Site Loader

Содержание

Самодельный регулируемый импульсный блок питания

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала — к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Регулируемый блок питания для начинающих. 30 В 5 А
  • Лабораторный блок питания своими руками 0-30В 0-5А. Схемы регулируемых блоков питания своими руками
  • Регулируемый блок питания для начинающих. 30 В 5 А
  • Блок питания своими руками
  • Лабораторный регулируемый импульсный блок питания
  • Как сделать импульсный блок питания своими руками – 3 лучшие схемы
  • Блок питания своими руками
  • Регулируемый блок питания своими руками

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: 🔴 Как сделать из обычного блока питания регулируемый.

Регулируемый блок питания для начинающих. 30 В 5 А


Введите электронную почту и получайте письма с новыми самоделками. Не более одного письма в день. Войти Чужой компьютер. В гостях у Самоделкина! Приветствую, Самоделкины! В этой статье мы рассмотрим процесс самостоятельного изготовления регулируемого блока питания, но не с двумя степенями понижения, а с одной.

Автором данной самоделки. Здравствуйте, уважаемые читатели и самоделкины! Наверняка у многих из Вас имеются устройства, которые используют для питания 3,7 В аккумуляторы, но не имеют встроенного зарядного приспособления. Из этой инструкции вы узнаете, как своими руками собрать импульсный блок питания, который можно использовать практически для любых задач. Автором данной самоделки является.

В этой статье мастер-самодельщик расскажет нам, как сделать стильный органайзер для всякой канцелярской и не только мелочи, и встроить в него зарядное устройство для гаджетов.

Нижняя массивная часть. Доставка новых самоделок на почту Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи! Хотя существуют способы запитки схем на операционных усилителях однополярным напряжением, двуполярный источник питания даёт лучшие результаты.

Можно сразу сделать двуполярный БП, а можно, как. Решил переделать свой лабораторный блок питания. Ну как лабораторный, скорей, регулируемый блок питания. Я уже собирал подобный, но по некоторым обстоятельствам я его разобрал.

Решил собрать. Лабораторный блок питания — прибор первой необходимости в радиолюбительской мастерской, в электротехнической практике. Автор не ведет регулярных работ с тонкой и нежной электроникой, однако иногда. Поступил мне небольшой заказ на необычное зарядное устройство. Ребята из клуба по лезертагу, испытывают трудность в одновременном заряде нескольких автоматов.

Ранее они использовали одно ЗУ, заряжало. Всем привет! Понадобилось собрать небольшой блок питания. Попросил меня отец. Нашел нужные компоненты. Блок питания ему нужен для запитывания разной мелочевки.

Ток нужен порядка мА. Даже в современном мире не редкостью являются перебои с электроэнергией. В то же время устройства, через которые человек взаимодействует с интернетом становятся все портативнее, ноутбуки, телефоны,. Всем доброго времени суток.

Предлагаю вашему вниманию один из многих вариантов лабораторного блока питания. Данная конструкция сделана по гибридной схеме использованы линейные и импульсные элементы. Многие люди при выходе из строя принтера недолго думая выкидывают на мусор. Но если разобрать старый неисправный принтер, то можно получить массу нужных деталей для самоделок.

Добыть из принтера. Загрузить еще. Товары для самоделок. Цена: от Рыболовные приманки — от простых до сложных AliExpress. Цена: Модуль питания для Arduino AliExpress. Набор для сборки солнечной панели AliExpress. Цена: от 1. Транзисторы — усилительные компоненты электронных самоделок AliExpress.

Подключение и использование карманного стартерного аккумулятора AliExpress.

Маленький зажимной патрон на двигатель из латуни AliExpress. Привет, Гость! Зарегистрируйтесь Или войдите на сайт, если уже зарегистрированы Войти Добавьте самоделку Добавьте тему. Онлайн чат Открыть чат. Популярные самоделки.

Простое в изготовлении приспособление для гибки металлических изделий. Печь Булерьян своими руками. Разметочный рейсмус-циркуль. Последние комментарии Все комментарии. Новые самоделки на почту.


Лабораторный блок питания своими руками 0-30В 0-5А. Схемы регулируемых блоков питания своими руками

Сделать блок питания своими руками имеет смысл не только увлеченному радиолюбителю. Самодельный блок электропитания БП создаст удобства и сэкономит немалую сумму также в следующих случаях:. Профессиональные БП рассчитываются на питание нагрузки любого рода, в т. В числе возможных потребителей — прецизионная аппаратура. Заданное напряжение профи-БП должен поддерживать с высочайшей точностью неопределенно долгое время, а его конструкция, защита и автоматика должны допускать эксплуатацию неквалифицированным персоналом в тяжелых условиях, напр. Любительский лабораторный блок питания свободен от этих ограничений и поэтому может быть существенно упрощен при сохранении достаточных для собственного употребления качественных показателей.

Добрый день, уважаемые читатели. Сегодня посмотрим на регулируемый импульсный блок питания. Простой и дешевый вариант.

Регулируемый блок питания для начинающих. 30 В 5 А

Такой блок питания — это крайне необходимая вещь в мастерской каждого любителя электроники. Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания — это максимальный ток I max , который он может отдать нагрузке питаемому устройству и выходное напряжение U out , которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый. Регулируемый блок питания — это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт — повернули ручку регулятора — получили 5 вольт на выходе, надо 3 вольта — опять повернул — получил на выходе 3 вольта.

Нерегулируемый блок питания — это блок питания с фиксированным выходным напряжением — его менять нельзя. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.

Блок питания своими руками

Импульсные источники питания, в отличие от обычных, с силовым понижающим трансформатором, при одинаковой выходной мощности, отличаются меньшими габаритами, меньшим весом и, не всегда, но, как правило, более высоким КПД. Блоки питания с регулируемым выходным напряжением обычно изготавливают с применением силового понижающего трансформатора, работающего на частоте сети переменного тока 50 Гц и линейного или импульсного стабилизатора выходного напряжения постоянного тока. Источник напряжения не идеален; все имеют внутреннее сопротивление, отличное от нуля, и никто не может обеспечить неограниченный ток. Однако внутреннее сопротивление реального источника напряжения эффективно моделируется в анализе линейной схемы путем последовательного объединения ненулевого резистора с идеальным источником напряжения.

Для любителей электроники и различных самоделок необходимым атрибутом в их деятельности является лабораторный блок питания. Искать его в готовом виде в специализированных магазинах дело не всегда благодарное.

Лабораторный регулируемый импульсный блок питания

Для получения полноценного усилителя мощности НЧ требуется хороший источник питания, приведена схема простого блока питания для УМЗЧ. От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует Принципиальная схема простого бестрансформаторного блока питания из доступных деталей, два варианта. В своих конструкциях радиолюбители очень часто применяют бестрансформаторные маломощные источники питания. Обычно, они представляют собой своеобразный симбиоз параметрического стабилизатора Схема простого блока питания, который может отключаться от сети через некоторое время после включения.

Как сделать импульсный блок питания своими руками – 3 лучшие схемы

Здравствуйте дорогие друзья. Сейчас я вам расскажу о неплохом и дешевом источнике питания по совместительству ЗУ для автомобиля , который можно собрать собственноручно. Для сборки данной схемы вам понадобится перечень деталей, сейчас я их вам перечислю: трансформатор силовой понижающий, диодный мост, конденсатор электролит большой емкости и конденсатор меньшей емкости, два резистора один переменный, а второй постоянный , микросхема крен и три мощных транзистора. Самое главное, что все эти детали можно найти в старом ламповом телевизоре, в общем не нужно тратить деньги на покупку дефицитных радиодеталей — это большой плюс данной схемы. Второй существенный плюс — это то, что такая простенькая схемка способна выдавать ток до 22 Ампер при 13 вольтах. Сами видите какие большие преимущества: и легкая, и при не больших затратах денежных средств, а превратить моно такую схему и в лабораторный блок питания, блок питания для опытов регулируемый , для питания мощных приборов и так далее.

импульсный регулируемый блок питания 30 вольт 5 ампер схема. выглядит самодельный импульсный блок питания напряжении при.

Блок питания своими руками

Как самому собрать простой блок питания и мощный источник напряжения. Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.

Регулируемый блок питания своими руками

ВИДЕО ПО ТЕМЕ: Импульсный блок питания — ЭТО ПРОСТО!

Введите электронную почту и получайте письма с новыми самоделками. Не более одного письма в день. Войти Чужой компьютер. В гостях у Самоделкина! Приветствую, Самоделкины!

Сайт помогает найти что-нибудь интересное в огромном ассортименте магазинов и сделать удачную покупку. Если Вы купили что-то полезное, то, пожалуйста, поделитесь информацией с другими.

Блоки питания постоянного тока нужны не только радиолюбителям. Они имеют очень широкую сферу применения, и поэтому ими в той или иной степени пользуется большинство домашних мастеров. В этой статье описаны основные типы преобразователей напряжения, их характерные отличия и области применения и то, как сделать простой блок питания своими руками. Самостоятельное изготовление позволит получить экономию немалых денежных средств. Разобравшись с устройством и принципом работы можно легко выполнить ремонт этого устройства. Краткое содержимое статьи:. Онлайн помощник домашнего мастера.

В большинстве современных электронных устройств практически не используются аналоговые трансформаторные блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:.


Регулирующие блоки питания своими руками, лабораторный источник питания своими руками, регулируемый блок питания своими руками

Еще издавна ученых волновал вопрос создания источников питания. Да и сейчас многих интересует, можно ли сделать схему лабораторного блока питания своими руками, подобрав необходимые компоненты.

Содержание

  1. Виды источников питания
  2. Основные узлы регулируемого генератора
  3. Как подобрать компоненты
  4. Схемы лабораторных генераторов
  5. Импульсный БП на tl494
  6. На п210 транзисторе
  7. На lm317
  8. На lt1083
  9. Регулировка напряжения и тока
  10. Как собрать лабораторный блок из китайских модулей

Виды источников питания

Электрические устройства различаются в зависимости от емкости, которая определяет длительность заряда аккумулятора. Каждый радиолюбитель мечтает смастерить регулируемый блок питания своими руками.

Все источники питания делятся на виды:

  • батарея или гальванический элемент;

  • генератор, установленный на электростанциях или автомобилях;

  • аккумулятор.

Также блоки питания имеют классификацию в зависимости от параметров и характеризуются разными значениями напряжения, например, как на фото ниже.

ВАЖНО: У любого источника тока, будь то аккумулятор, батарея или генератор, есть собственное внутреннее сопротивление, оно может быть различным.

Основные узлы регулируемого генератора

Блок питания с регулировкой можно собрать самостоятельно, если имеются необходимые компоненты и инструменты. Основным элементом является микросхема регулятора вольтажа. Третья ножка идет в сцепление с конденсатором С1, а вторая – с С2 с резистором на 220 Ом. Она служит выходом.

С помощью трансформатора напряжение понижается до 25 В. Далее – выпрямляется посредством диодного моста.

Затем сглаживаются пульсации с помощью конденсатора С1.

Главной фишкой схемы является высокостабильный регулятор напряжения, микросхема ЛМ317 Т.

Чтобы собрать схему, понадобится переменный и постоянный резисторы. На выходе следует поставить конденсатор в 100 мФ.

Как подобрать компоненты

Чтобы подобрать компоненты для изготовления регулируемого ЛПБ своими руками, обращают внимание на следующие показатели:

  • параметры рабочих значений;
  • присутствие функций защищенности;
  • число каналов выхода и мощность;
  • цену устройства.

Схемы лабораторных генераторов

Самодельный блок питания – это регулируемый стабилизированный источник постоянного тока и напряжения. Основной его задачей является поддержание в широком диапазоне без погрешностей указанного напряжения и тока.

По схемопостроению лабораторный источник питания бывает двух типов.

Линейные лабораторные генераторы питания из китайских модулей часто используются нашими мастерами. Состоят из сетевого трансформатора больших габаритов.

Со вторичной обмотки снимается напряжение, затем оно выпрямляется и делается стабильным посредством линейного преобразователя. Из минусов: низкий КПД, большие габариты, значительный вес.

Импульсные источники питания работают по несколько иному принципу. Они не содержат сетевого трансформатора. В них вольтаж сети выпрямляется и уже стабильным подается на входную клемму преобразователя высокой частоты.

Здесь он трансформируется в линейный тип напряжения, а затем выпрямляется и подается на вход линейного стабилизатора. КПД импульсного источника имеет более высокое значение по сравнению с линейным.

Импульсный БП на tl494

Принцип, по которому работает схема регулируемого блока питания импульсного типа БП tl494, прост. Управляющий импульс можно обрывать на любом временном промежутке.

До начала следующего такта он не появится, то есть можно ограничить ток при каждом последующем такте преобразования.

Подачей напряжения с источника питания проверяется работоспособность шим-контроллера, частота преобразования, наличие управляющих импульсов на обоих выходах. Если все в порядке, то подключается второй источник питания, который будет имитировать сетевой вольтаж.

На п210 транзисторе

У большинства радиолюбителей сохранились транзисторы п210. Поскольку в наше время широко используются более современные приборы, имеющие усовершенствованные характеристики частот и коэффициент усиления, их применение стало ограниченным.

Схема с использованием транзистора п210 тоже довольно проста. Однако следует учесть, что данный транзистор подключается в отрицательное плечо. Также для согласованной работы всех компонентов цепи необходимо использовать понижающие трансформаторы. Они более совместимы по току и напряжению.

На lm317

Микросхема lm317 – достойный стабилизатор вольтажа. Заявленная пульсация напряжения на ее выходе составляет 0,1%. К тому же данная микросхема может обеспечить на выходе ток 1,5 А.

Поэтому позволяет собрать блок питания с линейным стабилизатором напряжения и регулировкой силы тока.

Микросхема надежно защищена от перегрева и короткого замыкания, может выдерживать температуры до 125ºС. lm317 дает ток до 1,5А. Чтобы сделать ее мощнее, применяется дополнительный внешний транзистор.

На lt1083

Блок питания, имеющий в своем составе lt1083, рассчитан на хорошие показатели силы тока при малом напряжении.

Поэтому во многих вариантах схем с данной lt1083 не требуется наличие внешнего дополнительного транзистора. Устройство является положительным регулируемым стабилизатором с низким падением напряжения.

Чтобы его использовать в лабораторном блоке питания, рекомендуется впаять многооборотный резистор. Так можно будет регулировать параметры вручную.

Регулировка напряжения и тока

Многофункционального метода управления амперажем и вольтажом еще не найдено – по причине конструктивной особенности устройства и схемы блока энергии с регулированием. Иногда это можно сделать, меняя местами компоненты обратной связи или сменой опорного вольтажа в сети.

Данные эффективные корректировки выполняются управляющими системами, которые для удобства размещены на лицевой панели БП.

Самая распространенная схема блока питания с регулировкой напряжения и тока выполнена на двух транзисторах: силовом и усилителе. Она позволяет плавно регулировать напряжение в режиме холостого хода.

Как собрать лабораторный блок из китайских модулей

Если вы стоите на начальном этапе увлекательного, но такого нелегкого пути в мир электроники, проблема поиска блока с регулировкой параметров встает довольно остро.

Лабораторный блок питания можно совсем недорого собрать своими руками из китайских модулей.

Это даже проще, чем кажется на первый взгляд. Также многие составные его части могут быть найдены в куче радиодеталей, имеющихся у каждого любителя покопаться в электронике.

Основой блока является импульсный источник питания на 36 В и 5 А. Что в итоге позволит получить выходную мощность 180 Вт. Вторая половина блока – это понижающий преобразователь, входное напряжение которого 5-40 В. Выходное напряжение регулируется от 1,25 до 35 В.

Если выходное напряжение выдается некорректным по значению, то есть с помехами, можно установить в схему дополнительные конденсаторы. Их емкость подбирается, исходя из параметров электрической цепи.

Самодельный регулируемый блок питания от 0 до 14 Вольт. Окончание.

Здравствуйте уважаемые читатели сайта sesaga.ru. Вот и подошла к завершению статья о самодельном регулируемом блоке питания, и сегодня мы произведем окончательную сборку и наладку, так сказать, наведем лоск.

В предыдущей статье мы собрали корпус, разместили все элементы на свои места и подготовили блок питания для окончательной сборки.

Остался еще один момент, про который хотелось сказать отдельно.
Мощный транзистор VT3 необходимо разместить на радиатор (теплоотвод), так как при работе на нем выделяется большое количество тепла, и транзистор может выйти из строя из-за перегрева. Радиатор используйте заводского изготовления или самодельный, сделанный из алюминиевой или дюралевой пластины. Я использовал заводского изготовления.

Между транзистором и радиатором ставим изоляционную прокладку, которая способствует отводу тепла от корпуса транзистора к радиатору и изолирует коллектор транзистора от радиатора.

На выводы транзистора надеваем трубки из хлорвиниловой изоляции или термоусадки — это не даст выводам замкнуться между собой или на радиатор.

Еще раз внимательно проверяем монтаж, и если есть ошибки – исправляем. Особое внимание уделите транзисторам, так как при неправильной распайке выводов транзистор может выйти из строя.

1. Проверяем работу блока питания.

Включаем блок питания в сеть и измеряем напряжение на выходе.
Установите движок переменного резистора R3 в крайнее правое положение и измерьте напряжение – оно должно быть в пределах 12 — 14 вольт.
Теперь вращайте движок в левую сторону и следите за напряжением – оно должно плавно уменьшиться почти до нуля. Если при вращении движка резистора вправо напряжение уменьшается, а влево — увеличивается, поменяйте местами проводники, идущие к крайним выводам переменного резистора.

Если напряжение на выходе не изменяется, или оно очень мало, или греется какая-нибудь деталь — отключаем блок питания от сети и еще раз внимательно проверяем монтаж на ошибки.

После устранения возможных ошибок подаем питание на блок и сразу измеряем напряжение на конденсаторе C1 – оно должно быть в пределах 15 – 20 вольт. Если напряжение намного меньше, значит, проверяем исправность и правильность распайки диодов диодного моста VD1VD4.

Если на конденсаторе С1 напряжение нормальное, то проверяем работу стабилитрона VD6. Подключаем к его выводам вольтметр и измеряем напряжение — оно должно быть равно напряжению стабилизации стабилитрона Uст и находиться в пределах 11,5 – 14 вольт. Если же оно ниже, проверяем сопротивление резистора R2.

Напряжение на конденсаторе С1 нормальное, на стабилитроне соответствует напряжению стабилизации Uст, а на выходе блока питания оно так и не изменяется, значит, проверяйте исправность и правильность распайки выводов транзисторов VT2, VT3.

Как блок питания заработает, проверяем автомат защиты от короткого замыкания.
Щупами измерительного прибора подключитесь к выходу блока и установите выходное напряжение равное 6 вольт. Кратковременно замкните между собой «плюс» и «минус» на выходной колодке.

Напряжение на выходе должно упасть, а затем сразу восстановиться до первоначальных 6 вольт. Если это так, то автомат работает исправно, если нет, проверьте исправность транзистора VT1 и правильность подключения его выводов.

Теперь можно приступать к градуировке вольтметра.

2. Подбираем добавочный (токоограничивающий) резистор.

Перед градуировкой необходимо подобрать добавочный резистор, который нужен для ограничения тока через рамку микроамперметра. Обычно ток полного отклонения стрелки микроамперметра составляет не более 100 мкА, и если такого резистора не будет, то возникший ток в электрической цепи, оказавшийся значительно больше 100 мкА может привести к тому, что сгорит обмотка рамки, или стрелка, резко отклонившись за пределы шкалы, погнется или сломается.

Для градуировки микроамперметра понадобится образцовый вольтметр, в качестве которого можно использовать аналоговый или цифровой измерительный прибор, например, стрелочный тестер или мультиметр.

К микроамперметру подсоедините добавочный резистор R6 сопротивлением в пределах 120 — 160 кОм.

Соблюдая полярность, подключите микроамперметр согласно принципиальной схеме и включите блок питания. Используя образцовый вольтметр, установите выходное напряжение блока равное 6 — 7 вольтам.

Стрелка микроамперметра должна подняться ближе к середине шкалы или встать на ее середину. Начинайте плавно поворачивать движок переменного резистора по часовой стрелке, следя по образцовому вольтметру за выходным напряжением. При этом стрелка микроамперметра должна также плавно двигаться и остановиться на конечной отметке шкалы при достижении блоком питания максимального выходного напряжения.

Если показания выходного напряжения на образцовом вольтметре еще не достигли максимального значения 12 -14 вольт, а стрелка микроамперметра уже перешла конечную отметку шкалы — увеличьте сопротивление добавочного резистора еще на 5 – 10 кОм.
Если же показания напряжения на образцовом вольтметре достигли максимального значения 12-14 вольт, а стрелка микроамперметра еще не встала на конечную отметку шкалы — уменьшите сопротивление добавочного резистора на 5 – 10 кОм.

Одним словом, Вы должны добиться такого результата, чтобы при достижении блоком питания максимального выходного напряжения стрелка микроамперметра остановилась напротив последнего деления шкалы.

3. Градуировка шкалы вольтметра.

Градуировать шкалу микроамперметра не требуется, если во время подбора добавочного резистора показания микроамперметра и образцового вольтметра практически совпадали при изменении выходного напряжения блока питания. То есть, стрелка микроамперметра находилась строго напротив или возле деления, соответствующего величине напряжения, на которую указывал образцовый вольтметр. В этом случае точнее подбираем добавочный резистор.

Если же показания расходились на 2-3 вольта по всему диапазону, клеим лист бумаги на шкалу микроамперметра и размечаем свою шкалу.

Снимаем защитную крышку микроамперметра.
Для этого отворачиваем болт в нижней части прибора.

Может получиться так, что герметичная прокладка, расположенная между корпусом и защитной крышкой, не даст сняться крышке. Отделите или прорежьте ее ножом или отверткой по всему периметру крышки.

Наклеиваем бумагу и делаем отметку первого деления – это будет «0».

Подсоединяем на место микроамперметр и подаем напряжение питания на блок.
По образцовому вольтметру устанавливаем на выходе блока питания 1 вольт и напротив конца стрелки наносим риску ручкой или простым карандашом. Далее, на выходе устанавливаем 2 вольта и опять наносим риску. И таким образом доходим до конца шкалы.

Для дальнейшего удобства пользования вольтметром можно через каждые пять вольт выделить риску и напротив нее написать соответствующее цифровое значение напряжения.

На этом градуировка микроамперметра закончена.

4. Увеличиваем выходное напряжение.

Если у Вашего трансформатора напряжение на вторичной обмотке больше четырнадцати вольт, тогда есть возможность еще немного поднять выходное напряжение блока питания, как это сделано у меня. Для этого последовательно стабилитрону VD6 нужно включить еще один стабилитрон VD7.

Допустим, у Вашего трансформатора на вторичной обмотке переменное напряжение составляет около 20 вольт, значит, можно увеличить выходное стабилизированное напряжение до 15 – 17 вольт.

Обязательно оставляем три-четыре вольта трансформатору для запаса, чтобы он не работал с перегрузом.

По таблице параметров стабилитронов, данной в первой статье, подбираем по напряжению стабилизации Uст пару стабилитронов, чтобы сумма их напряжений составила 15–17 вольт. Например, чтобы на выходе получить максимальное выходное напряжение около 16 вольт, берем один стабилитрон Д814А, а второй Д814В.

Только сильно этим не увлекайтесь, так как основная масса радиолюбительских конструкций питается напряжением 1,5 – 15 вольт, и при питании конструкций пониженным напряжением, например, 1,5 вольта, на выходном транзисторе VT3 будет гаситься излишек напряжения 14 — 15 вольт, из-за чего транзистор будет греться. Поэтому, шестнадцати вольт на выходе Вам хватит вполне.

На плате, добавление второго стабилитрона будет выглядеть так:

Ну вот, в принципе и все.
В собранном виде блок питания выглядит так:

На этом заканчиваю эпопею о самодельном регулируемом блоке питания, который поможет начинающему радиолюбителю, делающему первые шаги в увлекательный мир радиоэлектроники, и станет ему настоящим другом. Я сам, когда серьезно увлекся радиоэлектроникой, одной из первых конструкций, которые я собрал, был именно такой блок питания, служащий мне до сих пор.
Удачи!

Лабораторный блок питания своими руками. Самодельный блок питания: схемы, инструкции :: SYL.ru

Изготовить лабораторный блок питания своими руками несложно, если имеются навыки обращения с паяльником и вы разбираетесь в электрических схемах. В зависимости от параметров источника вы можете с его помощью заряжать аккумуляторы, подключать практически любую бытовую аппаратуру, использовать для опытов и экспериментов при конструировании электронных средств. Главное при монтаже – использование проверенных схем и качество сборки. Чем надежнее корпус и соединения, тем удобнее работать с источником питания. Желательно наличие регулировок и приборов контроля выходного тока и напряжения.

Простейший самодельный блок питания

Если у вас нет навыков в изготовлении электрических приборов, то лучше начинать с самого простого, постепенно передвигаясь к сложным конструкциям. Состав простейшего источника постоянного напряжения:

  1. Трансформатор с двумя обмотками (первичной – для подключения к сети, вторичной – для подключения потребителей).
  2. Один или четыре диода для выпрямления переменного тока.
  3. Электролитический конденсатор для отсечки переменной составляющей выходного сигнала.
  4. Соединительные провода.

В случае если вы используете в схеме один полупроводниковый диод, то получите однополупериодный выпрямитель. Если применяете диодную сборку или мостовую схему включения, то блок питания называется двухполупериодным. Разница в выходном сигнале – во втором случае меньше пульсаций.

Такой самодельный блок питания хорош только в тех случаях, когда необходимо провести подключение приборов с одним рабочим напряжением. Так, если вы занимаетесь конструированием автомобильной электроники либо ее ремонтом, лучше выбирать трансформатор с выходным напряжением 12-14 вольт. От количества витков вторичной обмотки зависит выходное напряжение, а от сечения используемого провода — сила тока (чем больше толщина, тем больше ток).

Как сделать двухполярное питание?

Такой источник необходим для обеспечения работы некоторых микросхем (например, усилителей мощности и НЧ). Отличает двухполярный блок питания следующая особенность: на выходе у него отрицательный полюс, положительный и общий. Для реализации такой схемы требуется применять трансформатор, вторичная обмотка которого имеет средний вывод (причем значение переменного напряжения между средним и крайними должно быть одинаковое). Если нет трансформатора, удовлетворяющего этому условию, можно модернизировать любой, у которого сетевая обмотка рассчитана на 220 вольт.

Удалите вторичную обмотку, только сначала проведите замер напряжения на ней. Сосчитайте число витков и разделите на напряжение. Полученное число – это количество витков, необходимых для вырабатывания 1 вольта. Если вам нужно получить двухполярный блок питания с напряжением 12 вольт, то потребуется намотать две одинаковых обмотки. Начало одной соедините с концом второй и эту среднюю точку подключите к общему проводу. Два вывода трансформатора необходимо соединить с диодной сборкой. Отличие от однополярного источника – нужно применять 2 электролитических конденсатора, соединенных последовательно, средняя точка включается с корпусом устройства.

Регулировка напряжения в однополярном источнике питания

Задача может показаться не очень простой, но сделать регулируемый блок питания можно путем сборки схемы из одного или двух полупроводниковых транзисторов. Но потребуется на выходе установить хотя бы вольтметр для контроля напряжения. Для этой цели можно использовать стрелочный индикатор с приемлемым диапазоном измерений. Можно приобрести дешевый цифровой мультиметр и адаптировать его под ваши нужды. Для этого потребуется разобрать его, установить при помощи пайки нужное положение переключателя (при интервале изменения напряжения 1-15 вольт требуется, чтобы прибор мог проводить замер напряжения до 20 вольт).

Регулируемый блок питания можно подключать к любому электрическому прибору. Сначала только вам потребуется выставить необходимое значение напряжения, чтобы не вывести из строя приборы. Изменение напряжения производится при помощи переменного резистора. Его конструкцию вы вправе выбрать самостоятельно. Это может быть даже ползункового типа устройство, главное – соблюдение номинального сопротивления. Чтобы блок питания было удобно использовать, можно установить переменный резистор, спаренный с выключателем. Это позволит избавиться от лишнего тумблера и облегчить отключение аппаратуры.

Регулировка напряжения в двухполярном источнике

Такая конструкция окажется посложнее, но и ее можно реализовать достаточно быстро при наличии всех необходимых элементов. Смастерить простой лабораторный блок питания, да еще двухполярный и с регулировкой напряжения, сможет не каждый. Схема усложняется тем, что требуется установка не только полупроводникового транзистора, работающего в режиме ключа, но и операционного усилителя, стабилитронов. При пайке полупроводников будьте аккуратны: старайтесь не сильно их нагревать, ведь диапазон допустимых температур у них крайне мал. При чрезмерном нагреве кристаллы германия и кремния разрушаются, в результате устройство перестает функционировать.

Когда делаете лабораторный блок питания своими руками, помните одну важную деталь: транзисторы требуется монтировать на алюминиевом радиаторе. Чем мощнее источник питания, тем больше площадь радиатора должна быть. Особое внимание уделяйте качеству пайки и проводам. Для маломощных устройств допускается использовать тонкие провода. Но если выходной ток большой, то необходимо применять провода с толстой изоляцией и большой площадью сечения. От надежности коммутации зависит ваша безопасность и удобство пользования устройством. Даже короткое замыкание во вторичной цепи может стать причиной возгорания, поэтому при изготовлении блока питания следует позаботиться о защите.

Регулировка напряжения в стиле ретро

Да, именно так можно назвать осуществление регулировки подобным образом. Для реализации необходимо вторичную обмотку трансформатора перемотать и сделать несколько выводов в зависимости от того, какой шаг изменения напряжения и диапазон вам нужен. Например, лабораторный блок питания 30В 10А с шагом в 1 вольт должен иметь 30 выводов. Между выпрямителем и трансформатором необходимо установить переключатель. Вряд ли получится найти на 30 положений, а если и найдете, то его габариты окажутся очень большими. Для монтажа в небольшом корпусе он явно не подойдет, поэтому лучше использовать для изготовления стандартные напряжения – 5, 9, 12, 18, 24, 30 вольт. Этого вполне достаточно для удобного пользования устройством в домашней мастерской.

Для изготовления и расчета вторичной обмотки трансформатора вам нужно сделать следующее:

  1. Определить, какое напряжение собирается одним витком обмотки. Для удобства намотайте 10 витков, включите трансформатор в сеть и проведите замер напряжения. Полученное значение разделите на 10.
  2. Проведите намотку вторичной обмотки, предварительно отключив трансформатор от сети. Если у вас получилось, что один виток собирает 0,5 В, то для получения 5 В вам требуется сделать отвод от 10-го витка. И по подобной схеме делаете отводы для остальных стандартных значений напряжений.

Сделать подобный лабораторный блок питания своими руками под силу каждому, а самое главное – не требуется паять схему на транзисторах. Выводы вторичной обмотки соединяете с переключателем, чтобы значения напряжений изменялись от меньшего к большему. Центральный вывод переключателя соединяется с выпрямителем, нижний по схеме вывод трансформатора подается на корпус устройства.

Особенности импульсных источников питания

Такие схемы используются практически во всех современных приборах – в зарядных устройствах телефонов, в блоках питания компьютеров и телевизоров и др. Изготовить лабораторный блок питания, импульсный особенно, оказывается проблематично: слишком много нюансов требуется учитывать. Во-первых, относительно сложная схема и непростой принцип действия. Во-вторых, большая часть устройства работает под высоким напряжением, которое равно тому, которое протекает в сети. Посмотрите на основные узлы такого блока питания (на примере компьютерного):

  1. Сетевой блок выпрямления, предназначенный для преобразования переменного тока напряжением 220 вольт в постоянный.
  2. Инвертор, преобразующий постоянное напряжение в сигналы прямоугольной формы с высокой частотой. Сюда же входит и специальный трансформатор импульсного типа, который уменьшает величину напряжения, чтобы запитать компоненты ПК.
  3. Управление, отвечающее за правильную работу всех элементов блока питания.
  4. Усилительный каскад, предназначенный для усиления сигналов ШИМ-контроллера.
  5. Блок стабилизации и выпрямления выходного импульсного напряжения.

Подобные узлы и элементы присутствуют во всех импульсных источниках питания.

Блок питания от компьютера

Стоимость даже нового блока питания, который устанавливается в компьютерах, довольно низкая. Зато вы получаете готовую конструкцию, можно даже не делать шасси. Один недостаток – на выходе имеются только стандартные значения напряжения (12 и 5 вольт). Но для домашней лаборатории этого вполне достаточно. Пользуется популярностью лабораторный блок питания из ATX по той причине, что не нужно совершать большие переделки. А чем проще конструкция, тем лучше. Но есть и «болезни» у таких устройств, но излечить их можно достаточно просто.

Зачастую выходят из строя электролитические конденсаторы. Из них вытекает электролит, это можно увидеть даже невооруженным глазом: на печатной плате появляется слой этого раствора. Он гелеобразный или жидкий, со временем застывает и становится твердым. Чтобы отремонтировать лабораторный блок питания из БП компьютера, нужно установить новые электролитические конденсаторы. Вторая поломка, которая встречается намного реже, заключается в пробое одного или нескольких полупроводниковых диодов. Симптом – это выход из строя плавкого предохранителя, смонтированного на печатной плате. Для ремонта нужно прозвонить все диоды, установленные в мостовой схеме.

Способы защиты блоков питания

Простейший способ обезопасить себя – это установка плавких предохранителей. Использовать такой лабораторный блок питания с защитой можно, не боясь, что из-за короткого замыкания произойдет возгорание. Для реализации этого решения вам потребуется установить два плавких предохранителя в цепи питания сетевой обмотки. Их нужно брать на напряжение 220 вольт и ток порядка 5 ампер для маломощных приборов. На выходе источника питания следует установить плавкие предохранители с подходящими параметрами. Например, при защите выходной цепи с напряжением 12 вольт можно применить предохранители, используемые в автомобилях. Значение тока подбирается исходя из максимальной мощности потребителя.

Но на дворе — век высоких технологий, а делать защиту при помощи предохранителей с экономической точки зрения не очень выгодно. Приходится проводить замену элементов после каждого случайного задевания проводов питания. Как вариант – вместо обычных плавких вставок установить самовосстанавливающиеся предохранители. Но ресурс у них небольшой: могут верой и правдой прослужить несколько лет, а могут и через 30-50 отключений выйти из строя. Но блок питания лабораторный 5А, если он собран грамотно, функционирует правильно и не требует дополнительных устройств защиты. Элементы нельзя назвать надежными, зачастую бытовая техника приходит в негодность по причине поломки таких предохранителей. Намного эффективнее оказывается применение релейной схемы либо тиристорной. В качестве устройства аварийного отключения могут также использоваться симисторы.

Как сделать лицевую панель?

Большая часть работ – это проектирование корпуса, а не сборка электрической схемы. Придется вооружиться дрелью, напильниками, а при необходимости окрашивания еще и освоить малярное дело. Можно изготовить самодельный блок питания на основе корпуса от какого-нибудь устройства. Но если есть возможность приобрести листовой алюминий, то при желании вы сделаете красивое шасси, которое прослужит вам долгие годы. Для начала нарисуйте эскиз, в котором расположите все элементы конструкции. Особое внимание уделите проектированию лицевой панели. Ее можно сделать из тонкого алюминия, только изнутри провести усиление – прикрутить к алюминиевым уголкам, которые применяются для придания большей жесткости конструкции.

В лицевой панели обязательно следует предусмотреть отверстия для установки измерительных приборов, светодиодов (или ламп накаливания), клемм, соединенных с выходом блока питания, гнезда для установки плавких предохранителей (при выборе такого варианта защиты). Если вид лицевой панели не очень привлекательный, то ее нужно покрасить. Для этого обезжириваете и зачищаете до блеска всю поверхность. Перед началом окрашивания сделайте все необходимые отверстия. Нанесите 2-3 слоя грунтовки на прогретую поверхность, дайте высохнуть. Далее нанесите столько же слоев краски. В качестве финишного покрытия нужно применять лак. В итоге мощный лабораторный блок питания благодаря краске и получившемуся блеску будет выглядеть красиво и привлекательно, впишется в интерьер любой мастерской.

Как изготовить шасси для блока питания?

Красиво будет выглядеть только та конструкция, которая полностью изготавливается самостоятельно. Но в качестве материала можно использовать что угодно: начиная с листового алюминия и заканчивая корпусами от персональных компьютеров. Нужно только тщательно продумать всю конструкцию, чтобы не возникло непредвиденных ситуаций. Если выходным каскадам требуется дополнительное охлаждение, то установите кулер для этой цели. Он может работать как постоянно при включенном устройстве, так и в автоматическом режиме. Для реализации последнего лучше всего применить простой микроконтроллер и датчик температуры. Датчик отслеживает значение температуры радиатора, а в микроконтроллере заложено то значение, при котором необходимо включить обдув воздухом. Даже лабораторный блок питания 10А, мощность которого немаленькая, будет стабильно работать с такой системой охлаждения.

Для обдува нужен воздух извне, поэтому вам потребуется устанавливать кулер и радиатор на задней стенке блока питания. Для обеспечения жесткости шасси применяйте алюминиевые уголки, из которых сначала сформируйте «скелет», а после установите на него обшивку – пластины из того же алюминия. Если есть возможность, то уголки соедините при помощи сварки, это увеличит прочность. Нижняя часть шасси должна быть крепкой, так как на ней монтируется силовой трансформатор. Чем выше мощность, тем большие габариты трансформатора, тем больше его вес. В качестве примера можно сравнить лабораторный блок питания 30В 5А и подобную конструкцию, но на 5 вольт и током порядка 1 А. У последнего габариты окажутся намного меньшими, да и вес незначительный.

Между электронными компонентами и корпусом должен находиться слой изоляции. Делать это нужно исключительно для себя, чтобы в случае случайного обрыва провода внутри блока он не закоротил на корпус. Перед установкой обшивки на «скелет» проведите ее изоляцию. Можно наклеить плотный картон или толстую липкую ленту. Главное, чтобы материал не проводил электричество. При помощи такой доработки улучшается безопасность. Но трансформатор может издавать неприятный гул, от которого избавиться можно путем фиксации и проклейки пластин сердечника, а также установки между корпусом и шасси резиновых подушек. Но максимальный эффект вы получите только при комбинировании этих решений.

Подведение итогов

В завершение стоит упомянуть, что все монтажные и испытательные работы проводятся при наличии напряжения, опасного для жизни. Поэтому нужно думать о себе, в комнате обязательно установите автоматические выключатели, спаренные с устройствами защитного отключения электроэнергии. Даже если вы коснетесь фазы, удар током не получите, так как сработает защита.

При проведении работ с импульсными блоками питания компьютеров соблюдайте технику безопасности. Электролитические конденсаторы, находящиеся в их конструкции, долгое время после отключения находятся под напряжением. По этой причине перед началом ремонта разрядите конденсаторы, соединив их выводы. Не пугайтесь только искры, она не причинит вреда ни вам, ни приборам.

Когда делаете лабораторный блок питания своими руками, обращайте внимание на все мелочи. Ведь для вас главное – это обеспечить стабильную, безопасную и удобную его работу. А достичь этого можно только в том случае, когда тщательно продуманы все мелочи, причем не только в электрической схеме, но и в корпусе устройства. Лишними приборы контроля в конструкции не будут, поэтому установите их, чтобы иметь представление о том, например, какой ток потребляет устройство, собранное вами в домашней лаборатории.

Регулируемый импульсный блок питания 30 В 5 А для чайников, схема и сборка своими руками универсального БП с регулировкой и индикатором напряжения

Добрый день, уважаемые читатели. Сегодня посмотрим на регулируемый импульсный блок питания. Простой и дешевый вариант.

Я три года назад делал простенький регулируемый БП, но запросы растут, мне понадобился БП мощнее для тестов фар и усилителей. Так как я не электронщик, навороченный и мощный БП мне не нужен (даже по п18) и я выбрал самый простой вариант.
Что же нам обещает фирма wanptek:

  • 1 канал (только плюсовое напряжение)
  • 30 В и 5 А (есть версия на 10 А)
  • грубая и точная настройка напряжения и тока
  • Стабилизация напряжения, ограничение тока
  • Защиты от КЗ и перегрева.

Посылка

Доставка ТК

Коробка из плотного картона:

Характеристики на коробке:

Внутри мягкие вставки что бы БП не болтался по коробке:

Комплектация:

Сам регулируемый БП, инструкция на английском, сетевой кабель (1,3 м) и выходной кабель с «крокодилами».
Выходной кабель 2х1 кв мм. изоляция на 300 В длина 80 см. Сетевой кабель приличного качества, 3х0,75 кв. мм. евровилка с заземлением, а с другой стороны разъем: я такие разъемы называю «компьютерные».

Инструкция:



Технические характеристики:
Входное напряжение: AC 110 В,60 Гц или 220 В, 50 Гц
Выходное напряжение: 0 ~ 30 В
Выходной ток: 0 ~ 5 А
Шаг регулировки напряжения: 0.1 В
Регулировка тока: 0.01 A
Пульсации напряжения: Vpp≤1%
Стабильность напряжения: CV≤1%+10mV
Температурный дрейф: 3000 PPM
Разрядность дисплея: 3
Ripple Noise: ≤0.5 мВ
Точность отображения напряжения: ±1% + 1 знак
Точность отображения тока: ±1% + 2 знака
Рабочая температура: -10~45℃ влажность ≤90%
Температура хранения: -20~60℃ влажность ≤80%
Размеры: 80 * 230 * 165 см
Масса: примерно 1449 г

Масса:

Внешний вид:

Не хватает ручки для переноски сверху. Клавиша включения и выходные клеммы спереди внизу.
Сзади:

Прорези для вентилятора, бесполезный в наших реалиях переключатель 110 В/200 В и сетевое гнездо, оснащенное предохранителем на 250 В 2 А.
Управление простое и логичное:

Поворотные ручки — резисторы. Все логично: слева ток — грубо и точно, справа напряжение.
Можно установить лимиты по току, нужно замкнуть выходы БП (при напряжении <10 В), ждем мигания индикатора СС, вращая рукоятку тока, выставляем лимит.
Снизу:

Резиновые ножки. Они кстати оставляют следы.
Экран:

Вот тут небольшая печаль — всего три разряда. Индикаторы показывают режимы постоянного тока/ напряжения.

Всегда интересно что у таких приборов внутри.
Разборка:
Снимаем крышку открутив 8 винтов:

Она металлическая, как и остальной корпус кроме передней панели. Аккуратно покрашена порошковой краской.
Внутренняя компоновка:

Силовая плата стоит вертикально.
С другой стороны пластина радиатор:

Толщина 3 мм.
Силовая плата:

Виден входной и выходной фильтры. Входные конденсаторы на 250 В, выходные (один не допаяли!) 35 В 1000 мкф.
На радиаторе висят пару полевиков 2SK3569, диод в таком же корпусе TO220 и термистор, что бы подключать вентилятор, когда нагреется радиатор.
Выходные шунты:

Плата управления и индикации:

Самая заметная большая TM1638 управляет индикаторами, замечен так же микроконтроллер STM8S003F3. ШИМ контроллер на TL494.
Вентилятор:

Работает тихо.
Маркировка вентилятора:

Тестирование:
У меня нет специального образования по электрическим делам, тестировать буду на бытовом уровне.
Точность отображения тока:



Точность отображения напряжения:



Особо быстрой регулировку не назовешь, но значения держит цепко.
Пульсации холостой ход:


Броски при включении:

и выключении:

Тестирование на максимальную мощность:
На работе нашлась подходящая нагрузка — 200 метров монтажного провода 0,75 мм2. Сопротивление около 6 Ом, изоляция хорошо держит температуру.


Номинальный ток:


Половина мощности:


Проверим КПД на максимальной мощности:

От сети потребляет 223*0,68=151,64 Вт, выдает 28,7*4,99=143,213 Вт КПД=94%

Аксакалы в электронике конечно найдут в нем кучу недостатков, но надо учитывать небольшую цену и ориентированность на новичков.
Я как мог рассказал о приборе, и считаю, что для домашнего использования новичкам этот БП подойдет.

Есть купон JE119, делает цену 45.99$, работает до 28 февраля.

Спасибо за просмотр! Удачных конструкций.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

с регулировкой и без, лабораторный, импульсный, устройство, ремонт

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Стабилизатор напряжения LM 7805, LM 7809, LM 7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78 L 05, 78 L 12, 79 L 05, 79 L 08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.


Всем нам известно, что блоки питания сегодня являются неотъемлемой частью большого количества электрических приборов и осветительных систем. Без них наша жизнь нереальна, тем более экономия электроэнергии способствует эксплуатации этих приборов. В основном блоки питания имеют выходное напряжение от 12 до 36 вольт. В этой статье хотелось бы разобраться с одним вопросом, можно ли сделать блок питания на 12В своими руками? В принципе, никаких проблем, ведь этот прибор на самом деле имеет несложную конструкцию.

Из чего можно собрать блок питания

Итак, какие детали и приборы необходимо, чтобы собрать самодельный блок питания? В основе конструкции всего лишь три составляющие:

  • Трансформатор.
  • Конденсатор.
  • Диоды, из которых своими руками придется собрать диодный мост.

В качестве трансформатора придется использовать обычный понижающий прибор, который будет уменьшать вольтаж с 220 В до 12 В. Такие приборы сегодня продаются в магазинах, можно использовать старый агрегат, можно переделать, к примеру, трансформатор с понижением до 36 вольт на прибор с понижением до 12 вольт. В общем, варианты есть, используйте любой.

Что касается конденсатора, то оптимальный вариант для самодельного блока – это конденсатор емкостью 470 мкФ с напряжением 25В. Почему именно с таким вольтажом? Все дело в том, что на выходе из напряжение будет выше запланированного, то есть, больше 12 вольт. И это нормально, потому что при нагрузке напряжение упадет до 12В.

Собираем диодный мостик

А вот теперь очень важный момент, который касается вопроса, как сделать блок питания 12В своими руками. Во-первых, начнем с того, что диод – это двуполярный элемент, как, в принципе, и конденсатор. То есть, у него два выхода: один минус, другой плюс. Так вот плюс на диоде обозначен полоской, а, значит, без полоски это минус. Последовательность соединения диодов:

  • Сначала соединяются между собой два элемента по схеме плюс-минус.
  • Точно также соединяются между собой и два других диода.
  • После чего две парные конструкции необходимо соединить между собой по схеме плюс с плюсом и минус с минусом. Здесь главное не ошибиться.

В конце у вас должна получиться замкнутая конструкция, которая носит название диодный мостик. У нее четыре соединительных точек: две «плюс-минус», одна «плюс-плюс» и еще одна «минус-минус». Соединять элементы можно на любом плате необходимого устройства. Основное здесь требование – это качественный контакт между диодами.

Во-вторых, диодный мост – это, по сути, обычный выпрямитель, который выпрямляет переменный ток, исходящий с вторичной обмотки трансформатора.

Полная сборка прибора

Все готово, можно переходить к сборке конечного продукта нашей идеи. Сначала надо подключить выводы трансформатора к диодному мосту. Их подключают к точкам соединения «плюс-минус», остальные точки остаются свободными.

Теперь необходимо подключить конденсатор. Обратите внимание, что на нем также есть отметки, которые определяют, полярность прибора. Только на нем все наоборот, чем на диодах. То есть, на конденсаторе обычно помечается минусовой контакт, который подсоединяется к точке диодного моста «минус-минус», а противоположный полюс (положительный) присоединяется к точке «минус-минус».

Остается только подключить два питающих провода. Для этого лучше всего выбрать цветные провода, хотя это необязательно. Можно использовать одноцветные, но при условии, что их придется каким-нибудь образом обозначить, к примеру, на одном из них сделать узелок или обмотать конец провода изолентой.

Итак, делается подключение питающих проводов. Один из них подключим к точке «плюс-плюс» на диодном мосте, другой к точке «минус-минус». Все, понижающий блок питания на 12 вольт готов, можно его тестировать. В холостом режиме он обычно показывает напряжение в пределах 16 вольт. Но как только на него подадут нагрузку, напряжение снизится до 12 вольт. Если есть необходимость выставить точное напряжение, то придется к самодельному прибору подключить стабилизатор. Как видите, сделать блок питания своими руками не очень сложно.

Конечно, это простейшая схема, блоки питания могут быть с различными параметрами, где основных два:

  • Выходное напряжение.
  • Как дополнение, может быть использована функция, которая разграничивает модели блока питания на регулируемый (импульсный) и нерегулируемый (стабилизированный). Первые обозначены возможностью изменять выходное напряжение в пределах от 3 до 12 вольт. То есть, чем сложнее конструкции, тем больше возможностей у агрегатов в целом.

    И последнее. Самодельные блоки питания – это не совсем безопасные аппараты. Так что при их тестировании рекомендуется отойти на некоторое расстояние и только после этого проводить включение в сеть 220 вольт. Если вы что-то неточно рассчитали, к примеру, неправильно подобрали конденсатор, то есть большая вероятность, что этот элемент просто взорвется. В него залит электролит, который при взрыве разбрызгается на приличное расстояние. К тому же не стоит производить замены или пайку при включенном блоке питания. На трансформаторе собирается большое напряжение, так что не стоит играть с огнем. Все переделки надо проводить только на выключенном приборе.

    Всем радиолюбителям привет, в этой статье хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт. На нем очень легко выставить нужное напряжение, даже в милливольтах. Схема не содержит никаких покупных деталей — всё это можно вытащить из старой техники, как импортной, так и советской.

    Принципиальная схема БП (уменьшенная)

    Корпус изготовлен из дерева, в середине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ х 25 вольт и плата, которая регулирует напряжение.


    Конденсатор С2 нужно брать с большой емкостью, например чтобы подключать к блоку питания усилитель и чтобы напряжение не проваливалось на низких частотах.


    Транзистор VT2 лучше установить на небольшой радиатор. Потому что при длительной работе он может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор.


    Резистор R1 можно ставить постоянный он большой роли не играет. Сверху на корпусе есть переменный резистор, которым регулируется напряжение, и красный светодиод, который показывает есть ли напряжение на выходе БП.


    На выходе устройства, чтобы постоянно не прикручивать проводки к чему-нибудь, я припаял крокодильчики — с ними очень удобно. Схема не требует никаких настроек и работает надёжно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, всем удачи! .

    Как самому собрать простой блок питания и мощный источник напряжения.
    Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


    Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
    Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
    Шаг 1: Какие детали необходимы для сборки блока питания…
    Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок.
    -Монтажная плата.
    -Четыре диода 1N4001, или подобные. Мост диодный.
    -Стабилизатор напряжения LM7812.
    -Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
    -Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
    -Конденсатор емкостью 1uF.
    -Два конденсатора емкостью 100nF.
    -Обрезки монтажного провода.
    -Радиатор, при необходимости.
    Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
    Шаг 2: Инструменты….
    Для изготовления блока необходимы инструменты для монтажа:
    -Паяльник или паяльная станция
    -Кусачки
    -Монтажный пинцет
    -Кусачки для зачистки проводов
    -Устройство для отсоса припоя.
    -Отвертка.
    И другие инструменты, которые могут оказаться полезными.
    Шаг 3: Схема и другие…


    Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
    Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
    Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
    Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

    Схема блока питания 12в 30А .
    При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
    Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
    В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
    Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
    Для охлаждения радиатора можно применить небольшой вентилятор.
    Проверка блока питания
    При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
    Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

    Блок питания 3 — 24в

    Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
    Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
    Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

    Схема блока питания на 1,5 в

    Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

    Схема регулируемого блока питания от 1,5 до 12,5 в

    Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

    Схема блока питания с фиксированным выходным напряжением

    Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

    Схема блока питания мощностью 20 Ватт с защитой

    Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
    По какой схеме: импульсный источник питания или линейный?
    Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения. ..
    Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
    Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
    Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
    Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
    На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

    Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
    Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
    Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

    Самодельный блок питания на 3.3v

    Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

    Трансформаторный блок питания на КТ808

    У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
    У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

    При условии правильного монтажа, просадка выходного напряжения не превышает 0. 1 вольта

    Блок питания на 1000в, 2000в, 3000в

    Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
    Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
    Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

    В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
    Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
    R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

    Еще по теме

    Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

    Ремонт и доработка китайского блока питания для питания адаптера.

    Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

    Определение

    Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

    Различают два типа выпрямителей:

      Однополупериодный . Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

      Двухполупериодный . Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя — это две основных характеристики.

    Что значит стабилизированное и нестабилизированное напряжение?

    Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

    Нестабилизированное напряжение — изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

    Выходное напряжение

    Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

    Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

    Опустив теорию и ряд формул можно сказать, что в 1.41 раз меньше амплитудного. Или:

    Амплитудное напряжение в сети 220В равняется:

    Первая схема более распространена. Состоит из диодного моста — соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

    Её можно подключить напрямую к сети 220В, так сделано в , или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

    Вторая схема — выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

    По своей сути — это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым — к отводу от середины обмоток.

    Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком — использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

    Сглаживание пульсаций

    Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

    Для сглаживания пульсаций используют — параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

    Но самый распространенный и простой вариант — это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости — десятки тысяч микрофарад.

    Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора — тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

    Простым словами: чем медленнее разряжается конденсатор — тем меньше пульсации.

    Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

    где R — сопротивление нагрузки, а C — емкость сглаживающего конденсатора.

    Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

    Отсюда следует — чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют , их еще называют полярными или поляризованными.

    Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва — у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

    Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

    C=3200*Iн/Uн*Kп,

    Где Iн — ток нагрузки, Uн — напряжение нагрузки, Kн — коэффициент пульсаций.

    Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить как можно большей емкости, для фильтрации от высокочастотных помех.

    Как сделать блок питания своими руками?

    Простейший блок питания постоянного тока состоит из трёх элементов:

    1. Трансформатор;

    3. Конденсатор.

    Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

    У конденсатора две основных характеристики — емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения — нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное — велика вероятность его выхода из строя.

    Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем — и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

    Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант — использовать L78xx или другие , типа отечественного КРЕН.

    Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

    Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

    Входное напряжение должно превышать выходное на 2-2.5В.

    Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

    Но выходной ток достаточно скромный — всего 1. 5А, его можно усилить с помощью проходного транзистора. Если у вас есть , можно использовать эту схему:

    На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

    Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

    Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В — это падение на переходе эмиттер база, подробнее об этом мы писали . Для компенсации этого падения в цепь был введен диод D1.

    Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

    Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

    Регулируемые блоки питания

    Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1. 5 А, вы можете усилить схему проходным транзистором, как было описано выше.

    Вот более наглядная схема для сборки регулируемого блока питания.

    С тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

    Кстати похожей схемой регулируют и сварочный ток:

    Заключение

    Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

    Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

    По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

    Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

    Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

    Как спроектировать схему настольного источника питания

    В этом посте мы обсудим, как любой любитель электроники может разработать эффективный и экономичный, но очень дешевый и стабилизированный настольный источник питания для безопасного тестирования всех типов электронных проектов и прототипов.

    Основные характеристики, которыми должен обладать настольный блок питания:

    • Должен быть изготовлен из дешевых и легкодоступных компонентов текущие выходы.
    • Должен быть защищен от перегрузки по току и перегрузке.
    • Должен легко ремонтироваться в случае возникновения проблемы.
    • Должен быть достаточно эффективным с выходной мощностью.
    • Должен облегчить настройку в соответствии с желаемой спецификацией.

    Содержание

    Общее описание

    В настоящее время большинство конструкций источников питания содержат линейный последовательный стабилизатор. В этой конструкции настольного источника питания используется проходной транзистор, который работает как переменный резистор, регулируемый стабилитроном.

    Последовательная система питания более популярна, возможно, из-за того, что она намного эффективнее. За исключением некоторых незначительных потерь в стабилитроне и питающем резисторе, заметные потери происходят только в последовательном транзисторе в течение периода, когда он подает ток на нагрузку.

    Однако одним из недостатков систем последовательного питания является то, что они не обеспечивают никакого короткого замыкания выходной нагрузки. Это означает, что в условиях неисправности выхода проходной транзистор может пропустить через себя большой ток, в конечном итоге разрушив себя и, возможно, подключенную нагрузку.

    Тем не менее, добавление защиты от короткого замыкания к последовательному источнику питания стенда может быть быстро реализовано с помощью других транзисторов, сконфигурированных как ступень регулятора тока.

    Контроллер переменного напряжения достигается за счет простого транзистора с обратной связью потенциометра.

    Вышеупомянутые два дополнения позволяют сделать блок питания последовательного действия очень универсальным, надежным, дешевым, универсальным и практически неразрушимым.

    В следующих параграфах мы кратко изучим проектирование различных каскадов, используемых в стандартном стабилизированном настольном источнике питания.

    Самый простой транзисторный регулятор напряжения

    Быстрый способ получить регулируемое выходное напряжение — соединить базу проходного транзистора с потенциометром и стабилитроном, как показано на рисунке ниже.

    В этой схеме T1 настроен как эмиттерный повторитель BJT, где его базовое напряжение VB определяет напряжение эмиттерной стороны VE. И VE, и VB будут точно соответствовать друг другу и будут почти равны, за вычетом его прямого падения.

    Прямое падение напряжения любого биполярного транзистора обычно составляет 0,7 В, что означает, что напряжение на эмиттерной стороне будет:

    VE = VB — 0,7

    Использование контура обратной связи

    Несмотря на то, что описанная выше конструкция проста в изготовлении и очень дешева, этот тип подхода не обеспечивает хорошего регулирования мощности при более низких уровнях напряжения.

    Именно поэтому управление с обратной связью обычно используется для улучшения регулирования во всем диапазоне напряжений, как показано на рисунке ниже.

    В этой конфигурации базовое напряжение T1 и, следовательно, выходное напряжение управляется падением напряжения на R1, в основном из-за тока, потребляемого T2.

    Когда ползунок потенциометра VR1 находится на крайнем конце со стороны земли, T2 отключается, поскольку теперь его основание становится заземленным, что позволяет единственное падение напряжения на R1, вызванное базовым током T1. В этой ситуации выходное напряжение на эмиттере T1 будет почти таким же, как напряжение на коллекторе, и может быть задано как:

    VE = Vin — 0,7 , где VE — напряжение на стороне эмиттера T1, а 0,7 — стандартное значение прямого падения напряжения для выводов базы/эмиттера BJT T1.

    Таким образом, если входное напряжение составляет 15 В, то на выходе можно ожидать:

    VE = 15 — 0,7 = 14,3 В

    привести к тому, что T2 получит доступ ко всему напряжению на стороне эмиттера T1, что приведет к очень жесткой проводимости T2. Это действие напрямую соединит стабилитрон D1 с R1. Это означает, что теперь базовое напряжение VB T1 будет просто равно напряжению стабилитрона Vz. Таким образом, на выходе будет:

    VE = Vz — 0,7

    Следовательно, если значение D1 равно 6 В, можно ожидать, что выходное напряжение будет следующим: выходное напряжение, которое может быть получено от этого последовательного источника питания, когда потенциометр вращается в минимальном положении.

    Несмотря на то, что описанное выше просто и эффективно для изготовления настольного источника питания, у него есть существенный недостаток, заключающийся в том, что он не защищен от короткого замыкания. Это означает, что если выходные клеммы схемы случайно замкнуты накоротко или подается ток перегрузки, T1 быстро нагреется и сгорит.

    Чтобы избежать этой ситуации, эту схему можно просто модернизировать, добавив функцию управления током, как описано в следующем разделе.

    Добавление защиты от короткого замыкания при перегрузке

    Простое включение T3 и R2 обеспечивает 100-процентную защиту от короткого замыкания и управление током. При такой конструкции даже умышленное замыкание на выходе не причинит Т1 никакого вреда.

    Работу этой стадии можно понять следующим образом:

    Как только выходной ток выходит за установленное безопасное значение, на резисторе R2 возникает пропорциональная разность потенциалов, достаточная для принудительного включения транзистора T3.

    При включенном Т3 база Т1 соединяется с его эмиттерной линией, что мгновенно отключает проводимость Т1, и эта ситуация сохраняется до тех пор, пока не будет устранено короткое замыкание или перегрузка выхода. Таким образом, T1 защищен от любой нежелательной выходной ситуации.

    Добавление функции переменного тока

    В приведенной выше конструкции резистор датчика тока R2 может иметь фиксированное значение, если требуется, чтобы выход был выходом постоянного тока. Тем не менее, хороший настольный блок питания должен иметь переменный диапазон как напряжения, так и тока. Учитывая это требование, ограничитель тока можно сделать регулируемым, просто добавив переменный резистор с основанием T3, как показано ниже:

    VR2 делит падение напряжения на R2 и, таким образом, позволяет T3 включаться при определенном желаемом выходном токе. .

    Расчет значений деталей

    Начнем с резисторов, R1 можно рассчитать по следующей формуле:

    R1 = (Vin — MaxVE)hFE / Выходной ток

    Здесь, начиная с MaxVE = Vin — 0,7

    Таким образом, мы упрощаем первое уравнение как R1 = 0,7hFE / выходной ток

    VR1 может быть потенциометром 10 кОм для напряжений до 60 В

    Ограничитель тока R2 можно рассчитать, как указано ниже:

    R2 = 0,7 / Максимальный выходной ток

    Максимальный выходной ток должен быть выбран в 5 раз ниже максимального Id T1, если требуется, чтобы T1 работал без радиатора. С большим радиатором, установленным на T1, выходной ток может составлять 3/4 Id T1.

    VR2 может быть просто 1k pot или пресетом.

    T1 следует выбирать в соответствии с требованием выходного тока. Номинал T1 Id должен быть в 5 раз больше требуемого выходного тока, если он будет работать без радиатора. При установке большого радиатора номинал T1 Id должен быть как минимум в 1,33 раза больше, чем требуемый выходной ток.

    Максимальное значение коллектора/эмиттера или VCE для T1 в идеале должно в два раза превышать максимальное значение выходного напряжения.

    Значение стабилитрона D1 может быть выбрано в зависимости от минимального или минимального требования к выходному напряжению настольного источника питания.

    Рейтинг T2 будет зависеть от значения R1. Поскольку напряжение на коллекторе T2 всегда будет равно Vin, VCE T2 должно быть выше, чем Vin или входное питание. Id T2 должен быть таким, чтобы он мог выдерживать базовый ток T1, определяемый значением R1

    Те же правила применяются и к T3.

    В общем случае T2 и T3 могут быть любыми маломощными транзисторами общего назначения, такими как BC547 или 2N2222.

    Практическая конструкция

    Поняв все параметры для проектирования индивидуального настольного источника питания, пришло время реализовать данные в практическом прототипе, как показано ниже:

    Вы можете найти несколько дополнительных компонентов, представленных в конструкции, которые просто для улучшения возможности регулирования схемы.

    C2 вводится для устранения любых остаточных пульсаций на основаниях T1, T2.

    T2 вместе с T1 образуют пару Дарлингтона для увеличения усиления по току на выходе.

    R3 добавляется для улучшения проводимости стабилитрона и, следовательно, для обеспечения лучшего общего регулирования.

    Добавлены резисторы R8 и R9, позволяющие регулировать выходное напряжение в фиксированном диапазоне, который не является критическим.

    R7 устанавливает максимальный ток, доступный на выходе, который составляет:

    I = 0,7 / 0,47 = 1,5 ампер, и это кажется довольно низким по сравнению с номиналом транзистора 2N3055. Хотя это может поддерживать охлаждение транзистора, возможно увеличить это значение до 8 ампер, если 2N3055 будет установлен над большим радиатором.

    Уменьшение рассеяния для повышения эффективности

    Самым большим недостатком любого линейного стабилизатора на основе последовательных транзисторов является большое рассеивание транзистора. И это происходит, когда дифференциал ввода/вывода высок.

    Это означает, что когда напряжение регулируется в сторону более низкого выходного напряжения, транзистору приходится много работать, чтобы контролировать избыточное напряжение, которое затем выделяется транзистором в виде тепла.

    Например, если нагрузкой является светодиод на 3,3 В, а входное напряжение питания стенда составляет 15 В, то выходное напряжение необходимо снизить до 3,3 В, что на 15 — 3,3 = 11,7 В меньше. И эта разница преобразуется транзистором в тепло, что может означать потерю КПД более 70%.

    Однако эту проблему можно просто решить, используя трансформатор с выходной обмоткой напряжения с ответвлениями.

    Например, трансформатор может иметь отводы на 5 В, 7,5 В, 10 В, 12 В и т. д.

    В зависимости от нагрузки могут быть выбраны отводы для питания цепи регулятора. После этого потенциометр регулировки напряжения схемы можно было использовать для дальнейшей регулировки выходного уровня точно до желаемого значения.

    Этот метод повысит эффективность до очень высокого уровня, позволяя радиатору транзистора быть меньше и компактнее.

    Прецизионный настольный источник питания, управляемый операционным усилителем

    Принцип работы схемы настольного источника питания, управляемого операционным усилителем, довольно прост, поскольку регулируемые источники питания могут быть просто отдельными формами усилителя с обратной связью. В этой концепции резисторы R1 и R2 генерируют опорный сигнал от выходного источника питания, который создается другим опорным напряжением, создаваемым D2. Результирующий корректирующий сигнал подается обратно через 741 на последовательный транзистор Q1.

    Обратите внимание, что стабильность схемы была повышена за счет подачи опорного источника R3-D2 на стабилизированный выход, а не на нестабилизированный вход, как это обычно делается в других настольных источниках питания. Чтобы гарантировать, что цепь инициируется сразу после включения, сопротивление утечки R4 помещается параллельно устройству последовательного прохода. Это означает, что петля обратной связи начинает работать, как только включается питание.

    Абсолютно никакой регулировкой не жертвуется из-за R4, так как это общий выход, который оцифровывается резисторами R1-R2, поэтому влияние пульсирующего тока, проходящего через R4, регулируется обратной связью.

    Регулировка выхода

    Выход вполне можно сделать регулируемым, изменяя R1-R2 с помощью потенциометра, однако в существующей схеме схему нельзя принудительно регулировать при значении напряжения стабилитрона D2. При необходимости плавной регулировки выходного напряжения источник опорного напряжения R3-D2 следует подавать через нерегулируемый вход, что сопровождается незначительной нестабильностью. Количество мощности, которую может предложить схема, будет ограничено в первую очередь пропускной способностью по току транзистора Q1 и максимальной мощностью нерегулируемого источника питания.

    Более сложная схема источника питания для стенда

    Регулируемый источник питания для стенда обычно является полезным гаджетом для любого любителя или инженера. Несмотря на то, что стабилизаторы напряжения на основе ИС стали очень доступными, схема, в которой используются только обычные дискретные компоненты, может быть привлекательной. В целях экономии энергии и ограничения рассеяния на последовательном стабилизаторе весь диапазон регулирования 0–30 В дополнительно разделен на 3 уменьшенных диапазона напряжения.

    Все 3 диапазона соответствуют подходящему вторичному напряжению питания (определяется положением S1a) и соответствующему опорному напряжению (определяется S1b). Чтобы вы могли получить постоянный контроль выходного напряжения до минимума 0 В, необходимо добавить отрицательный вспомогательный источник питания.

    В этой цепи питания стенда это извлекается (с помощью D5 и C2) через другую обмотку 12 В через сетевой трансформатор. Другим вариантом может быть включение дополнительного отдельного сетевого трансформатора.

    Окончательные результаты, полученные на стендовом прототипе, довольно приличные: размах сетевого напряжения ±35 В вызывает размах выходного напряжения всего ±25 мВ при полной нагрузке 1 А, подключенной к выходу. Пульсации переменного тока на выходе (гул) были ниже 15 мВ.

    Как это работает

    Схема работает следующим образом.

    Опорное напряжение, снятое через стабилитрон(ы) D6-D9 и зафиксированное с помощью потенциометра P1, направляется на базу транзистора T2 с помощью D10 и TI.

    Т2 и Т3 работают как дифференциальный усилитель; при этом база T3 получает выходное напряжение посредством DI2. Выход этого дифференциального усилителя подается через D11 на базу комбинированного последовательного регулятора, состоящего из транзисторов T4, T5 и T6.

    Хотя конфигурация может показаться немного сложной, она работает как обычная схема регулятора; он поддерживает выходное напряжение практически фиксированным в широком диапазоне выходных токов.

    Транзисторы T7 и T8 вместе с соединенными частями образуют каскад ограничения тока. Как только напряжение на R10 достигает определенного значения (установленного P2), T7 начинает проводить ток. Следовательно, это приводит к смещению транзистора T8 и его открытию; что уменьшает базовый привод до транзистора T4, и ситуация снижает выходное напряжение, поэтому выходной ток продолжает оставаться в пределах заданной границы.

    Когда S1 выбран в положении 1, это соответствует выходному диапазону 0-10 В, установка в положении 2 позволяет использовать 10-20 В, а настройка в положении 3 обеспечивает выходной диапазон 20-30 В. P1 используется для настройки диапазон, установленный S1.

    Максимальная величина выходного тока может быть установлена ​​с помощью потенциометра P2. Этот потенциометр P2 может быть либо предварительно запрограммирован на подачу максимального выходного тока 1 А, либо использоваться как регулятор переменного выходного тока.

    Настольный источник питания ATX

    Следующее схематическое изображение настольного источника питания ATX и изображения прототипа были предоставлены одним из заядлых читателей этого блога, г-ном В.

    Простой регулируемый источник питания с использованием регулятора напряжения LM317 7 349 просмотров

    Простой регулируемый источник питания представляет собой электронное устройство, способное преобразовывать источник (как переменного, так и постоянного) с одного уровня напряжения на другой. Они отвечают широкому спектру требований в промышленных и академических условиях, таких как поставки испытательных стендов и приложения для согласования нагрузки для регулируемых приводов постоянного тока. По определению, источник питания переменного/постоянного тока принимает сигнал переменного/постоянного тока (в зависимости от конфигурации) и сдвигает его до желаемого уровня напряжения. Итак, в сегодняшнем уроке мы собираемся разработать простой регулируемый источник питания с использованием микросхемы регулятора напряжения LM317.

    Сердцем этого источника питания является микросхема стабилизатора напряжения LM317. LM317T представляет собой трехвыводную микросхему стабилизатора напряжения с высоким значением выходного тока 1,5 А. Микросхема LM317 имеет множество функций, таких как ограничение тока, тепловая защита и защита безопасной рабочей зоны. Он также может обеспечивать функцию плавающего режима для использования с высоким напряжением. Если мы все же отключим регулируемую клемму, LM317T поможет в защите от перегрузки.

    JLCPCB — передовая компания по производству и производству прототипов печатных плат в Китае, предоставляющая нам лучший сервис, который мы когда-либо получали (качество, цена, сервис и время).

    2$ Прототип печатной платы

    Hardware Required

    You will need the following parts to build this project:

    S.No Component Value Qty
    1) Voltage Regulator IC LM317T 1
    2) Адаптер переменного тока 220 В перем. тока/12 В пост.0260 1
    4) Resistor 1K 1
    5) ON/OFF switch 1
    6) Heatsink 1
    7) DC Power Jack Female/3.5mm 1
    8) Potentiometer 10KOhm 1
    9) Soldering Iron 45W – 65W 1
    10) Soldering Wire with Flux 1
    11) Jumper Wires As per need
    12) AC Wall Outlet 220V 1
    13) Alligator Clips 2

    LM317 Pinout

    Useful Steps

    1) Прикрутите микросхему регулятора напряжения к радиатору (дополнительно).

    2) Припаяйте резистор 10 кОм между выводами Vout и ADJ микросхемы регулятора LM317.

    3) Припаяйте плюсовую клемму разъема питания постоянного тока к клемме Vin микросхемы LM317. После этого подключите минусовую клемму питания постоянного тока к полярному концу/GND потенциометра 10K.

    4) После этого припаяйте клемму вайпера потенциометра 10К к контакту ADJ микросхемы LM317.

    5) Припаяйте сигнал/шунт цифрового вольтметра к выводу Vout микросхемы LM317. После этого припаяйте клеммы Vcc и GND вольтметра к клеммам Vcc и GND/фиксированному концу потенциометра 10K соответственно.

    6) Включите питание и проверьте схему.

    Принцип работы Объяснение

    Работа этой схемы очень проста. Настенный адаптер 220 В переменного тока используется для преобразования входного переменного тока 220 В в выпрямленный сигнал 24–12 В постоянного тока, который затем подается на клемму Vin LM317 с помощью разъема питания постоянного тока. Этот трехвыводной стабилизатор напряжения имеет рабочий диапазон выходного напряжения от 1,2 В до 37 В постоянного тока с максимальным током нагрузки до 1,5 А. Вы можете настроить выход регулятора IC, подключив потенциометр 10K между клеммами Vout и ADJ IC.

    Выход микросхемы LM317 затем подключается к сигнальному датчику вольтметра для отображения непосредственного напряжения на любой нагрузке, такой как светодиод или вентилятор постоянного тока и т. д. бытовая техника, электроинструменты, принадлежности для испытательных стендов и принадлежности для тренировочных плат.

  • Обычно используется при тестировании небольших электронных проектов.
  • Похожие сообщения:

    Переменный источник питания для лабораторного стола своими руками

    Вместо того, чтобы купить имеющийся в продаже лабораторный блок питания для своего верстака, Макс сделал его из общедоступных деталей и некоторых ноу-хау производителя.

    Мы впервые обнаружили самодельный блок питания Макса, пролистывая Instagram. Что привлекло наше внимание, так это то, как Макс использовал различные электронные модули для создания универсального источника питания с ограниченным током 0-36 В с цифровым дисплеем, портом 12 В постоянного тока, двумя портами USB и двойным зарядным устройством для литий-ионных аккумуляторов. Макс даже сделал его портативным.

    Мы связались с Максом, чтобы узнать об этом больше.

    Молодцы, что успешно собрали собственный настольный блок питания, Макс. Во-первых, пожалуйста, расскажите нашим читателям немного о себе и о том, что вас заинтересовало в электронике.

    Привет, производители! Я Макс, 16-летний любитель электроники и YouTube-блогер, который придумывает различные технически сложные проекты, от практичных устройств/гаджетов, таких как самодельные камеры видеонаблюдения, системы полива сада, улучшающие и помогающие качеству жизни, до создания несколько забавных проектов, таких как полеты на радиоуправляемых самолетах и ​​моделях лодок, которыми можно наслаждаться по выходным.

    До сих пор я всю жизнь обучался дома и до сих пор учусь. Эта форма обучения не только хорошо научила меня во многих отношениях, но и позволила мне иметь больше времени для того, чтобы быть в контакте с творчеством.

    С самых ранних дней я любил строить. Будь то конструирование вещей из LEGO или изготовление рогаток из ПВХ для стрельбы по мишеням, когда я был маленьким ребенком, это был постепенный, но полезный путь к творчеству.

    Позже я перешел к более продвинутым проектам для своего уровня и начал интересоваться тем, что разбираю старые игрушки/устройства и выясняю, как они работают, а затем пытаюсь собрать что-то свое. Именно здесь я впервые увлекся изучением электроники и становлением продвинутого производителя. Я запустил свой канал на YouTube «Max Imagination», чтобы делиться своими проектами со зрителями и в то же время учить других делать то, что я создал, с помощью пошаговых руководств. Отсюда, насколько я полагаю, дело пошло.

    Что побудило вас создать собственный блок питания вместо того, чтобы покупать имеющийся в продаже?

    Ключевым моментом, который побудил меня построить свой собственный блок питания для лабораторного стола, было понимание того, насколько дорогим может оказаться приобретение достойного, надежного и стабильного источника питания, который будет выполнять свою работу. 100 долларов США или больше в долларах США за заводской блок питания, похоже, не урезали его, поэтому я решил собрать свой собственный примерно за половину этой цены. Кроме того, я хотел бросить себе вызов с помощью нового сложного проекта и настроить его под свои нужды.

    По вашему мнению, зачем энтузиастам электроники иметь переменный источник питания и важность ограничения тока.

    Существенным преимуществом владения одним из этих блоков питания для производителя является возможность установить желаемое напряжение для любой схемы, с которой вы работаете, или устройства, которое вы хотите запитать, без каких-либо сбоев или проблем с получением другой мощности. источник, который не так стабилен, если под рукой нет блока питания для лабораторного стола.

    Функция ограничения тока или установки тока имеет решающее значение, когда необходимо проанализировать или протестировать цепь, чтобы иметь возможность измерить ток, потребляемый схемой (чтобы она рассеивала нужное количество тока по мере необходимости), чтобы избежать превышения слишком большого количества ампер. , или еще хуже, короткое замыкание. Приличный блок питания обычно имеет функции защиты от обратной полярности и короткого замыкания, такие как мой самодельный, который вы тоже можете собрать. Зная это, вы можете получить хорошее представление о том, почему блок питания считается обязательным рабочим местом для домашнего мастера.

    Согласен. Важно не выпускать дым из схемы, которую вы строите. Каковы выходные характеристики вашего блока питания и какие у вас есть различные выходы?

    Сосредоточившись больше на характеристиках самодельного блока питания, это довольно универсальный блок с кучей различных выходов и входов вокруг него. Устройство питается от сети переменного тока 120 В в качестве основного источника питания сзади с переключателем для переключения переменного тока, устройство также имеет вход постоянного тока сбоку для питания всего устройства от батареи, что делает его портативным.

    Что касается стороны постоянного тока и выходов, большой тумблер переключает между питанием стороны постоянного тока цепи либо от преобразователя переменного тока в постоянный, либо напрямую от батареи. На передней панели у вас есть одна розетка переменного тока для приборов, два основных разъема (положительный и отрицательный (отрицательный) с переменным выходом до 36 В постоянного тока, разъем 12 В постоянного тока и два USB-порта для зарядки мобильных устройств 5 В. . Глядя на левую сторону устройства, он даже имеет зарядное устройство для литий-ионных элементов (аккумуляторов) типа 18650 со светодиодными индикаторами состояния зарядки.

    Наконец, на передней панели DC-DC с цифровым числовым управлением, регулируемый понижающий преобразователь 0-55 В, который напрямую подключается к двум разъемам RCA внизу, обеспечивая переменную мощность.

    Вентилятор охлаждения, активированный термистором

    Отлично! Звучит довольно многогранно. Аккумуляторная батарея — приятный штрих для того, чтобы сделать его портативным. Мы заметили, что у вас также есть охлаждающий вентилятор. Это активируется теплом?

    Да, в блоке питания (PSU) даже есть охлаждающий вентилятор с тепловым приводом. Чтобы сломать его, на самом деле есть самодельный аналоговый температурный переключатель, который запускает и останавливает вентилятор, который работает на основе определения изменения температуры на плате импульсного преобразователя мощности внутри. Он использует сеть делителя напряжения из обычного резистора и термистора NTC, значение сопротивления которого изменяется при изменении температуры. Подключен к N-канальному МОП-транзистору, который получает резистивную обратную связь через сеть делителя напряжения для включения или выключения транзистора, переключения внутреннего охлаждающего вентилятора блока питания, который подключен к этой схеме переключателя с регулируемой температурой.

    Это, безусловно, избавит вас от лишнего шума во время работы. Не могли бы вы немного подробнее узнать о том, как работает ваш блок питания, а также о различных частях и модулях, которые вы использовали.

    Блок питания DIY Lab Bench удовлетворяет потребности многих производителей в электропитании. Чтобы управлять им, вы сначала нажимаете тумблер переменного тока на задней панели, затем опускаете передний тумблер постоянного тока (переключение вверх означает вход постоянного тока), чтобы включить все компоненты постоянного тока вокруг, включая небольшой модуль источника питания с дисплей. На дисплее вас приветствует аккуратный небольшой интерфейс с указанием мощности, отображающий установленное напряжение, ток и общую мощность от произведения двух. В модуле даже есть меню выбора мощности для дальнейшей установки более продвинутых изменений, и вы даже можете установить различные предустановки мощности, которые будут сохранены для следующего раза, когда вы захотите включить что-то с этой настройкой. Нажатие на кнопку «установить» позволяет вам щелкнуть поворотный энкодер, чтобы навести курсор на цифры предельных значений напряжения и тока в самом верху дисплея, а затем повернуть циферблат, чтобы отрегулировать эти значения. Нажатие кнопки питания под поворотным переключателем включает выход с установленными значениями напряжения и тока для включения цепей питания!

    Корпус DVD/CDROM

    Похоже, вы использовали лишнюю электронику для корпуса. Это было сделано для снижения затрат?

    Нестандартное мышление, изготовление блока питания (блока питания) из некоторых переработанных материалов — хороший способ снизить общую стоимость проекта. Что касается корпуса устройства, я использовал два футляра с драйверами DVD/CDROM от старых компьютеров, каждый из которых в собранном виде составляет половину общего футляра.

    С помощью угловой шлифовальной машины, вырезая подходящие места для компонентов, которые будут высовываться из корпусов, а затем покрасьте эти корпуса для получения приличного корпуса блока питания. Подготовка ракушек значительно упростилась с помощью угловой шлифовальной машины. Без него вырезать пробелы было бы настоящей проблемой. У вас нет угловой шлифовальной машины? Вы можете одолжить один у своего соседа или вместо этого просверлить последовательные отверстия в раковинах с помощью сверлильного станка, пока не получите желаемые вырезы. Если вы используете для этого угловую шлифовальную машину, безопасность превыше всего! При работе с такими машинами обязательно надевайте соответствующие защитные очки. Встаньте немного в сторону на случай, если шлифовальный инструмент соскользнет к вам.

    Этот метод изготовления корпуса, безусловно, снизил стоимость проекта, вместо того, чтобы делать корпуса сторонних производителей и поставщиков. Иногда такие вещи можно обойти, если у вас нет такой машины, как 3D-принтер или специальная машина, способная производить изготовление листового металла. Корпус, напечатанный на 3D-принтере, также подойдет, если, конечно, у вас есть доступ к использованию 3D-принтера.

    Ножки, изготовленные из головок Nerf Gun

    Головки для дротиков Nerf — это новый способ изготовления ножек для вашего вольера. Напоминает нам о термине LEGO NPU для использования качественных деталей. Мы видим, вы также сделали проставки из пластиковой трубки. Какие еще трюки вы использовали, как этот?

    Что касается различных советов и приемов при изготовлении такого блока питания, вы можете снять резиновые головки с этих дротиков Nerf для использования в качестве ножек вашего устройства, ваша изобретательность может найти другой способ стабилизации блока питания на некоторых форма противоскользящих ножек или рельсов.

    Если вам не хватает определенной функции, которая, как вы знаете, должна быть в вашем блоке питания (в моем случае — решетка вентилятора), например. У меня не было под рукой решеток для вентиляторов ПК, так что… я сделал одну! Да, именно так! Я согнул 2-миллиметровую стальную проволоку из хозяйственного магазина, придав ей форму, и спаял все вместе, сделав защитный кожух/решетку вентилятора. Купить его было бы проще, однако в то время мне не удалось найти такие, которые продаются отдельно в моем местном хозяйственном магазине. Еще раз, говоря о преодолении препятствий на пути продвижения проекта!

    Внутренняя проводка вашего источника питания выглядит так, как будто она может стать настоящим беспорядком? Не суетись! Организуйте тесные соединения между конкретными модулями и разъемами на перфорированных макетных платах (также называемых пустыми перфорированными печатными платами).

    Кроме того, вы можете подвесить такие модули, как преобразователи питания, на пластиковые прокладки, такие как отрезки от чернильной ручки, через которые также могут пройти болты, это может предотвратить короткое замыкание клемм модуля на металлическом корпусе ниже. .

    Думая о способах защиты целостности как конструкции, так и лакокрасочного покрытия вашего источника питания, можно принять во внимание также использование шайб на стягиваемых винтами частях вокруг устройства.

    Помимо уже просверленных отверстий в деревянной задней поверхности корпуса для выхода воздуха, не расстраивайтесь из-за того, что некоторые уже существующие выступы и отверстия на корпусе вашего блока питания также используются в качестве вентиляционных отверстий, этому щенку нужны дышать!

    Несколько отличных советов в стиле MacGyver. Очевидно, что ваша сборка включала подключение к электросети, которая предназначена для квалифицированных электриков в Австралии. Можно ли в этих обстоятельствах использовать закрытый блок питания переменного/постоянного тока?

    Когда речь идет о безопасности при работе с сетевым напряжением, никогда не прикасайтесь и не работайте с вашей цепью, когда шнур переменного тока подключен к плате, также важно заземлить плату преобразователя SMPS на металлический корпус, чтобы избежать возможных ударов. При выборе правильного преобразователя переменного/постоянного тока рекомендуется купить специальную плату 36 В на 5 А, используемую в этом проекте, однако, возможно, у вас уже есть что-то подобное рядом со старым устройством, просто проверьте выходную мощность платы. характеристики соответствуют стандарту где-то около 24–50 В постоянного тока, 3–10 А, попробуйте использовать преобразователь мощности SMPS (импульсный источник питания).

    Поскольку у меня уже лежало большинство необходимых деталей, а также некоторые из них были утилизированы, единственные две вещи, на которые я потратил деньги, — это плата преобразователя переменного тока в постоянный (120 В переменного тока — 36 В постоянного тока) и плата преобразователя постоянного тока в постоянный. Цифровое числовое управление Регулируемый 0-55В Понижающий преобразователь (модуль питания). Оба из них можно купить менее чем за 50 долларов США. Общая стоимость воссоздания этого проекта может оказаться для вас совершенно разной в зависимости от того, что у вас уже есть и чего еще нет.

    Два слота для зарядки литий-ионных аккумуляторов 18650

    Какое прототипирование вам нужно было сделать и какие проблемы пришлось преодолеть?

    Что казалось самым сложным в этом проекте, так это создание собственных модулей, собранных из голых компонентов. Понимание таких вещей, как, например, почему мои термисторы продолжали сгорать из-за странной ошибки, связанной с неправильным подключением сети делителя напряжения к MOSFET, который составляет аналоговый переключатель вентилятора, активируемый теплом. Подобные мелкие неприятности вы встретите на своем пути практически в любом сложном проекте, над которым будете работать. Тем не менее, это отличная кривая обучения, чтобы исправить странную ошибку и продолжать упорствовать.

    Использование блока питания в качестве вольтметра

    Мы заметили, что ваш проект можно использовать и как вольтметр/амперметр?

    Кроме того, благодаря этим двум специально приобретенным модулям, упомянутым выше, этот блок питания полностью защищен от коротких замыканий и подключений с обратной полярностью между любыми выходами. То есть оба имеют одинаковые защитные функции, что делает его безопасным источником питания. Конечно, я просто должен был попробовать закоротить выходные провода, просто ради этого! Еще одна особенность блока питания, которая делает его уникальным, заключается в том, что с преобразователем основного питания, глядя на дисплей, вы можете щупать выходные выводы, чтобы даже измерять напряжение и ток, как если бы вы использовали мультиметр.

    Есть ли что-то, что мы еще не рассмотрели, о чем наши читатели должны знать, если они планируют сделать это для себя?

    Совет тем из вас, кто рассматривает возможность воссоздания этого проекта или создания чего-то подобного, заключается в том, чтобы сначала подумать о макете вашего рабочего места и решить, какие функции из упомянутых вы хотели бы сохранить или добавить. источник питания в зависимости от ваших потребностей в электроэнергии. Идея заключается в том, чтобы проявить творческий подход и быть готовым адаптировать его к вашей рабочей среде, не стесняйтесь создавать блок питания, не похожий ни на что другое. Еще пара вещей будет похожа на построение вашего запаса таким образом, чтобы вы всегда могли снять крышку, открыть ее, чтобы починить определенную ее часть, сделав ее более доступной.

    Внутренняя электроника и проводка Понижающий преобразователь переменного тока в постоянный SMPS

    Подумайте о способах защиты различных компонентов, наиболее уязвимых для повреждения. Внутри вы можете поддерживать каждый модуль с помощью опорных стоек или кронштейнов, чтобы убедиться, что весь блок выдержит износ при подключении и отключении вещей от портов.

    Имея все это в виду, вы должны быть готовы сделать свою собственную мощную маленькую машинку! Вам понравится играть с возможностями того, что вы можете использовать с его помощью.

    Прокрутите страницу вниз, чтобы посмотреть мои видео-инструкции для этого блока питания

    Отлично. Спасибо, что подробно рассказали о своем проекте, Макс. Мы с нетерпением ждем возможности увидеть, какие еще удивительные вещи вы создадите в будущем.

    Регулируемая плата блока питания 0–30 В, 2 мА–3 А | ELECTROINDIA — Поделись проектом

    С конца 1800-х до конца 1900-х годов пишущая машинка была одним из лучших инструментов для написания документов. К сожалению, они в значительной степени устарели с появлением домашних компьютеров. Я не вырос с пишущей машинкой, но пару месяцев назад купил электронную пишущую машинку Brother AX-25. Он использует маргаритку (вращающееся колесо с отлитыми в нем буквами) и моторизованный молоток для ввода текста, а не штрихи (или бойки), как в традиционной пишущей машинке. Звук, который он издает, не имеет себе равных даже на самой щелкающей клавиатуре. Каждое нажатие клавиши приводит к короткому гудению, когда мотор выбирает символ, после чего следует удовлетворительный щелчок. AX-25 имеет 16-символьный ЖК-дисплей, 128 КБ ПЗУ для прошивки пишущей машинки, 128 КБ памяти и 16 КБ ОЗУ. Эти характеристики довольно ужасны по сегодняшним меркам. К счастью, старые технологии легко перепрофилировать с помощью оборудования с открытым исходным кодом! Вот почему я использовал Arduino и Raspberry Pi, чтобы превратить свою пишущую машинку в терминал Linux. Вдохновение Еще в старшей школе один из моих друзей работал над созданием компьютера с использованием Z80 для школьного проекта. Он настроил его на нескольких макетных платах в портфеле, и после того, как мы немного поговорили об этом, мы решили, что попробуем поместить его в старую пишущую машинку. Мы хотели сделать свой собственный Commodore 64. Мы распотрошили старую электронную пишущую машинку, но так и не удосужились поставить в нее компьютер. В течение последних 6 лет у меня в комнате лежала оболочка этой пишущей машинки. Какое-то время я хотел превратить пишущую машинку в кибердеку. Я планировал поставить в него экран и Raspberry Pi с здоровенной батареей. У меня крутилась эта идея в голове, пока пару лет назад я не увидел видео CuriousMarc о том, как его телетайп превратился в терминал Linux. Я хотел сделать то же самое с пишущей машинкой, но у меня никогда не было на это времени, и я не мог найти пишущую машинку ни в одном комиссионном магазине. После окончания колледжа у меня, наконец, появилось достаточно свободного времени и знаний, чтобы превратить пишущую машинку в компьютер. Что она может делать? Я могу использовать все виды команд Linux, большинство программ CLI будут работать, но все с текстовым интерфейсом ( как Vim или Emacs) не будет работать. Обрабатывая escape-последовательности, которые выводит Raspberry Pi, я могу автоматически переключать функции форматирования пишущей машинки. Он также может печатать ASCII-арт! Вот видео о том, как он печатает некоторые изображения, которые я нашел в Интернете, и некоторые, которые я сделал с помощью генератора изображений ASCII: Обратное проектирование. Клавиатура пишущей машинки подключена к матрице 8×11 и подключается к пишущей машинке с помощью двух разъемов, один для строк. , и один для столбцов. К ним подключены разъемы клавиатуры с перемычками для моей схемы. Когда вы нажимаете одну из клавиш, она соединяет один из выводов строки с выводом столбца, который затем обнаруживает пишущая машинка. Чтобы выяснить, какой паре контактов соответствует каждая клавиша, я соединил каждую пару вручную по одной и записал, какая клавиша была напечатана. Я делал это до тех пор, пока не нанес на карту всю матрицу. Макет матрицы пишущей машинки. В пишущей машинке используется линейный регулятор 7805 для питания ее 5-вольтовых компонентов, и я смог найти неиспользуемую 5-вольтовую площадку и заземляющую площадку, к которой я могу подключиться для питания. моя схема. Мне пришлось добавить радиатор к регулятору, чтобы приспособиться к повышенному энергопотреблению моей схемы. Управление пишущей машинкой Код Arduino доступен в моем репозитории GitHub, если вы хотите взглянуть на него подробнее! Моя Arduino управляет пишущей машинкой с помощью двух мультиплексоров, подключенных к каждому из разъемов клавиатуры. Сигнальные контакты мультиплексора подключены, поэтому их можно использовать для соединения пар контактов на разъемах клавиатуры вместе. Чтобы отправить ключ, Arduino выбирает контакт на каждом мультиплексоре, чтобы соединить их, что заставляет пишущую машинку думать, что клавиша была нажата. Мой прототип схемы управления пишущей машинкой. Arduino подключен через последовательный порт к Pi, который имеет последовательная консоль включена на своих контактах UART. Я решил использовать Arduino в дополнение к Raspberry Pi, потому что я лучше знаком с ними, и это значительно упрощает взаимодействие с консолью UART Raspberry Pi. Arduino и Raspberry Pi обмениваются данными со скоростью 120 символов в секунду, но пишущая машинка может печатать только 12 символов в секунду. Чтобы предотвратить обрезание длинных сообщений, я добавил в свой код управление последовательным потоком. Это позволяет Arduino сообщать Pi, когда начинать и прекращать отправку текста. Raspberry Pi работает под управлением Raspberry Pi OS Lite, так как мне нужен только доступ к терминалу. Клавиатура Для сканирования клавиатуры я использовал практически ту же схему; два мультиплексора, один для строк, один для столбцов. Arduino сканирует клавиатуру по одной клавише за раз, выбирая канал на каждом мультиплексоре. Когда он обнаруживает, что клавиша была нажата, он отправляет этот символ на Raspberry Pi, чтобы он мог его обработать. Мой прототип схемы сканирования клавиатуры. Я мог бы использовать оригинальную клавиатуру пишущей машинки для этого проекта, но я решил заменить ее. со специальной механической клавиатурой с переключателями Matias Alps, которые очень щелкают и на них приятно печатать! Индивидуальная раскладка клавиатуры, которую я разработал для своей пишущей машинки. ЗаключениеПревратив свою пишущую машинку в компьютер, я смог воссоздать опыт использования телетайп. Теперь я знаю, каково было использовать Unix в 19-м веке.60-х, когда он изначально разрабатывался! На специальной механической клавиатуре приятно печатать, и она представляет собой огромное обновление по сравнению с мягкой мембранной клавиатурой, которая была у нее изначально. Благодаря этим обновлениям моя пишущая машинка стала намного мощнее!

    самодельный регулируемый источник питания — Купить самодельный регулируемый источник питания с бесплатной доставкой

    самодельный регулируемый источник питания — Купить самодельный регулируемый источник питания с бесплатной доставкой | Покупки на Banggood

    Марки

    УЗНАТЬ БОЛЬШЕ

    Напряжение

    Ток

    Материал

    Применение

    Функция

    Протоколы

  • 7

    Дом

  • «» 82 результатов
  • Цена —

    ОК

    Доставить из

    Всего 2 страницы

    Перейти на страницу

    Перейти

    Подтвердите свой возраст

    Для входа в этот раздел вам должно быть не менее 18 лет.

    МНЕ ДО 18 ЛЕТ МНЕ СТАРШЕ 18

    ▷ 3d модели регулируемый блок питания 【STLFinder】

    РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ

    мояминифабрика

    Сделай сам AYARLANABILİR GÜÇ KAYNAĞI KASASI

    Сделай сам Регулируемый блок питания 0-24 В / 6 Ач

    вещьвселенная

    Список деталей: — Переключатель питания 220 В перем. тока > 24 В пост. тока / 6 Ач — Понижающий регулятор 0-28 В пост. тока / 10 Ач — Потенциометр 10 кОм — Светодиод Volmetro Передняя крышка была напечатана с полями шириной 8 мм и с нагревателем под углом 60°

    Самодельный регулируемый блок питания 12/5/3,3 В

    вещьвселенная

    Размеры в мм: 130 x 130 x 80 Характеристики выходной мощности: 12 В — 28 А 12 В регулируемый — 12 А 5 В — 12 А 3,3 В — 12 А Список деталей: 1 — Блок питания SFX — https://www. ebay.com/itm/ 293246094063 1 — Шнур питания — https://www.ebay.com/itm/353179784910 1 — Цилиндр…

    [Сделай сам] Скамья для блока питания

    мояминифабрика

    Я распечатал чехол для своего скамьи с блоком питания своими руками, получайте удовольствие от него.

    DPS5015 Самодельный блок питания

    вещьвселенная

    Подробнее на: http://www.roroid.ro/dps5015-diy-power-supply/ Видео на: https://www.youtube.com/watch?v=0fAxZjIAwfI

    Блок питания Doepfer DIY

    грабкад

    Блок питания Doepfer DIY Я не эксперт в 3D-моделировании, но размеры правильные, и этого должно быть достаточно для проектирования корпуса еврорэка.

    [Сделай сам] Портативный блок питания

    вещьвселенная

    … для этого проекта. английскийhttp://www.instructables.com/id/Handy-Power-Supply/ китайскийhttp://regishsu.blogspot.tw/2016/03/handy-power-supply-diy.html#more Если мой дизайн вам интересен, Вы можете сделать небольшое пожертвование: http://paypal.me/RegisHsu

    Блок питания для самостоятельной лаборатории

    вещьвселенная

    Лабораторный блок питания DIY Переменный блок питания для любителей\изготовителей Как производитель, я искал недорогой портативный блок питания и наткнулся на этот модуль. Этот модуль имеет хорошие характеристики и более чем достаточен для моих личных нужд Далее I. ..

    Блок питания своими руками

    вещьвселенная

    Это блок питания, который я сделал своими руками. Вырезы на задней панели предназначены для 50-мм вентилятора и вилки IEC на 120 В с выключателем. На передней панели есть вырезы для светодиода, 2 USB, положительный и отрицательный разъемы, небольшой переключатель включения/выключения и повышающий модуль XYL3606.

    Самодельный блок питания DPS5005

    вещьвселенная

    **Характеристики** — Диапазон выходного напряжения: 0 — 36 В — Диапазон выходного тока: 0 — 5 А **Необходимое аппаратное обеспечение** *Электроника* — [DPS5005…

    Источник питания для настольного компьютера

    вещьвселенная

    Детали: — блок питания компьютера — цифровой вольтметр https://www.ebay.com/itm/DC-0-100V-10A-Dual-LED-Digital-Voltmeter-Ammeter-Voltage-AMP-Power/181991348992?ssPageName=STRK%3AMEBIDX%3AIT&_trksid=p2057872. m2749.l2649 — повышающий/понижающий преобразователь питания…

    Настольный источник питания своими руками

    вещьвселенная

    У меня также есть видео на YouTube, в котором показано больше конструкции и особенностей этого блока питания: https://www.youtube.com/watch?v=MtTcv4PDfNw Ссылка на модуль на Amazon:…

    DIY POWER ящик для принадлежностей

    мояминифабрика

    У меня уже есть один блок питания для настольных ПК, купленный на Amazon за чуть более высокую цену, чем этот проект, но какое удовольствие просто покупать готовые вещи. Я начал работу над проектом, увидев видео Dronebotworkshop на YouTube об этом самом…

    Самодельный источник солнечной энергии

    вещьвселенная

    Корпус зарядного устройства на солнечной энергии. Вмещает два держателя батареи 18650, контроллер заряда TP4056 и либо MT3608 (примерно до 30 В постоянного тока), либо повышающий преобразователь USB (для 5 В USB). Также имеется заглушка для более компактной сборки, когда она не используется…

    Самодельный блок питания на батарейках

    вещьвселенная

    Это кейс для сборки DPS5005 (или аналогичного) в регулируемый блок питания Ryobi One+ с батарейным питанием. Вам потребуются: — Корпус, напечатанный на 3D-принтере — Аккумулятор Ryobi One+ — Блок питания DPS5005 или эквивалент (DPS3003, DPS3005) — Комбинированный красный/черный переплет…

    Еще один блок питания для настольного компьютера

    вещьвселенная

    . …..*08.07.2020* Это еще один настольный блок питания, сделанный своими руками. Он предназначен для печати с минимальными опорами, достаточно вместителен для комфортной работы, а конечный продукт должен быть красивым и прочным. Все компоненты, которые я использовал, приведены ниже.

    Еще один блок питания для самостоятельной сборки

    прусапринтеры Обновление

    : Комментатор указал, что я упустил из виду текущий рейтинг понижающих преобразователей, которые я связал, мы должны использовать что-то вроде XL4015, я обновил файл DIYBench_Bottom с вариантом XL4015.08/07/2020 Это еще одна настольная мощность DIY …

    Блок питания для мини-лаборатории своими руками

    вещьвселенная

    Ссылка на инструкции: https://www. instructables.com/DIY-Mini-Lab-Power-Supply/ Блок питания основан на модуле понижающего преобразователя постоянного тока XL4015. Этот модуль может обеспечивать регулируемое выходное напряжение от 1,4 В до входного напряжения и силы тока…

    Лабораторный блок питания ACDC для самостоятельной сборки

    вещьвселенная

    # Компоненты [RD DPS5005](https://www.aliexpress.com/item/10000042

    .html) [Источник питания] (https://www.aliexpress.com/item/32849922581.html) [Кнопка переключения KCD1] (https://www.aliexpress.com/item/32662789727.html) [банановый двойной plug…

    Крышка блока питания DIY Bench

    вещьвселенная

    Этот источник питания регулируется от 0 до 48 В при 10 А и является относительно недорогим https://smile. amazon.com/gp/product/B0777MH681/ref=oh_aui_search_detailpage?ie=UTF8&psc=1 Он поставляется с дополнительным потенциометром для регулировки напряжение, поэтому я просто добавил…

    Самодельный блок питания для ноутбука 24 В постоянного тока

    вещьвселенная

    В любом случае, получите один из этих: http://smile.amazon.com/DROK-Converter-Transformer-Synchronous-Adjustable/dp/B00C9UUFHC или http://smile.amazon.com/dp/B00C4QVTNU Затем получите вилку для него:…

    Регулируемый блок питания

    вещьвселенная

    Собрал компактный и удобный блок питания на базе модуля с микросхемой xl4015 для тестирования и питания устройств. Блок питания ноутбука используется в качестве основного источника питания. Об остальном вы можете узнать из этого видео. В качестве…

    Регулируемый мини-блок питания

    вещьвселенная

    Все, что вам нужно, это эти компоненты: https://www.amazon.com/UCTRONICS-Numerical-Stabilized-Converter-Adjustable/dp/B01LWXAC5E Я использовал 19-вольтовый блок питания для ноутбука, который валялся без дела, поэтому я не уверен точную модель/тип компонента и гнездо…

    Регулируемый блок питания

    вещьвселенная

    Перечень деталей (винты M3x5 мм) (винты M3x8 мм с круглой головкой) (клеммные разъемы усилителя Клеммная колодка Штекер типа «банан» Номер товара на eBay: 262834273978) (LM317 Регулируемый регулятор напряжения переменного/постоянного тока Понижающий модуль питания Номер товара на eBay: 231941814484. ..

    Портативный регулируемый источник питания

    вещьвселенная

    Портативный регулируемый источник питания, созданный на базе Banggood Код продукта: 961687 и Код продукта: 1041746 Отверстия для воздуха взяты из: / Fan Grid Multi Holes Generator от NinjaCross, опубликовано 25 сентября 2014 г. / Настройки печати Принтер: WIESTEK Rafts: Doesn’ т…

    Регулируемый источник питания постоянного тока

    вещьвселенная

    Детали регулируемого источника питания постоянного тока 2x — Voltímetro Amperímetro Digital Led Dc 100v 10a ML Бразилия: https://bit.ly/2D0NNZD Aliexpress: https://bit.ly/2DopWCQ 2x — Step Down Ajustável Dc-dc 300w 9a ML Бразилия: https://bit.ly/31o66Ab Aliexpress:. ..

    Регулируемый блок питания

    вещьвселенная

    Источник питания 220 В или 110 В, выходы следующие: 5 В пост. тока Порт USB Фиксированные гнезда 12 В пост. тока Гнезда с регулируемым напряжением Гнезда 0-12 В пост. тока Гнезда 5 В пост. Для больших токов или…

    Детали корпуса Z17 для блока питания DIY

    вещьвселенная

    Если вам понравился этот проект и вы хотите сказать «Спасибо», пожалуйста, поддержите меня, отправив чаевые на thingiverse или на мой PayPal здесь. Детали корпуса Z17 для блока питания DIY Видео: https://www.youtube.com/watch?v=KjKLw6QgoMI

    Двухканальный настольный блок питания DIY

    вещьвселенная

    https://petrosprojects.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *