Site Loader

2. Сила и инерция . Физика на ладони. Об устройстве Вселенной – просто и понятно

Некоторые уточнения по поводу ускорения

В повседневной речи ускорение означает увеличение скорости. С точки зрения физика это не всегда верно по двум главным причинам:

• Ускорение – это алгебраическая величина, то есть оно может быть положительным и отрицательным, в зависимости от того, увеличивается скорость или уменьшается. Физик никогда не скажет «замедление», для него речь идет об «отрицательном ускорении»… То есть машина, которая тормозит, испытывает ускорение!

• Еще важнее то, что скорость представляет собой вектор, то есть стрелку, направление которой указывает направление траектории (например, на север), а длина указывает величину скорости (например, 50 км/ч обозначается стрелкой длиной 50 мм).

Однако физик считает, что ускорение наступает тогда, когда меняется вектор скорости: то есть когда меняется скорость, но и когда меняется направление траектории.

Например, машина, которая поворачивает налево, испытывает ускорение, даже если ее скорость (50 км/ч) не меняется: зато меняется

направление вектора скорости.

Итак, необходимо запомнить два очень разных влияния ускорения:

• Если ускорение параллельно траектории, оно меняет скорость, но не направление машины. В этом случае ускорение называется тангенциальным (? рис. 1.5).

Рис. 1.5 – Векторы скорости и ускорения во время торможения.

Машина тормозит: с одной стороны стрелка вектора скорости v?; становится все короче, с другой стороны тангенциальное ускорение a?;t направлено назад.

• Если ускорение перпендикулярно траектории движения, оно меняет направление машины, но не меняет ее скорость: в этом случае ускорение называют центростремительным (? 

рис. 1.6).

Конечно, может быть и так, что оба ускорения действуют одновременно, меняя скорость и направление.

Рис. 1.6 – Векторы скорости и ускорения во время поворота.

Машина поворачивает влево: с одной стороны вектор скорости v?; все больше склоняется влево, с другой стороны вектор нормального ускорения a?;n направлен влево.

ВЕЛИЧИНА УСКОРЕНИЯ

Тангенциальное ускорение показывает изменение скорости за секунду: так, если скорость машины меняется за секунду с 30 м/с на 20 м/с, ее ускорение равно – 10 м/с? (потеря скорости составляет 10 м/с каждую секунду).

А как обстоит с центростремительным ускорением? Как можно его измерить, если скорость машины не меняется? В этом случае необходимо значение, указывающее на «размер изменения направления».

Предположим, что за одну секунду вектор скорости меняется с v?;1 на v?;2, меняя только направление (см. схему справа). Мы видим, что стрелка вектора описала дугу, длина которой и составляет величину ускорения (математика очень точно нам это демонстрирует).

Чем длиннее стрелки и больше угол между векторами, тем длиннее будет дуга.

Таким образом, центростремительное ускорение равно скорости, помноженной на изменение угла за единицу времени.

Испытание силы…

Действие окружающей среды

Снова возьмем наш объект, движущийся в инерциальной системе отсчета. Предположим, что это космический корабль, затерянный в безвоздушном межзвездном пространстве: то есть он является изолированным объектом, а его траектория равномерная и прямолинейная. А теперь представим, что он приближается к какой-то планете: его траектория искажается, несмотря на то что он не взаимодействует с планетой.

Если говорить в гораздо более широком смысле, мы наблюдаем, что малейшее материальное окружение искажает траекторию любого объекта. Это влияние может быть самым разным, например, стена жестко изменит нашу равномерную прямолинейную траекторию, если мы в нее врежемся. Если мы захотим пролететь по прямой линии с крыши одного дома на крышу другого, Земля может помешать нам проделать путь по прямолинейной траектории, заставив нас упасть.

Или если мы едем на велосипеде, а ветер встречный, воздух может сильно тормозить наше движение, заставляя нас терять равномерную скорость, и т. д.

Таким образом, во всех случаях наша прямолинейная равномерная траектория искажается под действием окружающей среды:

• она или перестает быть равномерной, то есть на нас действует тангенциальное ускорение;

• или же она перестает быть прямолинейной, то есть мы испытываем влияние нормального ускорения.

В обоих случаях возникает ускорение, которого не существовало бы, если бы мы были изолированным объектом.

Запомним: в инерциальной системе отсчета присутствие материальной окружающей среды приводит к ускорению рассматриваемого объекта.

Два важнейших параметра: сила и инерция

Чем больше ускорение, тем больше мы уклоняемся от первоначальной равномерной и прямолинейной траектории, то есть воздействие на нас окружающей среды будет «сильнее». Следовательно, сила, с которой на нас воздействует окружающая среда, измеряется относительно нашего ускорения.

Таким образом, действующую на нас силу мы можем считать равной нашему ускорению. Однако интуитивно понятно, что это не так, и это можно продемонстрировать на простом примере.

Предположим, что вас попросили толкнуть детскую коляску так, чтобы она переехала улицу: вы сможете это сделать без особых усилий. Чуть погодя вас просят помочь подтолкнуть заглохшую машину: вам будет очень трудно сдвинуть ее – то есть придать ей ускорение – в одиночку. Таким образом, мы видим, что одна и та же сила, направленная на два разных объекта, приводит к двум различным ускорениям.

Каждый объект, испытывающий ускорение, обладает присущим ему свойством, а именно инертностью, которая является способностью объекта сопротивляться всякому ускорению в заданном пространстве.

Напрашивается вывод: чем более крупным и тяжелым выглядит объект (например, машина), тем сложнее, кажется, придать ему ускорение, а следовательно, тем больше его инертность. Вот почему инертность еще называют инертной массой («инертная» от слова «инерция») и выражают ее в килограммах.

Подведем итог: в инерциальной системе отсчета ускорение объекта тем больше, чем меньше его инертная масса и чем больше сила воздействия окружающей среды. Таким образом, ускорение является следующим соотношением силы (связанной с окружающей средой) и инертной массы (присущей объекту): a?; = F?;/m (где a?; – это ускорение, F?; – сила, а m – инертная масса).

Записывают также и по-другому: (

F?; = ma?😉 в инерциальной системе отсчета.

УТОЧНЕНИЯ ПО ОБЛАСТИ ПРИМЕНЕНИЯ

До сих пор мы говорили об объектах, чья скорость была определена. Но как обстоит дело, к примеру, с вращающимся диском? Если нас интересует его центр, то в земной системе отсчета его скорость является нулевой. Если же нас интересует его поверхность, то она вращается с большой скоростью. По правде говоря, каждая точка диска имеет разную скорость и ускорение. Какая же сила приложена к этому объекту, если его ускорение в разных точках не является одинаковым?

Подобные вращающиеся объекты мы рассмотрим в главе 7. А пока ограничимся объектами, чья скорость и ускорение во всех точках одинаковы, то есть такими, которые находятся в поступательном движении, а не вращаются вокруг своей оси.

Та же проблема возникает, если объект деформируется (в каждой точке возникает разная скорость), и тем более если он распадается на две части. Например, так происходит с ракетой, теряющей сгоревшие газы по мере своего ускорения: газы, бывшие неотъемлемой частью ракеты, внезапно оказываются предоставленными самим себе и обретают собственную скорость.

Но подобные случаи, в общем, достаточно редки, и в дальнейшем повествовании мы с легкостью будем их избегать.

Это простое уравнение описывает дифференциальный закон механического движения, или второй закон Ньютона (см. врезку ниже). С тех пор в честь этого выдающегося ученого сила выражается в ньютонах: эту единицу измерения мы крайне редко используем в повседневной жизни, но для каждого физика она является основополагающей!

Заметим, что до сих пор мы не сказали ничего революционного: мы ограничились определением инерциальной системы отсчета и силы так, чтобы они наилучшим образом соответствовали интуитивному смыслу, имея при этом четко определенные рамки. Что касается инертной массы, мы чувствуем, что она тем или иным образом связана с весом объекта, однако пока что ограничимся тем, что речь идет о некоем загадочном свойстве, присущем каждому объекту.

СИЛА И ЕЕ СОСТАВЛЯЮЩИЕ

Сила, описанная во втором законе Ньютона, складывается из общего влияния окружающей среды. Но мы всегда ради интереса можем мысленно поделить эту силу на несколько составляющих.

Например, возьмем машину, которая движется по улице с ускорением. Поскольку она движется с ускорением, это значит, что на нее действует сила окружающей среды, направленная вперед. Мы можем разделить эту силу на четыре составляющих (см. схему ниже):

• сила тяги, которую создают мотор и колеса, направленная вперед;

• сила трения, которое создает воздух, направленная назад;

• вес машины, направленный вниз;

• сопротивление почвы, не дающее машине пройти сквозь нее, направленное вверх.

Эти четыре составляющих и создают силу F?;, которая позволяет машине двигаться с определенным ускорением (F?= ma?;), где F?; – равнодействующая всех сил. В последующих главах мы более подробно остановимся на происхождении и выражении этих разных сил.

Настало время четко понять, как окружающая среда оказывает влияние на объекты, что приведет нас к описанию двух основополагающих сил Вселенной: силы притяжения и электромагнитной силы. Нам кажется, что повседневной жизнью управляет множество других сил (когда мы ударяемся о стену, на нас действует некая самостоятельная сила, не правда ли?): мы увидим, что все они являются следствием этих двух фундаментальных сил.

ПОНЯТИЕ «ЗАКОНА» В ФИЗИКЕ

При описании дифференциального закона механического движения мы впервые столкнулись с понятием «закон»: в дальнейшем мы познакомимся и с другими. Необходимо усвоить, что «физические законы» ни в коем случае не являются эмпирическими константами, универсальность которых можно было бы допустить. Чаще всего речь будет идти об отношениях, вводящих новую величину, которые верны по определению, по своей природе определенные законы не могут быть ложными.

Например, дифференциальный закон механического движения позволил ввести такое понятие, как «сила» и «инертная масса». Также мы увидим, что «первый закон термодинамики» всего лишь описывает понятие «полной энергии», придуманное физиками.

Таким образом, нам станет ясно, что физика вовсе не является объемным каталогом экспериментальных законов: вся классическая физика действительно сводится к выражению двух фундаментальных сил.

СЛЕДУЕТ ЗАПОМНИТЬ

• Понятие движения имеет смысл только по отношению к определенной характеристике, которую физики называют системой отсчета.

• В большинстве случаев нас интересует движение по отношению к поверхности земли: земная система отсчета.

• В инерциальной системе отсчета движение объекта по определению является равномерным и прямолинейным. Земную систему отсчета можно считать инерциальной, учитывая большинство видов движения в повседневной жизни.

• С точки зрения физика ускорение приводит к изменению вектора скорости, а значит, к изменению величины скорости и/или ее направления.

• Инертная масса оказывает сопротивление ускорению объекта в инерциальной системе отсчета в заданном пространстве.

• В инерциальной системе отсчета сила, с которой окружающая среда воздействует на твердый объект в поступательном движении, определяется как произведение ускорения объекта и его инертной массы.

Данный текст является ознакомительным фрагментом.

3) Виды движения:

1) Физика – наука о природе.

Физика – это наука о природе, Физика – изучает явления природы, для того чтобы объяснять их предсказывать, использовать.

Физика изучает различные формы движения материи.

Материя – это объективная реальность, существующая независимо от нашего сознания и данная нам в ощущениях. Формы существования материи- вещество и поле

Движение материи – это любые изменения происходящие с материей.( изменение положения в пространстве, изменение химического состава, температуры и т.п.)

Для описания явлений физике необходимы физические величины.

Физическая величина – это характеристика объектов, имеющая числовое значение (масса, скорость, расстояние).

Развитие физики непосредственно связано с прогрессом и развитием техники. Физические открытия послужили основой для создания современных приборов и механизмов.

Система единиц- СИ.

Изучение физических явлений и процессов связано с измерением физических величин. Измерить физическую величину — это значит сравнить ее с такой же физической величиной, условно принятой за единицу.

Для каждой величины можно было бы выбрать свою единицу независимо от других величин. Но целесообразно поступить иначе — единицы нескольких величин (их на­зывают основными единицами) установили независимо, а остальные — выразили через эти единицы, ис­пользуя формулы.

Например, скорость выражается через две независимые величины —длину и время. Те единицы, которые устанавливаются с помощью формул, связывающих их с основны­ми единицами, называются производными еди­ницами.

Совокупность основных и производных единиц называют системой единиц.

В 1960 г. XI Генеральной конференцией по мерам и ве­сам в Париже была принята и в последующие годы допол­нена и уточнена Международная система единиц СИ . Она состоит из семи основных единиц: метр (м) — единица длины;

килограмм ( кг) — единица массы;

секунда (с) — единица времени;

ампер (А) — единица силы электрического тока;

кельвин (К) — единица термодинамической температуры;

кандела (кд) — едини­ца силы света ;

моль (моль) — единица количества вещества

Дополнительными единицами Си являются : радиан (рад) – единица плоского угла и стерадиан (ср) – единица объемного угла. Используя формулы, можно получить единицы измерения для любых физических величин. Например : =

2)Основные понятия механики:

Механика – раздел физики , изучающий механическое движение.

Механическим движением называется изменение положе­ния тела в пространстве с течением времени.

Основная задача механики — определение положения тела в про­странстве в любой момент времени.

Каждое тело имеет определенные размеры. Однако оказы­вается, что нет необходимости указывать положение каж­дой точки тела, если все точки тела движутся одинаково. Движение тела, при котором все его точки движутся оди­наково, называется поступательным движением. При поступательном движении тела достаточно описать движение только одной точки этого тела.

Размерами тела, движущегося поступательно можно пренебречь и считать его материальной точкой. Материальная точка отличается от тела тем, что у нее нет размеров. Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь. Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстоянием от него до дру­гих тел.

Космический корабль, пролетающий около восьми кило­метров за одну секунду, при наблюдении с Земли можно рассматривать как материальную точку. Космонавт, нахо­дящийся в корабле, не может считать его материальной точкой.

Для описания движения тела необходимо ввести понятия траектории, пройденного пути и перемещения.

Траектория – это линия по которой движется тело. Траектория может быть прямо­линейной и криволинейной.

Путь пройденный точкой, равен длине траектории. Путь скалярная величина.

Пере­мещение — вектор, соединяю­щий начальное положение точки с ее конечным положе­нием. Международной единицей измерения пути и перемеще­ния является метр (м).Положение тела в пространстве можно определить только относительно других тел, поэтому для описания движения необходима система отсчета.Система отсчета состоит из тела отсчета, системы координат, способа отсчета времени.

Скорость— это перемещение, совершаемое за единицу времени.(м/с)

Ускорение— это изменение скорости за единицу времени.(м/с2)

Движение можно различать по форме траектории – прямолинейное (траектория прямая линия) и криволинейное ( траектория кривая).

Движение может отличаться по скорости – равномерное, равноускоренное, неравномерное.

Равномерное— движение, при котором точка за любые промежутки времени совершает одинаковые перемещения .

Равноускоренное – движение при котором тело за равные промежутки времени изменяет скорость одинаково.

Неравномерное— движение при котором перемещения точки за равные промежутки времени не одинаковы, называют неравномерным движением. Для характеристики неравномерного движения используют среднюю скорость

4)Основы динамики

Инерция— это явление сохранения скорости не изменой при отсутствии внешних воздействий. При резком торможении автобуса пассажиры продолжают двигаться по инерции вперед.

Инертность— это свойство тел по-разному изменять свою скорость при внешних воздействиях.

Со свойством инертности связана масса тела. Масса тела – это мера инертности. Чем тяжелее тело, тем сложнее изменить его скорость, тем оно инертнее. Тяжелый камень труднее остановить, чем воздушный шарик, но и заставить двигаться воздушный шарик можно легким прикосновением руки.

Тело изменяет свою скорость, если на него действуют другие тела.

Сила-это мера воздействия одного тела на другое.

Сила равна F = ma

Три закона Ньютона:

Вся динамика базируется на трех основных законах, сформулированных впервые Ньютоном в 1686 году в книге «Математические начала натуральной философии» :

1закон ( закон инерции)

-существуют такие системы отсчета ,относительно которых тело сохраняет свою скорость неизменной, если на него не действуют другие тела или действие этих тел скомпенсировано.

В этом случае тело движется равномерно и прямолинейно или покоится.

2закон ( основной закон динамики материальной точки)

-ускорение, приобретенное телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально его массе.

а = F / m

3закон (закон противодействия)

-сила действия равна силе противодействия(или с какой силой одно тело действует на второе с такой же по величине, но противоположно направленной силой второе тело действует на первое).

F12 = — F21

5) Силы в природе:

Сила всемирного тяготения:

Сила, с которой все тела притягиваются друг к другу, называется силой всемирного тяготения. Обозначается буквой Fв Рассчитывается по формуле:

Fв= G(m1*m2)/R2

Направлена вдоль прямой, соединяющей центры тел.

Сила тяжести:

Сила , с которой все тела притягиваются к Земле называется силой тяжести. Обозначается буквой F тяж Рассчитывается по формуле: Fтяж = mg

Направлена вертикально вниз. ( к центру Земли)

Вес тела:

Сила , с которой тело давит на опору или подвес вследствие своего притяжения к земле, называется весом тела. Обозначается буквой Р

Направлена вниз перпендикулярно поверхности.

Сила реакции опоры:

Сила, с которой опора реагирует на воздействие тела называется силой реакции опоры. Обозначается буквой N. Рассчитывается по формуле: N = — Р

Направлена перпендикулярно поверхности вверх.

Сила упругости:

Сила , возникающая при деформации тела называется силой упругости.

Обозначается буквой Fупр Рассчитывается по формуле: а Fупр= -Кх, где K – коэффициент упругости , х – абсолютная деформация.

Направлена сила упругости в сторону противоположную деформации.

Сила трения:

Сила , возникающая при движении одного тела по поверхности другого, называется силой трения. Обозначается буквой Fтр .

Рассчитывается по формуле: Fтр= μN, где μ – коэффициент трения, N- сила реакции опоры.

Направлена в сторону противоположную движению.

Сила тяги :

Сила, приводящая тело в движение за счет работы механизмов, называется силой тяги.

Обозначается Fтяги . Направлена в сторону движения тела.

Если на тело действует только сила тяжести, то оно совер­шает свободное падение. Следовательно, свободное падение — это движение тела в безвоздушном пространстве (вакууме) под действием только силы тяжести.

Свободное падение — это равноускоренное движение, так как вблизи поверхности Земли оно происходит под действием постоянной по модулю и направлению силы тя­жести .

Ускорение свободного падения на уровне поверхности Земли на данной географической широте для всех тел одинаково: на полюсе g =9,83 м/с2, на экваторе g=9,78 м/с2, среднее зна­чение g=9,8 м/с2.

Ускорение свободного падения можно высчитать для любой планеты, если воспользоваться формулой

g = G Mпланеты / R2планеты

Весом тела называется сила, с которой тело действует на опору или подвес вследствие своего притяжения к Земле.

Вес тела равен по величине и противоположно направлен силе реакции опоры. Эти силы исходя из 3 закона Ньютона являются парными силами P = — N

Вес тела направлен перпендикулярно поверхности вверх.

Вес тела, движущегося с ускорением вверх или вниз изменяется. При движении вверх Р= m( g + a). При движении вниз вес уменьшается P = m(g – a).

При движении тела вниз с ускорением свободного падения тело находится в состоянии невесомости , т.е. вес такого тела = 0.

Что такое Ньютон? | Определение из TechTarget

К

  • Участник TechTarget

Ньютон — международная стандартная единица силы (СИ). В физической и инженерной документации термин ньютон(ов) обычно обозначается аббревиатурой Н .

Один ньютон — это сила, необходимая для ускорения массы в один килограмм со скоростью один метр в секунду в квадрате при отсутствии других силовых воздействий. В общем, сила ( F ) в ньютонах, масса ( m ) в килограммах и ускорение ( a ) в метрах в секунду в квадрате связаны хорошо известной в физике формулой:

F = мА

Формула также применяется, когда F и a являются векторными величинами, имеющими величину и направление:

F = м а

, где направление вектора силы F совпадает с направлением вектора ускорения и .

В качестве примера зависимости силы от массы и ускорения предположим, что тело массой 4 кг ускоряется со скоростью 12 метров в секунду в квадрате. Тогда приложенная сила в ньютонах:

F = мА = 4 x 12 = 48 N

Последнее обновление: сентябрь 2005 г.

враждебный ML

Состязательное машинное обучение — это метод, используемый в машинном обучении для обмана или введения в заблуждение модели с помощью злонамеренных входных данных.

Сеть

  • межсоединение центра обработки данных (DCI)

    Технология соединения центров обработки данных (DCI) объединяет два или более центров обработки данных для совместного использования ресурсов.

  • Протокол маршрутной информации (RIP)

    Протокол маршрутной информации (RIP) — это дистанционно-векторный протокол, в котором в качестве основной метрики используется количество переходов.

  • доступность сети

    Доступность сети — это время безотказной работы сетевой системы в течение определенного интервала времени.

Безопасность

  • GPS-глушение

    Подавление сигналов GPS — это использование устройства, передающего частоту, для блокирования или создания помех радиосвязи.

  • контрольная сумма

    Контрольная сумма — это значение, представляющее количество битов в передаваемом сообщении, которое используется ИТ-специалистами для обнаружения. ..

  • информация о безопасности и управление событиями (SIEM)

    Управление информацией о безопасности и событиями (SIEM) — это подход к управлению безопасностью, который объединяет информацию о безопасности …

ИТ-директор

  • FMEA (анализ видов и последствий отказов)

    FMEA (анализ видов и последствий отказов) представляет собой пошаговый подход к сбору сведений о возможных точках отказа в …

  • доказательство концепции (POC)

    Доказательство концепции (POC) — это упражнение, в котором работа сосредоточена на определении того, можно ли превратить идею в реальность.

  • зеленые ИТ (зеленые информационные технологии)

    Green IT (зеленые информационные технологии) — это практика создания и использования экологически безопасных вычислений.

HRSoftware

  • самообслуживание сотрудников (ESS)

    Самообслуживание сотрудников (ESS) — это широко используемая технология управления персоналом, которая позволяет сотрудникам выполнять множество связанных с работой . ..

  • платформа обучения (LXP)

    Платформа обучения (LXP) — это управляемая искусственным интеллектом платформа взаимного обучения, предоставляемая с использованием программного обеспечения как услуги (…

  • Поиск талантов

    Привлечение талантов — это стратегический процесс, который работодатели используют для анализа своих долгосрочных потребностей в талантах в контексте бизнеса …

Служба поддержки клиентов

  • закон убывающей отдачи

    Закон убывающей отдачи — это экономический принцип, утверждающий, что по мере увеличения инвестиций в определенную область норма …

  • привлечения клиентов

    Вовлечение клиентов — это средство, с помощью которого компания устанавливает отношения со своей клиентской базой, чтобы повысить лояльность к бренду и …

  • прямой электронный маркетинг

    Прямой маркетинг по электронной почте — это формат кампаний по электронной почте, в котором отдельные рекламные объявления рассылаются целевому списку . ..

5.4 Масса и вес | University Physics Volume 1

Цели обучения

К концу раздела вы сможете:

  • Объяснять разницу между массой и весом
  • Объясните, почему падающие объекты на Земле никогда не находятся в состоянии свободного падения
  • Опишите концепцию невесомости

Масса и вес часто используются как синонимы в повседневном разговоре. Например, наши медицинские записи часто показывают наш вес в килограммах, но никогда в правильных единицах измерения — ньютонах. Однако в физике есть важное различие. Вес — это притяжение Земли к объекту. Это зависит от удаленности от центра Земли. В отличие от веса, масса не зависит от местоположения. Масса объекта одинакова на Земле, на орбите или на поверхности Луны. 9{2}. [/latex]

Хотя почти во всем мире в качестве единицы силы используется ньютон, в Соединенных Штатах наиболее привычной единицей силы является фунт (фунт), где 1 Н = 0,225 фунта. фунт человек весит 1000 Н.

Вес и сила гравитации

Когда объект падает, он ускоряется по направлению к центру Земли. Второй закон Ньютона гласит, что результирующая сила, действующая на объект, отвечает за его ускорение. Если сопротивлением воздуха можно пренебречь, результирующая сила, действующая на падающий объект, представляет собой гравитационную силу, обычно называемую ее вес [латекс] \overset{\to }{w} [/латекс], или его сила тяжести, действующая на объект массой м . Вес можно обозначить как вектор, потому что он имеет направление; вниз по определению является направлением силы тяжести, и, следовательно, вес является направленной вниз силой. Величина веса обозначается как w . Галилей сыграл важную роль в том, чтобы показать, что в отсутствие сопротивления воздуха все тела падают с одинаковым ускорением g . Используя результат Галилея и второй закон Ньютона, мы можем вывести уравнение для веса.

Рассмотрим объект массой м , падающий на Землю. На него действует только нисходящая сила тяжести, которая представляет собой вес [латекс] \overset{\to }{w} [/латекс]. Второй закон Ньютона гласит, что величина чистой внешней силы, действующей на объект, равна [латекс] {\ overset {\ to {F}} _ {\ text {net}} = m \ overset {\ to }{a}. [/latex] Мы знаем, что ускорение объекта под действием силы тяжести равно [латекс] \overset{\to }{g}, [/latex] или [латекс] \overset{\to }{a}=\overset{ \к {г} [/латекс]. Подставив их во второй закон Ньютона, мы получим следующие уравнения. 9{2})=9,80\,\текст{N}. [/latex]

Когда чистая внешняя сила, действующая на объект, представляет собой его вес, мы говорим, что это свободное падение , то есть единственная сила, действующая на объект, — это гравитация. Однако, когда объекты на Земле падают вниз, они никогда не находятся в состоянии свободного падения, потому что на объект всегда действует некоторая направленная вверх сила сопротивления воздуха.

Ускорение свободного падения g незначительно варьируется по поверхности Земли, поэтому вес объекта зависит от его местоположения и не является неотъемлемым свойством объекта. {2} [/латекс]. Таким образом, масса 1,0 кг имеет вес 90,8 с. ш. на Земле и всего около 1,7 с. ш. на Луне.

Самое широкое определение веса в этом смысле состоит в том, что вес объекта — это гравитационная сила, действующая на него со стороны ближайшего крупного тела, такого как Земля, Луна или Солнце. Это наиболее распространенное и полезное определение веса в физике. Однако оно резко отличается от определения веса, используемого НАСА и популярными средствами массовой информации в связи с космическими путешествиями и исследованиями. Когда они говорят о «невесомости» и «микрогравитации», они имеют в виду явление, которое в физике называется «свободным падением». Мы используем предыдущее определение веса, силы [латекс] \overset{\to }{w} [/латекс] из-за гравитации, действующей на объект массой м , и мы тщательно различаем свободное падение и фактическую невесомость.

Имейте в виду, что вес и масса — разные физические величины, хотя и тесно связанные между собой. Масса — это внутреннее свойство объекта: это количество материи. Количество или количество материи объекта определяется количеством содержащихся в нем атомов и молекул различных типов. Поскольку эти числа не меняются, в ньютоновской физике масса не меняется; следовательно, его реакция на приложенную силу не меняется. Напротив, вес — это гравитационная сила, действующая на объект, поэтому он зависит от гравитации. Например, человек ближе к центру Земли, на небольшой высоте, такой как Новый Орлеан, весит немного больше, чем человек, который находится на большей высоте в Денвере, даже если они могут иметь одинаковую массу.

Заманчиво приравнять массу к весу, потому что большинство наших примеров происходят на Земле, где вес объекта лишь немного зависит от местоположения объекта. Кроме того, трудно сосчитать и идентифицировать все атомы и молекулы в объекте, поэтому масса редко определяется таким образом. Если мы рассмотрим ситуации, в которых [латекс] \overset{\to }{g} [/latex] является константой на Земле, мы увидим, что вес [латекс] \overset{\to }{w} [/latex] непосредственно пропорциональна массе m , так как [латекс] \overset{\to }{w}=m\overset{\to }{g}, [/latex], то есть чем массивнее объект, тем больше он весит. {2} [/латекс], объект весит 8,4 Н. Однако масса объекта по-прежнему составляет 5,0 кг. на Луне. 9{2}? [/latex]

Стратегия

Нам дан вес камня, который мы используем для нахождения чистой силы, действующей на камень. Однако нам также необходимо знать его массу, чтобы применить второй закон Ньютона, поэтому мы должны применить уравнение для веса, [латекс] w = мг [/латекс], чтобы определить массу.

Решение

Никакие силы не действуют в горизонтальном направлении, поэтому мы можем сосредоточиться на вертикальных силах, как показано на следующей диаграмме свободного тела. Мы обозначаем ускорение в сторону; технически это не часть диаграммы свободного тела, но помогает напомнить нам, что объект ускоряется вверх (поэтому результирующая сила направлена ​​вверх). 9{2})\hfill \\ \hfill F-180\,\text{N}& =\hfill & 27\,\text{N}\hfill \\ \hfill F& =\hfill & 207\,\text{ N}=210\,\text{N до двух значащих цифр}\hfill \end{array} [/latex]

Значение

Чтобы применить второй закон Ньютона в качестве основного уравнения при решении задачи, иногда приходится полагаться на другие уравнения, например, на вес или одно из кинематических уравнений, чтобы завершить решение.

Проверьте свои знания

Для (Пример) найдите ускорение, когда сила, приложенная фермером, равна 230,0 Н.

Показать решение

Сможете ли вы избежать поля с валунами и благополучно приземлиться прямо перед тем, как закончится топливо, как это сделал Нил Армстронг в 1969 году? Эта версия классической видеоигры точно имитирует реальное движение лунного посадочного модуля с правильной массой, тягой, расходом топлива и лунной гравитацией. Настоящим лунным посадочным модулем трудно управлять.

Используйте эту интерактивную симуляцию, чтобы перемещать Солнце, Землю, Луну и космическую станцию, чтобы увидеть влияние их гравитационных сил и орбитальных траекторий. Визуализируйте размеры и расстояния между различными небесными телами и отключите гравитацию, чтобы увидеть, что было бы без нее. 9{2} [/латекс]. В этой задаче силы действуют на сиденье и ремень безопасности.

Тело массой 2,00 кг толкают вертикально вверх под действием вертикальной силы 25,0 Н.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *