Site Loader

Что такое сила тока — понятное объяснение для всех

Мы помним из уроков физики средней школы основной постулат. Выглядит он следующим образом.

Силой тока называется величина, которая количественно характеризует упорядоченное движение заряженных частиц

Чтобы понять это определение, нужно для начала выяснить, что такое «упорядоченное движение заряженных частиц». Это как раз и есть электрический ток. Таким образом, сила тока позволяет численно измерить электрический ток.

Например, заданное количество электрических зарядов может проходить по проводнику в течение 1 часа или 1 секунды. Понятно, что во втором случае интенсивность прохождения зарядов будет гораздо больше. Соответственно и сила тока будет больше. Так как в международной системе СИ единицей времени принято считать 1 секунду, то приходим к определению силы тока.

Сила тока — это количество электричества, проходящее через поперечное сечение проводника за одну секунду.

Единица силы тока

Единицей измерения силы тока является Ампер. Ампер — сила электрического тока, при котором через поперечное сечение проводника каждую секунду проходит количество электричества, равное одному кулону: 1 ампер = 1 кулон/1 секунду.

Дополнительные единицы измерения, наиболее часто встречающиеся в энергетике:

  • 1 мА (миллиампер) = 0,001 А;
  • 1 мкА (микроампер) = 0,000001 А;
  • 1 кА (килоампер) = 1000 А.

Теперь мы знаем, в чем измеряется сила тока.

Измерение силы тока

Для измерения силы тока служит прибор Амперметр. Для измерения очень малых сил тока применяются миллиамперметры и микроамперметры.

Сила тока - определение и физический смыслСила тока - определение и физический смысл Условные обозначения амперметра и миллиамперметра

Для того, чтобы измерит силу тока нужно включить амперметр в разрыв цепи, то есть последовательно. Измеряемый ток проходит от источника через амперметр и приемник. Стрелка амперметра показывает силу тока в цепи. Где именно включить амперметр в цепи — безразлично, так как сила тока в простой замкнутой цепи (без разветвлений) будет одинакова во всех точках цепи.

Сила тока - определение и физический смыслСила тока - определение и физический смыслПрибор амперметр

В технике встречаются очень большие силы тока (тысячи ампер) и очень маленькие (миллионные доли ампера).

Например, сила тока электрической плитки примерно 4 — 5 ампер, лампы накаливания — от 0,3 до 4 ампер (и больше). Ток, проходящий через фотоэлементы, составляет всего несколько микроампер. В главных проводах подстанций, дающих электроэнергию для трамвайной сети, сила тока достигает тысяч ампер.

Физический смысл мощности электрического тока?

Работа. Физический смысл мощности в способности выполнить определённый объём работы

Труба может быть толстая или тонкая, напор (давление) в трубе может быть большое или маленькое. От сочетания этих факторов зависит скорость наполнения цистерны (или скорость вращения колеса на которое льется вода из трубы). Вот количество воды, вытекающей из трубы при определенном сочетании сечения и давления и есть мощность трубопровода. На электрический ток сам экстраполируй.

Произведение тока на напряжение

нету смысла! с одной стороны, электрическая мощность это <a rel=»nofollow» href=»https://ru.wikipedia.org/wiki/Электрическая_мощность» target=»_blank»>https://ru.wikipedia.org/wiki/Электрическая_мощность</a> а с другой, КАК ЭТО ТАК, умножать стулья на столы, чтобы получать кровати? ведь электричество это I=q*v, количество зарядов на их скорость! соответственно, электрический ток в проводнике возникает от разности зарядов ∆q/R? А НАМ предлагают умножать стулья на столы, чтобы получать кровати это мошенничество!

Это скорость превращения электрической энергии в энергию другого вида (тепловую, механическую, химическую…).

Единая теория электродинамики

Предисловие

 

 

Решение любой задачи начинается с её постановки. Создание непротиворечивой теории электродинамики начинается с признания хотя бы факта существования проблем, не решенных современной теорией физики. Например,закон Фарадея — закон электромагнитной индукции, противоречит обратному закону: закону Био — Савара — Лапласа. Методам, применяемым современной физикой для скрытия этих проблем, посвящён раздел сайта «три мифа электродинамики».

В этой работе предлагается квантовая теория электрического тока. Появление этой работы стало возможно потому, что официальная физика до сих пор не завершила переход от классических представлений к квантовым. Более того, сам этот факт старательно скрывается. Квантовая теория электрического тока является последним кирпичиком, позволяющим перейти к единой теории электродинамики.

Для простоты восприятия изложение максимально упрощено.

Для перехода к квантовой теории электрического тока необходимо вспомнить ещё раз, что нам точно известно об электрическом токе на участке цепи – потребителе тока.

1. Для существования электрического тока к проводнику необходимо подвести энергию извне в виде электрического поля.

2. Электрическое поле распространяется вдоль проводника со скоростью света и взаимодействует с уже находящимися в проводнике электронами материала проводника.

3. Это взаимодействие неизвестным сейчас образом образует магнитное поле проводника.

В процессе электрического тока участвуют следующие физические величины:

1. Напряжение или разность потенциалов . Возникает в момент замыкания цепи. Характеристики этого вектора – направление вдоль проводника от плюса к минусу.

2. Электрический ток . Скалярная величина. Направления нет.

Возникает на участке цепи – потребителе тока после того, как на этот участок подаётся напряжение или разность потенциалов от внешнего источника. Существует за счёт энергии источника тока.

3. Магнитное поле . Направление – по правилу буравчика.

Расположение – вне проводника, перпендикулярно направлению разности потенциалов.

4. Радиус – вектор . В настоящее время безымянный, поскольку неизвестен тип взаимодействия, который он переносит.

Физический смысл радиус – вектора : промежуточный вектор между вектором электрического тока и вектором магнитного поля. Переносит силовое взаимодействие. Из известных физических полей подходит только гравитационное поле

.

Этот вектор меняет знак при изменении направления энергии. При потреблении электрической энергии его направление от вектора электрического тока к вектору магнитного поля. При генерации электрической энергии его направление от вектора магнитной индукции к вектору электрического тока.

 

 

Квантовая физическая модель электрического тока

 

Из Из квантовой физики известно, что в твёрдом проводнике первого рода электронный газ сильно вырожден. Это означает, что электронного газа, необходимого для электрического тока, нет.В свою очередь каждый электрон, в каждый момент времени, принадлежит какому – то определённому атому, т.е. находится на определённой квантовой орбите. Этот факт говорит о некорректности существующего определения постоянного тока. Физического определения переменного тока в физике нет. Таким образом, тема электрического тока в физике до настоящего времени не исследована.

Электрон, участвующий в процессе прохождения электрического тока на участке цепи – потребителе тока, совершает квантовый переход за счёт энергии источника тока. Переход электрона с одного квантового уровня на другой на участке цепи – потребителе тока сопровождается испусканием кванта энергии. Электроны, не участвующие в процессе электрического тока, не изменяют своего энергетического состояния. Квантовая модель электрического тока предполагает, что на участке цепи — потребителе тока и участке цепи источнике тока направление движения квантов гравитационного поля — гравитонов будет противоположным, в соотвествии с направление энергии. В электродинамике есть закон Ома для полной цепи. Но упоминания о законе Ампера для полной цепи нет, нет и вывода закона Ампера для цепи — источнике тока.

Рис. 1. Один квант электрического тока на участке цени – потребителе тока.

 

В квантовой физической модели предполагается, что при прохождении электрического тока происходит последовательное преобразование трёх физических полей: разность электрических потенциалов (вдоль проводника)

последовательно преобразуется в энергию гравитационного поля проводника с током , которая затем преобразуется в магнитное поле .

К проводнику с током на участке цепи – потребителе тока подводится внешняя энергия в виде разности потенциалов или напряжения. Эта энергия расходуется на то, чтобы электрон проводимости материала проводника перешёл с одной квантовой орбиты на другую. При этом энергия внешнего источника выделяется в виде квантов гравитационного поля — гравитонов. Этот процесс образует гравитационное поле проводника. Предлагаемый физический механизм позволяет объяснить физическую природу силы Ампера с позиций близкодействия.

Излученный квант гравитационной энергии (гравитон) на некотором расстоянии от проводника преобразуется в квант магнитной энергии. Направление кванта магнитной энергии определяется правилом правого винта (буравчика).

Величина электрического тока в квантовой теории определяется количеством электронов, совершивших квантовый переход. Скорость движения электрического тока в квантовой модели от величины тока не зависит, и равна скорости света, поскольку определяется скоростью движения электрического поля вдоль проводника.

Квантовая физическая модель электрического тока имеет чёткий критерий, позволяющий определить наличие или отсуствие даже одног кванта электрического тока — при хаотическом движении электронов не образуется собственное магнитное поле проводника.

В соответствии с этим критерием можно предложить квантовое физическое определение электрического тока, как постоянного тока так и переменного тока.

Электрический ток – это квантовый процесс передачи электрической энергии от источника тока к потребителю тока, связанный с образованием собственного магнитного поля проводника.

Направление тока в соответствии с квантовой физической моделью электрического тока определяется направлением передачи энергии, т.е. от источника тока к потребителю тока вне зависимости от того, постоянный это ток или переменный.

 

 

Приведение закона Ампера к корректному физическому виду

 

Квантовый механизм электрического тока предполагает, что электрический ток является более сложным физическим явлением, чем сейчас описывается в электродинамике. Более того, в электродинамике до сих пор не известен физический смысл силы Ампера, поэтому в формуле, определяющей эту силу, есть величины, не имеющие физического смысла.

«Магнитное поле оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные её элементы. Обобщая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, равна

 

, (1)

где — вектор, по модулю равный и совпадающий по направлению с током, — вектор магнитной индукции.

Направление вектора может быть найдено, согласно (1), по общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в неё входил вектор , а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток». [3]

Формула (1), определяющая силу Ампера физически не корректна: В векторном произведении вектор не имеет физической природы.

Зная квантовый физический механизм электрического тока можно привести эту формулу к виду, в котором все величины будут иметь физический смысл. Для этого нужно заменить не физическую величину в векторном произведении формулы (1) на физическую векторную величину . Выведем её из закона Ома.

 

, (2)

Учитывая, что ,

 

, (3)

Заменяя в формуле (1), получим:

 

, (4)

где — сила Ампера,

— вектор напряженности электрического поля. Этот вектор направлен вдоль проводника и является величиной, имеющей физический смысл.

— вектор магнитной индукции внешнего магнитного поля, в которое помещен проводник с током. Это также величина, имеющая физический смысл.

— электрическое сопротивление проводника.

Формула (4) выражает закон Ампера для участка цепи – потребителя тока, приведенный к корректному физическому виду в рамках классической электродинамики. Левая часть выражает изменение гравитационного поля проводника, правая – изменение электромагнитного поля. Формулу (4) можно также преобразовать для участка цепи – источника тока и полной цепи электрического тока.

Закон Ампера для участка цепи – источника тока выглядит следующим образом:

, (5)

И для полной цепи электрического тока:

 

. (6)

Знак (-) перед правой частью уравнения (5) означает изменение потока энергии при переходе проводника на участок цепи – источник тока.

Таким образом, даже в рамках классической электродинамики можно вывести формулы для определения силы Ампера для цепи – потребителя тока, цепи – источника тока и полной цепи. Однако вывод этой формулы не даёт механизма электрического тока.

Для того, чтобы понять физическую природу возникновения силы Ампера, рассмотрим этот физический феномен с позиций квантовой теории электрического тока.

 

 

Физический смысл силы Ампера

 

Сила Ампера в квантовой теории электрического тока имеет гравитационную природу. Рассмотрим механизм её возникновения.

Выделение энергии проводником на участке цепи — потребителе тока связано с потреблением внешней энергии от источника тока.

При выходе из проводника, гравитон уносит с собой импульс движения

 

, (7)

где — импульс выхода гравитона из проводника,

— масса гравитона,

— скорость выхода гравитона из проводника.

При выходе нескольких электронов из проводника образуется реактивная сила , направленная противоположно направлению выхода гравитонов из проводника.

Процесс выхода гравитонов из проводника и его беспорядочное перемещение в результате реакции на выход гравитонов можно наблюдать в специально поставленном эксперименте, при токах порядка А. При больших токах без внешнего магнитного поля, происходит равномерное распределение выхода гравитонов во все стороны, и реакции проводника на выход гравитонов нет.

При прохождении по проводнику тока выделяется количество гравитонов .

Рис. 2. При отсутствии внешнего магнитного поля происходит равномерное распределение выхода гравитонов из проводника.

 

Гравитоны, обладая массой, отличной от нуля, при выходе из проводника приобретают импульс. Этот импульс, в соответствии с третьим законом Ньютона, противоположен импульсу, получаемому проводником. Общий импульс гравитонов равен:

 

, (8)

где — суммарный импульс выхода всех гравитонов.

Совсем другая картина получается, если проводник с током находится во внешнем магнитном поле. Внешнее магнитное поле будет затруднять возникновение магнитного поля проводника с одной стороны проводника, и усиливать с другой стороны.

В результате этого процесса магнитное поле проводника деформируется (рис. 3). Поскольку каждому кванту магнитного поля соответствует квант гравитационного поля, происходит искажение гравитационного поля проводника. В результате этого процесса возникает сила Ампера .

Рис. 3. Внешнее магнитное поле искажает распределение выхода гравитонов из проводника и образует силу Ампера (участок цепи – потребителя тока).

 

Для описания влияния магнитного поля на выход гравитонов, нужно ввести коэффициент искажения гравитационного поля проводника с током . Равнодействующую силу импульсов выходящих гравитонов в этом случае можно описать формулой:

, (9)

где — равнодействующая сила импульсов выходящих гравитонов.

— сумма импульсов всех гравитонов.

— искажение симметрии выхода гравитонов, связанное с воздействием на проводник внешнего магнитного поля.

В соответствии с третьим законом Ньютона равнодействующая сила выхода гравитонов уравновешивается силой Ампера

 

, (10)

 

И окончательно силу Ампера в квантовой теории электрического тока можно определить по формуле:

(11)

Сила Ампера зависит как от количества выделившихся гравитонов (величины электрического тока), так и от асимметричности их выхода из проводника (от напряжённости внешнего магнитного поля).

Направление силы Ампера в квантовой физической модели электрического тока совпадает с эмпирическим правилом для определения силы Ампера на участке цепи — потребителе тока.

«Правило левой руки определяет направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магнитного поля входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник». [6]

Из квантового механизма возникновения силы Ампера видно, что на участке цепи – источнике тока сила Ампера меняет своё направление (рис. 4). Это отражено в эмпирическом правиле правой руки.

«Правило правой руки определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый палец направить по движению проводника, то 4 вытянутых пальца укажут направление индукционного тока». [6]

Рис. 4. Внешнее магнитное поле искажает распределение входа гравитонов в проводник и образует силу Ампера (участок цепи – источника тока).

 

Квантовая теория электрического тока позволяет достаточно просто объяснить одновременное существование правил левой руки и правой руки изменением направления потока энергии в полной цепи электрического тока.

В случае работы электрической машины в качестве генератора гравитоны поглощаются проводником с током. В случае работы электрической машины в качестве двигателя гравитоны излучаются.

Квантовая теория электрического тока впервые позволила дать объяснение силы Ампера с позиций близкодействия. Квантовая теория электрического тока не противоречит классической электродинамике, а только её дополняет. Силу Ампера в классической электродинамике определяет формулы (1) и (4), в квантовой теории — формула (11).

В формуле (11) сомножитель соответствует току в формуле (1) или сомножителю в формуле (4).

В формуле (11) соответствует В в формуле (1) и (4).

Запись силы Ампера в квантовой теории может быть различна, но смысл силы Ампера как гравитационной силы отличает её от классической электродинамики.

 

 

ЛИТЕРАТУРА

 

1. Фейнмановские лекции по физике. М., Изд. Мир, 1976.

2. Королев Ф.А. Курс физики. Оптика, атомная и ядерная физика: Учеб. пособие для студентов физ.-мат. фак. пед. ин-тов. 2-е изд., перераб. М.: Просвещение, 1974.

3. Трофимова Т. И. Курс Физики. «Высшая школа». М.,1997.

4. Ландау Л. Д., Лифшиц Е.М., Квантовая механика. Нерелятивистская теория, 3 изд., М., 1974.

5. Дрюков В.М. Илюхина Н.И. Проектирование новых физических технологий. Вопросы оборонной техники. Научно — технический сборник. № 1-2. М:, Н.Т.Ц. «Информтехника» 1995.

6. Советский энциклопедический словарь. М., «Советская энциклопедия.» 1985.

7. Дрюков В.М. Илюхина Н.И. Квантовая физическая модель электрического тока. Тула, 1997.

8. Дрюков В.М. О чём молчат физики. Тула 2004.

 

 

 

 

какой физический смысл имеет действующее значение напряжения и тока

Действующее значение силы ПЕРЕМЕННОГО тока — это такое значение величины ПОСТОЯННОГО тока, действие которого произведёт ту же самую работу (или тепловой эффект) , что и действие переменного тока за время одного периода его действия. Пусть, например, ток проходит через резистор, сопротивлением R = 1 Ом. Тогда количество теплоты, выделившееся в резисторе за период равно интегралу от (i(t)^2 * R * T). На рисунке показаны графики силы тока и квадрата силы тока, отнесённых к максимальному значению. Т. к. R = 1, то площадь под вторым графиком (жёлтая область) — это и есть количество теплоты. А то значение постоянного тока, при протекании которого через резистор выделится такое же количество теплоты, и есть действующее значение тока. Нетрудно определить, что указанная площадь (определяется через интеграл) , равна 1/2, т. е. кол-во теплоты равно Im^2 * R * T / 2 Значит, если через резистор протекает постоянный ток I, то выделившееся количество теплоты будет равно I^2 * R * T. Приравнивая эти выражения и сокращая на R*T, получаем I^2 = Im/2, откуда I = Im / корень из 2. Это и есть действующее значение тока. <img src=»//otvet.imgsmail.ru/download/047da14d4f6ad70142043e9c6b0f5052_i-101.jpg» >То же самое с действующим значением напряжения и ЭДС.

можно грубо сказать — напряжение — потенциальная энергия…. расческа- волосы…. напряжение = свечение, искорки, подъем волос… . — ток это работа, действие, сила.. . тепло, горение, движение выплеск кенетической энергии

Билет 20.

Сила тока — физическая величина , равная отношениюколичества заряда , прошедшего за некотороевремя через поперечное сечение проводника, к величине этого промежутка времени[1]:

Сила тока в Международной системе единиц (СИ) измеряется в амперах, ампер является одной из семи основных единиц СИ.

По закону Ома сила тока для участка цепи прямо пропорциональна приложенномунапряжению к участку цепи и обратно пропорциональнасопротивлению проводника этого участка цепи :

где e —заряд электрона, n — концентрация частиц, S — площадь поперечного сечения проводника, — средняя скорость упорядоченного движения электронов.

Единица измерения в СИ — 1 А = 1 Кл / с.

Для измерения силы тока используют специальный прибор — амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).

В случае переменного тока различают мгновенную силу тока, амплитудную (пиковую) силу тока и эффективную силу тока (равную силе постоянного тока, который выделяет такую же мощность).

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через элемент поверхности единичной площади[1]. Например, при равномерном распределении плотности тока и всюду ортогональности её плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:

где I — сила тока через поперечное сечение проводника площадью S (также см.рисунок).

Иногда речь может идти о скалярной[2] плотности тока, в таких случаях под ней подразумевается именно та величина j, которая приведена в формуле.

В общем случае:

,

где — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу поверхности площадью; вектор— специально вводимый вектор элемента поверхности, ортогональный элементарной площадке и имеющий абсолютную величину, равную её площади, позволяющий записать подынтегральное выражение как обычное скалярное произведение.

Как видим из этого определения, сила тока есть поток вектора плотности тока через некую заданную фиксированную поверхность.

В простейшем предположении, что все носители тока (заряженные частицы) двигаются с одинаковым вектором скорости и имеют одинаковые заряды(такое предположение может иногда быть приближенно верным; оно позволяет лучше всего понять физический смысл плотности тока), а концентрация их,

или

где — плотность заряда этих носителей.

Направление вектора соответствует направлению вектора скорости, с которой движутсязаряды, создающие ток, если q положительно.

В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где -концентрация частиц каждого типа, — заряд частицы данного типа,— вектор средней скорости частиц этого типа.

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:

Сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны.

Плотность тока и мощность

Работа, совершаемая электрическим полем над носителями тока, характеризуется, очевидно[3], плотностью мощности [энергия/(время• объем)]:

где точкой обозначено скалярное произведение.

Чаще всего эта мощность рассеивается в среду в виде тепла, но вообще говоря она связана с полной работой электрического поля и часть ее может переходить в другие виды энергии, например такие, как энергия того или иного вида излучения, механическая работа (особенно — в электродвигателях) и т.д.

Закон Ома

В линейной и изотропной проводящей среде плотность тока связана с напряжённостью электрического поля в данной точке по закону Ома:

где —удельная проводимость среды, — напряжённость электрического поля. Или:

где —удельное сопротивление.

В линейной анизотропной среде имеет место такое же соотношение, однако удельная электропроводность в этом случае вообще говоря должна рассматриваться как тензор, а умножение на нее — как умножение вектора на матрицу.

Формула для работы электрического поля (плотности ее мощности)

вместе с законом Ома принимает для изотропной электропроводности вид:

где и— скаляры, а для анизотропной:

где подразумевается матричное умножение (справа налево) вектора-столбца на матрицу и на вектор-строку, а тензор и тензорпорождают соответствующиеквадратичные формы.

Разность потенциалов между двумя точками стационарного электрического или гравитационного поля измеряется работой, совершаемой силами поля при перемещении единичного положительного заряда или, соответственно, единичной массы из одной точки с большим потенциалом в другую с меньшим потенциалом. Если j1, j2  потенциалы начальной и конечной точек траектории перемещаемого заряда (или массы), то Р. п. u = j1j2; изменение потенциала Dj= j2j1 =—и.

Работа произвольного электрического поля по перемещению +1 заряда из одной точки в другую называемый электрическим напряжением между этими точками; в случае стационарного поля напряжение совпадает с Р. п.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура[1].

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил , под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуреЭДС будет равна:

где — элемент контура.

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого́ источника равна нулю.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *