Представление звуковой информации в компьютере — урок. Информатика, 10 класс.
Звук представляет собой непрерывный сигнал — звуковую волну с меняющейся амплитудой и частотой.
Чем больше амплитуда сигнала, тем он громче для человека.
Чем больше частота сигнала, тем выше тон.
Частота звуковой волны выражается числом колебаний в секунду и измеряется в герцах (Гц, Hz).
Человеческое ухо способно воспринимать звуки в диапазоне от \(20\) Гц до \(20\) кГц, который называют звуковым.
Количество бит, отводимое на один звуковой сигнал, называют глубиной кодирования звука.
Современные звуковые карты обеспечивают \(16\)-, \(32\)- или \(64\)-битную глубину кодирования звука.
При кодировании звуковой информации непрерывный сигнал заменяется дискретным, то есть превращается в последовательность электрических импульсов (двоичных нулей и единиц).
Процесс перевода звуковых сигналов от непрерывной формы представления к дискретной, цифровой форме называют оцифровкой.
Важной характеристикой при кодировании звука является частота дискретизации — количество измерений уровней сигнала за \(1 \)секунду:— \(1\) (одно) измерение в секунду соответствует частоте \(1\) Гц;
— \(1000\) измерений в секунду соответствует частоте \(1\) кГц.
Частота дискретизации звука — это количество измерений громкости звука за одну секунду.
Количество измерений может лежать в диапазоне от \(8\) кГц до \(48\) кГц (от частоты радиотрансляции до частоты, соответствующей качеству звучания музыкальных носителей).
Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации \(8000\) раз в секунду, глубине дискретизации \(8\) битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации \(48 000 \)раз в секунду, глубине дискретизации \(16\) битов и записи двух звуковых дорожек (режим «стерео»).
Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.
Оценить информационный объём моноаудиофайла (\(V\)) можно следующим образом: V = N⋅f⋅k, где \(N\) — общая длительность звучания (секунд), \(f\) — частота дискретизации (Гц), \(k\) — глубина кодирования (бит).
Например, при длительности звучания \(1\) минуту и среднем качестве звука (\(16\) бит, \(24\) кГц):
V = 60⋅24000⋅16 бит = 23040000 бит = 2880000 байт = 2812,5 Кбайт = 2,75 Мбайт.
При кодировании стереозвука процесс дискретизации производится отдельно и независимо для левого и правого каналов, что, соответственно, увеличивает объём звукового файла в два раза по сравнению с монозвуком.
Например, оценим информационный объём цифрового стереозвукового файла длительностью звучания \(1 \)секунда при среднем качестве звука (\(16\) битов, \(24 000\) измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в \(1 \)секунду и умножить на \(2\) (стереозвук):
V=16 бит ⋅24000⋅2 = 768000 бит = 96000 байт = 93,75 Кбайт.
Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых можно выделить два основных направления: метод FM и метод Wave-Table.
Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, и, следовательно, может быть описан кодом. Разложение звуковых сигналов в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства — аналогово-цифровые преобразователи (АЦП).
Преобразование звукового сигнала в дискретный сигнал: a — звуковой сигнал на входе АЦП; б — дискретный сигнал на выходе АЦП.
Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). Процесс преобразования звука представлен на рис. ниже. Данный метод кодирования не даёт хорошего качества звучания, но обеспечивает компактный код.
Преобразование дискретного сигнала в звуковой сигнал: а — дискретный сигнал на входе ЦАП; б — звуковой сигнал на выходе ЦАП.
Таблично-волновой метод (Wave-Table) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.
Звуковые файлы имеют несколько форматов. Наиболее популярные из них MIDI, WAV, МРЗ.
Формат MIDI (Musical Instrument Digital Interface) изначально был предназначен для управления музыкальными инструментами. В настоящее время используется в области электронных музыкальных инструментов и компьютерных модулей синтеза.
Формат аудиофайла WAV (waveform) представляет произвольный звук в виде цифрового представления исходного звукового колебания или звуковой волны. Все стандартные звуки Windows имеют расширение WAV.
Формат МРЗ (MPEG-1 Audio Layer 3) — один из цифровых форматов хранения звуковой информации. Он обеспечивает более высокое качество кодирования.
Дискретный сигнал — Википедия
Материал из Википедии — свободной энциклопедии
Аналоговый (слева сверху, недискретный, неквантованный), Цифровой (слева снизу, недискретный, квантованный) и Дискретные сигналы (справа сверху, неквантованный и справа снизу, квантованный)Дискре́тный сигна́л (лат. discretus — «прерывистый», «разделённый») — сигнал, который является прерывистым (в отличие от аналогового) и который изменяется во времени и принимает любое значение из списка возможных значений. Список возможных значений может быть непрерывным или квантованным.
Существует путаница между понятиями дискретного и цифрового сигналов. Часто цифровой сигнал называют дискретным, потому что он состоит из дискретных (отдельных) частей (samples), несмотря на то, что цифровой сигнал не является прерывистым сигналом.
В английском языке используют понятия: discrete time (дискретное время), для рассмотрения значений переменных в отдельные моменты времени; continuous time (непрерывное время), для рассмотрения значений переменных в любой момент времени, причем между любыми двумя моментами времени существует бесконечное количество других моментов времени.
Цифровой сигнал получается последовательностью двух шагов:
- Сэмплирования, который производит непрерывный сигнал дискретного времени
- Квантования, который заменяет значение каждого сэмпла приближенным значением, выбранным из заданного дискретного набора (квантованных уровней).
Дискретность применяется в вычислительной технике для пакетной передачи данных.
Кодирование звуковой информации — Википедия
В основе кодирования звука с использованием ПК лежит процесс преобразования колебаний воздуха в колебания электрического тока и последующая дискретизация аналогового электрического сигнала. Кодирование и воспроизведение звуковой информации осуществляется с помощью специальных программ (редактор звукозаписи). Качество воспроизведения закодированного звука зависит от частоты дискретизации и её разрешения (глубины кодирования звука — количество уровней)
Цифровой звук — это аналоговый звуковой сигнал, представленный посредством дискретных численных значений его амплитуды[2].
Оцифровка звука — технология поделенным временным шагом и последующей записи полученных значений в численном виде[2].
Другое название оцифровки звука — аналогово-цифровое преобразование звука.
Оцифровка звука включает в себя два процесса:
- процесс дискретизации (осуществление выборки) сигнала по времени
- процесс квантования по амплитуде.
Дискретизация по времени[править | править код]
Пример представления аналогового сигнала в цифровой формеПроцесс дискретизации по времени — процесс получения значений сигнала, который преобразуется с определенным временным шагом — шагом дискретизации . Количество замеров величины сигнала, осуществляемых в единицу времени, называют частотой дискретизации
Это подтверждается теоремой Котельникова (в зарубежной литературе встречается как теорема Шеннона, Shannon). Согласно ей, аналоговый сигнал с ограниченным спектром точно описуем дискретной последовательностью значений его амплитуды, если эти значения берутся с частотой, как минимум вдвое превышающей наивысшую частоту спектра сигнала. То есть, аналоговый сигнал, в котором находится частота спектра равная Fm, может быть точно представлен последовательностью дискретных значений амплитуды, если для частоты дискретизации F
На практике это означает, что для того, чтобы оцифрованный сигнал содержал информацию о всем диапазоне слышимых частот исходного аналогового сигнала (20 Гц — 20 кГц) необходимо, чтобы выбранное значение частоты дискретизации составляло не менее 40 кГц. Количество замеров амплитуды в секунду называют частотой дискретизации (в случае, если шаг дискретизации постоянен).
Основная трудность оцифровки заключается в невозможности записать измеренные значения сигнала с идеальной точностью (хотя исходя из теоремы Шенона и Котельникова это возможно)
Линейное (однородное) квантование амплитуды[править | править код]
Отведём для записи одного значения амплитуды сигнала в памяти компьютера N бит. Значит, с помощью одного N -битного слова можно описать 2
Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. В случае, когда записываются абсолютные значения амплитуды, такой формат записи называется PCM (Pulse Code Modulation). Стандартный аудио компакт-диск (CD-DA), применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44.1 кГц и разрядностью квантования 16 бит.
Другие способы оцифровки[править | править код]
- Способ неоднородного квантования предусматривает разбиение амплитудной шкалы на уровни по логарифмическому закону. Такой способ квантования называют логарифмическим квантованием. При использовании логарифмической амплитудной шкалы, в области слабой амплитуды оказывается большее число уровней квантования, чем в области сильной амплитуды (при этом, общее число уровней квантования остается таким же, как и в случае однородного квантования). Аналогово-цифровое преобразование, основанное на применении метода неоднородного квантования, называется неоднородной импульсно-кодовой модуляцией — неоднородной ИКМ (Nonuniform PCM).
- Альтернативным способом аналогово-цифрового преобразования является разностная импульсно-кодовая модуляция — разностная ИКМ (англ. « Differential PCM») — в случае разностной ИКМ квантованию подвергают не саму амплитуду, а относительные значения величины амплитуды. В полной аналогии с ИКМ, разностная ИКМ может сочетаться с использованием как однородного, так и неоднородного методов квантования. Разностное кодирование имеет много разных вариантов[3].
Аналогово-цифровые преобразователи (АЦП)[править | править код]
Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями (АЦП).
Это преобразование включает в себя следующие операции:
- Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации.
- Дискретизацию во времени, то есть замену непрерывного аналогового сигнала последовательностью его значений в дискретные моменты времени — отсчетов. Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения.
- Квантование по уровню представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин — уровней квантования.
- Кодирование или оцифровку, в результате которого значение каждого квантованного отсчета представляется в виде числа, соответствующего порядковому номеру уровня квантования.
Делается это следующим образом: непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, который проходит процесс квантования с определенной разрядностью, а затем кодируется, то есть заменяется последовательностью кодовых символов. Для записи звука в полосе частот 20-20 000 Гц, требуется частота дискретизации от 44,1 и выше (в настоящее время появились АЦП и ЦАП c частотой дискретизации 192 и даже 384 кГц). Для получения качественной записи достаточно разрядности 16 бит, однако для расширения динамического диапазона и повышения качества звукозаписи используется разрядность 24 (реже 32) бита.
Кодирование оцифрованного звука перед его записью на носитель[править | править код]
Для хранения цифрового звука существует много различных способов. Оцифрованный звук являет собой набор значений амплитуды сигнала, взятых через определенные промежутки времени.
- Блок оцифрованной аудио информации можно записать в файл без изменений, то есть последовательностью чисел — значений амплитуды. В этом случае существуют два способа хранения информации.
- Первый — PCM (Pulse Code Modulation — импульсно-кодовая модуляция) — способ цифрового кодирования сигнала при помощи записи абсолютных значений амплитуд. (В таком виде записаны данные на всех аудио CD.)
- Второй — ADPCM (Adaptive Delta PCM — адаптивная относительная импульсно-кодовая модуляция) – запись значений сигнала не в абсолютных, а в относительных изменениях амплитуд (приращениях).
- Можно сжать данные так, чтобы они занимали меньший объем памяти, нежели в исходном состоянии. Тут тоже есть два способа.
- Кодирование данных без потерь (lossless coding) — способ кодирования аудио, который позволяет осуществлять стопроцентное восстановление данных из сжатого потока. К нему прибегают в тех случаях, когда сохранение оригинального качества данных особо значимо. Существующие сегодня алгоритмы кодирования без потерь (например, Monkeys Audio) позволяют сократить занимаемый данными объем на 20-50%, но при этом обеспечить стопроцентное восстановление оригинальных данных из полученных после сжатия.
- Кодирование данных с потерями (lossy coding). Здесь цель — добиться схожести звучания восстановленного сигнала с оригиналом при как можно меньшем размере сжатого файла. Это достигается путём использования алгоритмов, «упрощающих» оригинальный сигнал (удаляющих из него «несущественные», неразличимые на слух детали). Это приводит к тому, что декодированный сигнал перестает быть идентичным оригиналу, а является лишь «похоже звучащим». Методов сжатия, а также программ, реализующих эти методы, существует много. Наиболее известными являются MPEG-1 Layer I,II,III (последним является всем известный MP3), MPEG-2 AAC (advanced audio coding), Ogg Vorbis, Windows Media Audio (WMA), TwinVQ (VQF), MPEGPlus, TAC, и прочие. В среднем, коэффициент сжатия, обеспечиваемый такими кодерами, находится в пределах 10-14 (раз). В основе всех lossy-кодеров лежит использование так называемой психоакустической модели. Она занимается этим самым «упрощением» оригинального сигнала. Степень сжатия оригинального сигнала зависит от степени его «упрощения» — сильное сжатие достигается путём «воинственного упрощения» (когда кодером игнорируются множественные нюансы). Такое сжатие приводит к сильной потере качества, поскольку удалению могут подлежать не только незаметные, но и значимые детали звучания[4].
Терминология[править | править код]
- кодер – программа (или устройство), реализующая определенный алгоритм кодирования данных (например, архиватор, или кодер MP 3), которая в качестве ввода принимает исходную информацию, а в качестве вывода возвращает закодированную информацию в определенном формате.
- декодер – программа (или устройство), реализующая обратное преобразование закодированного сигнала в декодированный.
- кодек (от англ. « codec » — « Coder / Decoder ») — программный или аппаратный блок, предназначенный для кодирования/декодирования данных.
Наиболее распространённые кодеки[править | править код]
- MP3 – MPEG-1 Layer 3
- ОGG – Ogg Vorbis
- WMA – Windows Media Audio
- MPC — MusePack
- AAC – MPEG-2/4 AAC (Advanced Audio Coding)
- Стандарт MPEG-2 AAC
- Стандарт MPEG-4 AAC
Некоторые форматы оцифровки звука в сравнении[править | править код]
Название формата | Квантование, бит | Частота дискретизации, кГц | Число каналов | Величина потока данных с диска, кбит/с | Степень сжатия/упаковки |
---|---|---|---|---|---|
CD | 16 | 44,1 | 2 | 1411,2 | 1:1 без потерь |
Dolby Digital (AC3) | 16-24 | 48 | 6 | до 640 | ~12:1 с потерями |
DTS | 20-24 | 48; 96 | до 8 | до 1536 | ~3:1 с потерями |
DVD-Audio | 16; 20; 24 | 44,1; 48; 88,2; 96 | 6 | 6912 | 2:1 без потерь |
DVD-Audio | 16; 20; 24 | 176,4; 192 | 2 | 4608 | 2:1 без потерь |
MP3 | плавающий | до 48 | 2 | до 320 | ~11:1 с потерями |
AAC | плавающий | до 96 | до 48 | до 529 | с потерями |
AAC+ (SBR) | плавающий | до 48 | 2 | до 320 | с потерями |
Ogg Vorbis | до 32 | до 192 | до 255 | до 1000 | с потерями |
WMA | до 24 | до 96 | до 8 | до 768 | 2:1, есть версия без потерь |
Полный цикл преобразования звука: от оцифровки до воспроизведения у потребителя[править | править код]
Полный цикл преобразования звука: от оцифровки до воспроизведенияПомехоустойчивое и канальное кодирование[править | править код]
Помехоустойчивое кодирование позволяет при воспроизведении сигнала выявить и устранить (или снизить частоту их появления) ошибки чтения с носителя. Для этого при записи к сигналу, полученному на выходе АЦП, добавляется искусственная избыточность (контрольный бит), которая впоследствии помогает восстановить поврежденный отсчет. В устройствах записи звука обычно используется комбинация из двух или трех помехоустойчивых кодов. Для лучшей защиты от пакетных ошибок также применяется перемежение. Канальное кодирование служит для согласования цифровых сигналов с параметрами канала передачи (записи/воспроизведения). К полезному сигналу добавляются вспомогательные данные, которые облегчают последующее декодирование. Это могут быть сигналы временного кода, служебные сигналы, сигналы синхронизации. В устройствах воспроизведения цифровых сигналов канальный декодер выделяет из общего потока данных тактовые сигналы и преобразует поступивший канальный сигнал в цифровой поток данных. После коррекции ошибок сигнал поступает в ЦАП.
Принцип действия ЦАП[править | править код]
Цифровой сигнал, полученный с декодера, преобразовывается в аналоговый. Это преобразование происходит следующим образом:
- Декодер ЦАП преобразует последовательность чисел в дискретный квантованный сигнал
- Путём сглаживания во временной области из дискретных отсчетов вырабатывается непрерывный во времени сигнал
- Окончательное восстановление сигнала производится путём подавления побочных спектров в аналоговом фильтре нижних частот
Параметры, влияющие на качество звука при его прохождении по полному циклу[править | править код]
Основными параметрами, влияющими на качество звука при этом являются:
Также немаловажными остаются параметры аналогового тракта цифровых устройств кодирования и декодирования:
Аналоговый сигнал — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 октября 2017; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 октября 2017; проверки требуют 8 правок. Аналоговый (слева сверху), Цифровой (Слева снизу) и Дискретные сигналы (справа сверху и снизу)Ана́логовый сигна́л — сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.[1]
Различают два пространства сигналов — пространство L (непрерывные сигналы), и пространство l (L малое) — пространство последовательностей.
Пространство l (L малое) есть пространство коэффициентов Фурье (счётного набора чисел, определяющих непрерывную функцию на конечном интервале области определения), пространство L — есть пространство непрерывных по области определения (аналоговых) сигналов.
При некоторых условиях, пространство L однозначно отображается в пространство l (например, первые две теоремы дискретизации Котельникова).
Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют континуальным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые). Примеры непрерывных пространств и соответствующих физических величин:
Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.
- Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте «количество информации» будет ограничено лишь динамическим диапазоном средства измерения.
- Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесённая в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).
Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несёт информацию об изменении температуры, сигнал с микрофона — о быстрых изменениях давления в звуковой волне, и т. п.
Аналоговое телевидение — один из видов телевещания. В некоторых странах, например, в России[2][комм 1], эфирное аналоговое телевидение заменяется цифровым.
- ↑ В России аналоговое телевещание отключается в 2019 году.
Цифровой сигнал — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 мая 2017; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 мая 2017; проверки требуют 5 правок. Аналоговый (слева сверху), Цифровой (Слева снизу) и Дискретные сигналы (справа сверху и снизу)Цифровой сигнал — сигнал, который можно представить в виде последовательности дискретных (цифровых) значений. В наше время наиболее распространены двоичные цифровые сигналы (битовый поток) в связи с простотой кодирования и используемостью в двоичной электронике. Для передачи цифрового сигнала по аналоговым каналам (например, электрическим или радиоканалам) используются различные виды манипуляции (модуляции).
Важным свойством цифрового сигнала, определившего его доминирование в современных системах связи, является его способность к полной регенерации в ретрансляторе (до некоторого порогового отношения сигнал/шум). Когда в ретранслятор приходит сигнал с небольшими помехами, он преобразуется в цифровую форму, и ретранслятор заново формирует сигнал, полностью убирая искажения. Аналоговый же сигнал удаётся усилить лишь вместе с наложившимися на него шумами.
С другой стороны, если цифровой сигнал приходит с большими помехами, восстановить его невозможно (эффект крутой скалы (англ.)), в то время как из искаженного аналогового сигнала можно извлечь часть информации, хотя и с трудом. Если сравнивать сотовую связь аналогового формата (AMPS, NMT) с цифровой связью (GSM, CDMA), то при помехах на цифровой линии из разговора выпадают порой целые слова, а на аналоговой можно вести разговор, хотя и с помехами.
Выход из данной ситуации — чаще регенерировать цифровой сигнал, вставляя регенераторы в разрыв линии связи, или уменьшать длину линии связи (например, уменьшать расстояние от сотового телефона до базовой станции, что достигается более частым расположением базовых станций на местности).
Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.
1)Понятие «информация», сообщение, данные, сигнал
Сообщения. В теории коммуникации сообщение– это предназначенные для передачи высказывание, текст, изображение, физический предмет или поступок. Сообщения состоят из словесных или невербальных сигналов. Одиночный сигнал не может содержать много информации, поэтому для передачи информации используется ряд следующих друг за другом сигналов. Последовательность сигналов и называется сообщением. Таким образом, от источника к приемнику информация передается в виде сообщений. Сообщение выступает в качестве материальной оболочки для представления информации при передаче. Следовательно, сообщение служит переносчиком информации, а информация является содержанием сообщения. Соответствие между сообщением и содержащейся в нем информацией называется правилом интерпретации сообщения.
Существуют понятия непрерывного (аналогового), дискретного, квантованного и цифрового сообщений. Инф-ия данным качеством не обладает, т.к. она нематериальна, хотя одна и та же инф-ия может быть представлена посредством различных сообщений. В информатике иногда используются сочетания инф-ии, представленной посредством непрерывных сигналов, и инф-ии, представленной посредством дискретных сигналов. При формировании сообщения наряду с сигналом используются и такие понятия, как знак, буква и символ.
Знак– это элемент некоторого конечного множества отличных друг от друга сущностей (жест, рисунок, буква, сигнал светофора, звук). Все множество знаков, используемых для представления дискретной инф-ции, назыв. набором знаков (дискретное множество знаков). Набор знаков, в кот. установлен порядок их следования, назыв. алфавитом.Алфавит – это упорядоченная совокупность знаков. Порядок следования знаков в алфавите назыв. лексикографическим и представляет возможность устанавливать отношения больше-меньше (Г<Д). Знаки, используемые для обозначения фонем человеческого языка, назыв. буквами, а их совокупность – алфавитом языка.Символ– приписанное содержание знаку или букве (напряжение в физике принято обозначать буквой U). Таким образом, понятия «знак», «буква» и «символ» нельзя считать тождественными. Представляется важным еще раз подчеркнуть, что понятия знака и алфавита можно отнести только к дискретным сообщениям. Сигнал. Сигнал – физический процесс или явления, несущий сообщение о каком-либо событии, состоянии объекта либо передающий команды управления. Таким образом, изменение характеристики носителя, кот. используется для представления инф-ии, назыв. сигналом, а значение этой характеристики, отнесенное к некоторой шкале измерений, — параметром сигнала. Например, процессы для передачи инф-ции – волны, параметры сигнала – частота, амплитуда и фаза волны. Различают аналоговые, дискретные, квантовые и цифровые сигналы, кот. могут быть синхронными и асинхронными. Аналоговый (непрерывный). Это сигнал, величина кот. непрерывно изменяется во времени. Он обеспечивает передачу данных путем непрерывного изменения во времени амплитуды, частоты либо фазы. Особенные св-ва: отсутствие избыточности. Аналоговые сигналы используются для представления каких-либо непрерывно изменяющихся физических величин (сигнал с микрофона несет инф-ию о быстрых изменениях давления в звуковой волне). Аналоговые сигналы описываются некоторой математической функцией времени. Например, для гармонического сигнала: Дискретный. Процесс перевод аналогового сигнала в дискретный назыв. дискретизацией, а процесс обратный этому – восстановлением. Непрерывный аналоговый сигнал заменяется здесь последовательностью коротких импульсов-отсчетов, величина кот. = значению сигнала в данный момент времени. Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени.
Данные. Это сведения, полученные путем измерения, наблюдения, логических и арифметических операций и представленные в форме, пригодной для постоянного хранения, передачи и обработки. В процессах сбора, обработки и использования данные расчленяются на отдельные элементарные составляющие – элементы данных. Они могут быть выражены целыми и вещественными числами, словами и булевыми величинами, способными принимать 2 значения: «истина» (1) и «ложь» (0). Экономические данные можно подразделить на: условно постоянные (расценки, нормативы, сведения о производительности оборудования; условно постоянными назыв. т.к. время от времени обновляются; хранятся в массивах картотек или вводятся в память машины) и переменные (сведения о выработке рабочих, о сдаче деталей и продукции, о запасах на складе; после расчета, как правило, изымаются из памяти компьютера). Данные хранятся в базах данных.База данных– совокупность хранимых в памяти компьютера данных, относящихся к определенному объему или кругу дея-ти, специально организованных, обновляемых и логически связанных между собой. Они представляют собой своеобразную информационную модель объекта. Система управления БД – комплекс программных и лингвистических средств общего или специального назначения, реализующий поддержку создания БД, централизованного управления и организации доступа к ним различных пользователей в условиях принятой технологии обработки данных. Она характеризуется используемой моделью, средствами администрирования и разработки прикладных процессов и обеспечивает описание и сжатие данных; манипулирование данными; физическое размещение и сортировка записей; защиту от сбоев, поддержку целостности данных и их восстановление; работу с транзакциями и файлами; безопасность данных. СУБД определяет модель представления данных. Для того, чтобы быть воспринятыми и стать информацией, данные проходят тройной фильтр: физический (ограничения по пропускной способности канала), семантический и прагматический, где оценивается полезность данных. Данные – величина, число или отношение, вводимые в процесс обработки или выводимые из него. Обработка данных – приведение их к такому виду, кот. наиболее удобен для получения их них инф-ии, знания.
Информация. Информация является одной из исходных категорий мироздания, и следовательно, определение «инф-ии вообще» невозможно свести к каким-то простым, исходным терминам. Раньше под инф-ей понимали учение, наставление. Современное понятие инф-ии: — сведения, сообщения о чем-либо, кот. обмениваются люди; — сигналы, импульсы, образы, циркулирующие в технических устройствах; — отражение разнообразия в любых объектах и процессах неживой и живой природы. При методологическом подходе инф-ия рассматривается как абстрактная фикция. Такой подход используется при создании и развитии математической теории инф-ии.
2) Сообщения и сигналы. Кодирование и квантование сигналов.
Сообщение – последовательность сигналов
Сообщение — наименьший элемент языка, имеющий идею или смысл, пригодный для общения. В информатике — форма представления информации, имеющая признаки начала и конца, предназначенная для передачи через среду связи. Также форма предоставления информации, совокупность знаков или первичных сигналов, содержащих информацию.
Чтобы сообщение стало сигналом его необходимо интерпретировать
Правило интерпретации сообщения — соответствие между сообщением и содержащейся в нем информацией. Однозначное правило и неоднозначное.
Неоднозначное:
1) одно и то же сообщение несет различную информацию
2) разные сообщения несут одну и ту же информацию
Сигнал – изменяемая во времени физическая величина
Сигнал (в теории информации и связи) — материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.
Сигналы бывают:
1) АНАЛОГОВЫМназывается сигнал, который может приниматьлюбоезначение на некотором промежутке.
2) ДИСКРЕТНЫМ называется сигнал, который может принимать строго определенные значения на некотором промежутке
Кодирование сигнала – это его представление в определенной форме, удобной или пригодной для последующего использования сигнала. Говоря строже, это правило, описывающее отображение одного набора знаков в другой набор знаков. Тогда отображаемый набор знаков называется исходным алфавитом, а набор знаков, который используется для отображения, — кодовым алфавитом, или алфавитом для кодирования
Кодирование – преобразование информации в форму, пригодную для передачи по каналу связи.
Декодирование – преобразование информации в форму, пригодную для получения.
Двоичное кодирование
Дискретизация— преобразование непрерывной функции в дискретную.
Преобразование непрерывного информационного множества аналоговых сигналов в дискретное множество называется дискретизациейиликвантованием по уровню(ср. «Квантование по времени»).
Квантование по уровню широко используется в цифровых автоматах.
Точки на втором рисунке называется квантованием
Квантование (англ. quantization) — в информатике разбиение диапазона значений непрерывной или дискретной величины на конечное число интервалов. Существует также векторное квантование — разбиение пространства возможных значений векторной величины на конечное число областей. Простейшим видом квантования является деление целочисленного значения на натуральное число.
3) Позиционные системы счисления. Методы перевода чисел.
Система счисления – это правило записи чисел с помощью заданного набора специальных знаков – цифр.
Виды систем счисления:
Унарной называют систему счисления, в которой для записи чисел используют только один знак – 1 (например, Счетные палочки).
Непозиционной называют систему счисления, в которой значение цифры в изображении числа не зависит от ее положения в ряду других цифр.
Достоинства:
Недостатки:
Нет 0 и знаков больших М
Громоздкая запись
Неудобно проводить вычисления.
Позиционной называют систему счисления, в которой значение каждой цифры в изображении числа определяется ее положением (позицией) в ряду других цифр.
353,358 = 3*102+5*101+3*100+3*10-1+5*10-2+8*10-3
Примеры:
Десятичная
Пятеричная
Шестеричная
Двенадцатеричная
Двадцатеричная
Шестидесятеричная и др.
Построение чисел в позиционных системах счисления
Пусть р – основание системы счисления.
Тогда любое число Х можно представить в виде многочлена:
Xр=ak*pk+ak-1*pk-1+…+a1*p+a0
Xр=(akak-1…a1)р
Каково минимальное значение р?
р = 1 – унарная система счисления.
р = 2 – двоичная система счисления.
р = 8
р = 16
Представление чисел в различных системах счисления
Перевод чисел из q-ричной системы счисления в р-ричную
Целые числа при q>p
Для замены исходного числа Xqравным ему числомXpнужно по правиламq-ричной арифметики целочисленно делитьXqна новое основание р. Результаты деления, записанные в обратном порядке от последнего к первому, и окажутся цифрамиXp.
Правильная дробь при q<p
Для замены исходного числа Xqравным ему числомXpнужно представить числоXqв форме многочлена и выполнить все операции по правилам р-ричной арифметики.
Выводы и рекомендации:
При переводе чисел, содержащих целую и дробную часть, они переводятся по отдельности, а затем объединяются.
1101,112= ?10
При переводе чисел между системами, не являющимися десятичными, удобнее осуществлять перевод через десятичную в качестве промежуточной.
Хq→X10 →Xp
Рациональное число в исходной системе счисления после перехода может превратиться в иррациональное.
Иррациональное число в исходной системе счисления в иной системе может оказаться рациональным.
5,3(3)10= 12,13
Экономичность системы счисления – то количество чисел, которое можно записать в данной системе с помощью определенного количества цифр.
12 знаков: Разбивка на группы.
Основание системы счисления | 1 | 2 | 3 | 4 | 6 | 12 |
Количество чисел | 12 | 64 | 81 | 64 | 36 | 12 |
Самой экономичной является троичная система счисления
Перевод чисел между системами счисления 2-8-16
Для перевода целого двоичного числа в систему счисления с основанием p=2rдостаточно данное двоичное число разбить справа налево на группы вrцифр каждая и каждую группу независимо перевести в системуp.
1100012=618
Для перевода целого числа, записанного в системе счисления с основанием p=2r, в двоичную систему достаточно каждую цифру исходного числа независимо заменить соответствующимr-разрядным двоичным числом, дополняя его при необходимости незначащими нулями до группы вrцифр.
D316=110100112