Site Loader

Содержание

Сила притяжения Земли – simulation, animation – eduMedia

Мож­но ли сто­ять, хо­дить или пры­гать на ко­ме­те?

Как сто­ять на ко­ме­те?

Гра­ви­та­ци­ей на­зы­ва­ет­ся си­ла, ко­то­рая при­тя­ги­ва­ет лю­бой пред­мет вниз, или точ­нее к цен­тру масс. Для пла­не­ты, дан­ный центр масс сов­па­да­ет с цен­тром сфе­ры пла­не­ты, но для не сфе­ри­че­ской фор­мы, та­кой как 67Р /Чу­рю­мов Ге­ра­си­мен­ко, дан­ный центр масс яв­ля­ет­ся бо­лее слож­ным для оп­ре­де­ле­ния, а по­ле тя­го­те­ния ис­пы­ты­ва­ет боль­шие из­ме­не­ния в за­ви­си­мо­сти от мес­та про­ве­де­ния из­ме­ре­ний. Не толь­ко гра­ви­та­ция яв­ля­ет­ся не­зна­чи­тель­ной (от 10 000 до 100 000 раз мень­ше, чем на Зем­ле), но кро­ме то­го, вер­ти­каль­ное по­ло­же­ние не все­гда бу­дет рав­но­вес­ным!

Ес­ли бы космонавт сто­ял на 67Р, то он, ве­ро­ят­но, не сто­ял бы аб­со­лют­но пря­мо (пер­пен­ди­ку­ляр­но) по от­но­ше­нии к по­верх­но­сти.

Как дви­гать­ся по пла­не­те?

Ес­ли, как мы это толь­ко что ви­де­ли, сто­ять — не все­гда оз­на­ча­ет сто­ять вер­ти­каль­но, то ста­но­вить­ся оче­вид­ным, что про­стое же­ла­ние пе­ре­ме­щать­ся по пла­не­те ста­но­вит­ся це­лым ис­пы­та­ни­ем. Ес­ли Вам всё-та­ки уда­ёт­ся вы­пол­нить дан­ное ис­пы­та­ние, важ­но ид­ти очень мед­лен­но со­хра­няя свои си­лы. Да­же не ду­май­те о том, что­бы пры­гать или бе­жать, Вы рис­куе­те взле­теть на ор­би­ту!

Воз­мож­но, ли пры­гать в воз­ду­хе (в кос­мос!) на ко­ме­те?

Да­же не ду­май­те об этом, ес­ли толь­ко Вы не при­вя­за­ны к по­верх­но­сти с по­мо­щью ре­зин­ки. Гра­ви­та­ци­он­ная си­ла при­тя­же­ния со­став­ля­ет при­мер­но 10 м/с2 на Зем­ле, то­гда как она из­ме­ня­ет­ся от 0,0001 до 0,001 на ко­ме­те 67Р. Дан­ная ин­тен­сив­ность по­ля гра­ви­та­ции на по­верх­но­сти све­ти­ла по­зво­ля­ет оп­ре­де­лить ско­рость вы­сво­бо­ж­де­ния (или вто­рую кос­ми­че­скую ско­рость). Дан­ная ско­рость не­об­хо­ди­ма для то­го, что­бы пред­мет пре­воз­мог при­тя­же­ние дан­но­го све­ти­ла. Для Зем­ли, ско­рость вы­сво­бо­ж­де­ния со­став­ля­ет при­бли­зи­тель­но 11 км/с (40 000км/ч!). Вот по­че­му не­об­хо­ди­мо иметь мощ­ную ра­ке­ту для то­го, что­бы это сде­лать. На 67Р/Чу­рю­мов Ге­ра­си­мен­ко, ско­рость вы­сво­бо­ж­де­ния со­став­ля­ет при­бли­зи­тель­но 1 м/с (3,5 км/ч). Дан­ную ско­рость лег­ко дос­тичь при уси­лии че­ло­ве­ка и при хо­ро­шем прыж­ке, воз­мож­но, от­пра­вить Вас в пус­то­ту на очень и очень про­дол­жи­тель­ное вре­мя.

По этим не­сколь­ким при­чи­нам, а так­же по мно­гим дру­гим, мы мо­жем ут­вер­ждать, что ни­ка­ко­го космонавта не по­лу­чит­ся вы­са­дить на ко­ме­ту та­ко­го ма­ло­го раз­ме­ра. Так­же по этим при­чи­нам, мо­дуль Фи­лаэ со­дер­жит  при­чаль­ные крю­ки для при­кре­п­ле­ния к по­верх­но­сти во вре­мя по­сад­ки без опас­но­сти от­ско­чить.

Нажать на для совершения прыжка.

Гравитация и сила притяжения – Статьи на сайте Четыре глаза


Полезная информация

Главная » Статьи и полезные материалы » Телескопы » Статьи » Сила гравитации

Сила гравитации позволяет Земле вращаться вокруг Солнца и удерживает все на поверхности планеты. Именно благодаря этой силе идет дождь, происходят приливы и отливы океанов. Сила гравитации Земли удерживает планету в сферической форме, а также сохраняет атмосферу вокруг планеты. И несмотря на то, что гравитация есть всюду, эта одна из самых малоизученных природных сил. Малоизученные гравитация и сила притяжения еще раз напоминают людям, насколько ограниченными являются современные научные знания.

Что это такое

Гравитация – сила притяжения между любыми объектами, имеющими массу. Гравитационная сила зависит от массы этих объектов и расстояния между ними. Сила гравитация – одна из четырех основных природных сил, среди которых еще есть слабые, сильные, электромагнитные силы.

Сила гравитации Земли

Сила гравитации удерживает все на планете, придавая всем объектам вес. Вес объектов на разных планетах отличается. Именно поэтому масса и вес – разные понятия. При одинаковой массе объекты на разных планетах отличаются по весу. Это связано с силой тяжести планеты. У Земли сила тяжести составляет 9,8 Н/кг, а на Луне сила тяжести составляет только шестую часть земной.

Сила гравитации также удерживает планеты на орбите и объекты международной космической станции. Многие считают, что возможность астронавтов парить в воздухе объясняется отсутствием гравитации. На самом деле сила гравитации на международной косметической станции составляет около 90% от гравитации на Земле. Причиной, почему астронавты парят в воздухе, является то, что они эффективно свободны от падения вокруг планеты. Гравитацию изучали ведущие физики всех времен. Например, Ньютон, который составил уравнение для вычисления силы тяжести на основе массы объектов и расстояния между ними. Гравитацией занимался и Эйнштейн со своей общей теорией относительности.

4glaza.ru
Сентябрь 2020

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.


Рекомендуемые товары


Смотрите также

Другие обзоры и статьи о телескопах и астрономии:

Обзоры оптической техники и аксессуаров:

  • Видео! Телескоп Sky-Watcher BK MAK80EQ1 и визуальное сближение Сатурна и Юпитера. Репортаж «Вести.Ru».
  • Видео! Телескоп с автонаведением Levenhuk SkyMatic 127 GT MAK: видеообзор модели (канал MAD SCIENCE, Youtube.com)
  • Обзор телескопа Sky-Watcher BK P150750EQ3-2 на сайте star-hunter.ru
  • Обзор оптической трубы Sky-Watcher BK MAK90SP OTA на сайте star-hunter.ru
  • Обзор телескопа Levenhuk Strike 1000 PRO на сайте www.exler.ru
  • Книги знаний издательства Levenhuk Press: подробный обзор на сайте levenhuk.ru
  • Видео! Книга знаний в 2 томах. «Космос. Микромир»: видеопрезентация (канал LevenhukOnline, Youtube.ru)
  • Видео! Книга знаний «Космос. Непустая пустота»: видеопрезентация (канал LevenhukOnline, Youtube.ru)
  • Видео! Монтировка Sky-Watcher EQ5 SynScan GOTO со стальной треногой: распаковка монтировки (канал «Небо – не предел», Youtube.ru)
  • Видео! Монтировка Sky-Watcher EQ5 SynScan GOTO со стальной треногой: сборка и настройка монтировки (канал «Небо – не предел», Youtube.ru)
  • Видео! Подробный обзор телескопа Sky-Watcher BK MAK90EQ1 (канал Kent Channel TV, Youtube.ru)
  • Видео! Подробный обзор телескопа Levenhuk Strike 50 NG (канал Kent Channel TV, Youtube.ru)
  • Видео! Телескоп Sky-Watcher Dob 76/300 Heritage: видеообзор настольного телескопа (канал Kent Channel TV, Youtube.ru)
  • Видео! Подробный обзор любительского телескопа Levenhuk Skyline 90х900 EQ (канал Kent Channel TV, Youtube.ru)
  • Видео! Подробный обзор детского телескопа Levenhuk Фиксики Файер (канал Kent Channel TV, Youtube.ru)
  • Обзор настольного телескопа Sky-Watcher Dob 130/650 Heritage Retractable
  • Обзор телескопа Sky-Watcher BK P130650AZGT SynScan GOTO
  • Обзор настольного телескопа Sky-Watcher Dob 76/300 Heritage
  • Видео! Как выбрать телескоп: видеообзор для любителей астрономии (канал LevenhukOnline, Youtube.ru)
  • Видео! Телескопы Sky-Watcher AZ: сборка и настройка телескопа (канал Sky-Watcher Russia, Youtube.ru)
  • Видео! Смотрите яркие видео, снятые телескопом с автонаведением Levenhuk SkyMatic 135 GTA
  • Видео! Телескоп с автонаведением Levenhuk SkyMatic 135 GTA (канал LevenhukOnline, Youtube.ru)
  • Видео! Телескопы Levenhuk Skyline: сборка и настройка телескопа (канал LevenhukOnline, Youtube.ru)
  • Обзор телескопа Добсона Levenhuk Ra 150N Dob
  • Обзор телескопа Bresser National Geographic 90/1250 GOTO
  • Обзор оптической трубы Levenhuk Ra R80 ED Doublet Carbon OTA
  • Обзор оптической трубы Levenhuk Ra R80 ED Doublet OTA
  • Обзор телескопа Bresser National Geographic 114/900 AZ
  • Инновационная встроенная система гидирования StarLock – сердце LX800
  • Уникальная монтировка-трансформер Meade LX80
  • Выпуск дизайнерских телескопов и биноклей Levenhuk
  • Сравнительная таблица телескопов Bresser и телескопов Celestron
  • Ищете телескоп? Попробуйте телескопы Levenhuk и Bresser

Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:

Все об основах астрономии и «космических» объектах:

  • Зачем астрономам прогноз погоды?
  • Астрономия под городским небом
  • Видео! Основы астрономии (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Основы строномии. Что такое эклиптика (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Солнечная система ч. 1 (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Солнечная система ч. 2 (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Созвездие Ориона (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Каталог Мессье (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Экзопланеты (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Небесные координаты. Горизонтальная система (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Небесные координаты. Галактическая система (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Небесные координаты. Эклиптическая система (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Небесные координаты. Экваториальные координаты (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Видео! Что такое солнечное затмение (и затмение 2015 г.) (канал «Вселенная с Алексом Фордом», Youtube.ru)
  • Как увидеть Луну в телескоп
  • Краткая история создания телескопа
  • Оптический искатель для телескопа
  • Делаем телескоп своими руками
  • Венера в объективе телескопа
  • Что можно разглядеть в телескоп
  • Выбираем телескоп для наблюдения за планетами
  • Телескоп Максутова-Кассегрена
  • Делаем телескоп своими руками из объектива фотоаппарата
  • Галилео Галилей и изобретение телескопа
  • Дешевый телескоп
  • Как выбрать астрономический телескоп
  • Какой телескоп ребенку точно понравится?
  • Как выглядит галактика Андромеды в телескоп
  • Как выбрать хорошие окуляры для телескопа
  • Главное зеркало телескопа: сферическое или параболическое?
  • Как работает телескоп
  • Фокусное расстояние телескопа
  • Апертура телескопа
  • Светосила телескопа
  • Почему телескоп переворачивает изображение
  • Лазерный коллиматор
  • Выбор телескопа для наземных наблюдений
  • Как найти планеты на небе в телескоп
  • Разрешающая способность телескопа
  • Производители телескопов
  • Телескопы Ричи-Кретьена
  • Адаптер для смартфона на телескоп
  • Как пользоваться телескопом
  • Строение телескопа
  • Почему вам нужно купить пленку-светофильтр для телескопа?
  • «Большой телескоп азимутальный» – крупнейший российский телескоп
  • Что такое линзовый телескоп?
  • Профессиональные телескопы: цены, особенности, возможности
  • Телескоп: руководство к действию
  • Как выглядит телескоп, подключаемый к компьютеру
  • «Телескоп ночного видения» – есть ли такой оптический прибор?
  • Ищете телескоп для смартфона? Подойдет любой!
  • Первый оптический телескоп, созданный Ньютоном
  • Bresser – знаменитые немецкие телескопы
  • Как найти Сатурн в телескоп?
  • Вселенная глазами телескопа «Хаббл»
  • Самый дорогой телескоп в мире
  • Фото галактик с телескопа «Хаббл» высокого разрешения
  • Марс в телескоп: фото и особенности наблюдений
  • Так ли плох телескоп из Китая?
  • Фото МКС в телескоп: как найти?
  • Где в Москве посмотреть в телескоп
  • Российские телескопы
  • Самые известные американские телескопы
  • Инфракрасный телескоп «Страж»
  • Как посмотреть на Солнце в телескоп и не ослепнуть?
  • Телескоп на орбите – современный научный инструмент для изучения космоса
  • Как появился «Хаббл» – космический телескоп НАСА
  • Самый мощный телескоп
  • Как смотреть космос: в телескоп или бинокль?
  • Рейтинг телескопов: как выбрать телескоп в сети
  • Как выглядят фото с любительских телескопов?
  • Бесплатные телескопы онлайн
  • Выбираем диаметр и кратность лупы (линзы) для телескопа
  • Как выбрать телескоп для любителей и начинающих?
  • Изучаем звездное небо: телескоп для наблюдений за дальним космосом
  • Гигантские телескопы
  • Астрономия детям: Солнечная система
  • Где читать новости астрономии и астрофизики?
  • Космос: астрономия – наука о необъятной Вселенной
  • Краткая история астрономии
  • Авторы учебников по астрономии
  • Астрономия: звезды, планеты, астероиды
  • Ищем сайт любителей астрономии
  • Выбираем телескопы для любителей астрономии
  • Новости астрономии в 2018 году
  • Где читать новости астрономии и космонавтики?
  • Титан – самый большой спутник планеты Сатурн
  • Сатурн (планета): фото из космоса
  • Ближайшие планеты Венеры
  • Нептун – какая планета от Солнца?
  • Каково расстояние от Нептуна до его спутника?
  • Венера: планета на небе
  • Какая самая маленькая планета в Солнечной системе?
  • Изучаем планеты Солнечной системы: Сатурн
  • Какая по счету планета Сатурн?
  • Какая планета от Солнца Уран?
  • Спутники Урана: список
  • Какого цвета Уран (планета)?
  • Почему Марс – Красная планета?
  • Планета Меркурий: интересные факты для детей
  • Планеты Солнечной системы: Уран
  • Европа – спутник Юпитера (фото)
  • Сколько спутников у Юпитера
  • Факты о Красной планете, или Какого цвета планета Марс?
  • Планета Венера: фото в телескоп
  • Планеты Солнечной системы: Нептун
  • Планета Уран: интересные факты
  • Юпитер (планета): интересные факты для детей
  • Какие планеты больше Юпитера?
  • Цвет планеты Меркурий
  • Самая маленькая планета Солнечной системы: Меркурий
  • Наблюдаем ближайший парад планет
  • Расстояние от Солнца до Юпитера
  • Марс – планета Солнечной системы
  • Новые исследования планеты Марс
  • WOH G64 – звезда в созвездии Золотой Рыбы
  • Взрыв Бетельгейзе
  • Самая яркая звезда в созвездии Лебедь
  • Созвездие Лебедь: звезда Денеб
  • Мирфак – ярчайшая звезда в созвездии Персея
  • Созвездие Южный Крест на карте звездного неба
  • Большой и Малый Пес – созвездия южного полушария неба
  • Большое и Малое Магеллановы Облака
  • Звезда Бетельгейзе относится к сверхгигантам или карликам?
  • Созвездие Большого Пса – легенда Южного полушария неба
  • Созвездие Большой Пес: яркие звезды
  • Созвездие Цефей: звезды
  • Созвездие Щита на небе
  • Созвездия зодиака (Стрелец) и астрономия
  • Созвездие Лебедь – легенда о появлении
  • Созвездия Кассиопея, Лебедь, Орион – рассказываем об астрономии детям
  • Как найти созвездие Скорпиона на небе
  • Как называются звезды в созвездии Скорпиона?
  • Созвездия Персей и Андромеда
  • Окуляр Супер Кельнер: схема, достоинства и недостатки
  • Окуляр Эрфле
  • Менисковый телескоп: особенности и назначение
  • Зрительная труба Кеплера
  • Объектив с постоянным фокусным расстоянием
  • Японские телескопы – какие они?
  • Хочу телескоп! Какой выбрать?
  • Крупнейшие метеориты, упавшие на землю
  • Магнитные вспышки на Солнце
  • Чем занять детей дома?
  • Чем заняться на карантине дома?
  • Чем заняться школьникам на карантине?
  • Карта подвижного звездного неба Северного полушария
  • Виды карт звездного неба
  • Подвижная карта звездного неба «Созвездия»
  • Карта звездного неба «Малая Медведица»
  • Астрономическая карта звездного неба
  • Созвездие Лебедя на карте звездного неба
  • Карта звездного неба Южного полушария
  • Созвездие Ориона на карте звездного неба
  • Комета Атлас на карте звездного неба
  • Созвездие Лиры на карте звездного неба
  • Как видны звезды в телескоп?
  • Как правильно установить телескоп?
  • Как наблюдать Солнце в телескоп?
  • Как собрать телескоп?
  • Как выглядит Луна в телескоп?
  • Как называется самый большой телескоп?
  • Какая галактика может поглотить Млечный Путь?
  • К какому типу галактик относится Млечный Путь?
  • Сколько звезд в Млечном Пути?
  • Что находится в центре галактики Млечный Путь?
  • Черная дыра в центре Млечного Пути
  • Положение Солнца в Млечном Пути
  • Структура Млечного Пути
  • Туманности галактики Млечный Путь
  • Млечный Путь и туманность Андромеды
  • Почему Млечный Путь – спиральная галактика?
  • Самые известные цефеиды
  • От чего зависит изменение блеска цефеиды?
  • Почему цефеиды называют маяками Вселенной и как ими пользуются астрономы
  • Что остается на месте вспышки сверхновой звезды: черные дыры и не только
  • Что остается после взрыва сверхновых звезд в космосе
  • Существующие типы сверхновых звезд
  • Сверхновая нейтронная звезда: что это такое?
  • Окажется ли Солнце в стадии красного гиганта
  • Характеристика последовательности красных гигантов – особенности звезд
  • Что такое Солнце: красный гигант или желтый карлик?
  • Звезда Рас Альхаге
  • Звезда Таразед
  • Шаровые звездные скопления
  • Чем различаются рассеянные и шаровые скопления
  • Основные части радиотелескопа
  • Крупнейший радиотелескоп
  • Радиотелескоп FAST
  • Система, которая объединяет несколько радиотелескопов
  • Как построить сферу Дайсона
  • Излучение Хокинга простыми словами
  • Как найти Полярную звезду на звездном небе
  • Как называется наша Галактика
  • Возраст Вселенной
  • Великая стена Слоуна
  • Из чего состоят звезды
  • Ядро звезды
  • Эффект Доплера
  • Сила гравитации
  • Закон Хаббла
  • Астеризм
  • Чем отличается комета от астероида
  • Байкальский нейтринный телескоп
  • Проект «Радиоастрон»
  • Большой магелланов телескоп
  • Виртуальный телескоп в реальном времени
  • Метеорный поток
  • Экзопланеты, пригодные для жизни
  • Туманность Ориона на небе
  • Крабовидная туманность
  • Самый большой квазар во Вселенной
  • Астрокупол
  • Древние обсерватории
  • Специальная астрофизическая обсерватория РАН
  • Пулковская обсерватория
  • Астрономические обсерватории
  • Астрофизическая обсерватория в Крыму
  • Мауна-Кеа обсерватория
  • Обсерватория Эль-Караколь
  • Гозекский круг
  • Монтировка для телескопа своими руками
  • Что такое двойные системы звезд
  • Каковы размеры Вселенной: можно ли ответить на этот вопрос?
  • Что такое Бозон Хиггса простыми словами
  • Что такое летящая звезда Барнарда
  • Паргелий (ложное Солнце): что это такое?
  • Что такое гамма всплески во Вселенной
  • Кто установил факт ускоренного расширения Вселенной
  • Коричневый карлик – звезда или планета
  • Как называются галактики, входящие в местную группу
  • Какие тайны хранит яркая звезда Арктур
  • Как объяснить, почему ночью небо черное
  • Телескоп Tess и его достижения
  • Седна – карликовая планета или планета?
  • Чем удивляет планета Эрида
  • Загадочные Троянские астероиды
  • Хаумеа – самая быстрая карликовая планета
  • Между орбитами каких планет Солнечной системы проходит пояс астероидов
  • Самый крупный объект Главного пояса астероидов
  • Главные объекты пояса Койпера
  • Из чего состоит Облако Оорта и пояс Койпера
  • Карликовые планеты Солнечной системы: список
  • История черных дыр
  • Что такое поток Персеиды?
  • Тень лунного затмения
  • Период противостояния Марса: что это?
  • Венера: утренняя звезда
  • Важнейшие типы небесных тел в Солнечной системе
  • Зеркало для телескопа: виды и ключевые типы систем
  • Созвездия знаков зодиака на небе
  • Как увидеть спутник?
  • Где обратная сторона Луны и что там находится?
  • Расположение Солнечной системы в галактике Млечный Путь
  • Ученые обнаружили самую далекую галактику
  • Вспышка сверхновой звезды простыми словами
  • Войд Волопаса – загадочное место во Вселенной
  • Можно увидеть МКС без телескопа?
  • Самые сильные вспышки на Солнце
  • Какова природа полярного сияния
  • Лунный модуль «Аполлон» – первый космический «лифт»
  • Почему звезды разного цвета и кому это нужно
  • Проблема космического мусора все еще не решена
  • Самый редкий знак зодиака – Змееносец
  • Солнечное затмение 2021 года в России – запасайтесь светофильтрами
  • Самая-самая комета 2021 – январь преподнес сюрприз
  • Очередной «апокалиптический» метеорит в 2021 году
  • Климатическая карта ветра – незаменимый помощник астронома
  • Сколько лететь до ближайшей звезды
  • Что такое кратная система звезд
  • Как зависит от яркости обозначение звезд
  • Почему в космосе не видно звезд
  • Что видно из космоса на Земле
  • Пульсар – космический объект
  • Аккреционный диск черной дыры
  • Галактика Хога: уникальная космическая симметрия
  • Характеристики и состав эллиптических галактик
  • Особенности и структура неправильных галактик
  • Классификация галактик: виды и строение самых больших космических объектов
  • Где расположена галактика Треугольника и в чем ее особенности?
  • Что является источником излучения в радиогалактиках и как они возникают
  • Яркий блазар: наблюдается сверху и постоянно меняется
  • Как происходит звездообразование в галактике
  • Самые красивые и необычные имена галактик
  • Что такое перицентр орбиты и где он расположен
  • Что такое апоцентр, взаимосвязь апоцентра и перицентра
  • Меры расстояния в космосе: астрономический парсек
  • Понятие и даты прохождения через перигелий
  • Что такое точка афелия и когда планеты ее проходят
  • Марсоход NASA Perseverance – очередной искатель жизни в космосе
  • Корабль Crew Dragon – американцы снова летают к МКС
  • Славная страница отечественной космонавтики – орбитальная космическая станция МИР
  • Пилотируемый корабль «Союз» в ожидании преемника
  • Лунная программа Роскосмоса и другие изменения в политике корпорации
  • Тяжелая ракета «Ангара» официально доказала свой статус
  • Герцшпрунг – самый большой кратер Луны
  • Ракета «Протон-М» – еще одна страничка истории российской космонавтики будет перевернута
  • Разбираемся в терминах: астронавт и космонавт – в чем разница?
  • Шлягер наступившего 2021 года – реальные звуки Марса
  • Снимки «города богов» в космосе снова в сети
  • Самый-самый марсианский кратер
  • Фото ночного города из космоса
  • Планетоиды Солнечной системы – что это?
  • Приземление на Марс 18 февраля – успешное завершение и… только начало
  • Кратеры на поверхности Венеры: слава женщинам!
  • Магнитосфера планет: что это такое?
  • Ганимед, спутник планеты Юпитер, – верный друг на века!
  • Каллисто – спутник Юпитера: жизнь в космосе возможна?
  • Спутник Адрастея: питание для колец Юпитера!
  • Система неподвижных звезд: всегда на одном месте?
  • Канопус сверхгигант: яркий маяк на ночном небе
  • Звезда Толиман в астрологии: знакомство и Топ фактов
  • Звезда Вега: самый яркий объект в созвездии Лиры
  • Яркая звезда Капелла: вдвое больше сияния!
  • Звезда Ригель является сверхгигантом
  • Параллакс звезды Процион, верного спутника Сириуса
  • Звезда Ахернар: знакомство с альфой Эридана
  • Кульминация звезды Альтаир: на крыльях Орла
  • «Арктика-М» спутник: земля под надежным контролем!
  • Солнечный зонд Паркер: курс прямиком на звезду
  • Земля Афродиты на Венере: скорпион, обращенный на запад
  • Земля Иштар на Венере: Австралия в космосе!
  • Равнина Снегурочки на Венере
  • На какой планете находится каньон Бабы-яги?
  • Горы Максвелла в 12 км на Венере: мужская часть планеты!
  • Рельеф поверхности Венеры и его особенности
  • Кратеры на планете Меркурий: искусство во плоти!
  • Попигайская, Карская и Фарерская астроблема: как менялась Земля
  • Кратер Вредефорт: столкновение 10-километрового метеорита с Землей, как оно повлияло на историю
  • Зонд «Маринер-10»: первый посетитель Меркурия
  • Небесный экватор: что это такое, и как он пересекается с линией горизонта?
  • Акрукс в созвездии Южного Креста: характеристика и физические свойства
  • Альдебаран: класс звезды, характеристика и планеты рядом
  • Спика: физическая характеристика и класс звезды
  • Поллукс в созвездии Близнецов и его характеристики
  • Фомальгаут: спектральный класс, характеристики и система
  • Звезда Мимоза, или Бекрукс: характеристики и особенности
  • Регул: альфа созвездия Льва и принц ночного неба
  • Кастор: спектральный класс и характеристика звезды
  • Звезда Гакрукс: расположение на небе, характеристика и система
  • Звезда Шаула в астрономии: характеристики и особенности
  • Линия эклиптики: ежегодное движение Солнца
  • Метеорный поток Лириды
  • Эволюция массивных звезд и черные дыры
  • Спутник Сатурна Пан: описание, характеристики
  • Сатурн и его спутник Прометей
  • Удивительная Пандора – спутник планеты Сатурн
  • Загадочный Янус: все о спутнике Сатурна
  • Мимас – спутник Сатурна
  • Спутник Сатурна Тефия
  • Калипсо – яркий спутник Сатурна
  • Спутник Сатурна Диона
  • Рея – спутник Сатурна
  • Спутник Сатурна Гиперион
  • Спутник Сатурна Япет
  • Закон абсолютного черного тела
  • Сколько колец у Юпитера?
  • Есть ли кольца у Урана?
  • Естественные спутники Венеры
  • Квазиспутники Земли
  • Лунотрясения на Луне
  • Сверхскопление галактик Ланиакея
  • Местное сверхскопление галактик
  • Центр дальней космической связи в Евпатории
  • Марсианский вертолет Ingenuity совершил полет
  • Какие облака на Юпитере?
  • Уровень радиации на Луне
  • Харон – спутник какой планеты?
  • Миранда – загадочный спутник Урана
  • Ариэль – спутник Урана
  • Главная последовательность: характеристики и особенности
  • Стадия протозвезды
  • Сверхгиганты: класс светимости
  • Планеты в зоне обитаемости
  • Спутник Урана Оберон полон загадок
  • Титания – таинственный спутник Урана
  • Умбриэль – синхронный спутник Урана
  • Какое количество спутников у Меркурия?
  • Фобос – таинственный спутник планеты Марс
  • Деймос: спутник какой планеты
  • Галатея – загадочный спутник Нептуна
  • Нереида – малоизученный спутник Нептуна
  • Протей – таинственный спутник Нептуна
  • Причины возникновения пятен на Солнце
  • Орбитальная скорость планет
  • Космическая пыль: состав и особенности
  • Какие элементы входят в состав Солнца?
  • Загадочная земля Тейя
  • Объекты межзвездной среды
  • На Марсе нашли грибы
  • Самая маленькая черная дыра
  • Структура метагалактики
  • Solar Orbiter
  • Плутон – бывшая планета
  • Транснептуновые объекты Солнечной системы
  • Объекты рассеянного диска
  • Харон – спутник какой планеты?
  • Стикс – спутник Плутона
  • Никта – спутник Плутона
  • Кербер – спутник Плутона
  • Гидра – спутник Плутона
  • Плутон имеет кольца?
  • Макемаке – карликовая планета
  • Квавар – планета?
  • Станция «Тяньгун»
  • Где находится астероид Психея
  • «Кассини» – космический аппарат
  • Аппарат «Чанъэ»
  • Спутник Хииака
  • Карликовая планета Эрида
  • Спутник Дисноми
  • Карликовая планета Церера
  • Орбита астероида Паллада
  • Орбита астероида Веста
  • Орбита астероида Юнона
  • Астероид Геба
  • Астероид Эвномия
  • Астероид Апофис
  • Поток Геминиды
  • Сидерические сутки
  • Какие планеты относят к планетам-гигантам
  • Газовые гиганты в Солнечной системе
  • Планеты: ледяные гиганты
  • Какая скорость является первой космической скоростью
  • Сидерический год
  • Северный и Южный полюс мира
  • Образование планетезималей
  • Протопланеты Солнечной системы
  • Гигантские молекулярные облака
  • Облако межзвездного газа
  • Гравитационный коллапс звезды
  • Звездное население галактики
  • Звездное гало
  • Звездные плеяды
  • Виды туманностей
  • Темная туманность в астрономии
  • Звездные скопления и ассоциации
  • Планетарные туманности
  • Солнечный ветер
  • Объекты каталога Мессье
  • Красные гиганты: это звезды или их останки?
  • Звезда: красный сверхгигант
  • Как образуются отражательные туманности
  • Остатки сверхновых: туманности из света
  • Туманность Гантель М 27
  • Туманность Кольцо в телескопе
  • Туманность Кошачий глаз: фото, удивившее всех
  • Туманность Песочные Часы
  • Туманность Улитка в созвездии Водолей
  • Туманность Конская Голова: фото, изменившее мир
  • Угольный Мешок в созвездии Южный Крест
  • Туманность Душа
  • Туманность Орион
  • Туманность Тарантул: фото и наблюдения
  • Туманность Вуаль в созвездии Лебедь
  • Звезды в созвездии Близнецы
  • Созвездие Весы на небе
  • Созвездие Водолей на небе
  • Звезды в созвездии Возничий
  • Созвездие Волк: фото и наблюдения
  • Звезды в созвездии Волопас
  • Созвездие Волосы Вероники: фото и наблюдения
  • Звезды созвездия Ворон
  • Звезды созвездия Геркулес
  • Звезды созвездия Гидра
  • Звезды созвездия Голубь
  • Звезды созвездия Гончие Псы
  • Звезды в созвездии Дева
  • Звезды созвездия Дельфин
  • Звезды созвездия Дракон
  • Созвездие Единорог: фото и наблюдения
  • Легенда о созвездии Жертвенник
  • Созвездие Жираф на небе
  • Созвездие Заяц на небе
  • Созвездие Змееносец на небе
  • Созвездие Змея на небе
  • Созвездие Кассиопея: фото и наблюдения
  • Звезды в созвездии Киль
  • Звезды в созвездии Кита
  • Созвездие Козерога на небе
  • Сколько звезд в созвездии Компас
  • Звезды в созвездии Корма
  • Созвездие Льва на небе
  • Легенда о созвездии Летучая Рыба
  • Легенда о созвездии Лисичка
  • Созвездие Малый Конь
  • Созвездие Малый Лев
  • Как выглядит созвездие Муха
  • Созвездие Насос: фото и наблюдения
  • Созвездие Овна на небе
  • Звезды созвездия Орла
  • Созвездие Павлин
  • Звезды созвездия Паруса

гравитация, лунные приливы и отливы

Что такое притяжение Земли и Луны? Это сила и взаимодействие материи, свойственное всем телам и предметам в нашей Вселенной. По другому, называется гравитацией или всемирным тяготением.

Безусловно, каждый слышал это понятие, но не все понимают его значение и роль в окружающем нас мире. Хотя во многом благодаря силам гравитации этот мир и существует в таком виде, каким мы его наблюдаем вокруг себя. Можно сказать, что земная жизнь напрямую зависит от данного явления.

Гравитация

Сила гравитации на Земле

Гравитационное поле Земли представляет собой поле силы тяжести, которое формируется земным тяготением и центробежной силой планеты, вызванной её вращение вокруг своей оси.

Гравитацию можно рассчитать, если знать массу тел и расстояние между их центрами. Также следует учитывать, гравитационное поле. Поскольку чем оно сильнее, тем больше будет масса тела и, соответственно, его ускорение.

С какой силой притягивается к Земле или точнее, как рассчитать силы гравитации, можно ознакомиться тут.

Притяжение Земли и Луны

Не секрет, что Луна является естественным спутником нашей планеты. То есть сила притяжения Земли удерживает её возле себя. Однако учёные установили, что расстояние до спутника ежегодно увеличивается почти на 4 см. Почему это происходит, рассмотрим ниже.

Поскольку лунные значения размера и массы меньше нашей планеты, то его сила притяжения намного слабее.

Сила притяжения Луны к Земле


Как стало известно, существует взаимное притяжение Земли и Луны. Разумеется, взаимодействие земной и лунной стороны не проходит незаметно для обоих. По данным учёных, гравитационное поле нашего спутника влияет на разные земные сферы.

Главным образом, лунная гравитация формирует на Земле периодические изменения уровня земной поверхности. Прежде всего, такие изменения связаны с вращением планеты вокруг совей оси и движением Луны по орбите. По-другому их называют лунными приливами.

Земля и Луна

Что такое лунные приливы и отливы?

Как оказалось, два раза за сутки происходит повышение и понижение уровня воды на водных просторах Земли. Это связано с притяжением Луной отдельных частиц с земной поверхности. То есть, те элементы, которые находятся ближе к ней, притягиваются сильнее (расстояние между ними уменьшается), и наоборот. А так как наша планета беспрерывно вращается, то и влияние на определенные частицы меняется. Наибольшее влияние оказывается на водную оболочку.

Так вот, сторона, обращенная к Луне в определенный промежуток времени, испытывает большую силу притяжения к ней. В результате вода на этой стороне поднимается, образуя прилив, тем самым снижая уровень воды на противоположной стороне, формируя отлив.

Кроме того, из-за земного вращения приливная волна движется в направлении с запада на восток. А также она опережает лунное движение. В свою очередь, эта борьба на опережение увеличивает скорость движения Луны. Собственно говоря, вот и причина её удаления от Земли.

Лунные приливы и отливы

Однако, перемещение воды в океанах влияет и на саму планету. Поскольку приливная волна практически постоянно наталкивается на материки, что создает для неё препятствия. В итоге, эти преграды, вращение планеты и лунная гравитация вызывают силу, которая действует противоположно земной поверхности.

Как результат, происходит уменьшение скорости вращения Земли вокруг своей оси. Поэтому мы наблюдаем увеличение продолжительности оборота планеты, и соответственно увеличение продолжительности дня. Конечно, процесс данного роста протекает очень медленно. Но его наличие отрицать сложно.

Как видно, любой происходящий процесс на планете, нашей или любой другой, обязательно связан с какими-либо процессами на других объектах. Это могут быть как земные, скажем ближние, объекты, так и космические тела. Все во Вселенной взаимосвязанно и непрерывно. Вероятно, наша задача не просто узнать и изучить взаимодействие, но и использовать накопленные знания для поддержания и сохранения жизни.

Идеальное одиночество и покой — лучшее, что способен подарить людям единственный спутник Земли.

Харуки Мураками. 1Q84

Сила притяжения земли равна g. Гравитация

Мы живем на Земле, мы перемещаемся по ее поверхности, как по краю какого-то скалистого утеса, который возвышается над бездонной пропастью. Мы держимся на этом краю пропасти только благодаря тому, что на нас действует сила притяжения Земли ; мы не падаем с земной поверхности только потому, что имеем, как говорят, какую-то определенную весомость. Мы мгновенно слетели бы с этого «утеса» и стремительно полетели бы в бездну пространства, если бы вдруг перестала действовать сила тяжести нашей планеты. Мы бесконечно долго носились бы в бездне мирового пространства, не зная ни верха, ни низа.

Передвижение по Земле

Своим передвижением по Земле мы тоже обязаны наличию силы тяжести. Мы ходим по Земле и непрестанно преодолеваем сопротивление этой силы, ощущая ее действие, как некоторый тяжелый груз на своих ногах. Этот «груз» особенно дает себя знать при подъеме в гору, когда приходится волочить его, словно какие-то тяжелые гири, привешенные к ногам. Он не менее резко сказывается и при спуске с горы, вынуждая нас ускорять шаги. Преодоление силы тяжести при передвижении по Земле. Эти направления – «верх» и «низ» – указывает нам только сила тяжести. Во всех точках земной поверхности она направлена почти к центру Земли. Поэтому, понятия «низ» и «верх» будут диаметрально противоположными для так называемых антиподов, т. е. людей, обитающих на диаметрально противоположных частях поверхности Земли. Например, то направление, которое для живущих в Москве, показывает «низ», для жителей Огненной Земли показывает «верх». Направления, показывающие «низ» для людей, находящихся на полюсе и на экваторе, составляют прямой угол; они перпендикулярны между собой. Вне Земли, при удалении от нее, сила тяжести уменьшается, так как уменьшается сила притяжения (сила притяжения Земли, как и всякого другого мирового тела, распространяется в пространстве неограниченно далеко) и увеличивается центробежная сила, которая уменьшает силу тяжести. Следовательно, чем выше мы будем поднимать какой-нибудь груз, например, на воздушном шаре, тем меньше будет весить этот груз.

Центробежная сила Земли

Вследствие суточного вращения возникает центробежная сила Земли . Эта сила всюду на поверхности Земли действует в направлении, перпендикулярном к земной оси и в сторону от нее. Центробежная сила невелика по сравнению с силой притяжения . На экваторе она достигает наибольшей величины. Но и здесь, согласно вычислениям Ньютона, центробежная сила составляет только 1/289 долю силы притяжения. Чем дальше к северу от экватора, тем меньше центробежная сила. На самом полюсе она равна нулю .
Действие центробежной силы Земли. На некоторой высоте центробежная сила возрастет настолько, что она будет равна силе притяжения, и сила тяжести сделается сначала равной нулю, а затем, с увеличением расстояния от Земли, примет отрицательное значение и будет непрерывно возрастать, будучи направлена в противоположную сторону по отношению к Земле.

Сила тяжести

Равнодействующая силы притяжения Земли и центробежной силы называется силой тяжести . Сила тяжести во всех точках земной поверхности была бы одинакова, если бы наша совершенно точного и правильного шара, если бы ее масса всюду была одинаковой плотности и, наконец, если не было бы суточного вращения вокруг оси. Но, так как наша Земля не является правильным шаром, не состоит во всех своих частях из пород одинаковой плотности и все время вращается, то, следовательно, сила тяжести в каждой точке земной поверхности несколько различна . Стало быть, в каждой точке земной поверхности величина силы тяжести зависит от величины центробежной силы, уменьшающей силу притяжения, от плотности земных пород и расстояния от центра Земли . Чем больше это расстояние, тем меньше сила тяжести. Радиусы Земли, которые одним своим концом как бы упираются в земной экватор, – самые большие. Радиусы, имеющие своим концом точку Северного или Южного полюса, – наименьшие. Поэтому все тела на экваторе имеют меньшую тяжесть (меньший вес), чем на полюсе. Известно, что на полюсе сила тяжести больше, чем на экваторе, на 1/289 долю . Эту разность тяжести одних и тех же тел на экваторе и на полюсе можно узнать при их взвешивании с помощью пружинных весов. Если же мы будем взвешивать тела на весах с гирями, то этой разности мы не заметим. Весы будут показывать один и тот же вес, как на полюсе, так и на экваторе; гири, как и тела, которые взвешиваются, тоже, конечно, изменятся в весе.
Пружинные весы как способ измерения силы тяжести на экваторе и на полюсе. Допустим, что корабль с грузом весит в заполярных областях, вблизи полюса, около 289 тысяч тонн. По приходе в порты вблизи экватора корабль с грузом будет весить уже только около 288 тысяч тонн. Таким образом, на экваторе корабль потерял в весе около тысячи тонн. Все тела держатся на земной поверхности только благодаря тому, что на них действует сила тяжести. Утром, вставая с кровати, вы в состоянии спустить ноги на пол только потому, что эта сила тянет их вниз.

Сила тяжести внутри Земли

Посмотрим, как изменяется сила тяжести внутри Земли . С углублением внутрь Земли сила тяжести непрерывно увеличивается вплоть до некоторой глубины. На глубине около тысячи километров сила тяжести будет иметь максимальное (наибольшее) значение и увеличится по сравнению с ее средней величиной на земной поверхности (9,81 м/сек) приблизительно на пять процентов. При дальнейшем углублении сила тяжести станет непрерывно уменьшаться и в центре Земли будет равна нулю.

Предположения относительно вращения Земли

Наша Земля вращаясь делает полный оборот вокруг своей оси в 24 часа. Центробежная сила, как известно, возрастает пропорционально квадрату угловой скорости. Следовательно, если Земля ускорит свое вращение вокруг оси в 17 раз, то центробежная сила увеличится в 17 раз в квадрате, т. е. в 289 раз. В обычных условиях, как уже сказано выше, центробежная сила на экваторе составляет 1/289 долю силы притяжения. При увеличении в 17 раз сила притяжения и центробежная сила делаются равными. Сила тяжести – равнодействующая этих двух сил – при подобном увеличении скорости осевого вращения Земли будет равна нулю.
Значение центробежной силы при вращении Земли. Эта скорость вращения Земли вокруг оси называется критической, так как при такой скорости вращения нашей планеты все тела на экваторе потеряли бы свою тяжесть. Продолжительность суток в этом критическом случае будет составлять приблизительно 1 час 25 минут. При дальнейшем ускорении вращения Земли все тела (прежде всего на экваторе) сначала потеряют свою весомость, а затем будут отброшены центробежной силой в пространство, а сама Земля этой же силой будет разорвана на части. Заключение наше было бы правильным, если бы Земля представляла собой абсолютно твердое тело и при ускорении своего вращательного движения не изменила бы своей формы, другими словами, если бы радиус земного экватора сохранил свою величину. Но известно, что при ускорении вращения Земли поверхность ее должна будет претерпеть некоторую деформацию: она станет сжиматься в направлении полюсов и расширяться в направлении экватора; она будет принимать все более и более приплюснутый вид. Длина радиуса земного экватора при этом начнет возрастать и этим увеличивать центробежную силу. Таким образом, тела на экваторе потеряют свою тяжесть раньше, чем скорость вращения Земли увеличится в 17 раз, и катастрофа с Землей наступит раньше, чем сутки сократят свою продолжительность до 1 часа 25 минут. Иначе говоря, критическая скорость вращения Земли будет несколько меньше, а предельная длина суток несколько больше. Представьте себе мысленно, что скорость вращения Земли вследствие каких-то неизвестных причин приблизится к критической. Что тогда станет с земными обитателями? Прежде всего, всюду на Земле сутки будут составлять, например, около двух-трех часов. День и ночь будут сменяться калейдоскопически быстро. Солнце, как в планетарии, очень быстро будет перемещаться по небу, и едва вы успеете проснуться и умыться, как оно уже скроется за горизонтом, и на смену ему наступит ночь. Люди перестанут точно ориентироваться во времени. Никто не будет знать, которое сейчас число месяца и какой день недели. Нормальная человеческая жизнь будет дезорганизована. Маятниковые часы замедлят свой ход, а затем всюду остановятся. Они ведь ходят потому, что на них действует сила тяжести. Ведь и в нашем быту, когда «ходики» начинают отставать или спешить, то необходимо укорачивать или удлинять их маятник, а то еще и подвешивать к маятнику какой-нибудь дополнительный груз. Тела на экваторе будут терять свою весомость. В этих воображаемых условиях легко можно будет поднимать очень тяжелые тела. Не составит особого труда взвалить на плечи лошадь, слона или поднять даже целый дом. Птицы потеряют возможность приземляться. Вот кружится над корытом с водой стая воробьев. Они громко чирикают, но не в состоянии спуститься. Брошенная им горсть зерна повисла бы над Землей отдельными зернинками. Пусть, далее, скорость вращения Земли все более и более приближается к критической. Наша планета сильно деформируется и принимает все более приплюснутый вид. Она уподобляется быстро вращающейся карусели и грозит вот-вот сбросить с себя своих обитателей. Реки тогда перестанут течь. Они будут представлять собой длинные стоячие болота. Громадные океанские корабли будут еле касаться своими днищами водной глади, подводные лодки не в состоянии будут погрузиться в глубины моря, рыбы и морские животные будут плавать по поверхности морей и океанов, они уже не смогут скрыться в морской пучине. Моряки уже не смогут бросить якорь, они перестанут владеть рулями своих судов, большие и малые корабли будут стоять неподвижно. Вот еще одна воображаемая картина. Пассажирский железнодорожный поезд стоит у вокзала. Свисток уже дан; поезд должен отойти. Машинист принял все зависящие от него меры. Кочегар щедро бросает в топку уголь. Крупные искры летят из трубы паровоза. Колеса отчаянно вертятся. Но паровоз стоит неподвижно. Его колеса не касаются рельс, и нет трения между ними. Настанет момент, когда люди не будут иметь возможности спуститься на пол; они прилипнут, как мухи, к потолку. Пусть скорость вращения Земли все увеличивается. Центробежная сила все более превосходит по своей величине силу притяжения… Тогда люди, животные, предметы домашнего обихода, дома, все находящиеся на Земле предметы, весь животный ее мир будут отброшены в мировое пространство. От Земли отделится Австралийский материк и колоссальной черной тучей повиснет в пространстве. В глубь безмолвной бездны, прочь от Земли, полетит Африка. В громадное количество сферических капель превратятся воды Индийского океана и тоже полетят в беспредельные дали. Средиземное море, не успев еще превратиться в гигантские скопления капель, всей своей толщей воды отделится от днища, по которому свободно можно будет пройти от Неаполя до Алжира. Наконец, скорость вращения настолько увеличится, центробежная сила настолько возрастет, что вся Земля разорвется на части. Однако и этого случиться не может. Скорость вращения Земли, как мы уже говорили выше, не возрастает, а наоборот, даже немного убывает, – правда, настолько мало, что, как мы уже знаем, за 50 тысяч лет продолжительность суток увеличивается всего только на одну секунду. Иначе говоря, Земля теперь вращается с такой скоростью, которая необходима, чтобы под теплотворными, живительными лучами Солнца многие тысячелетия процветал животный и растительный мир нашей планеты.

Значение трения

Посмотрим теперь, какое значение имеет трение и что было бы, если бы оно отсутствовало. Трение, как известно, вредно отражается на нашей одежде: у пальто раньше всего изнашиваются рукава, а у ботинок подошвы, так как рукава и подошвы больше всего подвержены действию трения. Но вообразите себе на минуту, что поверхность нашей планеты была как бы хорошо отполированная, совершенно гладкая, и возможность трения была бы исключена. Могли ли бы мы ходить по такой поверхности? Конечно, нет. Всем известно, что даже по льду и по натертому полу идти очень трудно и приходится остерегаться, чтобы не упасть. А ведь поверхность льда и натертого пола все же обладает некоторым трением.
Сила трения на льду. Если бы на поверхности Земли исчезла сила трения, то на нашей планете вечно царил бы неописуемый хаос. Если не будет никакого трения, то будет вечно бушевать море и никогда не утихнет буря. Песчаные смерчи не перестанут висеть над Землей, и постоянно будет дуть ветер. Мелодичные звуки рояля, скрипки и страшный рев хищных зверей смешаются и без конца будут распространяться в воздухе. При отсутствии трения тело, пришедшее в движение, никогда бы не остановилось. По абсолютно гладкой земной поверхности вечно перемешались бы в самых разнообразных направлениях различные тела и предметы. Смешон и трагичен был бы мир Земли, если бы не существовало трения и притяжения Земли.

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

По какому закону вы собираетесь меня повесить?
— А мы вешаем всех по одному закону — закону Всемирного Тяготения.

Закон всемирного тяготения

Явление гравитации — это закон всемирного тяготения. Два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.

Математически мы можем выразить этот великий закон формулой


Тяготение действует на огромных расстояниях во Вселенной . Но Ньютон утверждал, что взаимно притягиваются все предметы. А правда ли, что любые два предмета притягивают друг друга? Только представьте, известно, что Земля притягивает вас, сидящих на стуле. Но задумывались ли о том, что компьютер и мышка притягивают друг друга? Или карандаш и ручка, лежащие на столе? В этом случае в формулу подставляем массу ручки, массу карандаша, делим на квадрат расстояния между ними, с учетом гравитационной постоянной, получаем силу их взаимного притяжения. Но, она выйдет на столько маленькой (из-за маленьких масс ручки и карандаша), что мы не ощущаем ее наличие. Другое дело, когда речь идет о Земле и стуле, или Солнце и Земле. Массы значительные, а значит действие силы мы уже можем оценить.

Вспомним об ускорении свободного падения . Это и есть действие закона притяжения. Под действием силы тело изменяет скорость тем медленнее, чем больше масса. В результате, все тела падают на Землю с одинаковым ускорением.

Чем вызвана эта невидимая уникальная сила? На сегодняшний день известно и доказано существование гравитационного поля. Узнать больше о природе гравитационного поля можно в дополнительном материале темы.

Задумайтесь, что такое тяготение? Откуда оно? Что оно собой представляет? Ведь не может быть так, что планета смотрит на Солнце, видит, насколько оно удалено, подсчитывает обратный квадрат расстояния в соответствии с этим законом?

Направление силы притяжения

Есть два тела, пусть тело А и В. Тело А притягивает тело В. Сила, с которой тело А воздействует, начинается на теле B и направлена в сторону тела А. То есть как бы «берет» тело B и тянет к себе. Тело В «проделывает» то же самое с телом А.


Каждое тело притягивается Землей. Земля «берет» тело и тянет к своему центру. Поэтому эта сила всегда будет направлена вертикально вниз, и приложена она с центра тяжести тела, называют ее силой тяжести.

Главное запомнить

Некоторые методы геологической разведки, предсказание приливов и в последнее время расчет движения искусственных спутников и межпланетных станций. Заблаговременное вычисление положения планет.

Можем ли мы сами поставить такой опыт, а не гадать, притягиваются ли планеты, предметы?

Такой прямой опыт сделал Кавендиш (Генри Кавендиш (1731-1810) — английский физик и химик) при помощи прибора, который показан на рисунке. Идея состояла в том, чтобы подвесить на очень тонкой кварцевой нити стержень с двумя шарами и затем поднести к ним сбоку два больших свинцовых шара. Притяжение шаров слегка перекрутит нить — слегка, потому что силы притяжения между обычными предметами очень слабы. При помощи такого прибора Кавендишу удалось непосредственно измерить силу, расстояние и величину обеих масс и, таким образом, определить постоянную тяготения G .

Уникальное открытие постоянной тяготения G, которая характеризует гравитационное поле в пространстве, позволила определить массу Земли, Солнца и других небесных тел. Поэтому Кавендиш назвал свой опыт «взвешиванием Земли».

Интересно, что у различных законов физики есть некоторые общие черты. Обратимся к законам электричества (сила Кулона) . Электрические силы также обратно пропорциональны квадрату расстояния, но уже между зарядами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: «Возьмем массу такой-то величины», потому что вы выбираете ее сами. Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?

Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона — как ни удивительно, это тоже число с 42 нулями. И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

Эйнштейну пришлось видоизменить законы тяготения в соответствии с принципами относительности. Первый из этих принципов гласит, что расстояние х нельзя преодолеть мгновенно, тогда как по теории Ньютона силы действуют мгновенно. Эйнштейну пришлось изменить законы Ньютона. Эти изменения, уточнения очень малы. Одно из них состоит вот в чем: поскольку свет имеет энергию, энергия эквивалентна массе, а все массы притягиваются, — свет тоже притягивается и, значит, проходя мимо Солнца, должен отклоняться. Так оно и происходит на самом деле. Сила тяготения тоже слегка изменена в теории Эйнштейна. Но этого очень незначительного изменения в законе тяготения как раз достаточно, чтобы объяснить некоторые кажущиеся неправильности в движении Меркурия.

Физические явления в микромире подчиняются иным законам, нежели явления в мире больших масштабов. Встает вопрос: как проявляется тяготение в мире малых масштабов? На него ответит квантовая теория гравитации. Но квантовой теории гравитации еще нет. Люди пока не очень преуспели в создании теории тяготения, полностью согласованной с квантовомеханическими принципами и с принципом неопределенности.

ПостНаука развенчивает научные мифы и объясняет общепринятые заблуждения. Мы попросили наших экспертов рассказать о гравитации — силе, из-за которой все тела стремятся упасть на Землю, — и единственном фундаментальном взаимодействии, в котором напрямую участвуют все частицы, которые мы знаем.

Искусственные спутники Земли будут обращаться вокруг нее вечно

Это правда, но отчасти. Зависит это от орбиты. На низких орбитах спутники вечно вокруг Земли не обращаются. Это связано с тем, что, помимо гравитации, существуют и другие факторы. То есть если бы, допустим, у нас была только Земля и мы бы запустили на ее орбиту спутник, то он летал бы очень долго. Летать вечно он не будет, потому что существуют различные возмущающие факторы, которые его могут свести с орбиты. В первую очередь это торможение в атмосфере, то есть это негравитационные факторы. Таким образом, связь этого мифа с гравитацией неочевидна.

Если спутник обращается на высоте до тысячи километров над Землей, то торможение в атмосфере будет влиять. На более высоких орбитах начинают действовать прочие гравитационные факторы — притяжение Луны, других планет . Если спутник оставить бесконтрольно на орбите вокруг Земли, то его орбита будет эволюционировать хаотически на больших интервалах времени из-за того, что Земля не единственное притягивающее тело. Не уверен, что эта хаотическая эволюция обязательно приведет к падению спутника на Землю — он может улететь или перейти на другую орбиту. Другими словами, он может летать вечно, но не по одной и той же орбите.

В космосе нет гравитации

Это неправда. Иногда кажется, что раз на МКС космонавты находятся в состоянии невесомости, то и земная гравитация на них не действует. Это не так. Более того, она там почти такая же, как на Земле.

В самом деле, сила гравитационного притяжения между двумя телами прямо пропорциональна произведению их масс и обратно пропорциональна расстоянию между ними. Высота орбиты МКС примерно на 10% больше земного радиуса. Поэтому сила притяжения там лишь немного меньше. Однако космонавты испытывают состояние невесомости, так как они как бы все время падают на Землю, но промахиваются.

Можно представить себе такую картину. Построим башню высотой километров 400 (неважно, что сейчас нет таких материалов, чтобы ее сделать). Поставим наверху стул и сядем на него. Мимо пролетает МКС, то есть мы находимся совсем-совсем рядом. Мы сидим на стуле и «весим» (хотя по сравнению с нашим весом на поверхности Земли мы полегчали, но зато нам надо надеть скафандр, так что это компенсирует наше «похудание»), а на МКС космонавты парят в невесомости. Но мы находимся в одном и том же гравитационном потенциале.

Современные теории гравитации являются геометрическими. То есть массивные тела искажают пространство-время вокруг себя. Чем ближе мы к тяготеющему телу, тем больше искажение. Как вы двигаетесь по искривленному пространству — это уже не так важно. Оно остается искривленным, то есть гравитация никуда не делась.

Парад планет может «уменьшить гравитацию» на Земле

Это неправда. Парадами планет называют такие моменты, когда все планеты выстраиваются в цепочку по направлению к Солнцу и их гравитационные силы складываются арифметически. Разумеется, на одной прямой все планеты никогда не соберутся, но если ограничиться требованием, чтобы все восемь планет собрались в гелиоцентрическом секторе с углом раствора не более 90°, то такие «большие» парады иногда происходят — в среднем один раз за 120 лет.

Может ли совместное влияние планет изменить гравитацию на Земле? Любители физики знают, что сила тяготения изменяется прямо пропорционально массе тела и обратно пропорционально квадрату расстояния до него (М/R2). Наибольшее гравитационное влияние на Землю оказывают (она не очень массивна, но расположена близко) и (он очень массивен). Простой расчет показывает, что наше притяжение к Венере даже при наибольшем с ней сближении в 50 млн раз слабее нашего притяжения к Земле; для Юпитера это соотношение составляет 30 млн. То есть если ваш вес около 70 кг, то Венера и Юпитер тянут вас к себе с силой примерно в 1 миллиграмм. Во время парада планет они тянут в разные стороны, практически компенсируя влияние друг друга.

Но это еще не все. Обычно под гравитацией Земли мы понимаем не силу притяжения к планете, а наш вес.

А он зависит еще и от того, как мы движемся. Например, космонавтов на МКС и нас с вами Земля притягивает почти одинаково, но у них там невесомость, поскольку они находятся в состоянии свободного падения, а мы упираемся в Землю. А по отношению к другим планетам мы все ведем себя, как экипаж МКС: вместе с Землей мы свободно «падаем» на каждую из окружающих планет. Поэтому мы не ощущаем даже того миллиграмма, о котором было сказано выше.

Но некоторый эффект все же есть. Дело в том, что мы, живя на поверхности Земли, и сама Земля, если иметь в виду ее центр, находимся на разном расстоянии от притягивающих нас планет. Эта разница не превышает размера Земли, но иногда имеет значение. Именно из-за нее в океанах под влиянием притяжения Луны и Солнца возникают приливы и отливы. Но если иметь в виду человека и притяжение к планетам, то этот приливный эффект невероятно слаб (в десятки тысяч раз слабее прямого притяжения к планетам) и составляет для каждого из нас менее одной миллионной доли грамма — практически ноль.

Владимир Сурдин

кандидат физико-математических наук, старший научный сотрудник Государственного астрономического института им. П. К. Штернберга МГУ

Тело, подлетающее к черной дыре, будет разорвано

Это неправда. При приближении к сила гравитации и приливные силы возрастают. Но вовсе не обязательно приливные силы становятся крайне велики, когда объект подлетает к горизонту событий.

Приливные силы зависят от массы, вызывающего прилив тела, расстояния до него и от размеров объекта, в котором формируется прилив. Важно, что расстояние считается до центра тела, а не до поверхности. Так что приливные силы на горизонте черной дыры всегда имеют конечное значение.

У черной дыры размер прямо пропорционален массе. Так что, если мы возьмем какой-то предмет и будем кидать его в разные черные дыры, приливные силы будут зависеть только от массы черной дыры. Причем чем больше масса, тем прилив слабее на горизонте.

Гравитационная сила – это сила, с которой притягиваются друг к другу тела определённой массы, находящиеся на определённом расстоянии друг от друга.

Английский учёный Исаак Ньютон в 1867 г. открыл закон всемирного тяготения. Это один из фундаментальных законов механики. Суть этого закона в следующем: любые две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Сила притяжения – первая сила, которую почувствовал человек. Это сила, с которой Земля воздействует на все тела, находящиеся на её поверхности. И эту силу любой человек ощущает как собственный вес.

Закон всемирного тяготения


Существует легенда, что закон всемирного тяготения Ньютон открыл совершенно случайно, гуляя вечером по саду своих родителей. Творческие люди постоянно находятся в поиске, а научные открытия — это не мгновенное озарение, а плод длительной умственной работы. Сидя под яблоней, Ньютон осмысливал очередную идею, и вдруг на голову ему упало яблоко. Ньютону было понятно, что яблоко упало в результате действия силы притяжения Земли. «Но почему не падает на Землю Луна? — задумался он. — Значит, на неё действует ещё какая-то сила, удерживающая её на орбите». Так был открыт знаменитый закон всемирного тяготения .

Учёные, изучавшие до этого вращение небесных тел, считали, что небесные тела подчиняются каким-то совершенно другим законам. То есть, предполагалось, что существуют совершенно разные законы притяжения на поверхности Земли и в космосе.

Ньютон объединил эти предполагаемые виды гравитации. Анализируя законы Кеплера, описывающие движение планет, он пришёл к выводу, что сила притяжения возникает между любыми телами. То есть, и на яблоко, упавшее в саду, и на планеты в космосе действуют силы, подчиняющиеся одному закону – закону всемирного тяготения.

Ньютон установил, что законы Кеплера действуют только в том случае, если между планетами существует сила притяжения. И эта сила прямо пропорциональна массам планет и обратно пропорциональная квадрату расстояния между ними.

Сила притяжения рассчитывается по формуле F=G m 1 m 2 / r 2

m 1 – масса первого тела;

m 2 – масса второго тела;

r – расстояние между телами;

G – коэффициент пропорциональности, который называют гравитационной постоянной или постоянной всемирного тяготения .

Его значение определили экспериментально. G = 6,67·10 -11 Нм 2 /кг 2

Если две материальные точки с массой, равной единице массы, находятся на расстоянии, равном единице расстояния, то они притягиваются с силой, равной G .

Силы притяжения и есть гравитационные силы. Их называют ещё силами тяготения . Они подчинены закону всемирного тяготения и проявляются всюду, так как все тела имеют массу.

Сила тяжести


Гравитационная сила вблизи поверхности Земли – это сила, с которой все тела притягиваются к Земле. Её называют силой тяжести . Она считается постоянной, если расстояние тела от поверхности Земли мало по сравнению с радиусом Земли.

Так как сила тяжести, являющаяся гравитационной силой, зависит от массы и радиуса планеты, то на разных планетах она будет разной. Так как радиус Луны меньше радиуса Земли, то и сила притяжения на Луне меньше, чем на Земле в 6 раз. А на Юпитере, наоборот, сила тяжести в 2,4 раза больше силы тяжести на Земле. Но масса тела остаётся постоянной, независимо от того, где её измеряют.

Многие путают значение веса и силы тяжести, считая, что сила тяжести всегда равна весу. Но это не так.

Сила, с которой тело давит на опору или растягивает подвес, это и есть вес. Если убрать опору или подвес, тело начнёт падать с ускорением свободного падения под действием силы тяжести. Сила тяжести пропорциональна массе тела. Она вычисляется по формуле F = mg , где m – масса тела, g – ускорение свободного падения.

Вес тела может изменяться, а иногда и вообще исчезать. Представим себе, что мы находимся в лифте на верхнем этаже. Лифт стоит. В этот момент наш вес Р и сила тяжести F, с которой Земля притягивает нас, равны. Но как только лифт начал двигаться вниз с ускорением а , вес и сила тяжести уже не равны. Согласно второму закону Ньютона mg + P = ma . Р =m g — ma .

Из формулы видно, что наш вес при движении вниз уменьшился.

В момент, когда лифт набрал скорость и стал двигаться без ускорения, наш вес снова равен силе тяжести. А когда лифт стал замедлять своё движение, ускорение а стало отрицательным, и вес увеличился. Наступает перегрузка.

А если тело двигается вниз с ускорением свободного падения, то вес и вовсе станет равным нулю.

При a =g Р =mg-ma= mg — mg=0

Это состояние невесомости.

Итак, все без исключения материальные тела во Вселенной подчиняются закону всемирного тяготения. И планеты вокруг Солнца, и все тела, находящиеся у поверхности Земли.

Солнце, планеты и гравитация. Всемирное тяготение

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету .

Вторая космическая скорость

Запишем закон сохранения энергии:

,

где в правой части равенства стоит работа силы тяжести: A = Fs.

Отсюда получаем, что вторая космическая скорость равна:

Таким образом, вторая космическая скорость в раз больше первой:

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

Зачастую очень сложно объяснить словами самые простые вещи или устройство того или иного механизма. Но обычно, понимание приходит достаточно легко, если увидеть их глазами, а еще лучше и покрутить в руках. Но некоторые вещи невидимы для нашего зрения и даже будучи простыми очень сложны для понимания.
Например, что такое электрический ток — есть множество определений, но ни одно из них не описывает его механизм в точности, без двусмысленности и неопределенности.
С другой стороны, электротехника достаточно сильно развитая наука, в которой с помощью математических формул подробно описываются любые электрические процессы.
Так вот почему бы не показать подобные процессы с помощью этих самых формул и компьютерной графики.
Но сегодня рассмотрим действие более простого процесса, чем электричество — силу тяготения. Казалось бы, что там сложного, ведь закон всемирного тяготения изучают в школе, но тем не менее… Математика описывает процесс так, как он проходит в идеальных условиях, в некоем виртуальном пространстве, где нет никаких ограничений.
В жизни обычно все не так и на рассматриваемый процесс непрерывно накладывается множество различных обстоятельств, незаметных или несущественных на первый взгляд.
Знать формулу и понимать её действие — это немножко разные вещи.
Итак, сделаем небольшой шаг к пониманию закона тяготения. Сам закон прост — сила тяготения прямо пропорциональна массам и обратно пропорциональна квадрату расстояния между ними, но сложность заключается в невообразимом количестве взаимодействующих объектов.
Да, будем рассматривать только силу тяготения, так сказать, в полном одиночестве, что конечно неверно, но в данном случае допустимо, так как это просто способ показать невидимое.
И еще, в статье есть код JavaScript, т.е. все рисунки на самом деле нарисованы с помощью Canvas, поэтому целиком статью можно взять .
Отображение возможностей гравитации в Солнечной системе
В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения F между двумя материальными точками массы m 1 и m 2 , разделёнными расстоянием r , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

где G — гравитационная постоянная, равная примерно 6,67384×10 -11 Н×м 2 ×кг -2 .
Но мне бы хотелось бы видеть картинку изменения силы тяготения по всей солнечной системе, а не между двумя телами. Поэтому массу второго тела m 2 возьмем равной 1, а массу первого тела обозначим просто m . (То есть, представляем объекты в виде материальной точки — размером в один пиксел, а силу притяжения измеряем относительно другого, виртуального объекта, назовем его «пробным телом», с массой 1 килограмм.) При этом формула будет иметь вид:

Теперь, вместо m подставляем массу интересующего тела, а вместо r перебираем все расстояния от 0 до значения орбиты последней планеты и получим изменение силы тяготения в зависимости от расстояния.
При наложении сил от разных объектов выбираем большую по величине.
Далее, выражаем эту силу не в цифрах, а в соответствующим им оттенках цвета. При этом получится наглядная картинка распределения гравитации в солнечной системе. То есть в физическом смысле, оттенок цвета будет соответствовать весу тела массой 1 килограмм в соответствующей точке солнечной системы.
Следует заметить, что:

  • сила тяготения всегда положительна, не имеет отрицательных значений, т.е. масса не может быть отрицательной
  • сила тяготения не может быть равна нулю, т.е. объект либо существует с какой-то массой, либо не существует вообще
  • силу тяготения нельзя ни заэкранировать, ни отразить (как луч света зеркалом).
(собственно, вот и все ограничения, налагаемые физикой на математику в данном вопросе).
Давайте теперь рассмотрим как отобразить величины силы тяготения цветом.

Чтобы показать числа цветом нужно создать массив в котором индекс был бы равен числу, а значением являлось значение цвета в системе RGB.
Вот градиент цвета от белого к красному, затем желтому, зеленому, синему, фиолетовому и черному. Всего получилось 1786 оттенков цвета.

Количество цветов не так уж и велико, их просто не хватит для отображения всего спектра сил тяготения. Ограничимся силами тяготения от максимальной — на поверхности Солнца и минимальной — на орбите Сатурна. То есть, если силу притяжения на поверхности Солнца (270,0 Н) обозначить цветом, находящимся в таблице под индексом 1, то сила притяжения к Солнцу на орбите Сатурна (0,00006 Н) будет обозначена цветом, с индексом далеко за 1700. Так что все равно цветов не хватит для равномерного выражения величин силы тяготения.
Для того чтобы было хорошо видно самые интересные места в отображаемых силах притяжения нужно чтобы величинам силы притяжения меньше 1Н соответствовали большие изменения цвета, а от 1Н и выше, соответствия не так интересны — видно что сила притяжения, скажем Земли, отличается от притяжения Марса или Юпитера, да и ладно. То есть, цвет не будет пропорционален величине силы притяжения, иначе мы «потеряем» самое интересное.
Для приведения значения силы притяжения к индексу таблицы цвета воспользуемся следующей формулой:


Да, это та самая гипербола, известная ещё со средней школы, только предварительно из аргумента извлечен квадратный корень. (Взято чисто «от фонаря», только для того, чтобы уменьшить соотношение между самым большим и самым маленьким значениями силы притяжения.)
Посмотрите как распределятся цвета в зависимости от притяжения Солнца и планет.


Как видите на поверхности Солнца наше пробное тело будет весить около 274Н или 27,4 кГс, так как 1 Н = 0,10197162 кгс = 0,1 кгс. А на Юпитере почти 26Н или 2,6 кгс, на Земле наше пробное тело весит около 9,8Н или 0,98кгс.
В принципе, все эти цифры очень-очень приблизительные. Для нашего случая это не очень важно, нам нужно превратить все эти значения силы притяжения в соответствующие им значения цвета.
Итак, из таблицы видно, что максимальная величина силы притяжения равна 274Н, а минимальная 0,00006Н. То есть разнятся более чем в 4,5 миллиона раз.

Также видно что все планеты получились почти одного цвета. Но это неважно, важно что будет хорошо видно границы притяжения планет, так как силы притяжения малых значений достаточно хорошо изменяются по цвету.
Конечно, точность невелика, но нам и нужно просто получить общее представление о силах гравитации в Солнечной системе.
Теперь «расставим» планеты в места, соответствующие их удалению от Солнца. Для этого к полученному градиенту цвета нужно приделать какое-то подобие шкалы расстояний. Кривизну орбит, я думаю, можно не учитывать.
Но как всегда космические масштабы, в прямом смысле этих слов, не дают увидеть картинку целиком. Смотрим, Сатурн находится приблизительно в 1430 миллионах километров от Солнца, индекс соответствующий цвету его орбиты равен 1738. Т.е. получается в одном пикселе (если брать в этом масштабе один оттенок цвета равен одному пикселу) приблизительно 822,8 тысяч километров. А радиус Земли приблизительно 6371 километр, т.е. диаметр 12742 километра, где-то в 65 раз меньше одного пиксела. Вот и как тут соблюдать пропорции.
Мы пойдем другим путем. Так как нам интересна гравитация околопланетного пространства, то будем брать планеты по отдельности и раскрашивать их и пространство вокруг них цветом, соответствующим гравитационным силам от них самих и Солнца. Например, возьмем Меркурий — радиус планеты 2,4 тыс. км. и приравняем его к кругу диаметром 48 пикселов, т.е. в одном пикселе будет 100 км. Тогда Венера и Земля будут соответственно 121 и 127 пикселов. Вполне удобные размеры.
Итак, делаем картинку размером 600 на 600 пикселов, определяем значение силы притяжения к Солнцу на орбите Меркурия плюс/минус 30000 км (чтобы планета получилась в центре картинки) и закрашиваем фон градиентом оттенков цвета соответствующим этим силам.
При этом, для упрощения задачи, закрашиваем не дугами, соответствующего радиуса, а прямыми, вертикальными линиями. (Грубо говоря, наше «Солнце» будет «квадратным» и всегда будет находиться на левой стороне.)
Для того, чтобы цвет фона не просвечивался сквозь изображение планеты и зоны притяжения к планете, определяем радиус окружности, соответствующей зоне, где притяжение к планете больше притяжения к Солнцу и закрашиваем её в белый цвет.
Затем в центр картинки помещаем круг, соответствующий диаметру Меркурия в масштабе (48 пикселов) и заливаем его цветом, соответствующим силе притяжения к планете на её поверхности.
Далее от планеты закрашиваем градиентом в соответствии с изменением силы притяжения к ней и при этом постоянно сравниваем цвет каждой точки в слое притяжения к Меркурию с точкой с такими же координатами, но в слое притяжения к Солнцу. Когда эти значения становятся равными, делаем этот пиксел черным и дальнейшее закрашивание прекращаем.
Таким образом получим некую форму видимого изменения силы притяжения планеты и Солнца с четкой границей между ними черного цвета.
(Хотелось сделать именно так, но… не получилось, не смог сделать попиксельное сравнение двух слоев изображения.)

По расстоянию 600 пикселов равны 60 тыс. километров (т.е. один пиксел — 100 км).
Сила притяжения к Солнцу на орбите Меркурия и возле него изменяется лишь в небольшом диапазоне, который в нашем случае обозначается одним оттенком цвета.


Итак, Меркурий и сила тяготения в окрестностях планеты.
Сразу следует отметить, что восемь малозаметных лучей это дефекты от рисования окружностей в Canvas. Они не имеют никакого отношения к обсуждаемому вопросу и их следует просто не замечать.
Размеры квадрата 600 на 600 пикселей, т.е. это пространство в 60 тыс. километров. Радиус Меркурия 24 пиксела — 2,4 тыс. км. Радиус зоны притяжения 23,7 тыс. км.
Круг в центре, который почти белого цвета, это сама планета и её цвет соответствует весу нашего килограммового пробного тела на поверхности планеты — около 373 грамм. Тонкая окружность синего цвета показывает границу между поверхностью планеты и зоной, в которой сила тяготения к планете превышает силу тяготения к Солнцу.
Далее цвет постепенно изменяется, становится все более красным (т.е. вес пробного тела уменьшается) и наконец, становится равным цвету, соответствующему силе притяжения к Солнцу в данном месте, т.е. на орбите Меркурия. Граница между зоной где сила притяжения к планете превышает силу притяжения к Солнцу также отмечена синей окружностью.
Как видите, ничего сверхъестественного нет.
Но в жизни несколько другая картина. Например, на этом и всех остальных изображениях, Солнце находится слева, значит на самом деле, область притяжения планеты должна быть немного «сплющена» слева и вытянута справа. А на изображении — окружность.
Конечно, лучшим вариантом было бы попиксельное сравнение области притяжения к Солнцу и области притяжения к планете и выбор (отображение) большей из них. Но на такие подвиги ни я, как автор этой статьи, ни JavaScript не способны. Работа с многомерными массивами не является приоритетной для данного языка, зато его работу можно показать практически в любом браузере, что и решило вопрос применения.
Да и в случае Меркурия, и всех остальных планет земной группы, изменение силы притяжения к Солнцу не так велико, чтобы отобразить его имеющимся набором оттенков цвета. А вот при рассмотрении Юпитера и Сатурна изменение силы притяжения к Солнцу очень даже заметно.

Венера
Собственно, все тоже самое что и у предыдущей планеты, только размер Венеры и её масса значительно больше, а сила притяжения к Солнцу на орбите планеты меньше (цвет более темный, вернее, более красный), а планета большей массы, поэтому цвет диска планеты более светлый.
Для того чтобы на рисунке 600 на 600 пикселов поместилась планета с зоной притяжения пробного тела массой 1 кг уменьшим масштаб в 10 раз. Теперь в одном пикселе 1 тысяча километров.

Земля+Луна
Чтобы показать Землю и Луну изменить масштаб в 10 раз (как в случае с Венерой) недостаточно, нужно увеличить и размер картинки (радиус орбиты Луны 384,467 тыс. км). Картинка получится размером 800 на 800 пикселей. Масштаб — в одном пикселе 1 тысяча километров (хорошо понимаем что ошибочность картинки ещё больше увеличится).


На картинке четко видно что зоны притяжения Луны и Земли разделены зоной притяжения к Солнцу. То есть, Земля и Луна это система из двух равнозначных планет с разной массой.

Марс с Фобосом и Деймосом
Масштаб — в одном пикселе 1 тысяча километров. Т.е. как Венера, и Земля с Луной. Помним, что расстояния пропорциональны, а отображение силы тяжести нелинейно.


Вот, сразу видно коренное отличие Марса со спутниками от Земли с Луной. Если Земля и Луна являются системой двух планет и, несмотря на разные размеры и массы, выступают как равные партнеры, то спутники Марса находятся в зоне силы притяжения Марса.
Сама планета и спутники практически «потерялись». Белая окружность это орбита дальнего спутника — Деймоса. Увеличим в 10 раз масштаб для лучшего просмотра. В одном пикселе 100 километров.


Эти «жуткие» лучи от Canvas достаточно сильно портят картинку.
Размеры Фобоса и Деймоса непропорционально увеличены в 50 раз, иначе их совсем не видно. Цвет поверхностей этих спутников также не логичен. На самом деле сила притяжения на поверхностях этих планетах меньше силы притяжения к Марсу на их орбитах.
То есть, с поверхностей Фобоса и Деймоса притяжением Марса «сдувает» все. Поэтому цвет их поверхностей должен быть равен цвету на их орбитах, но только для того чтобы было лучше видно, диски спутников окрашены в цвет силы притяжения при отсутствии силы притяжения к Марсу.
Эти спутники должны быть просто монолитны. Кроме того, раз уж на поверхности нет силы притяжения, значит они не могли сформироваться в таком виде, то есть и Фобос и Деймос раньше были частями какого-то другого, большего объекта. Ну или, как минимум, находились в другом месте, с меньшей силой притяжения, чем в зоне притяжения Марса.
Например, вот Фобос . Масштаб — в одном пикселе 100 метров.
Поверхность спутника обозначена синей окружностью, а сила притяжения всей массы спутника белой окружностью.
(На самом деле форма небольших небесных тел Фобоса, Деймоса и т.д. далеко не шарообразна)
Цвет кружка в центре соответствует силе притяжения массы спутника. Чем ближе к поверхности планеты, тем меньше сила притяжения.
(Здесь опять допущена неточность. На самом деле белая окружность — это граница, где сила притяжения к планете становится равной силе притяжения к Марсу на орбите Фобоса.
То есть, цвет снаружи от этой белой окружности должен быть таким же как и снаружи от синей окружности, обозначающей поверхность спутника. А вот показанный переход цвета должен быть внутри белой окружности. Но тогда вообще ничего не будет видно.)

Получается как бы рисунок планеты в разрезе.
Целостность планеты определяется только прочностью материала, из которого состоит Фобос. При меньшей прочности у Марса были бы кольца как у Сатурна, от разрушения спутников.


Да и похоже, что распад космических объектов не такое уж исключительное событие. Вот даже космический телескоп «Хаббл» «засёк» подобный случай.

Распад астероида P/2013 R3, который находится на расстоянии более 480 миллионов километров от Солнца (в поясе астероидов, дальше Цереры). Диаметр четырех крупнейших фрагментов астероида достигает 200 метров, их общая масса составляет около 200 тысяч тонн.
А это Деймос . Все тоже, что и у Фобоса. Масштаб — в одном пикселе 100 метров. Только планета поменьше и соответственно полегче, а также находится дальше от Марса и сила притяжения к Марсу здесь поменьше (фон картинки потемнее, т.е. более красный).

Церера

Ну Церера ничего особенного не представляет, за исключением раскраски. Сила притяжения к Солнцу здесь меньше, поэтому цвет соответствующий. Масштаб — в одном пикселе 100 километров (такой же как на картинке с Меркурием).
Маленькая синяя окружность это поверхность Цереры, а большая синяя — граница, где сила притяжения к планете становится равной силе притяжения к Солнцу.

Юпитер
Юпитер очень велик. Вот картинка размером 800 на 800 пикселей. Масштаб — в одном пикселе 100 тысяч километров. Это чтобы показать область притяжения планеты целиком. Сама планета — маленькая точка в центре. Спутники не показаны.
Показана только орбита (внешняя окружность белого цвета) самого дальнего спутника — S/2003 J 2.


У Юпитера 67 спутников. Самые крупные Ио, Европа, Ганимед и Каллисто.
Самый дальний спутник — S/2003 J 2 совершает полный оборот вокруг Юпитера на расстоянии в среднем 29 541 000 км. Его диаметр около 2 км, масса — около 1,5×10 13 кг. Как видите, она выходит далеко за пределы сферы тяготения планеты. Это можно объяснить ошибками в вычислениях (все-таки сделано довольно много усреднений, округлений и отбрасывания некоторых деталей).
Хотя имеется способ вычисления границы гравитационного влияния Юпитера, определямый сферой Хилла , радиус которой определяется формулой


где a jupiter и m jupiter большая полуось эллипса и масса Юпитера, а M sun масса Солнца. Таким образом получается радиус округлённо 52 миллиона км. S/2003 J 2 отдаляется на эксцентрической орбите на расстояние до 36 миллионов км от Юпитера
У Юпитера также имеется система колец из 4 основных компонентов: толстый внутренний тор из частиц, известный как «кольцо-гало»; относительно яркое и тонкое «Главное кольцо»; и два широких и слабых внешних кольца — известных как «паутинные кольца», называющиеся по материалу спутников — которые их и формируют: Амальтеи и Фивы.
Кольцо-гало с внутренним радиусом 92000 и внешним 122500 километров.
Главное кольцо 122500-129000 км.
Паутинное кольцо Амальтеи 129000-182000км.
Паутинное кольцо Фивы 129000-226000 км.
Увеличим картинку в 200 раз, в одном пикселе 500 километров.
Вот кольца Юпитера. Тонкая окружность — поверхность планеты. Далее идут границы колец — внутренняя граница кольца-гало, внешняя граница кольца-гало и она же внутренняя граница главного кольца и т.д.
Маленький кружок в левом верхнем углу — область, где сила притяжения спутника Юпитера Ио становится равной силе притяжения Юпитера на орбите Ио. Сам спутник в этом масштабе просто не виден.


В принципе, большие планеты со спутниками нужно рассматривать отдельно, так как перепад значений сил гравитации очень велик, как велики и размеры области притяжения планеты. Вследствие этого все интересные подробности просто теряются. А рассматривать картинку с радиальным градиентом не имеет особого смысла.

Сатурн
Картинка размером 800 на 800 пикселей. Масштаб — в одном пикселе 100 тысяч километров. Сама планета — маленькая точка в центре. Спутники не показаны.
Четко видно изменение силы притяжения к Солнцу (помним что Солнце слева).


У Сатурна известно 62 спутника. Крупнейшие из них — Мимас, Энцелад, Тефия, Диона, Рея, Титан и Япет.
Самый дальний спутник — Форньот (временное обозначение S/2004 S 8). Также обозначается как Сатурн XLII. Средний радиус спутника около 3 километров, масса 2,6×10 14 кг, большая полуось 25146000 км.
Кольца у планет появляются только на значительном удалении от Солнца. Первая такая планета — Юпитер. Имея массу и размеры большие чем у Сатурна, его кольца не так впечатляют как кольца Сатурна. То есть, размеры и масса планеты для образования колец имеют меньшее значение, чем отдаленность от Солнца.
Зато смотрите дальше, пара колец окружает астероид Харикло (10199 Chariklo) (диаметр астероида около 250 километров), который вращается вокруг Солнца между Сатурном и Ураном.

Википедия о астероиде Харикло
Система колец состоит из плотного внутреннего кольца шириной в 7 км и внешнего кольца шириной в 3 км. Расстояние между кольцами около 9 км. Радиусы колец 396 и 405 км соответственно. Харикло является наименьшим объектом, у которого были открыты кольца.
Тем не менее, сила тяготения имеет к кольцам только опосредованное отношение.
На самом деле, кольца появляются от разрушения спутников, которые состоят из материала недостаточной прочности, т.е. не каменные монолиты типа Фобоса или Деймоса, а смерзшиеся в одно целое куски породы, льда, пыль и прочий космический мусор.
Вот его и утаскивает своим тяготением планета. Подобный спутник, не имеющий собственного притяжения (вернее имеющий силу собственного притяжения меньше силы притяжения к планете на своей орбите) летит по орбите оставляя после себя шлейф разрушенного материала. Так и образуется кольцо. Далее, под действием силы притяжения к планете, этот обломочный материал приближается к планете. То есть, кольцо расширяется.
На каком-то уровне, сила притяжения становится достаточно большой, чтобы скорость падения этих обломков увеличилась, и кольцо исчезает.

Послесловие
Цель публикации статьи — возможно кто-то, обладающий знаниями в программировании, заинтересуется данной темой и сделает более качественную модель гравитационных сил в Солнечной системе (да-да, трехмерную, с анимацией.
А может быть даже сделает так, чтобы орбиты были не фиксированы, а также рассчитывались — это ведь тоже возможно, орбита будет местом, где сила притяжения будет компенсирована центробежной силой.
Получится почти как в жизни, как самая настоящая Солнечная система. (Вот где можно будет создать космическую стрелялку, со всеми тонкостями космической навигации в поясе астероидов. С учетом сил, действующих по реальным физическим законам, а не среди рисованной графики.)
И это будет прекрасный учебник физики, которую будет интересно изучать.
P.S. Автор статьи обычный человек:
не физик,
не астроном,
не программист,
не имеет высшего образования.

Теги:

  • визуализация данных
  • джаваскрипт
  • физика
  • гравитация
Добавить метки

Гравитационное влияние, однако, уменьшается, как квадрат расстояния. Расстояние Солнца от Земли в 390 раз больше, чем Луны от Земли, а 390 х 390 = 152 000. Если мы разделим 27 000 000 на это число, мы получим, что гравитационное притяжение Солнца действует на Землю в 178 раз сильнее, чем лунное.

Несмотря на то, что сила лунного притяжения, действующая на нас, составляет только 0,56 процента от силы притяжения Солнца, это все-таки намного больше, чем любое другое гравитационное воздействие на нас. Так, лунное притяжение в 106 раз больше, чем притяжение Юпитера, когда он расположен ближе всего, и в 167 раз больше, чем притяжение Венеры, когда она ближе всего. Гравитационное воздействие на Землю остальных астрономических объектов еще меньше.

Может ли гравитационное притяжение, когда оно столь велико по сравнению со всеми другими объектами, кроме Солнца, оказаться для нас источником катастрофы? На первый взгляд кажется, что нет, не может, ведь гравитационное притяжение Солнца намного сильнее, чем у Луны. И поскольку первое не вызывает у нас тревоги, то почему же должно беспокоить второе?

Отрицательный ответ был бы правильным, если бы астрономические тела реагировали на силу гравитации во всех точках одинаково. Но это не так. Давайте вернемся к вопросу приливо-отливных эффектов, о которых я упомянул в предыдущей главе, и рассмотрим его более детально в отношении Луны.

Поверхность Земли, обращенная к Луне, находится на среднем расстоянии от центра Луны в 378 026 километров. Поверхность Земли на другой стороне от Луны дальше от центра Луны на толщину Земли и, следовательно, находится на расстоянии в 390 782 километра.

Сила притяжения Луны уменьшается, как квадрат расстояния. Если расстояние от центра Земли до центра Луны принять за 1, тогда расстояние от поверхности Земли, обращенной к Луне, составит 0,983, а расстояние от поверхности, обращенной прочь от Луны, составит 1,017.

Если сила притяжения поверхности Земли, обращенной к Луне, таким образом, 1,034, то сила притяжения поверхности Земли, обращенной прочь от Луны, составляет 0,966. Это означает, что притяжение Луной ближайшей поверхности Земли на 7 процентов сильнее, чем притяжение дальней поверхности Земли.

Результатом силы притяжения Луны, изменяющейся с расстоянием, является то, что Земля тянется к Луне. Сторона, находящаяся ближе к Луне, притягивается сильнее, чем центр, а центр, в свою очередь, притягивается сильнее, чем сторона, расположенная в сторону от Луны. В результате Земля деформируется с обеих сторон. Одна деформация – стороны, обращенной к Луне, происходит, так сказать, более энергично, чем остальной структуры Земли. Другая деформация – стороны, обращенной прочь от Луны, так сказать, отстает от всего остального.

Так как Земля состоит из неэластичного камня, который особенно не поддается даже большим усилиям, деформация в твердом теле Земли невелика, но она есть. Однако вода океана более податлива и деформируется сильнее, она «выпячивается» в направлении к Луне.

При вращении Земли континенты, оказываясь, так сказать, «под Луной», испытывают накат «выпяченной» воды. Вода по инерции набегает несколько выше береговой линии, затем отступает, происходят приливы и отливы. На противоположной, обращенной в сторону от Луны стороне Земли повернувшиеся туда континенты испытывают другую деформацию воды, через 12,5 часа происходит прилив, затем отлив. (Дополнительные полчаса набегают из-за того, что Луна за это время продвигается на некоторое расстояние.) Таким образом происходят два прилива и два отлива в день.

Приливо-отливный эффект, производимый на Земле любым телом, пропорционален его массе, но уменьшается, как расстояние в кубе. Солнце (повторим) в 27 миллионов раз массивнее Луны и в 390 раз дальше от Земли. 390 в кубе составляет около 59 300 000. Если мы поделим массу Солнца (соответственно Луны) на куб его расстояния от Земли (соответственно Луны), мы обнаружим, что приливо-отливный эффект Солнца на Землю составляет лишь 0,46 от приливо-отливного эффекта Луны.

Итак, Луна является основной причиной приливо-отливного эффекта на Земле, а Солнце значительно уступает ей. Все другие астрономические тела вообще не производят измеримого приливо-отливного эффекта на Землю.

Теперь нам следует спросить: не может ли существование приливов и отливов каким-нибудь образом привести к катастрофе?

Более длинный день

Говорить о приливах-отливах и о катастрофах, не переводя дыхания, по-видимому, было бы странно. В человеческой истории приливы и отливы существовали всегда, и они были совершенно регулярны и предсказуемы. Они всегда были полезны. Так, корабли обычно отплывали с началом прилива, когда вода поднимала их высоко над любыми скрытыми препятствиями, а отступающая вода несла корабль в нужном ему направлении.

Приливы и отливы и в будущем могут стать полезными иным образом. Так, во время прилива вода может подняться в резервуар, из которого может выйти при отливе, вращая турбину. Приливы и отливы могут таким образом дать миру неиссякаемый источник энергии. При чем же тут катастрофа?

Так вот, когда Земля поворачивается и на сушу накатывается вспучившаяся вода, двигаясь на берег и с берега, вода должна преодолеть сопротивление трения, и не только на самом берегу, но и на тех участках морского дна, где океан, случается, бывает особенно мелководен. Часть энергии вращения Земли затрачивается на преодоление этого трения.

Когда Земля поворачивается, твердое тело планеты тоже деформируется, выпячиваясь в сторону Луны, и это выпячивание составляет примерно одну треть от выпячивания океана. Тем не менее выпячивание твердого тела Земли происходит за счет, так сказать, трения камня о камень, когда кора тянется кверху и опускается, и этот процесс повторяется снова и снова. Часть энергии вращения Земли затрачивается на это тоже. Конечно, энергия на самом деле не уничтожается. Она не исчезает, а превращается в тепло. Другими словами, в результате приливов и отливов Земля приобретает немножко тепла и немного теряет в скорости вращения. День становится длиннее.

Гравитация — самая таинственная сила во Вселенной. Ученые до сих пор не знают ее природы. Но именно гравитация удерживает на орбитах планеты Солнечной системы. Не будь силы тяготения, планеты разлетелись бы от Солнца, как бильярдные шары от удара кием.

Гравитация – сила тяготения

Если же смотреть глубже, то станет ясно, что не было бы гравитации, не было бы и самих планет. Сила тяготения — притяжение материи к материи — это та сила, которая собрала вещество в планеты и придала им круглую форму.

Силы тяготения Солнца вполне хватает на то, что бы удерживать девять планет, десятки их спутников и тысячи астероидов и комет. Вся эта компания роем вращается вокруг Солнца, как мотыльки вокруг освещенного балкона. Если бы не было силы тяготения, эти планеты, спутники и кометы полетели бы каждый своим путем по прямой линии. Вместо этого они вращаются вокруг Солнца по своим орбитам, потому что Солнце силой своего притяжения постоянно искривляет их прямолинейную траекторию, притягивая к себе планеты, луны и кометы с астероидами.

Материалы по теме:

Почему ночью темно?

Гравитация и расстояние между объектами

Планеты кружатся вокруг светила, подобно тому, как пони, катающие детей, ходят по кругу, привязанные к столбу в центре этого круга. Разница только в способе привязки. Космические тела привязаны к Солнцу невидимыми нитями гравитации. Правда, чем больше расстояние между объектами, тем меньше сила притяжения между ними. Солнце гораздо слабее притягивает планету Плутон, самую дальнюю в Солнечной системе , чем, скажем, Меркурий или Венеру. Сила гравитации уменьшается (или увеличивается) в зависимости от расстояния экспоненциально.

Что это значит? Если бы, например, Земля была удалена от Солнца в два раза больше, чем сейчас, то сила притяжения уменьшилась бы в четыре раза. Если увеличить расстояние между Солнцем и Землей в три раза, то сила тяготения уменьшилась бы в девять раз. И так далее. Если «отодвинуть» Землю достаточно далеко и свести практически к нулю силу тяготения, то Земля может разорвать путы солнечного притяжения и отправиться в самостоятельное межзвездное плавание.

Есть большие подозрения, что «гравитация» распространяется вообще мгновенно. Но если это на самом деле имеет место быть, то как это установить — ведь любые измерения теоретически невозможны без какой-либо погрешности. Так что мы никогда не узнаем — конечна ли эта скорость или бесконечна. А мир, в котором она имеет предел, и мир в котором она беспредельна — это «две большие разницы», и мы никогда не будем знать, в каком же мы мире живём! Вот он предел, который положен научному знанию. Принять ту или иную точку зрения — это дело веры , совершенно иррациональной, не поддающейся никакой логике. Как не поддаётся никакой логике вера в «научную картину мира», которая базируется на «законе всемирного тяготения», который существует лишь в зомбированных головах, и который никак не обнаруживается в окружающем мире…

Сейчас оставим ньютоновский закон, а в заключение приведём нагляднейший пример того, что законы, открытые на Земле, вовсе не универсальны для остальной Вселенной .

Взглянем на ту же Луну. Желательно в полнолуние. Почему Луна выглядит как диск — скорее блин, чем колобок, форму которого она имеет? Ведь она — шар, а шар, если освещён со стороны фотографа, выглядит примерно так: в центре — блик, далее освещённость падает, к краям диска изображение темнее.

У луны же на небе освещённость равномерная — что в центре, что по краям, достаточно взглянуть на небо. Можно воспользоваться хорошим биноклем или фотоаппаратом с сильным оптическим «зумом», пример такой фотографии приведён в начале статьи. Снято было с 16-кратным приближением. Это изображение можно обработать в любом графическом редакторе , усилив контрастность, чтоб убедиться — всё так и есть, более того, яркость по краям диска вверху и внизу даже чуть выше, чем в центре, где она по теории должна быть максимальной.

Здесь мы имеем пример того, что законы оптики на Луне и на Земле совершенно разные ! Луна почему-то весь падающий свет отражает в сторону Земли. У нас нет никаких оснований распространять закономерности, выявленные в условиях Земли, на всю Вселенную. Не факт, что физические «константы» являются константами на самом деле и не изменяются со временем.

Всё вышесказанное показывает, что «теории» «чёрных дыр», «бозоны хиггса» и многое прочее — это даже не научная фантастика, а просто бред , больший, чем теория о том, что земля покоится на черепахах, слонах и китах…

Природоведение: Закон всемирного тяготения

Да, и еще… давай Дружжить, и ? —жми смелее сюда —>> Добавить в друзья на ЖЖ
А еще давай дружить на

14. Почему наши ноги приклеены к земле?. Твиты о вселенной

14. Почему наши ноги приклеены к земле?

Одним словом: из-за гравитации! Гравитация является универсальной силой притяжения между всеми массами. Насколько мы знаем, все во Вселенной это чувствуют.

Существует сила притяжения между вами и теми, кто, случается, стоит рядом с вами, между вами и монетами в кармане.

Но гравитация — относительно слабая сила. Отведите руку в сторону, совокупное притяжение всего вещества Земли не может опустить ее вниз.

Сила тяжести, хотя и слабо, растет с массой. Для малых тел она незначительна, но заметна для больших тел — Земли, Солнца, галактики.

Кстати, гравитация является взаимной. Притяжение вас Землей = притяжению вами Земли. На Землю оказывается меньшее влияние, потому что она больше, и требуются большие усилия, чтобы заставить ее двигаться.

Тот, кто задавался вопросом, почему его тянет к большим женщинам, но больших женщин не тянет к нему, приводит глубокомысленные доводы о гравитации!

Притяжение Земли держит наши ноги прочно приклеенными к поверхности и удерживает Луну в ловушке на постоянной орбите вокруг Земли.

Из движения Луны Ньютон заключил, что сила гравитации ослабевает пропорционально квадрату расстояния от тяготеющего тела. Удвоение расстояния приводит к 4-кратному уменьшению силы, увеличение расстояния в 3 раза уменьшает силу тяготения в 9 раз.

Ньютон также доказал, что орбиты планет под влиянием гравитационного «закона обратных квадратов» являются эллипсами, что наблюдал Иоганн Кеплер.

На самом деле, Ньютон просто описал видимое проявление гравитации. Более точное описание создал Эйнштейн: общую теорию относительности (1915).

Согласно теории Эйнштейна, материя (энергия) сообщает пространству-времени, как ему «искривляться»; искривленное пространство-время (гравитация) сообщает материи о том, как ей двигаться.

Таким образом, Земля создает углубление в пространстве-времени, подобно вмятине от шара для боулинга на батуте. Другие массы, подобные вашей, падают в нее.

Ни Эйнштейн, ни Ньютон не разгадали, чем объясняется гравитация. Предполагается, что это обмен частицами (гравитонами), подобный обмену шариками между игроками в теннис.

Проблема заключается в том, что, несмотря на героические усилия, не создано описание гравитации в терминах гравитонов. Квантовая теория гравитации пока неясна.

Что такое гравитация земли. Сила гравитации

Гравитация – это, казалось бы, простое понятие, известное каждому человеку еще со времен школьной скамьи. Все мы помним историю о том, как на голову Ньютона упало яблоко, и он открыл закон всемирного тяготения. Однако все не так просто, как кажется. В той статье мы попытаемся дать ясный и исчерпывающий ответ на вопрос: что такое гравитация? А также рассмотрим главные мифы и заблуждения об этом интересном явлении.

Говоря простыми словами, гравитация — это притяжение между двумя любыми объектами во вселенной. Гравитацию можно определить, зная массу тел и расстояние от одного до другого. Чем сильнее гравитационное поле, тем больше будет вес тела и выше его ускорение. Например, на Луне вес космонавта будет в шесть раз меньше, чем на Земле. Сила гравитационного поля зависит от размеров объекта, который оно окружает. Так, лунная сила притяжения в шесть раз ниже земной. Впервые обосновал это научно и доказал с помощью математических вычислений ещё в XVII веке Исаак Ньютон.

Что упало на голову Ньютону

Несмотря на то, что сам великий английский ученый частично подтверждал известную всем легенду о яблоке и ушибе головы, всё же, сейчас можно сказать с уверенностью, что при открытии закона всемирного тяготения обошлось без травм и озарений. Основой, заложившей новую эру в естественных науках, стал труд «Математические начала натуральной философии». В нем Ньютон описывает закон тяготения и важные законы механики, открытые им за долгие годы напряженной работы. Знаменитый физик был натурой неторопливой и рассудительной, как и положено гениальному ученому. А поэтому от начала раздумий о природе тяготения до издания научной работы о ней прошло больше 20 лет. Впрочем, легенда об упавшем фрукте могла иметь под собой и какие-то реальные основания, вот только голова физика однозначно осталась цела.

Законы притяжения изучались и до Исаака Ньютона самыми различными научными деятелями. Но только он впервые математически доказал прямую взаимосвязь между тяготением и движением планет. То есть падающим с ветки яблоком и вращением луны вокруг земли управляет одна и та же сила – гравитация. И она действует на любые два тела во вселенной. Эти открытия заложили основу так называемой небесной механики, а также науки о динамике. Ньютоновская модель господствовала в науке более двух веков вплоть до появления теории относительности и квантовой механики.

Что думают о гравитации современные ученые

Гравитация является самым слабым из четырех известных на данный момент фундаментальных взаимодействий, которым подчиняются все частицы и составленные из них тела. Помимо гравитационного взаимодействия сюда же входят электромагнитное, сильно и слабое. Исследуются они на основании разных теорий, так, например, в приближенных скоростях небольшой гравитации применяют теорию тяготения еще самого Ньютона. А в общем случае используют общую теорию относительности Эйнштейна. Кроме того, описание гравитации в квантовом пределе должно будет осуществляться при помощи еще не появившейся квантовой теории.

Безусловно, сегодня физика сложна и выходит далеко за рамки представлений об окружающем мире обычного человека. Но интересоваться ей необходимо хотя бы на уровне основных понятий, ведь вполне возможно, что уже в ближайшее время мы можем стать свидетелями удивительных открытий в этой области, которые кардинально изменят жизнь человечества. Будет неловко, если вы вообще не поймете, что происходит.

Мифы о гравитации

Не только незнание, но и постоянные новые открытия в данной научной сфере порождают различные несуразицы и мифы о гравитации. Итак, несколько общепринятых заблуждений об этом уникальном явлении:

  • Искусственные спутники никогда не сойдут с орбиты Земли и будут вечно вращаться вокруг неё . Это неправда. Дело в том, что помимо земного притяжения в космосе имеются и другие различные факторы, влияющие на орбиту тел. Это и торможение атмосферы для низких орбит и гравитационные поля Луны и других планет. Скорее всего, если дать спутнику вращаться без контроля на долгое время, его орбита будет изменяться, и в конечном счете он либо улетит в космические просторы, либо упадет на поверхность ближайшего тела.
  • В космосе отсутствует гравитация. Даже на станциях, на которых космонавты пребывают в невесомости есть довольно сильная гравитация, чуть меньше, чем на Земле. Почему же тогда они не падают? Можно сказать, что сотрудники станции как бы находятся в состоянии постоянного падения, но никак упадут.
  • Объект, приблизившийся к чёрной дыре, будет разорван. Довольно известный миф. Сила притяжение черной дыры действительно увеличится при приближении к ней, но совсем не обязательно, что приливные силы окажутся настолько мощными. Скорее всего они на горизонте событий обладают конечным значением, поскольку расстояние считается от центра дыры.

Мы живем на Земле, мы перемещаемся по ее поверхности, как по краю какого-то скалистого утеса, который возвышается над бездонной пропастью. Мы держимся на этом краю пропасти только благодаря тому, что на нас действует сила притяжения Земли ; мы не падаем с земной поверхности только потому, что имеем, как говорят, какую-то определенную весомость. Мы мгновенно слетели бы с этого «утеса» и стремительно полетели бы в бездну пространства, если бы вдруг перестала действовать сила тяжести нашей планеты. Мы бесконечно долго носились бы в бездне мирового пространства, не зная ни верха, ни низа.

Передвижение по Земле

Своим передвижением по Земле мы тоже обязаны наличию силы тяжести. Мы ходим по Земле и непрестанно преодолеваем сопротивление этой силы, ощущая ее действие, как некоторый тяжелый груз на своих ногах. Этот «груз» особенно дает себя знать при подъеме в гору, когда приходится волочить его, словно какие-то тяжелые гири, привешенные к ногам. Он не менее резко сказывается и при спуске с горы, вынуждая нас ускорять шаги.

Эти направления – «верх» и «низ» – указывает нам только сила тяжести. Во всех точках земной поверхности она направлена почти к центру Земли. Поэтому, понятия «низ» и «верх» будут диаметрально противоположными для так называемых антиподов, т. е. людей, обитающих на диаметрально противоположных частях поверхности Земли. Например, то направление, которое для живущих в Москве, показывает «низ», для жителей Огненной Земли показывает «верх». Направления, показывающие «низ» для людей, находящихся на полюсе и на экваторе, составляют прямой угол; они перпендикулярны между собой.

Вне Земли, при удалении от нее, сила тяжести уменьшается, так как уменьшается сила притяжения (сила притяжения Земли, как и всякого другого мирового тела, распространяется в пространстве неограниченно далеко) и увеличивается центробежная сила, которая уменьшает силу тяжести. Следовательно, чем выше мы будем поднимать какой-нибудь груз, например, на воздушном шаре, тем меньше будет весить этот груз.

Центробежная сила Земли

Вследствие суточного вращения возникает центробежная сила Земли . Эта сила всюду на поверхности Земли действует в направлении, перпендикулярном к земной оси и в сторону от нее. Центробежная сила невелика по сравнению с силой притяжения . На экваторе она достигает наибольшей величины. Но и здесь, согласно вычислениям Ньютона, центробежная сила составляет только 1/289 долю силы притяжения. Чем дальше к северу от экватора, тем меньше центробежная сила. На самом полюсе она равна нулю .


На некоторой высоте центробежная сила возрастет настолько, что она будет равна силе притяжения, и сила тяжести сделается сначала равной нулю, а затем, с увеличением расстояния от Земли, примет отрицательное значение и будет непрерывно возрастать, будучи направлена в противоположную сторону по отношению к Земле.

Сила тяжести

Равнодействующая силы притяжения Земли и центробежной силы называется силой тяжести . Сила тяжести во всех точках земной поверхности была бы одинакова, если бы наша совершенно точного и правильного шара, если бы ее масса всюду была одинаковой плотности и, наконец, если не было бы суточного вращения вокруг оси.

Но, так как наша Земля не является правильным шаром, не состоит во всех своих частях из пород одинаковой плотности и все время вращается, то, следовательно, сила тяжести в каждой точке земной поверхности несколько различна .

Стало быть, в каждой точке земной поверхности величина силы тяжести зависит от величины центробежной силы, уменьшающей силу притяжения, от плотности земных пород и расстояния от центра Земли . Чем больше это расстояние, тем меньше сила тяжести. Радиусы Земли, которые одним своим концом как бы упираются в земной экватор, – самые большие. Радиусы, имеющие своим концом точку Северного или Южного полюса, – наименьшие. Поэтому все тела на экваторе имеют меньшую тяжесть (меньший вес), чем на полюсе.

Известно, что на полюсе сила тяжести больше, чем на экваторе, на 1/289 долю .

Эту разность тяжести одних и тех же тел на экваторе и на полюсе можно узнать при их взвешивании с помощью пружинных весов. Если же мы будем взвешивать тела на весах с гирями, то этой разности мы не заметим. Весы будут показывать один и тот же вес, как на полюсе, так и на экваторе; гири, как и тела, которые взвешиваются, тоже, конечно, изменятся в весе.


Допустим, что корабль с грузом весит в заполярных областях, вблизи полюса, около 289 тысяч тонн. По приходе в порты вблизи экватора корабль с грузом будет весить уже только около 288 тысяч тонн. Таким образом, на экваторе корабль потерял в весе около тысячи тонн.

Все тела держатся на земной поверхности только благодаря тому, что на них действует сила тяжести. Утром, вставая с кровати, вы в состоянии спустить ноги на пол только потому, что эта сила тянет их вниз.

Сила тяжести внутри Земли

Посмотрим, как изменяется сила тяжести внутри Земли . С углублением внутрь Земли сила тяжести непрерывно увеличивается вплоть до некоторой глубины. На глубине около тысячи километров сила тяжести будет иметь максимальное (наибольшее) значение и увеличится по сравнению с ее средней величиной на земной поверхности (9,81 м/сек) приблизительно на пять процентов. При дальнейшем углублении сила тяжести станет непрерывно уменьшаться и в центре Земли будет равна нулю.

Предположения относительно вращения Земли

Наша Земля вращаясь делает полный оборот вокруг своей оси в 24 часа. Центробежная сила, как известно, возрастает пропорционально квадрату угловой скорости.

Следовательно, если Земля ускорит свое вращение вокруг оси в 17 раз, то центробежная сила увеличится в 17 раз в квадрате, т. е. в 289 раз. В обычных условиях, как уже сказано выше, центробежная сила на экваторе составляет 1/289 долю силы притяжения. При увеличении в 17 раз сила притяжения и центробежная сила делаются равными. Сила тяжести – равнодействующая этих двух сил – при подобном увеличении скорости осевого вращения Земли будет равна нулю.


Эта скорость вращения Земли вокруг оси называется критической, так как при такой скорости вращения нашей планеты все тела на экваторе потеряли бы свою тяжесть. Продолжительность суток в этом критическом случае будет составлять приблизительно 1 час 25 минут. При дальнейшем ускорении вращения Земли все тела (прежде всего на экваторе) сначала потеряют свою весомость, а затем будут отброшены центробежной силой в пространство, а сама Земля этой же силой будет разорвана на части.

Заключение наше было бы правильным, если бы Земля представляла собой абсолютно твердое тело и при ускорении своего вращательного движения не изменила бы своей формы, другими словами, если бы радиус земного экватора сохранил свою величину. Но известно, что при ускорении вращения Земли поверхность ее должна будет претерпеть некоторую деформацию: она станет сжиматься в направлении полюсов и расширяться в направлении экватора; она будет принимать все более и более приплюснутый вид. Длина радиуса земного экватора при этом начнет возрастать и этим увеличивать центробежную силу.

Таким образом, тела на экваторе потеряют свою тяжесть раньше, чем скорость вращения Земли увеличится в 17 раз, и катастрофа с Землей наступит раньше, чем сутки сократят свою продолжительность до 1 часа 25 минут. Иначе говоря, критическая скорость вращения Земли будет несколько меньше, а предельная длина суток несколько больше.

Представьте себе мысленно, что скорость вращения Земли вследствие каких-то неизвестных причин приблизится к критической. Что тогда станет с земными обитателями?

Прежде всего, всюду на Земле сутки будут составлять, например, около двух-трех часов. День и ночь будут сменяться калейдоскопически быстро. Солнце, как в планетарии, очень быстро будет перемещаться по небу, и едва вы успеете проснуться и умыться, как оно уже скроется за горизонтом, и на смену ему наступит ночь. Люди перестанут точно ориентироваться во времени. Никто не будет знать, которое сейчас число месяца и какой день недели. Нормальная человеческая жизнь будет дезорганизована.

Маятниковые часы замедлят свой ход, а затем всюду остановятся. Они ведь ходят потому, что на них действует сила тяжести. Ведь и в нашем быту, когда «ходики» начинают отставать или спешить, то необходимо укорачивать или удлинять их маятник, а то еще и подвешивать к маятнику какой-нибудь дополнительный груз.

Тела на экваторе будут терять свою весомость. В этих воображаемых условиях легко можно будет поднимать очень тяжелые тела. Не составит особого труда взвалить на плечи лошадь, слона или поднять даже целый дом. Птицы потеряют возможность приземляться. Вот кружится над корытом с водой стая воробьев. Они громко чирикают, но не в состоянии спуститься. Брошенная им горсть зерна повисла бы над Землей отдельными зернинками.

Пусть, далее, скорость вращения Земли все более и более приближается к критической. Наша планета сильно деформируется и принимает все более приплюснутый вид. Она уподобляется быстро вращающейся карусели и грозит вот-вот сбросить с себя своих обитателей.

Реки тогда перестанут течь. Они будут представлять собой длинные стоячие болота. Громадные океанские корабли будут еле касаться своими днищами водной глади, подводные лодки не в состоянии будут погрузиться в глубины моря, рыбы и морские животные будут плавать по поверхности морей и океанов, они уже не смогут скрыться в морской пучине. Моряки уже не смогут бросить якорь, они перестанут владеть рулями своих судов, большие и малые корабли будут стоять неподвижно.

Вот еще одна воображаемая картина.

Пассажирский железнодорожный поезд стоит у вокзала. Свисток уже дан; поезд должен отойти. Машинист принял все зависящие от него меры. Кочегар щедро бросает в топку уголь. Крупные искры летят из трубы паровоза. Колеса отчаянно вертятся. Но паровоз стоит неподвижно. Его колеса не касаются рельс, и нет трения между ними. Настанет момент, когда люди не будут иметь возможности спуститься на пол; они прилипнут, как мухи, к потолку.

Пусть скорость вращения Земли все увеличивается. Центробежная сила все более превосходит по своей величине силу притяжения… Тогда люди, животные, предметы домашнего обихода, дома, все находящиеся на Земле предметы, весь животный ее мир будут отброшены в мировое пространство.

От Земли отделится Австралийский материк и колоссальной черной тучей повиснет в пространстве. В глубь безмолвной бездны, прочь от Земли, полетит Африка. В громадное количество сферических капель превратятся воды Индийского океана и тоже полетят в беспредельные дали. Средиземное море, не успев еще превратиться в гигантские скопления капель, всей своей толщей воды отделится от днища, по которому свободно можно будет пройти от Неаполя до Алжира.

Наконец, скорость вращения настолько увеличится, центробежная сила настолько возрастет, что вся Земля разорвется на части.

Однако и этого случиться не может. Скорость вращения Земли, как мы уже говорили выше, не возрастает, а наоборот, даже немного убывает, – правда, настолько мало, что, как мы уже знаем, за 50 тысяч лет продолжительность суток увеличивается всего только на одну секунду. Иначе говоря, Земля теперь вращается с такой скоростью, которая необходима, чтобы под теплотворными, живительными лучами Солнца многие тысячелетия процветал животный и растительный мир нашей планеты.

Значение трения

Посмотрим теперь, какое значение имеет трение и что было бы, если бы оно отсутствовало. Трение, как известно, вредно отражается на нашей одежде: у пальто раньше всего изнашиваются рукава, а у ботинок подошвы, так как рукава и подошвы больше всего подвержены действию трения. Но вообразите себе на минуту, что поверхность нашей планеты была как бы хорошо отполированная, совершенно гладкая, и возможность трения была бы исключена. Могли ли бы мы ходить по такой поверхности? Конечно, нет.

Всем известно, что даже по льду и по натертому полу идти очень трудно и приходится остерегаться, чтобы не упасть. А ведь поверхность льда и натертого пола все же обладает некоторым трением.


Если бы на поверхности Земли исчезла сила трения, то на нашей планете вечно царил бы неописуемый хаос. Если не будет никакого трения, то будет вечно бушевать море и никогда не утихнет буря. Песчаные смерчи не перестанут висеть над Землей, и постоянно будет дуть ветер. Мелодичные звуки рояля, скрипки и страшный рев хищных зверей смешаются и без конца будут распространяться в воздухе.

Наверняка вы слышали, что гравитация – это не сила. И это правда. Однако же эта правда оставляет много вопросов. Например, мы обычно говорим, что гравитация «притягивает» объекты. На уроках физики нам говорили, что гравитация притягивает объекты к центру Земли. Но как это возможно? Как гравитация может не быть силой, но при этом притягивать объекты?

Прежде всего, нужно усвоить, что правильный термин — это «ускорение», а не «притяжение». На самом деле, гравитация вовсе не притягивает объекты, она деформирует систему пространства-времени (система, по принципам которой мы живем), объекты следуют за образовавшимися в результате деформации волнами и иногда могут ускоряться.

Благодаря Альберту Эйнштейну и его теории относительности, мы знаем, что пространство-время меняется под воздействием энергии. И самая важная часть этого уравнения — это масса. Энергия массы объекта заставляет пространство-время меняться. Масса сгибает пространство-время, и получившиеся изгибы направляют энергию. Таким образом, вернее думать о гравитации не как о силе, а как об искривлении пространства-времени. Как резиновое покрытие искривляется под шаром для боулинга, так пространство-время искривляется массивными объектами.

Так же, как автомобиль едет по дороге с различными изгибами и поворотами, объекты перемещаются по подобным изгибам и искривлениям в пространстве и времени. И точно так же, как автомобиль ускоряется, когда спускается вниз с холма, массивные объекты создают экстремальные виражи в пространстве и времени. Сила тяжести способна разгонять объекты, когда они входят в глубокие гравитационные колодцы. Этот путь, по которому объекты следуют через пространство-время, называют «геодезической траекторией».

Чтобы лучше понять, как работает гравитация и как она может ускорять объекты, рассмотрим расположение Земли и Луны относительно друг друга. Земля — это довольно массивный объект, по крайней мере, по сравнению с Луной, и наша планета заставляет пространство-время изгибаться. Луна вращается вокруг Земли из-за перекосов в пространстве и времени, которые вызваны массой планеты. Таким образом, Луна просто путешествует вдоль образовавшегося изгиба в пространстве-времени, который мы называем орбитой. Луна не чувствует никакой силы, действующей на нее, она просто следует по определенному возникшему пути.

Гравитация, она же притяжение или тяготение, — это универсальное свойство материи, которым обладают все предметы и тела во Вселенной. Суть гравитации залучается в том, что все материальные тела притягивают к себе все другие тела, находящиеся вокруг.

Земное притяжение

Если гравитация — это общее понятие и качество, которым обладают все предметы во Вселенной, то земное притяжение — это частный случай этого всеобъемлющего явления. Земля притягивает к себе все материальные объекты, находящиеся на ней. Благодаря этому люди и животные могут спокойно перемещаться по земле, реки, моря и океаны — оставаться в пределах своих берегов, а воздух — не летать по бескрайним просторам Космоса, а образовывать атмосферу нашей планеты.

Возникает справедливый вопрос: если все предметы обладают гравитацией, почему Земля притягивает к себе людей и животных, а не наоборот? Во-первых, мы тоже притягиваем к себе Землю, просто, по сравнению с ее силой притяжения наша гравитация ничтожно мала. Во-вторых, сила гравитации прямо пропорционально зависит от массы тела: чем меньше масса тела, тем ниже его гравитационные силы.

Второй показатель, от которого зависит сила притяжения — это расстояние между предметами: чем больше расстояние, тем меньше действие гравитации. В том числе благодаря этому, планеты движутся на своих орбитах, а не падают друг на друга.

Примечательно, что своей сферической формой Земля, Луна, Солнце и другие планеты обязаны именно силе тяготения. Она действует в направлении центра, подтягивая к нему вещество, составляющее «тело» планеты.

Гравитационное поле Земли

Гравитационное поле Земли — это силовое энергетическое поле, которое образуется вокруг нашей планеты благодаря действию двух сил:

  • гравитации;
  • центробежной силе, которая своим появление обязана вращению Земли вокруг своей оси (суточное вращение).

Поскольку и гравитация, и центробежная сила действуют постоянно, то и гравитационное поле является постоянным явлением.

Незначительное воздействие на поле оказывают силы тяготения Солнца, Луны и некоторых других небесных тел, а также атмосферных масс Земли.

Закон всемирного тяготения и сэр Исаак Ньютон

Английский физик, сэр Исаак Ньютон, согласно известной легенде, однажды гуляя по саду днем, увидел на небе Луну. В это же время с ветки упало яблоко. Ньютон тогда занимался изучением закона движения и знал, что яблоко падает под воздействием гравитационного поля, а Луна вращается по орбите вокруг Земли.

И тут в голову гениальному ученому, озаренную инсайтом, пришла мысль, что, возможно, яблоко падает на землю, подчиняясь той же силе, благодаря которой Луна находится на своей орбите, а не носится беспорядочно по всей галактике. Так был открыт закон всемирного тяготения, он же Третий закон Ньютона.

На языке математических формул этот закон выглядит так:

F = GMm/D 2 ,

где F — сила взаимного тяготения между двумя телами;

M — масса первого тела;

m — масса второго тела;

D 2 — расстояние между двумя телами;

G — гравитационная постоянная, равная 6,67х10 -11 .

Слово «гравитация» пришло к нам из латинского языка, дословно оно переводится как «тяжесть». Даже если вы не знаете, что такое гравитация, будьте уверены: вы сталкиваетесь с этим явлением каждый день, даже прямо сейчас.

Попробуем разобраться с этим термином.

Значение понятия

Гравитация, или как ее еще называют притяжение или тяготение, означает полное взаимодействие между всеми материальными телами на земле. Это уникальное явление было описано многими учеными. Например, особое внимание данному вопросу уделял Исаак Ньютон. Он даже создал теорию, которая на сегодняшний день называется теорией тяготения Ньютона.

В ней Ньютон отметил, что гравитация ассоциирована с силой тяжести. Сущность данного явления Ньютон объяснил так: к какому-либо телу прилагается сила тяжести, источник которой — другое тело. В своем Законе Всемирного Тяготения Ньютон определил, что все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

Интересно, что независимо от того, каким размером является тело, оно может создавать гравитационное поле. К примеру, объекты, находящиеся в космосе, такие как галактики, звезды и планеты, могут создавать достаточно большие гравитационные поля.

Гравитация влияет на все объекты, находящиеся во Вселенной. Благодаря ей происходят такие крупные эффекты, как расширение масштабов Вселенной, образование и действие черных дыр и структуры галактик.

Другие теории

Явление тяготения описывал в математическом виде Аристотель. Он считал, что на скорость падения тел влияет их масса. Чем больше весит объект, тем быстрее он падает. И только много сотен лет спустя Галилео Галилей с помощью экспериментов доказал, что данная теория ошибочна. Когда сопротивление воздуха отсутствует, все тела ускоряются одинаково.

В начале XX века о гравитации начал говорить всем известный на данный момент Альберт Эйнштейн. Он создал Общую теорию относительности, которая более точно стала описывать явление тяготения. Эйнштейн объяснил, что эффекты гравитации обусловлены деформацией пространства-времени, которая имеет связь с присутствием массы-времени. Данная теория в настоящий момент самая правильная, она доказана экспериментально.

Что такое гравитационная волна?

Краткий ответ:

Гравитационная волна — это невидимая (но невероятно быстрая) рябь в космосе. Гравитационные волны движутся со скоростью света (186 000 миль в секунду). Эти волны сжимают и растягивают все на своем пути, когда проходят мимо.

Гравитационная волна — это невидимая (но невероятно быстрая) рябь в космосе.

Мы давно знаем о гравитационных волнах.Более 100 лет назад великий ученый по имени Альберт Эйнштейн высказал множество идей о гравитации и пространстве.

Альберт Эйнштейн, официальный лауреат Нобелевской премии 1921 года по физике.

Эйнштейн предсказал, что что-то особенное происходит, когда два тела — например, планеты или звезды — вращаются вокруг друг друга. Он считал, что такое движение может вызвать рябь в космосе. Эта рябь будет распространяться, как рябь в пруду, когда в нее бросают камень.Ученые называют эту рябь пространства гравитационными волнами .

Гравитационные волны невидимы. Однако они невероятно быстрые. Они движутся со скоростью света (186 000 миль в секунду). Гравитационные волны сжимают и растягивают все на своем пути, проходя мимо.

Иллюстрация того, как масса искривляет пространство. Предоставлено: НАСА

.

Что вызывает гравитационные волны?

Самые мощные гравитационные волны создаются, когда объекты движутся с очень высокой скоростью.Вот некоторые примеры событий, которые могут вызвать гравитационную волну:

  • , когда звезда взрывается асимметрично (так называемая сверхновая)
  • , когда две большие звезды вращаются вокруг друг друга
  • , когда две черные дыры вращаются вокруг друг друга и сливаются

Художник изображает гравитационные волны, созданные слиянием двух черных дыр. Предоставлено: LIGO / T. Пайл

Но до этих типов объектов, создающих гравитационные волны, очень далеко.А иногда эти события вызывают только небольшие, слабые гравитационные волны. К тому времени, когда они достигают Земли, волны становятся очень слабыми. Это затрудняет обнаружение гравитационных волн.


Откуда мы знаем, что гравитационные волны существуют?

В 2015 году ученые впервые обнаружили гравитационные волны. Они использовали очень чувствительный инструмент под названием LIGO (лазерная интерферометрическая гравитационно-волновая обсерватория). Эти первые гравитационные волны возникли, когда две черные дыры столкнулись друг с другом.Столкновение произошло 1,3 миллиарда лет назад. Но рябь не доходила до Земли до 2015 года!

LIGO состоит из двух обсерваторий: одной в Луизиане и одной в Вашингтоне (вверху). Каждая обсерватория имеет два длинных «рукава», длина каждого из которых превышает 2 мили (4 километра). Предоставлено: Caltech / MIT / LIGO Lab

.

Эйнштейн был прав!

Первое обнаружение гравитационных волн было очень важным событием в науке. До этого почти все, что мы знали о Вселенной, было получено в результате изучения световых волн.Теперь у нас есть новый способ узнать о Вселенной — изучая волны гравитации.

Гравитационные волны помогут нам узнать много нового о нашей Вселенной. Мы также можем узнать больше о самой гравитации!


Как обнаруживаются гравитационные волны?

Когда гравитационная волна проходит мимо Земли, она сжимает и растягивает пространство. LIGO может обнаружить это сжатие и растяжение. Каждая обсерватория LIGO имеет два «рукава», длина каждого из которых превышает 2 мили (4 километра).Проходящая гравитационная волна вызывает небольшое изменение длины рук. Обсерватория использует лазеры, зеркала и чрезвычайно чувствительные инструменты для обнаружения этих крошечных изменений.

Посмотрите анимацию ниже, чтобы увидеть, как это работает!


Связанные ресурсы для преподавателей

Моделирование гравитационных волн
Падение гравитационных волн

Что такое барицентр? | Космическое пространство НАСА — Наука НАСА для детей

Мы говорим, что планеты вращаются вокруг звезд, но это не вся правда.На самом деле планеты и звезды вращаются вокруг своего общего центра масс. Этот общий центр масс называется центром масс . Барицентры также помогают астрономам искать планеты за пределами нашей солнечной системы!


Что такое центр масс?

Каждый объект имеет центр масс . Это точный центр всего материала, из которого сделан предмет. Центр масс объекта — это точка, в которой он может быть уравновешен.

Иногда центр масс находится прямо в центре объекта.Например, вы легко можете найти центр масс линейки. Попробуйте подержать палец под серединой линейки в нескольких разных местах. Вы найдете место, где можно уравновесить всю линейку одним пальцем. Это центр масс правителя. Центр масс также называют центром тяжести.

Но иногда центр масс находится в центре объекта , а не . Некоторые части объекта могут иметь большую массу, чем другие части. У кувалды, например, большая часть массы приходится на один конец, поэтому его центр масс намного ближе к его тяжелому концу.

В космосе два или более объекта, вращающихся вокруг друг друга, также имеют центр масс. Это точка, вокруг которой вращаются объекты. Эта точка является барицентром объектов. Барицентр обычно находится ближе всего к объекту с наибольшей массой.


Барицентры в нашей солнечной системе

Где находится барицентр между Землей и Солнцем? Что ж, у Солнца много массы. Для сравнения, масса Земли очень мала.Это означает, что солнце похоже на голову кувалды. Итак, барицентр между Землей и Солнцем очень близок к центру Солнца.

Юпитер намного больше Земли. Его масса в 318 раз больше. В результате барицентр Юпитера и Солнца не находится в центре Солнца. На самом деле это недалеко от поверхности Солнца!

Вся наша солнечная система также имеет барицентр. Солнце, Земля и все планеты Солнечной системы вращаются вокруг этого барицентра.Это центр масс всех объектов Солнечной системы вместе взятых.

Барицентр нашей солнечной системы постоянно меняет положение. Его положение зависит от того, где планеты находятся на своих орбитах. Барицентр Солнечной системы может находиться в диапазоне от центра Солнца до его поверхности. Когда Солнце вращается вокруг этого движущегося центра масс, оно раскачивается.


Как барицентры помогают нам находить другие планеты?

Если у звезды есть планеты, звезда вращается вокруг барицентра, который не находится в самом ее центре.Из-за этого звезда выглядит так, как будто она качается.

Как видно сверху, большая планета и звезда вращаются вокруг своего общего центра масс или барицентра.

Если смотреть сбоку, большая планета и звезда вращаются вокруг своего общего центра масс, или барицентра. Слегка смещенный от центра барицентр — это то, что заставляет звезду качаться взад и вперед.

Планеты вокруг других звезд, называемые экзопланетами, очень трудно увидеть напрямую. Они скрыты ярким сиянием звезд, вокруг которых они вращаются.Обнаружение колебания звезды — один из способов узнать, вращаются ли вокруг нее планеты. Изучая барицентры и используя несколько других методов, астрономы обнаружили множество планет вокруг других звезд!

Гравитационное притяжение Земли: определение и обзор — стенограмма видео и урока

Определение гравитационного притяжения Земли

Гравитационное притяжение Земли — это притяжение, которое Земля оказывает на объект или объект оказывает на Землю.6 м, что составляет расстояние р

Вот уравнение гравитационной модели с подставленными значениями:

Этот знаменитый результат означает, что, если мы знаем массу объекта на поверхности Земли, мы будем знать, какое притяжение Земля оказывает на него, то есть мы будем знать его вес в Ньютонах (Н). . Чтобы получить фунты, нужно разделить ньютоны на 4,448.

Приложения гравитационного притяжения Земли

Итак, каковы приложения знания гравитационного притяжения Земли?

Ну, во-первых, мы можем определить вашу общую массу тела по вашему весу.В следующий раз, когда вы будете на весах, умножьте свой вес на 4,448, чтобы получить ньютоны. Затем разделите на 9,8, и вы получите массу. Допустим, вы весите около 185 фунтов. Умножьте 185 x 4,448, затем разделите на 9,8, что составляет около 84 кг. Независимо от того, что вы можете весить в другом месте Вселенной, ваша масса не изменится.

Далее мы можем определить время падения объекта.

Когда объект падает с определенной высоты, он ускоряется вниз под действием силы тяжести Земли.На самом деле значение этого разгона составляет наш старый друг 9,8. Если пренебречь трением воздуха, вычислить время падения очень просто. В этом выражении h — начальная высота в метрах:

Например, если вы уроните объект с высоты 100 метров, его удар о землю займет около 4,5 секунд.

В качестве последнего примера мы также можем определить орбиты спутников.

Спутники удерживаются на орбите благодаря тому, что центробежная сила, необходимая для удержания их от выхода с орбиты, равна силе тяжести.Это очень точно резюмируется следующим уравнением, которое ученые использовали на протяжении десятилетий:

В этом уравнении v — это скорость, которую спутник должен поддерживать при вращении вокруг Земли, а r — радиус орбиты в метрах от спутника до центра Земли. Если вы знаете v , то вы можете найти r или наоборот. Хорошим примером является орбита группировки спутников GPS.

Эти 24 спутника должны совершить оборот вокруг Земли дважды за 24 часа. Они расположены на высоте 12 552 мили над поверхностью земли, что дает им радиус орбиты r = 26 578 000 метров. Из разработанного уравнения мы получаем скорость v = 3870 м / с. Пока эта скорость сохраняется, спутники будут оставаться на этой орбите вокруг Земли.

Пример гравитационного эксперимента

Давайте посмотрим на пример того, как гравитация работает и измеряется.

Допустим, Сьюзи решает, что она хочет создать проект, который имитирует гравитационное притяжение Земли на объект. Она будет делать это, помещая большой сферический объект на стол, а затем подвешивая рядом другой меньший объект, чтобы увидеть, есть ли между ними притяжение. Большой объект представляет собой шар для боулинга весом 16 фунтов (масса = 7,26 кг), а меньший объект — металлическую шайбу (масса = 0,02 кг). Радиус шара для боулинга составляет 4,3 дюйма.

Шайба свисает совершенно ровно по отношению к поверхности шара для боулинга на расстоянии 0 °.5 дюймов от мяча. Таким образом, r составляет 4,8 дюйма или около 0,122 м. Насколько велико гравитационное воздействие шара для боулинга на шайбу?

Ура! Сьюзи обнаруживает, что силы не хватит, чтобы вообще заметить какой-либо эффект. Фактически, у семьи Сюзи нет денег, чтобы купить оборудование, необходимое для измерения такой небольшой силы. Чего Сьюзи не осознавала, так это того, что гравитационное притяжение на самом деле является очень и очень слабой силой!

Правда о невесомости

Вот еще один факт о гравитации: астронавтов в космическом корабле, вращающемся вокруг Земли, не невесомые.

Космический корабль и все, что внутри него (воздух, космонавты, объекты и т. Д.), Имеют вес, соответствующий их массе на удалении от Земли. Эти веса относительно постоянны; просто они вращаются со скоростью, с которой центробежная сила, необходимая для удержания корабля на орбите, в точности равна гравитационному притяжению Земли на этой высоте. Это очень похоже на то, что вы испытываете, когда находитесь на вершине холма на американских горках.Когда вы падаете вниз, вы чувствуете, как будто собираетесь сойти с трассы, и испытываете то же чувство невесомости.

Краткое содержание урока

Гравитационное притяжение Земли — это притяжение, которое Земля оказывает на объект или объект оказывает на Землю. Он пропорционален произведению масс Земли и объекта и обратно пропорционален квадрату расстояния между объектом и центром Земли. Константа пропорциональности называется универсальной гравитационной постоянной и равна 6.-11. Универсальная гравитационная постоянная применима в любой точке Вселенной. Гравитационное притяжение Земли заставляет объекты иметь вес, ускоряться в свободном падении и вращаться вокруг Земли. Гравитационное притяжение все еще недостаточно изучено и считается очень слабой силой, но без него все было бы иначе на Земле.

Может ли смена времен года действительно влиять на гравитацию Земли?

Трудно поверить в то, что сила, подобная гравитации, может зависеть от капризов смены времен года или от сдвигов земли и воды на земле.Но это правда: гравитация Земли действительно изменяется под действием обоих этих факторов.

Гравитационное поле Земли (трехмерное представление гравитационного воздействия планеты) не является однородной сферой. Он полон бугров, выпуклостей, провалов и впадин, вызванных горными хребтами, глубоководными желобами и другими геологическими особенностями. Это означает, что есть определенные области на планете, где гравитационное поле более мощное, чем в других. Это касается каждого объекта во вселенной. Это одна из причин, почему попытка приземлиться на другие планеты, луны или астероиды так сложна — гравитация может варьироваться от места к месту (особенно для небольших объектов).

Здесь вы можете увидеть, как изменяется гравитация Земли, на этих изображениях, созданных на основе данных, собранных миссией Gravity Recovery and Climate Experiment (GRACE), проведенной НАСА и Немецким аэрокосмическим центром. Дно и бассейны глубоководных океанов будут соответствовать провалам гравитационного поля, поскольку морская вода менее плотная, чем скальная порода. Более плотные места, такие как горные хребты и срединные хребты океана, будут оказывать большее гравитационное притяжение, чем места, состоящие из менее плотных материалов, таких как вода.

Изменения климата означают, что вода перемещается от недели к неделе, от месяца к месяцу и от сезона к сезону. Некоторые регионы и водоемы высохнут и станут более мелкими или испытают больше дождей и начнут набухать. Эти колебания массы оказывают заметное влияние на гравитационное поле в этих местах.

Когда спутник пролетает над регионом со значительно более высокой плотностью (например, над горным хребтом), он немного ускоряется при приближении к нему из-за увеличения силы тяжести и замедляется при удалении.Эти изменения невероятно малы, но их можно измерить с помощью правильных инструментов. (Миссия GRACE фактически использовала это явление для построения карты гравитационного поля планеты.)

Изучение гравитационного поля Земли фактически дает ученым еще одну линзу для изучения последствий изменения климата. Так как потепление в Арктике, например, увеличивает массу океанов и морей, соответствующее изменение силы тяжести Земли можно увидеть и зарегистрировать. Данные GRACE (собранные в период с 2002 по 2017 год) показали, что 60% общей потери массы Антарктиды и Гренландии было результатом тенденций потепления в Арктике, а остальные 40% были вызваны усилением притока льда в океан.Те же данные свидетельствуют о том, что за 15-летний период миссии Гренландия теряла около 260 миллиардов тонн льда в год, а Антарктида — около 140 миллиардов тонн в год.

«Есть ли у Луны гравитация?» | Планетарий

— A nonymous, Рочестер, Нью-Йорк

Привет!

Многие люди считают, что у Луны нет гравитации. Фактически, Луна, как и любой другой массивный объект во Вселенной, притягивает все остальные массивные объекты гравитационно.Даже субатомные частицы, такие как протоны и нейтроны, оказывают гравитационное притяжение на ближайшие объекты, хотя оно настолько незначительно, что им можно пренебречь.

Мы используем термин «поверхностная гравитация» применительно к нисходящему «притяжению», которое испытывают объекты, когда они отдыхают или двигаются на более крупном теле. Средняя сила тяжести на поверхности Земли составляет около 9,8 метра в секунду в секунду. Когда объект, например, отбрасывается с вершины здания или с вершины утеса, он ускоряется к земле со скоростью 9,8 метра в секунду в секунду.Сила притяжения на поверхности Луны примерно в 6 раз меньше, или около 1,6 метра в секунду в секунду. Поверхностная гравитация Луны слабее, потому что она намного менее массивна, чем Земля. Сила тяжести на поверхности тела пропорциональна его массе, но обратно пропорциональна квадрату его радиуса.

(Чтобы узнать, как можно рассчитать силу тяжести на поверхности Луны, обратитесь к Math Zone 6: http://usm.maine.edu/planet/mz-6-calculating-planets-surface-gravity)

Астронавты «Аполлона» смогли ходить по поверхности Луны, потому что Луна оказывала на них гравитационное притяжение.Конечно, астронавты смогли прыгнуть на Луну выше, чем на Земле, потому что гравитация поверхности Луны сравнительно мала. На Земле полностью одетый астронавт Аполлона весил около 500 фунтов, включая оборудование. На Луне его вес составлял всего около 80 фунтов. *

Мы также обращаем ваше внимание на ставшую знаменитой демонстрацию падения пера молотка, которую астронавт Аполлона-15 Дэвид Скотт провел на поверхности Луны. Он продемонстрировал, что в вакууме соколиное перо и молот при одновременном падении с одной и той же высоты достигают земли одновременно.www.youtube.com/watch?v=5C5_dOEyAfk

Вы заметите, что объекты падают медленно, потому что их ускорение к поверхности составляет всего 1/6 от того, что было бы на Земле. Демонстрация командира Скотта доказала, что объекты неравной массы падают с одинаковой скоростью, и, конечно же, доказала, что на Луне действительно есть гравитация.

* Некоторые люди используют термины «масса» и «вес» как синонимы. На самом деле это совершенно разные значения. «Масса» измеряет сопротивление тела инерции.Если вы не добавляете и не теряете материю тела, ваша масса здесь такая же, как и на Луне, Плутоне или любом другом месте в этой или любой другой галактике. «Вес» измеряет гравитационное притяжение, которое планета оказывает на ваше тело. У вас нет такого веса на Земле, как на Луне, Плутоне или даже на Солнце или нейтронной звезде.

О природе гравитации и возможном изменении массы Земли в геологическое время

Аннотация

Ряд обстоятельств не может быть объяснен исходя из постоянной силы тяжести на Земле: 1.Размеры ископаемых животных и растений. По законам биомеханики гигантские динозавры не могли двигаться и летать. 2. Движение континентов, достоверно описанное А. Вегенером, можно объяснить только на основе модели увеличивающейся Земли. Гравитация — только одно из полей, определяющих существование мира. Поле и материя — это формы, которые можно преобразовывать друг в друга. Переход описан, в частности, Пуанкаре, возможно, не совсем точно: E = (K) mc2. Есть указания на существование временного поля (Козырев, 1978), которое генерирует энергию, а затем следующее условное уравнение: T, где T — время.Благодаря этой связи генерируется энергия свечения звезд и планет, масса увеличивается. В частности, происходит увеличение массы Земли. Это подтверждает расхождение континентов и уменьшение размеров животных и растений в истории Земли. Согласно представленной модели, размер Земли увеличился за 100 миллионов лет в два раза в линейном масштабе и в 8 раз в масштабах объема и массы. Понимание общего принципа освоения космоса требует совместной работы специалистов разных направлений геолого-геофизических исследований.Основа возможной схемы: 1. Природа гравитации не объясняется наукой, хотя некоторые ее свойства описаны с высокой точностью, и эти описания обладают предсказательной силой. В самом деле, что привлекало нити тела без физического контакта? 2. Скорость распространения гравитационных сил во Вселенной во много раз превышает скорость света. Возможно, это бесконечно, хотя это не доказано. 3. Вселенная бесконечна, как это ясно из логических расчетов мыслителей более древнего периода.Однако наша вселенная, то есть вселенная, доступная нашим чувствам и приборам, конечна. Объем нашей Вселенной составляет 1070 кубических километров. Полная масса в 1023 раза больше массы Солнца. Количество звездных систем составляет примерно 1012. 4. Видимая обнаруживаемая материя — крошечная часть всей Вселенной. В основе его темная материя, которую мы не наблюдали, но догадываемся по косвенным свидетельствам. 5. Одна из наиболее развитых концепций космогонии — концепция Большого взрыва. Основанием для создания концепции было до сих пор неподтвержденное мнение астрономов о том, что все галактики разлетаются.По мнению Фридмана, Гамова и их последователей — сторонников Большого взрыва, наша Вселенная началась 15 миллиардов лет назад. Тогда он был размером с протон! Плотность 1093 г / см 3. Температура 1070 градусов. Представить эти ценности обыденному сознанию невозможно. С этого состояния наша Вселенная начала расширяться. После одной десятитысячной секунды плотность упала до 1014 г / см3. Сначала появились элементарные частицы. Когда возраст нашей Вселенной достиг 0,3 секунды, плотность уменьшилась на 107 г / см 3, а температура поднялась до 30 миллиардов градусов.6. Гипотеза Большого взрыва интересна и в некоторой степени конструктивна. Но она не приобрела ранга теории и содержит слишком много непроверенных моментов. Согласно принципу относительности Пуанкаре и Лоренца, максимальная скорость физического движения в пространстве — скорость света. Вселенная заполнена темной материей, которая распространяется, возможно, бесконечно. Она имеет большую плотность и создает поток гравитации. Химически он должен состоять из водорода в качестве первичного элемента. В континууме Темной Материи иногда появляются пустоты.Одна из них — наша Вселенная. Точно так же, когда наша Вселенная возникла как «псевдопустотный» пузырь в континууме Темной Материи, материальные частицы сгруппированы в галактики, звезды и планеты. Гравитационное поле излучается всей материей Вселенной. Эта гипотеза направлена ​​на понимание подвижности континентов, а также геологической и биологической эволюции Земли.

Почему атмосфера не уносится в космос?

Краткий ответ:

Гравитация Земли достаточно сильна, чтобы удерживать ее атмосферу и не дать ей улететь в космос.

Ответ одним словом …

Гравитация

К счастью для нас, гравитация Земли достаточно сильна, чтобы удерживать ее атмосферу. Марс, например, меньше половины размера Земли и около одной десятой массы Земли. Меньшая масса означает меньшее гравитационное притяжение. Плотность атмосферы Марса составляет лишь 1/100 плотности Земли. И, кстати, в основном это CO 2 .

Воздух внизу атмосферы имеет гораздо больший вес, чем воздух ближе к верху.

Подобно акробату внизу группы акробатов, воздух внизу атмосферы находится под гораздо большим весом, чем воздух ближе к вершине. Это означает, что воздух ближе к поверхности Земли сдавливается воздухом над ней и, таким образом, становится более плотным. Чем выше вы поднимаетесь в атмосфере, тем тоньше становится воздух. Девяносто девять процентов воздуха находится в нижних 30 километрах (19 милях) атмосферы.

Да, атмосфера Земли имеет вес. Итак, у нас здесь, на поверхности, внизу «стопки» их около 14.7 фунтов воздуха, давящего на каждый квадратный дюйм нашего тела! К счастью, мы к этому привыкли. Мы эволюционировали здесь, поэтому наши тела могут с этим справиться. Выше в атмосфере начинаются проблемы. Даже на высоте 3000–4500 метров (около 10–15000 футов) воздух становится настолько разреженным, что у большинства людей возникают проблемы с получением достаточного количества кислорода.

Если бы Земля была размером с пляжный мяч, воздухопроницаемая атмосфера была бы тонкой, как бумага. Наблюдение за нашей атмосферой из космоса показывает, насколько она тонкая и хрупкая.

«Многие астронавты сообщали о том, что видели эту нежную, тонкую голубую ауру на горизонте освещенного днем ​​полушария — которая представляет толщину всей атмосферы — и немедленно, непрошено, созерцая ее хрупкость и уязвимость. Они беспокоятся об этом. У них есть причины для этого. волноваться.» Карл Саган, Миллиарды и миллиарды

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *