействия трение принято разделять на:
- сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твердыми смазочными материалами) — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя;
- граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) — наиболее распространённый случай при трении скольжения.
- смешанное, когда область контакта содержит участки сухого и жидкостного трения;
- жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
- эластогидродинамическое, когда решающее значение имеет внутреннее трение в смазывающем материале. Возникает при увеличении относительных скоростей перемещения.
В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики.
Закон Амонтона — Кулона
Основной характеристикой трения является коэффициент трения , который определяется материалами, из которых изготовлены поверхности взаимодействующих тел.
В простейших случаях сила трения и нормальная нагрузка (или сила нормальной реакции) связаны неравенством
обращающимся в равенство только при наличии относительного движения. Это соотношение называется законом Амонтона — Кулона.
Закон Амонтона — Кулона с учетом адгезии
Для большинства пар материалов значение коэффициента трения не превышает 1 и находится в диапазоне 0,1 — 0,5. Если коэффициент трения превышает 1 , это означает, что между контактирующими телами имеется сила адгезии и формула расчета коэффициента трения меняется на
- .
Прикладное значение
Трение в механизмах и машинах
В большинстве традиционных механизмов (ДВС, автомобили, зубчатые шестерни и пр.) трение играет отрицательную роль, уменьшая КПД механизма. Для уменьшения силы трения используются различные натуральные и синтетические масла и смазки. В современных механизмах для этой цели используется также напыление покрытий (тонких плёнок) на детали. С миниатюризацией механизмов и созданием микроэлектромеханических систем (МЭМС) и наноэлектромеханических систем (НЭМС) величина трения по сравнению с действующими в механизме силами увеличивается и становится весьма значительной , и при этом не может быть уменьшена с помощью обычных смазок, что вызывает значительный теоретический и практический интерес инженеров и учёных к данной области. Для решения проблемы трения создаются новые методы его снижения в рамках трибологии и науки о поверхности (
Сцепление с поверхностью
Наличие трения обеспечивает возможность перемещаться по поверхности. Так, при ходьбе именно за счёт трения происходит сцепление подошвы с полом, в результате чего происходит отталкивание от пола и движение вперёд. Точно так же обеспечивается сцепление колёс автомобиля (мотоцикла) с поверхностью дороги. В частности, для увеличения улучшения этого сцепления разрабатываются новые формы и специальные типы резины для покрышек, а на гоночные болиды устанавливаются антикрылья, сильнее прижимающие машину к трассе.
См. также
Журналы
Литература
- Дерягин Б. В. Что такое трение? М.: Изд. АН СССР, 1963.
- Крагельский И. В., Щедров В. С. Развитие науки о трении. Сухое трение.
М.: Изд. АН СССР, 1956. - Фролов, К. В. (ред.) Современная трибология: Итоги и перспективы. ЛКИ, 2008.
- Bowden F. P., Tabor D. The Friction and Lubrication of Solids. Oxford University Press, 2001.
- Persson Bo N. J.: Sliding Friction. Physical Principles and Applications. Springer, 2002.
- Popov V. L. Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation, Springer, 2009.
- Rabinowicz E. Friction and Wear of Materials. Wiley-Interscience, 1995.
Ссылки
Сила трения — материалы для подготовки к ЕГЭ по Физике
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: силы в механике, сила трения, коэффициент трения скольжения.
Сила трения — это сила взаимодействия между соприкасающимися телами, препятствующая перемещению одного тела относительно другого. Сила трения всегда направлена вдоль поверхностей соприкасающихся тел.
В школьной физике рассматриваются два вида трения.
1.Сухое трение. Оно возникает в зоне контакта поверхностей твёрдых тел при отсутствии между ними жидкой или газообразной прослойки.
2.Вязкое трение. Оно возникает при движении твёрдого тела в жидкой или газообразной среде или при перемещении одного слоя среды относительно другого.
Сухое и вязкое трение имеют разную природу и отличаются по свойствам. Рассмотрим эти виды трения по отдельности.
Сухое трение.
Сухое трение может возникать даже при отсутствии относительного перемещения тел. Так, тяжёлый диван остаётся неподвижным при слабой попытке сдвинуть его с места: наша сила, приложенная к дивану, компенсируется силой трения, возникающей между диваном и полом. Сила трения, которая действует между поверхностями покоящихся тел и препятствует возникновению движения, называется силой трения покоя.
Почему вообще появляется сила трения покоя? Соприкасающиеся поверхности дивана и пола являются шероховатыми, они усеяны микроскопическими, незаметными глазу бугорками разных форм и размеров. Эти бугорки зацепляются друг за друга и не дают дивану начать движение. Сила трения покоя, таким образом, вызвана силами электромагнитного отталкивания молекул, возникающими при деформациях бугорков.
При плавном увеличении усилия диван всё ещё не поддаётся и стоит на месте — сила трения покоя возрастает вместе с увеличением внешнего воздействия, оставаясь равной по модулю приложенной силе. Это понятно: увеличиваются деформации бугорков и возрастают силы отталкивания их молекул.
Наконец, при определённой величине внешней силы диван сдвигается с места. Сила трения покоя достигает своего максимально возможного значения. Деформации бугорков оказываются столь велики, что бугорки не выдерживают и начинают разрушаться. Возникает скольжение.
Сила трения, которая действует между проскальзывающими поверхностями, называется силой трения скольжения. В процессе скольжения рвутся связи между молекулами в зацепляющихся бугорках поверхностей. При трении покоя таких разрывов нет.
Объяснение сухого трения в терминах бугорков является максимально простым и наглядным. Реальные механизмы трения куда сложнее, и их рассмотрение выходит за рамки элементарной физики.
Сила трения скольжения, приложенная к телу со стороны шероховатой поверхности, направлена противоположно скорости движения тела относительно этой поверхности. При изменении направления скорости меняется и направление силы трения. Зависимость силы трения от скорости — главное отличие силы трения от сил упругости и тяготения (величина которых зависит только от взаимного расположения тел, т. е. от их координат).
В простейшей модели сухого трения выполняются следующие законы. Они являются обобщением опытных фактов и носят приближённый характер.
1. Максимальная величина силы трения покоя равна силе трения скольжения.
2. Абсолютная величина силы трения скольжения прямо пропорциональна силе реакции опоры:
.
Коэффициент пропорциональности — называется коэффициентом трения.
3. Коэффициент трения не зависит от скорости движения тела по шероховатой поверхности.
Этих законов достаточно для решения задач.
Задача. На горизонтальной шероховатой поверхности лежит брусок массой кг. Коэффициент трения . К бруску приложена горизонтальная сила . Найти силу трения в двух случаях: 1) при 2) при .
Решение.Сделаем рисунок, расставим силы. Силу трения обозначаем (рис. 1).
Рис. 1. К задаче |
Запишем второй закон Ньютона:
(1)
Вдоль оси брусок не совершает движения, . Проектируя равенство (1) на ось , получим: , откуда .
Максимальная величина силы трения покоя (она же сила трения скольжения) равна
.
1) Сила меньше максимальной силы трения покоя. Брусок остаётся на месте, и сила трения будет силой трения покоя:
2) Сила больше максимальной силы трения покоя. Брусок начнёт скользить, и сила трения будет силой трения скольжения: .
Вязкое трение.
Сила сопротивления, возникающая при движении тела в вязкой среде (жидкости или газе), обладает совершенно иными свойствами.
Во-первых, отсутствует сила трения покоя. Например, человек может сдвинуть с места плавающий многотонный корабль, просто потянув за канат.
Во-вторых, сила сопротивления зависит от формы движущегося тела. Корпус подводной лодки, самолёта или ракеты имеет обтекаемую сигарообразную форму — для уменьшения силы сопротивления. Наоборот, при движении полусферического тела вогнутой стороной вперёд сила сопротивления очень велика (пример — парашют).
В третьих, абсолютная величина силы сопротивления существенно зависит от скорости. При малых скоростях движения сила сопротивления прямо пропорциональна скорости:
.
При больших скоростях сила сопротивления прямо пропорциональна квадрату скорости:
.
Например, при падении в воздухе зависимость силы сопротивления от квадрата скорости имеет место уже при скоростях около нескольких метров в секунду. Коэффициенты и зависят от формы и размеров тела, от физических свойств поверхности тела и вязкой среды.
Так, парашютист при затяжном прыжке не набирает скорость безгранично, а с определённого момента начинает падать с установившейся скоростью, при которой сила сопротивления становится равна силе тяжести:
.
Отсюда установившаяся скорость:
(2)
Задача. Два металлических шарика, одинаковых по размеру и различных по массе, падают без начальной скорости с одной и той же большой высоты. Какой из шариков быстрее упадёт на землю — лёгкий или тяжёлый?
Решение. Из формулы (2) следует, что у тяжёлого шарика установившаяся скорость падения больше. Значит, он дольше будет набирать скорость и потому быстрее достигнет земли.
Сила трения качения ℹ️ определение, главные свойства, формула нахождения момента, единица измерения и обозначение, примеры вычисления задач
Общие сведения
Во время перекатывания тел возникает их взаимодействие. Описывается оно силой трения качения. Её существование возможно только при контакте поверхностей. При этом наряду с качением возникают силы покоя и скольжения. Объект, катящийся по другому телу, испытывает только трение, вызванное качением. По сравнению с другими силами оно небольшое, но при этом помогает осуществлять перемещение.
С физической точки зрения, трение представляет собой вектор, направление которого совпадает с линией, проходящей вдоль касательной трущихся поверхностей. Сила, измеряемая относительно перемещения соприкасающихся тел, называется внешней, а возникающая в области одного объекта, например, газа — внутренней.
Трение зависит от поверхности тел. Оно может быть сухим или вязким. В единицах СИ сила измеряется в ньютонах: [P]=H. Существует такое понятие, как адгезия, то есть способность тел «прилипать» друг к другу. Зависит она от шероховатости. Чем этот параметр больше, тем больше нужно затратить энергии для смещения поверхностей, но в то же время её затраты будут меньше для полного торможения.
Таким образом, трение может приносить как пользу, так и вред. С одной стороны, при работе за счёт силы происходит износ поверхностей, а с другой — выполняется торможение. Для уменьшения эффекта существуют несколько способов изменить трение: сгладить поверхности, сменить смазку, заменить скольжение качением.
Вычисление силы выполняют по формуле: F = k * N. Здесь:
- F — сила;
- K — коэффициент;
- N — реакция опоры.
Приложенное сопротивление направлено в противоположную сторону движения, при этом реакция силы опоры происходит перпендикулярно площади соприкосновения. Коэффициент является безразмерной величиной и не зависит от размера контакта. Если энергия движения совпадает по величине с трением, тело движется равномерно по прямой. Если же движущая сила будет меньше, объект остановится.
Основная формула силы трения учитывает различные моменты, оказывающие влияние на перемещение. Но при этом, если при соприкосновении с вращением не будет проскальзывания, формула изменится. В ней главную роль будет играть прижимающее давление.
Качение тела
Из названия силы можно сделать вывод, что сила качения возникает, когда одно тело перекатывается по поверхности другого. Например, езда с использованием колеса, работа подшипника. По сути, это явление, происходящее из-за деформации катка и опорной поверхности. При этом полагается, что тяговых и тормозных процессов нет.
Из-за того, что трение качения в несколько раз меньше скольжения, оно является довольно распространённым видом перемещения. Например, груз катить легче, чем тянуть. Это происходит из-за меньшего количества контактов с поверхностью. При этом отталкиваться от твёрдого тела проще, чем от мягкого.
Для определения процесса физики используют следующее объяснение: пусть имеется тело, которое располагается на опоре. Относительно неё происходит вращение. В любой выбранный момент времени на вращающийся объект будет действовать момент сил. При этом векторная сумма их будет равняться нулю: N + P +Ro = 0. Действующий момент состоит из внешней силы (P), прижимной (N) и реакции опоры (Ro).
Если сумма векторов равняется нулю, ось симметрии находится в равномерном и прямолинейном движении или остаётся в одном положении (неподвижная). Другими словами, вектор силы трения качения противодействует перемещению. Следовательно, прижимной момент уравновешивается реакцией опоры, а, точнее, её вертикальной составляющей. Внешняя же сила находится в равновесии с горизонтальной составляющей.
Равномерность обозначает, что воздействующие моменты компенсируют друг друга. А значит, формула для описания процесса будет выглядеть как Ft * R = N * f, где Ft — сила трения качения. Из этой формулы можно найти силу: Ft = f * N /R. Рассматриваемое воздействие прямо пропорционально произведению коэффициента трения и прижимной силы, обратно пропорционально радиусу катящегося тела. Фактически это и есть определение трения качения.
Правильность формулы подтверждают различные экспериментальные измерения. Действительно, при малой скорости качения процесс не зависит от неё. Когда же скорость возрастает до величин сопоставимых с деформацией в опоре, сопротивление движению становится пропорциональным её росту и влияние оказывает уже скольжение.
Момент и коэффициент
Пусть имеется цилиндр, расположенный на идеальной гладкой жёсткой поверхности. Какую бы силу Q ни приложили, уравновесить её можно только противодействующей энергией. Если же такой энергии нет, под действием Q цилиндр должен катиться. Но опыты показывают совершенно другое. Например, если подойти к многотонному грузовику и попробовать его толкнуть, он не покатится. Хотя теория утверждает обратное.
Но здесь дело в том, что поверхность считается идеальной. В момент времени на тело, кроме Q, действует равное ей сцепление. Эти силы будут уравновешенными. В вертикальной же плоскости на тело действует нормаль (N) и противодействующая ей сила равновесия (P).
На самом деле при прикосновении тело деформируется. Образуется впадина, при этом колесо всей своей тяжестью будет опираться на крайнюю правую точку деформированной поверхности. Момент сил здесь будет следующим:
- P — вес колеса, направленный вниз;
- N — момент нормали противоположный P;
- Q — импульс качения.
Перемещению препятствует равновесие пары PN. При этом плечо пары будет половиной размера, то есть возникает момент сил трения. Определяют его как эн делённое на дельту и называют моментом трения: Mтр = N * d. Эта формула совпадает по форме записи с законом Амонтона — Кулона. И там, и тут фигурирует величина опоры.
Становится очевидным, что R * Q = Mтр = P * d. Используя эту запись, можно обнаружить предельный импульс, который необходимо приложить к колесу, чтобы заставить его двигаться: Q = p d /R. При этом если колесо будет скользить, а не катиться, Q будет уже зависеть от трения: Q = P * f.
При сравнении двух формул видно, что d / r будет намного меньше f, поэтому качение произойдёт раньше. Это свойство как раз и используется в подшипниках. Нахождение коэффициента трения можно выполнить через момент трения качения и давление прижима: f = Mтр / N.
Он определяется следующими физическими интерпретациями:
- f равна длине линии, соединяющей прямые, вдоль которых создаются нормаль и давление вниз;
- для неидеализированных случаев мгновенный центр вращения сдвинут в сторону качения тела, при этом значение смещения равно коэффициенту трения.
Для мягкого дерева, катящегося по стали, коэффициент составляет 0,8 мм, стали по асфальту — 6 мм, железа по граниту — 2,1 мм. Это справочная величина, установленная экспериментально, которую не нужно вычислять самостоятельно.
Решение задач
При решении задач нужно помнить, что трение кручения зависит не только от свойств материалов, участвующих в движении, но и от радиуса. При этом часто областью деформации пренебрегают, так как величина смятия ничтожно мала, поэтому нахождение по формуле силы трения через массу при качении не выполняют.
Алгоритм решения примеров:
- Условия задачи изображают на рисунке. На нём показывают направление возможного перемещения до момента наступления равновесия.
- На чертеже рисуют момент трения противоположно движению, указывают вектор сцепления, направленный вдоль поверхности.
- Используя метод представления системы в виде отдельных тел, заменяют связи реакциями.
- Решают уравнения равновесия. Для этого проекции цилиндрических тел берут вдоль нормальной оси, а уравнение моментов составляют относительно точки соприкосновения.
- Изменяют направление возможного перемещения системы и движения момента качения. Находят второе условие равновесия.
Например, имеются 2 цилиндра с одинаковыми радиусами: R = 50 см. Их вес составляет соответственно 20 и 30 ньютон. Они соединены стержнем массой 40 ньютон. Первый цилиндр катится без сопротивления, а второй испытывает трение d = 2 мм. К первому кольцу приложена пара моментов, а к оси второго — нагрузка в 10 ньютон. Определить пределы изменения момента в условиях равновесия.
Для решения задачи нужно воспользоваться формулой: Мтр = N2 * d. Систему можно разбить на 3 тела. Связи заменить реакциями Fc1, N1, Fc2, N2. Внутренние связи обозначить x1, y1, x2, y2. При составлении системы нужно избегать уравнений с реакциями F. Равновесие для первого цилиндра можно определить из системы:
- Y ц = Y1 + N1 — G1 = 0;
- M ц = = X1 * R — M = 0.
Для второго колеса:
- Yi = Y2 + N2 — G2 — F sin45 = 0;
- M ц 2 = — X2 * R — M тр + F cos45 * R= 0.
Для стержня:
- Xi = — x 1 — x 2 = 0;
- Yi = -y — y2 — G3 = 0;
- Ma = =x2 * AB * sin30 — Y2 * AB * cos30 — G3 (AB/2) * cos 30 = 0.
Из решения системы можно определить, что М = (√3R FR √2 — d (G3 + 2G2 + FV2)) / (R (√3+d)). Все вычисления нужно делать в метрах. Подставив значения, заданные условием, можно вычислить, что М = 3,414. Нормальные реакции будут равны: N = 36,058 Н, N2 = 61,013 Н. Аналогичные вычисления выполняют и при изменении направления возможного перемещения. В ответе должно получиться, что M = 3, 66 Нм, N1 = 35.8 Н, Т2 = 61,3 Н. Таким образом, предел будет лежать в области от 3,414 Нм до 3, 66 Нм.
Ответы Mail.ru: Что такое трение?
Сила трения — это сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению. Причиной возникновения трения является шероховатость трущихся поверхностей и взаимодействие молекул этих поверхностей. Сила трения зависит от материала трущихся поверхностей и от того, насколько сильно эти поверхности прижаты друг к другу. В простейших моделях трения (закон Кулона для трения) считается, что сила трения прямо пропорциональна силе нормальной реакции между трущимися поверхностями. В целом же, в связи со сложностью физико-химических процессов, протекающих в зоне взаимодействия трущихся тел, процессы трения принципиально не поддаются описанию с помощью простых моделей классической механики. В физике взаимодействия трение принято разделять на: сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твердыми смазочными материалами) — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя; граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) — наиболее распространённый случай при трении скольжения. смешанное, когда область контакта содержит участки сухого и жидкостного трения; жидкостное (вязкое) , при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита) , жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды; элактогидродинамическое (вязко упругое) , когда решающее значение имеет внутреннее трение в смазывающем материале. Возникает при увеличении относительных скоростей перемещения
трение это противодействие двух поверхностей «отталкивание притяжение» на меж-молекулярном уровне
Тре́ние — процесс механического взаимодействия соприкасающихся тел при их относительном смещении в плоскости касания (внешнее трение) либо при относительном смещении параллельных слоёв жидкости…
Трение — Википедия
Материал из Википедии — свободной энциклопедии
Трение — процесс, который по-другому называется фрикционным взаимодействием (англ. friction). Изучением процессов трения занимается раздел физики, который называется механикой фрикционного взаимодействия, или трибологией.
Трение главным образом имеет электронную природу при условии, что вещество находится в нормальном состоянии. В сверхпроводящем состоянии вдалеке от критической температуры основным «источником» трения являются фононы, а коэффициент трения может уменьшиться в несколько раз[ссылка 1].
Сила трения
Сила трения — это сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению. Причиной возникновения трения является шероховатость трущихся поверхностей и взаимодействие молекул этих поверхностей. Сила трения зависит от материала трущихся поверхностей и от того, насколько сильно эти поверхности прижаты друг к другу. В простейших моделях трения (закон Кулона для трения) считается, что сила трения прямо пропорциональна силе нормальной реакции между трущимися поверхностями. В целом же, в связи со сложностью физико-химических процессов, протекающих в зоне взаимодействия трущихся тел, процессы трения принципиально не поддаются описанию с помощью простых моделей классической механики.
Разновидности силы трения
При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:
- Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.
- Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.
- Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.
- Трение верчения — момент силы, возникающий между двумя контактирующими телами при вращении одного из них относительно другого и направленный против вращения. Определяется формулой: M=pN{\displaystyle M=pN}, где N{\displaystyle N} — нормальное давление, p{\displaystyle p} — коэффициент трения верчения, имеющий размерность длины[1].
Характер фрикционного взаимодействия
В физике взаимодействие трения принято разделять на:
- сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твёрдыми смазочными материалами) — очень редко встречающийся на практике случай, характерная отличительная черта сухого трения — наличие значительной силы трения покоя;
- граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) — наиболее распространённый случай при трении скольжения;
- смешанное, когда область контакта содержит участки сухого и жидкостного трения;
- жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
- эластогидродинамическое (вязкоупругое), когда решающее значение имеет внутреннее трение в смазывающем материале, возникает при увеличении относительных скоростей перемещения.
Закон Амонтона — Кулона
Основной характеристикой трения является коэффициент трения μ{\displaystyle \mu }, определяющийся материалами, из которых изготовлены поверхности взаимодействующих тел.
В простейших случаях сила трения F{\displaystyle F} и нормальная нагрузка (или сила нормальной реакции) Nnormal{\displaystyle N_{normal}} связаны неравенством
- |F|⩽μNnormal,{\displaystyle |F|\leqslant \mu {N_{normal}},}
Пары материалов | μ{\displaystyle \mu } покоя | μ{\displaystyle \mu } скольжения |
---|---|---|
Сталь-Сталь | 0.5-0.8[2] | 0,15-0,18 |
Резина-Сухой асфальт | 0,95-1,0 | 0,50-0,8 |
Резина-Влажный асфальт | 0,25-0,75 | |
Лёд-Лёд | 0,05-0,1 | 0,028 |
Резина-Лёд | 0,3 | 0,15-0,25 |
Стекло-Стекло | 0,9 | 0,7 |
Нейлон-Нейлон | 0,15-0,25 | |
Полистирол-Полистирол | 0,5 | |
Плексиглас, оргстекло | 0,8 |
Закон Амонтона — Кулона с учетом адгезии
Для большинства пар материалов значение коэффициента трения μ{\displaystyle \mu } не превышает 1 и находится в диапазоне 0,1 — 0,5. Если коэффициент трения превышает 1 (μ>1){\displaystyle (\mu >1)}, это означает, что между контактирующими телами имеется сила адгезии Nadhesion{\displaystyle N_{adhesion}} и формула расчета коэффициента трения меняется на
- μ=(Ffriction+Fadhesion)/Nnormal{\displaystyle \mu =(F_{friction}+F_{adhesion})/{N_{normal}}}.
Прикладное значение
Трение в механизмах и машинах
В большинстве традиционных механизмов (ДВС, автомобили, зубчатые шестерни и пр.) трение играет отрицательную роль, уменьшая КПД механизма. Для уменьшения силы трения используются различные натуральные и синтетические масла и смазки. В современных механизмах для этой цели используется также напыление покрытий (тонких плёнок) на детали. С миниатюризацией механизмов и созданием микроэлектромеханических систем (МЭМС) и наноэлектромеханических систем (НЭМС) величина трения по сравнению с действующими в механизме силами увеличивается и становится весьма значительной (μ⩾1){\displaystyle (\mu \geqslant 1)}, и при этом не может быть уменьшена с помощью обычных смазок, что вызывает значительный теоретический и практический интерес инженеров и учёных к данной области. Для решения проблемы трения создаются новые методы его снижения в рамках трибологии и науки о поверхности (англ.).
Сцепление с поверхностью
Наличие трения обеспечивает возможность перемещаться по поверхности. Так, при ходьбе именно за счёт трения происходит сцепление подошвы с полом, в результате чего происходит отталкивание от пола и движение вперёд. Точно так же обеспечивается сцепление колёс автомобиля (мотоцикла) с поверхностью дороги. В частности, для улучшения этого сцепления разрабатываются новые формы и специальные типы резины для покрышек, а на гоночные болиды устанавливаются антикрылья, сильнее прижимающие машину к трассе.
Журналы
Литература
- Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 1. Трение в машинах. Теория, расчет и конструкция подшипников и подпятников скольжения. Машгиз. М.-Л. — 1947. 256 с.
- Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 2. Износ материалов. Классификация видов износа, методов и машин для лабораторного испытания материалов на износ машины и производственные на них исследования. Машгиз. М.-Л. — 1947. 220 с.
- Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 3. Износ машин. Износ машин и деталей и способы борьбы с их износом. Машгиз. М.-Л. — 1947. 164 с.
- Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 4. Смазка машин. Машгиз. М.-Л. — 1948. 279 с.
- Archbutt L., Deeley R.M. Lubrication and Lubicants. London. — 1927
- Арчбютт Л., Дилей Р. М. Трение, смазка и смазочные материалы. Руководство по теории и практике смазки и по методам испытания смазочных материалов. Госгоргеолнефтиздат. — Л. — 1934. — 703 с.
- Арчбютт Л., Дилей Р. М. Трение, смазка и смазочные материалы — 2-е изд., перераб. и доп. — М.-Л.: Гостоптехиздат. — 1940. — 824 с.
- Дерягин Б. В. Что такое трение? М.: Изд. АН СССР, 1963.
- Крагельский И. В., Щедров В. С. Развитие науки о трении. Сухое трение. М.: Изд. АН СССР, 1956.
- Фролов, К. В. (ред.) Современная трибология: Итоги и перспективы. ЛКИ, 2008.
- Bowden F. P., Tabor D. The Friction and Lubrication of Solids. Oxford University Press, 2001.
- Persson Bo N. J.: Sliding Friction. Physical Principles and Applications. Springer, 2002.
- Popov V. L. Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation, Springer, 2009.
- Rabinowicz E. Friction and Wear of Materials. Wiley-Interscience, 1995.
Примечания
- ↑ Зиновьев В. А. Краткий технический справочник. Том 1. — М.: Государственное издательство технико-теоретической литературы, 1949. — С. 296
- ↑ Friction theory and coefficients of friction for some common materials and materials combinations.
Трение — Википедия. Что такое Трение
Трение — процесс, который по-другому называется фрикционным взаимодействием (англ. friction). Изучением процессов трения занимается раздел физики, который называется механикой фрикционного взаимодействия, или трибологией.
Трение главным образом имеет электронную природу при условии, что вещество находится в нормальном состоянии. В сверхпроводящем состоянии вдалеке от критической температуры основным «источником» трения являются фононы, а коэффициент трения может уменьшиться в несколько раз[ссылка 1].
Сила трения
Сила трения — это сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению. Причиной возникновения трения является шероховатость трущихся поверхностей и взаимодействие молекул этих поверхностей. Сила трения зависит от материала трущихся поверхностей и от того, насколько сильно эти поверхности прижаты друг к другу. В простейших моделях трения (закон Кулона для трения) считается, что сила трения прямо пропорциональна силе нормальной реакции между трущимися поверхностями. В целом же, в связи со сложностью физико-химических процессов, протекающих в зоне взаимодействия трущихся тел, процессы трения принципиально не поддаются описанию с помощью простых моделей классической механики.
Разновидности силы трения
При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:
- Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.
- Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.
- Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.
- Трение верчения — момент силы, возникающий между двумя контактирующими телами при вращении одного из них относительно другого и направленный против вращения. Определяется формулой: M=pN{\displaystyle M=pN}, где N{\displaystyle N} — нормальное давление, p{\displaystyle p} — коэффициент трения верчения, имеющий размерность длины[1].
Характер фрикционного взаимодействия
В физике взаимодействие трения принято разделять на:
- сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твёрдыми смазочными материалами) — очень редко встречающийся на практике случай, характерная отличительная черта сухого трения — наличие значительной силы трения покоя;
- граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) — наиболее распространённый случай при трении скольжения;
- смешанное, когда область контакта содержит участки сухого и жидкостного трения;
- жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
- эластогидродинамическое (вязкоупругое), когда решающее значение имеет внутреннее трение в смазывающем материале, возникает при увеличении относительных скоростей перемещения.
Закон Амонтона — Кулона
Основной характеристикой трения является коэффициент трения μ{\displaystyle \mu }, определяющийся материалами, из которых изготовлены поверхности взаимодействующих тел.
В простейших случаях сила трения F{\displaystyle F} и нормальная нагрузка (или сила нормальной реакции) Nnormal{\displaystyle N_{normal}} связаны неравенством
- |F|⩽μNnormal,{\displaystyle |F|\leqslant \mu {N_{normal}},}
Пары материалов | μ{\displaystyle \mu } покоя | μ{\displaystyle \mu } скольжения |
---|---|---|
Сталь-Сталь | 0.5-0.8[2] | 0,15-0,18 |
Резина-Сухой асфальт | 0,95-1,0 | 0,50-0,8 |
Резина-Влажный асфальт | 0,25-0,75 | |
Лёд-Лёд | 0,05-0,1 | 0,028 |
Резина-Лёд | 0,3 | 0,15-0,25 |
Стекло-Стекло | 0,9 | 0,7 |
Нейлон-Нейлон | 0,15-0,25 | |
Полистирол-Полистирол | 0,5 | |
Плексиглас, оргстекло | 0,8 |
Закон Амонтона — Кулона с учетом адгезии
Для большинства пар материалов значение коэффициента трения μ{\displaystyle \mu } не превышает 1 и находится в диапазоне 0,1 — 0,5. Если коэффициент трения превышает 1 (μ>1){\displaystyle (\mu >1)}, это означает, что между контактирующими телами имеется сила адгезии Nadhesion{\displaystyle N_{adhesion}} и формула расчета коэффициента трения меняется на
- μ=(Ffriction+Fadhesion)/Nnormal{\displaystyle \mu =(F_{friction}+F_{adhesion})/{N_{normal}}}.
Прикладное значение
Трение в механизмах и машинах
В большинстве традиционных механизмов (ДВС, автомобили, зубчатые шестерни и пр.) трение играет отрицательную роль, уменьшая КПД механизма. Для уменьшения силы трения используются различные натуральные и синтетические масла и смазки. В современных механизмах для этой цели используется также напыление покрытий (тонких плёнок) на детали. С миниатюризацией механизмов и созданием микроэлектромеханических систем (МЭМС) и наноэлектромеханических систем (НЭМС) величина трения по сравнению с действующими в механизме силами увеличивается и становится весьма значительной (μ⩾1){\displaystyle (\mu \geqslant 1)}, и при этом не может быть уменьшена с помощью обычных смазок, что вызывает значительный теоретический и практический интерес инженеров и учёных к данной области. Для решения проблемы трения создаются новые методы его снижения в рамках трибологии и науки о поверхности (англ.).
Сцепление с поверхностью
Наличие трения обеспечивает возможность перемещаться по поверхности. Так, при ходьбе именно за счёт трения происходит сцепление подошвы с полом, в результате чего происходит отталкивание от пола и движение вперёд. Точно так же обеспечивается сцепление колёс автомобиля (мотоцикла) с поверхностью дороги. В частности, для улучшения этого сцепления разрабатываются новые формы и специальные типы резины для покрышек, а на гоночные болиды устанавливаются антикрылья, сильнее прижимающие машину к трассе.
Журналы
Литература
- Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 1. Трение в машинах. Теория, расчет и конструкция подшипников и подпятников скольжения. Машгиз. М.-Л. — 1947. 256 с.
- Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 2. Износ материалов. Классификация видов износа, методов и машин для лабораторного испытания материалов на износ машины и производственные на них исследования. Машгиз. М.-Л. — 1947. 220 с.
- Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 3. Износ машин. Износ машин и деталей и способы борьбы с их износом. Машгиз. М.-Л. — 1947. 164 с.
- Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 4. Смазка машин. Машгиз. М.-Л. — 1948. 279 с.
- Archbutt L., Deeley R.M. Lubrication and Lubicants. London. — 1927
- Арчбютт Л., Дилей Р. М. Трение, смазка и смазочные материалы. Руководство по теории и практике смазки и по методам испытания смазочных материалов. Госгоргеолнефтиздат. — Л. — 1934. — 703 с.
- Арчбютт Л., Дилей Р. М. Трение, смазка и смазочные материалы — 2-е изд., перераб. и доп. — М.-Л.: Гостоптехиздат. — 1940. — 824 с.
- Дерягин Б. В. Что такое трение? М.: Изд. АН СССР, 1963.
- Крагельский И. В., Щедров В. С. Развитие науки о трении. Сухое трение. М.: Изд. АН СССР, 1956.
- Фролов, К. В. (ред.) Современная трибология: Итоги и перспективы. ЛКИ, 2008.
- Bowden F. P., Tabor D. The Friction and Lubrication of Solids. Oxford University Press, 2001.
- Persson Bo N. J.: Sliding Friction. Physical Principles and Applications. Springer, 2002.
- Popov V. L. Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation, Springer, 2009.
- Rabinowicz E. Friction and Wear of Materials. Wiley-Interscience, 1995.
Примечания
- ↑ Зиновьев В. А. Краткий технический справочник. Том 1. — М.: Государственное издательство технико-теоретической литературы, 1949. — С. 296
- ↑ Friction theory and coefficients of friction for some common materials and materials combinations.