Что такое конденсатор | Принцип работы, виды, типы
Что такое конденсатор
Конденсатор или как в народе говорят – “кондер”, образуются от латинского “condensatus”, что означает как “уплотненный, сгущенный”. Он представляет из себя пассивный радиоэлемент, который обладает таким свойством, как сохранение электрического заряда на своих обкладках, если, конечно, перед этим его зарядить каким-нибудь источником питания.
Грубо говоря, конденсатор можно рассматривать как батарейку или аккумулятор электрической энергии. Но вся разница в том, что аккумулятор или батарейка имеют в своем составе источник ЭДС, тогда как конденсатор лишен этого внутреннего источника.
Из чего состоит конденсатор
Любой конденсатор состоит из двух или более металлических обкладок, которые не соприкасаются друг с другом. Для более полного понимания, как все это устроено в конденсаторе, давайте представим себе блин.
намажем его сгущенкой
и сверху положим точно такой же блин
Должно выполняться условие: эти два блина не должны прикасаться друг с другом.
Схематически все это выглядит примерно вот так.
Как вы могли заметить, из-за диэлектрика конденсатор не может проводить ток. Но это относиться только к постоянному току. Переменный ток конденсатор пропускает через себя без проблем с небольшим сопротивлением, номинал которого зависит от частоты тока и емкости самого конденсатора.
Емкость конденсатора
Электрические заряды
Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные – притягиваются. Физика седьмой класс).
Давайте еще раз рассмотрим простую модель конденсатора.
Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.
Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.
Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.
Почему так происходит?
Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это зависит от материала диэлектрика.
Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.
Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.
Что такое емкость
Емкость конденсатора – это его способность накапливать заряд на своих пластинах в виде электрического поля.
Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:
где
С – это емкость, Фарад
Q – количество заряда на одной из обкладок конденсатора, Кулоны
U – напряжение между пластинами, Вольты
Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.
Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .
Плоский конденсатор и его емкость
Плоским конденсатором называют конденсатор, который состоит из двух одинаковых пластин, которые параллельны друг другу. Пластины могут быть разной формы. На практике чаще всего можно встретить квадратные, прямоугольные и круглые пластины. Давайте рассмотрим простой плоский квадратный конденсатор.
плоский конденсаторгде
d – расстояние между пластинами конденсатора, м
S – площадь самой наименьшей пластины, м2
ε – диэлектрическая проницаемость диэлектрика между обкладками конденсатора
Готовая формула для плоского конденсатора будет выглядеть так:
где
С – емкость конденсатора, ф
ε – диэлектрическая проницаемость диэлектрика
ε0 – диэлектрическая постоянная, ф/м
S – площадь самой наименьшей пластины, м2
d – расстояние между пластинами, м
Да, знаю, у вас сразу возникает вопрос: “А что такое диэлектрическая постоянная?” Диэлектрическая постоянная – это постоянная величина, которая нужная для вычислений в некоторых формулах электромагнетизма. Ее значение равняется 8, 854 × 10
Диэлектрическая проницаемость – эта величина зависит от типа диэлектрика, который находится между обкладками конденсатора. Например, для воздуха и вакуума это значение равняется 1, для некоторых других веществ можете посмотреть в таблице.
Какой можно сделать вывод из этой формулы? Хотите сделать конденсатор с огромной емкостью, делайте площадь пластин как можно больше, расстояние между пластинами как можно меньше и заправляйте вместо диэлектрика дистиллированную воду.
В настоящее время конденсаторы делают из нескольких пластин в виде слоеного торта. Это примерно выглядит вот так.
В этом случае формула такого конденсатора примет вид:
формула многослойного конденсаторагде n – это количество пластин
Максимальное рабочее напряжение на конденсаторе
Все конденсаторы имеют какое-то предельное напряжение, которое можно на них подавать. Дело все в том, что может произойти пробой диэлектрика, и конденсатор выйдет из строя. Чаще всего это напряжение пишут на самом корпусе конденсатора. Например, на электролитическом конденсаторе.
максимальное рабочее напряжение конденсатораВ технической документации этот параметр чаще всего обозначается, как WV, что с английского Working Voltage (рабочее напряжение), или DC WV – Direct Current Working Voltage – постоянное рабочее напряжение конденсатора.
Здесь есть один нюанс, о котором часто забывают. Дело в том, что на конденсаторе написано именно на какое постоянное напряжение он рассчитан, а не переменное. Если такой конденсатор, как на рисунке выше, с максимальным рабочим напряжением в 50 Вольт вставите в цепь переменного тока с источником питания, который выдает 50 Вольт переменного тока, то ваш конденсатор взорвется. Так как 50 Вольт переменного тока – это действующее напряжение. Его максимальное значение будет 50 × √2 = 70,7 Вольт, что намного больше, чем 50 Вольт.
Ток утечки конденсатора
Дело все в том, что какой бы ни был диэлектрик, конденсатор все равно рано или поздно разрядится, так как через диэлектрик, как ни странно, все равно течет ток. Величина этого тока у разных конденсаторов тоже разная. Электролитические конденсаторы обладают самым большим током утечки.
Также ток утечки зависит от напряжения между обкладками конденсатора. Здесь уже работает закон Ома: I=U/Rдиэлектрика . Поэтому, никогда не стоит подавать напряжение больше, чем максимально рабочее напряжение, прописанное в даташите или на самом конденсаторе.
Неполярные конденсаторы
К неполярным конденсаторам относят конденсаторы, для которых неважна полярность. Такие конденсаторы обладают симметричностью. Обозначение неполярных конденсаторов на электросхемах выглядит вот так.
Конденсаторы переменной емкости
Современные выглядят чуточку красивее
подстроечные конденсаторыПеременный конденсатор от подстроечного отличается лишь тем, что переменный конденсатор крутят чаще, чем подстроечный. Подстроечный крутят раз в жизни)
На схемах обозначаются так.
переменный конденсатор обозначение на схемеСлева -переменный, справа – подстроечный.
Пленочные конденсаторы
Пленочные конденсаторы являются самыми распространенными в большом семействе конденсаторов. Они названы так потому, что вместо диэлектрика здесь используется тонкая пленка, которая может состоять из полиэстера, полипропилена, поликарбоната, тефлона и много еще из чего. Такие конденсаторы идут от номинала 5 пФ и до 100 мкФ. Они могут быть сделаны по принципу бетерброда
А также по принципу рулета
Давайте рассмотрим К73-9 советский пленочный конденсатор.
к73-9 советский конденсаторЧто же у него внутри? Смотрим.
Как и ожидалось, рулончик из фольги с диэлектриком-пленкой
что внутри конденсатораКерамические конденсаторы
Керамические конденсаторы – это конденсаторы, которые изготавливают из керамики или фарфора, которые покрывают серебром. Берут диск квадратной или круглой формы, напыляют с с двух сторон серебро, выводят выводы и вуаля! Конденсатор готов! То есть и есть самый простой плоский конденсатор, о котором мы говорили выше в этой статье.
Хотите получишь емкость больше? Не вопрос! Складываем диски в бутерброд и увеличиваем емкость
Выглядеть керамические конденсаторы могут вот так:
керамические конденсаторыкерамические каплевидные конденсаторыSMD конденсаторы
SMD конденсаторы – это керамические конденсаторы, которые построены по принципу бутерброда.
строение SMD конденсатораОни используются в микроэлектронике, так как обладают крошечными размерами и удобны в плане промышленного производства с помощью роботов, которые автоматически расставляют SMD компоненты на плату.Такой тип конденсаторов вы без труда можете найти на платах своих мобильных телефонов, на материнских платах компьютеров, а также в современных гаджетах.
Полярные конденсаторы
Для полярных конденсаторов очень важно не путать выводы местами при монтаже. Плюсовая ножка должны подключаться к плюсу на схеме, а минусовая – к минусу. Обозначается полярные конденсаторы также, как и их собратья. Единственное отличие – это указание полярности такого конденсатора. Выглядеть на схемах они могут вот так.
обозначение полярных конденсаторов на схемеЭлектролитические конденсаторы
Электролитические конденсаторы используется в электронике и электротехнике, где требуются большие значения емкости. Также повелось название “электролиты”.
электролитические конденсаторыСтроение электролитических конденсаторов очень похоже на пленочные конденсаторы, которые также собраны по принципу рулета, но с одной только разницей. Вместо диэлектрика здесь используется оксид алюминия.
Давайте разберем один из таких электролитических конденсаторов во благо науки.
Снимаем его корпус и видим тот самый рулетик
Разматываем “рулетик” и видим, что между двумя обкладками металлической фольги у нас находится бумага, пропитанная каким-то раствором.
что внутри электролитического конденсатораНекоторые ошибочно полагают, что бумага – это и есть тот самый диэлектрик, хотя это в корне неверно. Как она может быть диэлектриком, если она смочена в растворе, который проводит электрический ток?
На самом же деле диэлектриком в данном случае является тончайший слой оксида алюминия, который производится электрохимическим способом еще на производстве. Все это выглядит приблизительно вот так:
схема строения электролитического конденсатораСлой оксида алюминия настолько тонкий, что можно изготавливать конденсаторы бешеной емкости с малыми габаритами. Вы ведь не забыли формулу емкости для плоского конденсатора?
где d – это и есть тот самый слой оксида алюминия. Чем он тоньше, тем больше емкость.
На полярных конденсаторах часто можно увидеть вот такой значок-стрелку, которая указывает на минусовый вывод конденсатора.
обозначение минусового вывода электролитического конденсатораТо есть в электрических схемах с постоянным током вы должны обязательно соблюдать правило: плюс на плюс, а минус на минус. Если перепутаете, то конденсатор может бахнуть.
Танталовые конденсаторы
Танталовые конденсаторы доступны как в мокром так и в сухом исполнении. Хотя, в сухом исполнении они намного более распространены. Здесь в качестве диэлектрика используется оксид тантала. Оксид тантала обладает более лучшими свойствами, по сравнению с оксидом алюминия. Если самый большой минус электролитических конденсаторов – это их большой ток утечки, то танталовые конденсаторы лишены такого недостатка. Минус танталовых конденсаторов в том, что они рассчитаны на более низкое напряжение, чем их собраться – электролиты. Танталовые конденсаторы также полярные, как и электролитические конденсаторы.
Выглядеть танталовые конденсаторы могут вот так
танталовые конденсаторы
ну или так
танталовые конденсаторы капли
[quads id=1]
Ионисторы
Есть также особый класс конденсаторов – ионисторы. Иногда их еще называют суперконденсаторами или золотыми конденсаторами. Нет, не потому, что там есть золото. Сам принцип работы ионистора ценее, чем золото. Для того, чтобы получить максимальную емкость мы должны намазать “сгущенку”(диэлектрик) тонким-тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно, разработчики решили уменьшить слой диэлектрика. Так как диэлектрический слой между обкладками ионистора , то есть “слой сгущенки”, составляет 5-10 нанометров, следовательно емкость ионистора достигает впечатляющих значений! Вы только представьте, какой заряд может накопить такой суперконденсатор!
Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а также могут выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!
ионистор большой ионисторВ настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктивно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-).
Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами. А исходя из закона Ома, чем меньше сопротивление проводника, тем большая сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно почти бесконечно.
Конденсатор в цепи постоянного тока
Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение 12 Вольт. Лампочку берем тоже на 12 Вольт. Теперь в разрыв цепи вставляем конденсатор.
Нет, лампочка не горит.
А вот если исключить конденсатор из цепи и подключить напрямую к лампочке, то лампа горит.
Отсюда напрашивается вывод: постоянный ток через конденсатор не течет! То есть в цепи постоянного тока идеальный конденсатор оказывает бесконечно большое сопротивление.
Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доыли секунды. Все зависит от емкости конденсатора.
Конденсатор в цепи переменного тока
Для того, чтобы узнать, как ведет себя конденсатор в цепи переменного тока, нам надо собрать простейшую схему, которая представляет из себя делитель напряжения. Смысл опыта такой: с помощью генератора частоты мы будем менять только частоту, а амплитуду оставим неизменной. По сути красная точка нам будет показывать сигнал с генератора частоты, а желтая – сигнал на резисторе. Снимая сигнал с резистора, мы можем косвенно узнать, как ведет себя конденсатор исходя из законов делителя напряжения.
С помощью осциллографа мы будем снимать сигнал с красной и желтой точек относительно земли.
Думаю, этот генератор частоты вполне пойдет.
Для начала возьмем конденсатор на 1мкФ и резистор на 100 ом.
Далее за дело берется цифровой осциллограф OWON SDS 6062. Что такое осциллограф и с чем его едят, читаем здесь. Будем использовать сразу два канала, то есть на одном экране будут высвечиваться сразу два сигнала. Здесь на экране уже видны наводки от сети 220 Вольт. Не стоит на это обращать внимание.
Красная осциллограмму снимаем с красной точки в цепи, а желтую – с желтой точки в цепи.
Зависимость сопротивления от частоты и сдвиг фаз
Поехали. Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать переменный ток с частотой в 100 Герц?
[quads id=1]
На дисплее осциллографа были выведены такие параметры, как частота сигнала и его амплитуда (эти параметры помечены белой стрелочкой).
F – это частота
Ma – амплитуда
Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.
Как вы видите на осциллограмме, с генератора выходит синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта, а на резисторе напряжение всего каких-то 136 мВ.
Как вы могли заметить, амплитуда желтого сигнала стала меньше. Это говорит нам о том, что конденсатор стал пропускать переменный ток, но его сопротивление до сих пор очень большое.
Но здесь можно заметить еще одну особенность: осциллограмма напряжения на резисторе сигнала сдвинулась влево, то есть она опережает сигнал с генератора частоты, или научным языком, появляется сдвиг фаз. Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени :-), что конечно же, невозможно.
Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае – напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:
Давайте увеличим частоту на генераторе до 500 Гц
На резисторе уже получили 560 мВ. Сдвиг фаз уменьшается. Получается, что мы чуть-чуть увеличили частоту, и сопротивление конденсатора стало меньше.
Увеличиваем частоту до 1 КГц
На резисторе у нас напряжение 1 Вольт. Напряжение не резисторе растет с увеличением частоты. Это говорит о том, что сопротивление конденсатора стало еще меньше.
Ставим частоту 5 КГц
Амплитуда 1,84 Вольта и сдвиг фаз явно становится меньше
Увеличиваем до 10 КГц
Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.
Ставим 100 КГц.
Сдвига фаз почти нет. Напряжение не резисторе почти сравнялось с напряжением генератора частоты. Это говорит о том, что конденсатор почти не оказывает сопротивление на высоких частотах.
Получился парадокс. Постоянный ток конденсатор не пропускает, а вот токи высокой частоты – без проблем!
Отсюда делаем глубокомысленные выводы:
Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2.
Если построить обрезок графика, то получится типа что-то этого:
Зависимость сопротивления от номинала конденсатора
Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.
Смотрим и анализируем значения:
Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Гц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт (в реальности еще меньше из за помех). На частоте 500 Герц – 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.
Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление становится больше.
Формула сопротивления конденсатора
С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:
где, ХС – это сопротивление конденсатора, Ом
П – постоянная и равняется приблизительно 3,14
F – частота, измеряется в Герцах
С – емкость, измеряется в Фарадах
Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.
Последовательное и параллельное соединение конденсаторов
При последовательном соединении конденсаторов
последовательное соединение конденсаторов
Их общая емкость будет вычисляться по формуле
последовательное сопротивление конденсаторов формула
а при параллельном соединении
параллельное соединение конденсаторов
их общая емкость будет вычисляться по формуле
формула параллельного соединения конденсаторов
Также в интернете нашел очень интересное видео по теме конденсаторов
Похожие статьи по теме “конденсатор”
ESR конденсатора
Как проверить конденсатор мультиметром
RC цепь
Что такое конденсатор и как они используются
Приветствую, друзья!
Мы уже рассматривали, как устроены «кирпичики», из которых собран компьютер.
Вы уже знаете, как устроены и как работают полупроводниковые диоды, полевые и биполярные транзисторы.
Вы уже знакомы с таким понятием, как SMD компоненты.
Давайте познакомимся с еще одной интереснейшей штуковиной — конденсатором.
Из всего многообразия конденсаторов мы рассмотрим лишь те, которые используются в компьютерах и периферийных устройствах.
Что такое конденсатор?
Конденсатор — это деталь с двумя выводами (двухполюсник), позволяющая накапливать энергию.
Конденсатор характеризуется такой величиной, как ёмкость.
Чем больше ёмкость конденсатора, тем больше энергии он может накопить и тем (грубо говоря) больше его габариты.
Конденсатор может не только накапливать энергию, но и отдавать ее.
Именно в таком режиме он чаще всего и работает.
Конденсатор, в отличие от транзистора, является пассивным компонентом, т.е. есть он не может генерировать или усиливать сигнал.
Как устроен конденсатор?
В простейшем случае конденсатор состоит из двух металлических пластин (обкладок) и диэлектрика (изолятора) между ними. Чем больше размер пластин и чем меньше зазор между ними, тем больше емкость конденсатора.Вообще говоря, конденсатор накапливает на обкладках заряд (множество элементарных частиц, каждая из которых обладает элементарным зарядом). Чем больший заряд накоплен, тем большая запасена энергия. Ёмкость конденсатора зависит также и от вида диэлектрика.
Две пластины, разделенные тонким воздушным слоем (воздух — тоже диэлектрик), обладают очень небольшой емкостью, и в таком виде конденсаторы не используются.
С помощью специальных материалов и технологических ухищрений научились достаточно большую ёмкость втискивать в очень небольшой объём.
Самый характерный пример — электролитические конденсаторы.
В них две металлические обкладки в виде длинных полос (чаще всего из алюминиевой фольги) разделены слоем бумаги, пропитанной электролитом.
Электролит вызывает образование тонкой пленки оксида (окисла), которая является хорошим диэлектриком.
Поэтому электролитические конденсаторы называют ещё оксидными. Полосы сворачивают и помещают в цилиндрический алюминиевый корпус.
Раньше выводы конденсаторов делали из меди – как из материала с высокой электропроводностью. Теперь же их нередко делают из более дешевых сплавов на основе железа. В этом можно убедиться, если поднести к ним магнит. Фирмачи научились экономить!
В керамических конденсаторах диэлектриком служит пластинка из керамики, а обкладками – напыленные на керамику пленки металлических сплавов.
В каких единицах измеряется емкость конденсатора?
Основная единица для измерения ёмкости – Фарад (Ф, старое название – Фарада).
Но это очень большая величина, поэтому на практике используются её производные — пикофарад (пФ, пикофарада), нанофарад (нФ, нанофарада), микрофарад (мкФ, микрофарада).
Один микрофарад = 1 000 нанофарад = 1 000 000 пикофарад.
В компьютерных блоках питания и в материнских платах используются электролитические конденсаторы ёмкостью несколько сотен или тысяч микрофарад.
Там же применяется малогабаритные керамические конденсаторы ёмкостью несколько сотен или тысяч пикофарад.
Керамические конденсаторы используются чаще всего в виде SMD компонентов.
Как обозначаются конденсаторы в электрических схемах?
Конденсаторы в электрических схемах обозначается в виде двух вертикальных черточек, разделенных небольшим пространством. Графическое изображение напоминает те самые две пластины, разделенные воздушным диэлектриком.
У электролитических конденсаторов возле одной из черточек (обкладок) помещается знак «+».
Это потому, что электролитические конденсаторы обычно имеют полярность, которую надо соблюдать при монтаже.
Отметим, что в некоторых случаях применяются электролитические неполярные конденсаторы.
Рядом наносится значение ёмкости конденсатора.
А если конденсатор электролитический — то и величина его рабочего напряжения.
Записи вида 1000 p (1000 pF) и 3,9 n (3,9 nF) означают соответственно 1000 пикофарад и 3,9 нанофарад (или 3900 пикофарад).
Запись вида 1000uFx16V означает емкость 1000 микрофарад и рабочее напряжение 16 Вольт.
Напротив отрицательного электрода на корпусе конденсатора наносится соответствующая маркировка (знак «-»).
Где и как используются конденсаторы?
Перед тем как начать рассказывать об области применения конденсаторов, вспомним, что конденсатор это — две пластины, разделенные диэлектриком. Поэтому ток через конденсатор (в первом приближении) идти не может. Однако в цепи с конденсатором могут происходить процессы заряд и разряда. И во время этих процессов в цепи будут протекать токи заряда или разряда.
Таким образом, если переменное напряжение будет приложено к цепи с конденсатором, в ней будет протекать переменный ток. Поэтому конденсатор можно охарактеризовать такой величиной как емкостное сопротивление (обозначается в технической литературе как Хс).
Емкостное сопротивление зависит от ёмкости конденсатора и частоты приложенного напряжения. Чем ёмкость и частота больше, тем меньше емкостное сопротивление. На этих эффектах основано применение конденсаторов в схемах фильтрации источников питания.
В компьютерных блоках питания для получения постоянных напряжений +3,3, +5, и +12 В используется двухполупериодная схема выпрямление с двумя диодами и фильтрующим конденсатором. Без конденсатора на нагрузке будет пульсирующее напряжение одной полярности.
Источник постоянного напряжения можно представить в виде эквивалентной схемы из генератора и двух сопротивлений, где R1 — это внутреннее сопротивление выпрямителя, а R2 — емкостное сопротивление конденсатора.
Генератор – это сумма постоянного и переменного напряжений (пульсирующее напряжение содержит в себе постоянную и переменную составляющую).
Таким образом, сигнал с генератора подается на частотно-зависимый делитель напряжения. Выходной сигнал снимается с нижнего плеча (конденсатора). Для постоянного напряжения сопротивление конденсатора очень велико, гораздо больше сопротивления выпрямителя. Поэтому уменьшения постоянного напряжения не происходит.
Для переменного напряжения сопротивления конденсатора очень мало, гораздо меньше сопротивления выпрямителя, поэтому происходит сильное ослабление переменной составляющей.
В реальной схеме ситуация несколько сложнее, так как к нижнему плечу делителя подключена нагрузка, обладающая сопротивлением. Поэтому полностью избавиться от пульсаций нельзя, можно только свести их к какому-то небольшому значению.
Вообще, такая комбинация активного сопротивления и конденсатора называется фильтром нижних частот, который пропускает постоянную составляющую и какой-то диапазон низких частот.
Чем выше частота входного переменного напряжения, тем сильнее оно ослабляется.
Так как необходимо сильное подавление пульсаций переменного напряжения, то используется электролитические конденсаторы большой емкости.
Назначение керамических SMD конденсаторов на материнской плате — подавлять высокочастотные помехи, возникающие при переключении транзисторов в микросхемах. Таким образом, электролитические конденсаторы фильтруют относительно низкочастотные помехи и пульсации, а керамические — более высокочастотные.
Приведем еще один пример разделения переменной и постоянной составляющей. Пусть в схеме на рисунке сигнал в точке А будет иметь постоянную составляющую 5 В и переменную амплитудой 2 В.
После конденсатора, в точке В будет уже только переменная составляющая той же амплитудой 2 В (если емкостное сопротивление конденсатора мало для такой частоты). Интересно, не правда ли?
По существу, это тоже частотно-зависимый делитель напряжения, где в виде нижнего плеча выступает сопротивление нагрузки. Такую комбинацию называют фильтром верхних частот, который не пропускает постоянную составляющие и низкие частоты, так как в емкостное сопротивление будет для них большим.
Заканчивая, отметим маленькую деталь: так как максимальное напряжение на конденсаторе будет равно сумме постоянной и переменной составляющей, его рабочее напряжение должно быть не менее этой величины.
Продолжение следует.
Конденсатор (электронный элемент) — это… Что такое Конденсатор (электронный элемент)?
Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик
Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические.
Различные конденсаторы для объёмного монтажа
Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.
История
В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».
Свойства конденсатора
Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.
В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом
,
где — мнимая единица, — частота[1] протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).
При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .
Резонансная частота конденсатора равна
При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.
Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:
где — напряжение (разность потенциалов), до которого заряжен конденсатор.
Обозначение конденсаторов на схемах
В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[2] либо международному стандарту IEEE 315-1975:
Обозначение по ГОСТ 2.728-74 | Описание |
---|---|
Конденсатор постоянной ёмкости | |
Поляризованный конденсатор | |
Подстроечный конденсатор переменной ёмкости |
На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.
Характеристики конденсаторов
Основные параметры
Ёмкость
Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.
Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).
Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.
или
Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.
При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна
или
Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.
Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.
Удельная ёмкость
Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
Номинальное напряжение
Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.
Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.
Полярность
Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.
Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.
Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.
Паразитные параметры
Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:
Электрическое сопротивление изоляции конденсатора —
rСопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.
Эквивалентное последовательное сопротивление —
RЭквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.
В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).
Эквивалентная последовательная индуктивность —
LЭквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.
Тангенс угла потерь
Тангенс угла потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости.
Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол , где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.
Температурный коэффициент ёмкости (ТКЕ)
ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:
- ,
где ΔT — увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.
Диэлектрическое поглощение
Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.
Классификация конденсаторов
Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.
По виду диэлектрика различают:
- Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
- Конденсаторы с газообразным диэлектриком.
- Конденсаторы с жидким диэлектриком.
- Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
- Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
- Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.
Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
- Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
- Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
- Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.
Применение конденсаторов
Конденсаторы находят применение практически во всех областях электротехники.
- Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
- Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
- ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
- ИП влажности древесины
- В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.
Внешние ссылки
Смотри также
Ссылки
- ↑ Частота в радианах в секунду.
- ↑ ГОСТ 2.728-74 (2002)
Электрический конденсатор
Конденсатор — это элемент электрической цепи, способный, при небольшом размере, накапливать электрические заряды достаточно большой величины.-12 Ф/м..
• Полярность конденсатора;
• Номинальное напряжение;
• Удельная емкость и другие.
Величина емкости конденсатора зависит от
• Площадь пластин. Это понятно из формулы: емкость прямо пропорциональна заряду. Естественно, увеличив площадь обкладок, получаем большее количество заряда.
• Расстояния между обкладками. Чем они ближе расположены, тем больше напряженность получаемого электрического поля.
Устройство конденсатора
Наиболее распространенные конденсаторы — это плоские и цилиндрические. Плоские состоят из пластин, удаленных друг от
друга на небольшое расстояние. Цилиндрические, собираются при помощи цилиндров равной длины и разного диаметра. Все конденсаторы, в принципе, устроены одинаково. Разница, в основном, в том, какой материал используется в качестве диэлектрика. По типу диэлектрической среды и классифицируют конденсаторы, которые бывают жидкими, вакуумными, твердыми, воздушными.
Как заряжается и разряжается конденсатор?
При подключении к источнику постоянного тока, обкладки конденсатора заряжаются, одна приобретает положительный потенциал, а другая отрицательный. Между обкладками противоположные по знаку, но равные по значению, электрические заряды создают электрическое поле. Когда напряжения станут одинаковыми и на обкладках, и на источнике подаваемого тока, движение электронов прекратится и зарядка конденсатора закончится. Определенный промежуток времени конденсатор сохраняет заряды и выполняет функции автономного источника электроэнергии. В таком состоянии он может находиться достаточно долгое время. Если вместо источника, включить в цепь резистор, то конденсатор разрядится на него.
Процессы, происходящие в конденсаторе
При подключении прибора к переменному или постоянному току в нем будут происходить разные процессы. Постоянный ток не пойдет по цепи с конденсатором. Так как между его обкладками находится диэлектрик, цепь фактически разомкнута.
Переменный ток, за счет того что периодически меняет направление, может проходить через конденсатор. При этом происходит периодический разряд и заряд конденсатора. На протяжении первой четверти периода заряд идет до максимума, в нем запасается электроэнергия, в следующую четверть конденсатор разряжается и электрическая энергия возвращается обратно в сеть. В цепи переменного тока, конденсатор обладает кроме активного сопротивления, еще и реактивной составляющей. Кроме того, в конденсаторе, ток опережает напряжение на 90 градусов, это важно учитывать, при построении векторных диаграмм.
Применение
Конденсаторы используются в радиотехнике, электронике, автоматике. Конденсатор –незаменимый элемент, который применяется во многих отраслях электротехники, на предприятиях, в научных разработках. Как пример, при необходимости, выступает в качестве разделителя токов: переменного и постоянного, применяется в конденсаторных установках, если необходимо компенсировать реактивную мощность, применяется как накопитель электричества в электросетях.
Советуем прочесть — Последовательное и параллельное соединение конденсаторов
Все о конденсаторах
Конденсатор — двухполюсник с постоянным или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.
Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.
При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.
Свою родословную конденсаторы ведут от лейденской банки, которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.
Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой – станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.
Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.
В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.
Как устроен конденсатор
Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.
Рисунок 1. Устройство плоского конденсатора
Здесь S – площадь пластин в квадратных метрах, d – расстояние между пластинами в метрах, C — емкость в фарадах, ε – диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.
Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или электрического кабеля. Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.
На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.
Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.
Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.
Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод–лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.
Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC – цепочка, показанная на рисунке 2.
Рисунок 2.
На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.
Исторический факт
Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки – тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.
Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.
За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.
Немножко о диэлектриках
Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.
Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.
Электролитический конденсатор
Наибольшей удельной емкостью (соотношение емкость / объем) обладают электролитические конденсаторы. Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.
Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.
На рисунке 3 показан один из таких конденсаторов.
Рисунок 3. Электролитический конденсатор
Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.
В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.
Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.
Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.
Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.
Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.
Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.
Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.
Конденсатор может накапливать энергию
Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.
Рисунок 4. Схема с конденсатором
Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда – разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.
Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.
Итак, схема собрана. Как она работает?
В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.
Рисунок 5. Процесс заряда конденсатора
На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.
Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?
Постоянная времени «тау» τ = R*C
В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.
Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.
Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.
Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.
Рисунок 6. График разряда конденсатора
Конденсатор не пропускает постоянный ток
Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.
Рисунок 7. Схема с конденсатором в цепи постоянного тока
Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.
Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.
Конденсатор в фильтрах питания
Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.
Рисунок 8. Схемы выпрямителей
Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.
Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле
C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.
Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица
C = 1000000 * Po / U*f*dU,
а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.
Суперконденсатор – ионистор
В последнее время появился новый класс электролитических конденсаторов, так называемый ионистор. По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.
Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе – изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.
Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.
Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.
Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.
Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока.
Ранее ЭлектроВести писали, что в новом исследовании ученые создали микропленочный ультратонкий конденсатор для накопления энергии, который может приклеиваться к поверхности как стикер. Батарея прикрепляется с помощью ультракоротких лазерных импульсов, которые частично расплавляют ее, позволяя удерживаться почти на любой поверхности.
По материалам: electrik.info.
Для чего нужен конденсатор и как он работает
Конденсатор (от латинского слова «condensare» — «уплотнять», «сгущать») — это двухполюсное устройство с определённой величиной или переменным значением ёмкости и малой проводимостью, которое способно сосредотачивать, накапливать и отдавать другим элементам электрической цепи заряд электрического тока.
Конденсатор или как его еще называют сокращенно просто «кондер» — это элемент электрической цепи, состоящий в самом простом варианте из двух электродов в форме пластин (или обкладок), которые накапливают противоположные разряды и поэтому они разделены между собой диэлектриком малой толщины по сравнению с размерами самих электропроводящих обкладок.На практике же, все выпускаемые конденсаторы представляют собой многослойные рулоны лент электродов в форме цилиндра или параллелепипеда, разделенных между собой слоями диэлектрика.
Принцип работы конденсатора
По принципу работы он схож с батарейкой только на первый взгляд, но все же он сильно отличается от него по принципу и скорости заряда-разряда, максимальной емкости.
Заряд конденсатора. В момент подключения к источнику питания оказывается больше всего места на электродах, поэтому и ток будет зарядки максимальным, но по мере накопления заряда, ток будет уменьшаться и пропадет полностью после полного заряда. При зарядке на одной пластине будут собираться отрицательно заряженные частицы- электроны, а на другой – ионы, положительно заряженные частицы. Диэлектрик выступает препятствием для их перескакивания на противоположную сторону конденсатора.При зарядке растет и напряжение с нуля перед началом зарядки и достигает в самом конце максимума, равного напряжению источника питания.
Разрядка конденсатора. Если после окончания зарядки отключить источник питания и подключить нагрузку R, то он сам превратится в источник тока. При подключении нагрузки образовывается цепь между пластинами. Отрицательно заряженные электроны двинуться через нагрузку к положительно заряженных ионам на другой пластине по закону притяжения между разноименными зарядами.В момент подключения нагрузки, начальный ток по закону Ома будет равняться величине напряжения на электродах (равного в конце зарядке конденсатора напряжению источника питания), разделенному на сопротивление нагрузки.
После того как пошел ток, конденсатор начинает постепенно терять заряд или разряжаться. Одновременно с этим начнет снижаться величина напряжения, соответственно по закону Ома и ток. В то же время чем выше уровень разряда обкладок, тем ниже будет скорость падения напряжения и силы тока. Процесс завершится после того, как напряжение на электродах конденсатора станет равно нулю.
Время зарядки конденсатора на прямую зависит от величины его емкости. Чем большей она величины, тем дольше будет проходить по цепи большее количество заряда.
Время разрядки зависит от величины подключенной нагрузки. Чем больше подключено сопротивление R, тем меньше будет ток разрядки.
Для чего нужен конденсатор
Конденсаторы широко используются во всех электронных и радиотехнических схемах. Они вместе с транзисторами и резисторами являются основой радиотехники.
Применение конденсаторов в электротехнических устройствах и бытовой технике:
- Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.
- Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п.
- Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью. Но к сожалению, конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.
- Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт.
- В промышленности конденсаторные установки применяются для компенсации реактивной энергии.
В следующей статье мы рассмотрим подробно основные характеристики и типы конденсаторов.
Конденсатор ЭТО-С-6,ЭТО-С-15, ЭТО-С-25 | Радиодетали в приборах
Конденсатор ЭТО-С-6,ЭТО-С-15, ЭТО-С-25
Справочник содержания драгоценных металлов в радиодеталях основаный на справочных данных различных организаций занимающихся переработкой лома радиодеталей, паспортах устройств, формулярах и других открытых источников. Стоит отметить, что реальное содержание может отличатся на 20-30% в меньшую сторону.
В конденсаторах может содержатся серебро, палладий, платина, а также тантал. Наиболее ценные конденсаторы: керамические КМ5, КМ6, К10-17, К10-47 и др; ЭТО, К52 имеют серебряный корпус и тантал внутри; оксидные К53 содержат тантал.
Содержание драгоценных металлов в конденсаторе:
ЭТО-С-6,ЭТО-С-15, ЭТО-С-25Золото: 0
Серебро: 0.47
Платина: 0
МПГ: 0.01
Основные параметры конденсаторов
Конденсатор — двухполюсник с постоянным или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом.
Первое – ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье – допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Основные типы конденсаторов выпускаемых в СССР (импортная маркировка)
К10 -Керамический, низковольтный (Upa6<1600B) К50 -Электролитический, фольговый, Алюминиевый К15 -Керамический, высоковольтный (Upa6>1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К20 -Кварцевый
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб<2 kB) с фольговыми обкладками
К72 -Пленочный фторопластовый (TFT)
К73 -Пленочный полиэтилентерефталатный (KT ,TFM, TFF или FKT)
К41 -Бумажный высоковольтный (ираб>2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)
Поделиться ссылкой:
Понравилось это:
Нравится Загрузка…
ПохожееКонденсаторы и диэлектрики | Физика
Цели обучения
К концу этого раздела вы сможете:
- Опишите действие конденсатора и определите емкость.
- Объясните, что такое конденсаторы с параллельными пластинами и их емкости.
- Обсудите процесс увеличения емкости диэлектрика.
- Определите емкость при заданном заряде и напряжении.
Конденсатор — это устройство, используемое для хранения электрического заряда.Конденсаторы имеют разные применения: от фильтрации статического электричества при радиоприеме до накопления энергии в дефибрилляторах сердца. Обычно в промышленных конденсаторах две токопроводящие части расположены близко друг к другу, но не соприкасаются, как показано на рисунке 1. (В большинстве случаев между двумя пластинами используется изолятор для обеспечения разделения — см. Обсуждение диэлектриков ниже). Клеммы батареи подключены к первоначально незаряженному конденсатору, равные количества положительного и отрицательного заряда, + Q и — Q , разделены на его две пластины.Конденсатор в целом остается нейтральным, но в этом случае мы называем его хранящим заряд Q .
Рис. 1. Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них разделены заряды + Q и — Q на своих двух половинах. (а) Конденсатор с параллельными пластинами. (b) Скрученный конденсатор с изоляционным материалом между двумя проводящими листами.
Конденсатор
Конденсатор — это устройство, используемое для хранения электрического заряда.
Количество заряда Q , которое может хранить конденсатор , зависит от двух основных факторов — приложенного напряжения и физических характеристик конденсатора, таких как его размер.
Количество заряда
Q конденсатор может хранитьКоличество заряда Q , которое может хранить конденсатор , зависит от двух основных факторов — приложенного напряжения и физических характеристик конденсатора, таких как его размер.
Рис. 2. Линии электрического поля в этом конденсаторе с параллельными пластинами, как всегда, начинаются с положительных зарядов и заканчиваются отрицательными.Поскольку напряженность электрического поля пропорциональна плотности силовых линий, она также пропорциональна количеству заряда на конденсаторе.
Система, состоящая из двух идентичных параллельных проводящих пластин, разделенных расстоянием, как на рисунке 2, называется конденсатором с параллельными пластинами . Легко увидеть взаимосвязь между напряжением и накопленным зарядом для конденсатора с параллельными пластинами, как показано на рисунке 2. Каждая линия электрического поля начинается с отдельного положительного заряда и заканчивается отрицательным, так что поля будет больше. линии, если есть больше заряда.(Рисование одной силовой линии для каждого заряда — это только удобство. Мы можем нарисовать много силовых линий для каждого заряда, но их общее количество пропорционально количеству зарядов.) Таким образом, напряженность электрического поля прямо пропорциональна Ом. .
Поле пропорционально начислению:
E ∝ Q ,
, где символ ∝ означает «пропорционально». Из обсуждения в разделе «Электрический потенциал в однородном электрическом поле» мы знаем, что напряжение на параллельных пластинах равно
.V = Ed .
Таким образом, V ∝ E . Отсюда следует, что V ∝ Q , и, наоборот,
Q ∝ V .
В целом это верно: чем больше напряжение, приложенное к любому конденсатору, тем больше в нем хранится заряд.
Различные конденсаторы будут накапливать разное количество заряда для одного и того же приложенного напряжения, в зависимости от их физических характеристик. Мы определяем их емкость C так, чтобы заряд Q , хранящийся в конденсаторе, был пропорционален C .Заряд, накопленный в конденсаторе, равен
.Q = CV .
Это уравнение выражает два основных фактора, влияющих на количество накопленного заряда. Этими факторами являются физические характеристики конденсатора C и напряжение В . Изменив уравнение, мы видим, что емкость C — это количество заряда, накопленного на вольт, или
.[латекс] C = \ frac {Q} {V} \\ [/ latex].
Емкость
Емкость C — это количество хранимого заряда на вольт, или
[латекс] C = \ frac {Q} {V} \\ [/ latex]
Единица измерения емкости — фарад (Ф), названная в честь Майкла Фарадея (1791–1867), английского ученого, внесшего вклад в области электромагнетизма и электрохимии. Поскольку емкость — это заряд на единицу напряжения, мы видим, что фарад — это кулон на вольт, или
.[латекс] 1 \ text {F} = \ frac {1 \ text {C}} {1 \ text {V}} \\ [/ latex].
Конденсатор емкостью 1 фарад может хранить 1 кулон (очень большое количество заряда) при подаче всего 1 вольт. Таким образом, одна фарада — это очень большая емкость. Типичные конденсаторы варьируются от долей пикофарада (1 пФ = 10 −12 Ф) до миллифарадов (1 мФ = 10 −3 Ф).
На рисунке 3 показаны некоторые распространенные конденсаторы. Конденсаторы в основном изготавливаются из керамики, стекла или пластика, в зависимости от назначения и размера. Как обсуждается ниже, в их конструкции обычно используются изоляционные материалы, называемые диэлектриками.
Рисунок 3. Некоторые типичные конденсаторы. Размер и значение емкости не обязательно связаны. (Источник: Windell Oskay)
Конденсатор с параллельной пластиной
Рис. 4. Конденсатор с параллельными пластинами, разделенные пластинами на расстояние d. Каждая пластина имеет площадь A.
Конденсатор с параллельными пластинами, показанный на рисунке 4, имеет две идентичные проводящие пластины, каждая из которых имеет площадь поверхности A, , разделенных расстоянием d (без материала между пластинами).Когда на конденсатор подается напряжение В, , он сохраняет заряд Q , как показано. Мы можем увидеть, как его емкость зависит от A и d , рассмотрев характеристики кулоновской силы. Мы знаем, что одинаковые заряды отталкиваются, в отличие от зарядов притягиваются, и сила между зарядами уменьшается с расстоянием. Поэтому кажется вполне разумным, что чем больше пластины, тем больше заряда они могут хранить, потому что заряды могут расходиться больше. Таким образом, C должен быть больше для большего A .Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов. Значит, C должно быть больше для меньшего d .
Можно показать, что для конденсатора с параллельными пластинами есть только два фактора ( A, и d ), которые влияют на его емкость C . Емкость конденсатора с параллельными пластинами в форме уравнения равна
.[латекс] C = \ epsilon_ {o} \ frac {A} {d} \\ [/ latex].
Емкость параллельного пластинчатого конденсатора
[латекс] C = \ epsilon_ {o} \ frac {A} {d} \\ [/ latex]
A — это площадь одной пластины в квадратных метрах, а d — это расстояние между пластинами в метрах.Константа ε 0 — диэлектрическая проницаемость свободного пространства; его числовое значение в единицах СИ составляет ε 0 = 8,85 × 10 −12 Ф / м. Единицы измерения Ф / м эквивалентны C 2 / Н · м 2 . Небольшое числовое значение ε 0 связано с большим размером фарада. Конденсатор с параллельными пластинами должен иметь большую площадь, чтобы его емкость приближалась к фарадам. (Обратите внимание, что приведенное выше уравнение действительно, когда параллельные пластины разделены воздухом или свободным пространством.Когда между пластинами помещается другой материал, уравнение изменяется, как обсуждается ниже.)
Пример 1. Емкость и заряд в параллельном пластинчатом конденсаторе
- Какова емкость конденсатора с параллельными пластинами, каждая из которых имеет площадь 1,00 м 2 , разделенных расстоянием 1,00 мм?
- Какой заряд хранится в этом конденсаторе, если к нему приложено напряжение 3,00 × 10 3 В?
Стратегия
Определение емкости C представляет собой прямое приложение уравнения [латекс] C = \ epsilon_ {o} \ frac {A} {d} \\ [/ latex].{-9} \ text {F} = 8.85 \ text {nF} \ end {array} \\ [/ latex]
Обсуждение части 1
Это небольшое значение емкости указывает на то, насколько сложно сделать устройство с большой емкостью. Помогают специальные методы, например, использование тонких пленок очень большой площади, расположенных близко друг к другу.
Решение для Части 2
Заряд любого конденсатора определяется уравнением Q = CV . Ввод известных значений в это уравнение дает
[латекс] \ begin {array} {lll} Q & = & CV = \ left (8.{3} \ text {V} \ right) \\\ text {} & = & 26.6 \ mu \ text {C} \ end {array} \\ [/ latex]
Обсуждение части 2
Этот заряд лишь немного больше, чем у обычного статического электричества. Поскольку воздух разрывается при примерно 3,00 × 10 6 В / м, на этом конденсаторе не может быть накоплено больше заряда за счет увеличения напряжения.
Другой интересный биологический пример, связанный с электрическим потенциалом, обнаружен в плазматической мембране клетки. Мембрана отделяет клетку от окружающей среды, а также позволяет ионам выборочно входить и выходить из клетки.Существует разность потенциалов на мембране около –70 мВ. Это связано с преобладанием отрицательно заряженных ионов в клетке и преобладанием положительно заряженных ионов натрия (Na + ) снаружи. Все меняется, когда нервная клетка стимулируется. Ионы Na + проходят через мембрану в клетку, создавая положительный мембранный потенциал — нервный сигнал. Клеточная мембрана имеет толщину от 7 до 10 нм. {6} \ text {V / m} \\ [/ latex]
Этого электрического поля достаточно, чтобы вызвать пробой в воздухе.
Диэлектрик
Предыдущий пример подчеркивает сложность сохранения большого количества заряда в конденсаторах. Если d сделать меньше, чтобы обеспечить большую емкость, то максимальное напряжение должно быть уменьшено пропорционально, чтобы избежать пробоя (поскольку [латекс] E = \ frac {V} {d} \\ [/ latex]). Важным решением этой проблемы является размещение изоляционного материала, называемого диэлектриком , между пластинами конденсатора и обеспечение минимально возможного размера d .Мало того, что меньший d увеличивает емкость, многие изоляторы могут выдерживать более сильные электрические поля, чем воздух, перед тем, как сломаться.
Есть еще одно преимущество использования диэлектрика в конденсаторе. В зависимости от используемого материала емкость больше, чем заданная уравнением [латекс] C = \ kappa \ epsilon_ {0} \ frac {A} {d} \\ [/ latex], на коэффициент κ , называемый диэлектрическая проницаемость . Конденсатор с параллельными пластинами с диэлектриком между пластинами имеет емкость, определяемую как [латекс] C = \ kappa \ epsilon_ {0} \ frac {A} {d} \\ [/ latex] (конденсатор с параллельными пластинами с диэлектриком).
Значения диэлектрической проницаемости κ для различных материалов приведены в таблице 1. Обратите внимание, что κ для вакуума равно 1, поэтому приведенное выше уравнение справедливо и в этом случае. Если использовать диэлектрик, например, поместив тефлон между пластинами конденсатора в примере 1, то емкость будет больше в κ раз, что для тефлона составляет 2,1.
Эксперимент на вынос: создание конденсатора
Насколько большой конденсатор можно сделать из обертки от жевательной резинки? Пластины будут из алюминиевой фольги, а разделитель (диэлектрик) между ними — из бумаги.
Таблица 1. Диэлектрическая проницаемость и диэлектрическая прочность для различных материалов при 20ºC | ||
---|---|---|
Материал | Диэлектрическая проницаемость κ | Электрическая прочность (В / м) |
Вакуум | 1,00000 | – |
Воздух | 1.00059 | 3 × 10 6 |
Бакелит | 4,9 | 24 × 10 6 |
Плавленый кварц | 3.78 | 8 × 10 6 |
Неопреновый каучук | 6,7 | 12 × 10 6 |
Нейлон | 3,4 | 14 × 10 6 |
Бумага | 3,7 | 16 × 10 6 |
Полистирол | 2,56 | 24 × 10 6 |
Стекло Pyrex | 5,6 | 14 × 10 6 |
Кремниевое масло | 2.5 | 15 × 10 6 |
титанат стронция | 233 | 8 × 10 6 |
Тефлон | 2,1 | 60 × 10 6 |
Вода | 80 | – |
Обратите внимание, что диэлектрическая проницаемость воздуха очень близка к 1, так что конденсаторы, заполненные воздухом, действуют так же, как конденсаторы с вакуумом между пластинами за исключением , что воздух может стать проводящим, если напряженность электрического поля становится равной. слишком большой.(Напомним, что [латекс] E = \ frac {V} {d} \\ [/ latex] для конденсатора с параллельными пластинами.) В таблице 1 также показаны максимальные напряженности электрического поля в В / м, которые называются диэлектрической прочностью , для нескольких материалов. Это поля, над которыми материал начинает разрушаться и проводить. Диэлектрическая прочность накладывает ограничение на напряжение, которое может быть приложено для данного расстояния между пластинами. 6 \ text {V / m} \ right) \ left ( 1.{-3} \ text {m} \ right) \\\ text {} & = & 3000 \ text {V} \ end {array} \\ [/ latex]
Однако предел для расстояния 1,00 мм, заполненного тефлоном, составляет 60 000 В, поскольку диэлектрическая прочность тефлона составляет 60 × 10 6 В / м. Таким образом, тот же конденсатор, заполненный тефлоном, имеет большую емкость и может подвергаться гораздо большему напряжению. Используя емкость, которую мы рассчитали в приведенном выше примере для конденсатора с параллельными пластинами, заполненного воздухом, мы обнаружили, что конденсатор с тефлоновым заполнением может хранить максимальный заряд
[латекс] \ begin {array} {lll} Q & = & CV \\\ text {} & = & \ kappa {C} _ {\ text {air}} V \\\ text {} & = & (2.4 \ text {V}) \\\ text {} & = & 1.1 \ text {mC} \ end {array} \\ [/ latex]
Это в 42 раза больше заряда того же конденсатора, заполненного воздухом.
Диэлектрическая прочность
Максимальная напряженность электрического поля, при превышении которой изолирующий материал начинает разрушаться и становится проводником, называется его диэлектрической прочностью.
Микроскопически, как диэлектрик увеличивает емкость? За это отвечает поляризация изолятора. Чем легче он поляризуется, тем больше его диэлектрическая проницаемость κ .Вода, например, представляет собой полярную молекулу и , потому что один конец молекулы имеет небольшой положительный заряд, а другой конец имеет небольшой отрицательный заряд. Полярность воды обуславливает ее относительно большую диэлектрическую проницаемость, равную 80. Эффект поляризации лучше всего объясняется характеристиками кулоновской силы. На рис. 5 схематично показано разделение зарядов в молекулах диэлектрического материала, помещенных между заряженными пластинами конденсатора. Кулоновская сила между ближайшими концами молекул и зарядом на пластинах притягивает и очень сильна, поскольку они расположены очень близко друг к другу.Это притягивает больше заряда к пластинам, чем если бы пространство было пустым, а противоположные заряды находились на расстоянии d друг от друга.
Рис. 5. (a) Молекулы изоляционного материала между пластинами конденсатора поляризованы заряженными пластинами. Это создает слой противоположного заряда на поверхности диэлектрика, который притягивает больше заряда к пластине, увеличивая ее емкость. (б) Диэлектрик снижает напряженность электрического поля внутри конденсатора, что приводит к уменьшению напряжения между пластинами при одинаковом заряде.Конденсатор сохраняет тот же заряд при меньшем напряжении, что означает, что он имеет большую емкость из-за диэлектрика.
Другой способ понять, как диэлектрик увеличивает емкость, — это рассмотреть его влияние на электрическое поле внутри конденсатора. На рисунке 5 (b) показаны силовые линии электрического поля с установленным диэлектриком. Поскольку силовые линии заканчиваются на зарядах в диэлектрике, их меньше, идущих от одной стороны конденсатора к другой. Таким образом, напряженность электрического поля меньше, чем если бы между пластинами был вакуум, даже если бы на пластинах был одинаковый заряд.Напряжение между пластинами составляет В, = Ед, , поэтому оно тоже уменьшается за счет диэлектрика. Таким образом есть меньшее напряжение В, для того же заряда Q ; поскольку [латекс] C = \ frac {Q} {V} \\ [/ latex], емкость C больше.
Диэлектрическая постоянная обычно определяется как [латекс] \ kappa = \ frac {E_0} {E} \\ [/ latex], или отношение электрического поля в вакууме к электрическому полю в диэлектрическом материале, и в конечном итоге связанные с поляризуемостью материала.
Великие и малые вещи: субмикроскопическое происхождение поляризации
Поляризация — это разделение зарядов внутри атома или молекулы. Как уже отмечалось, планетарная модель атома описывает его как имеющее положительное ядро, вращающееся вокруг отрицательных электронов, аналогично планетам, вращающимся вокруг Солнца. Хотя эта модель не совсем точна, она очень полезна для объяснения широкого круга явлений и будет уточнена в других местах, например, в атомной физике. Субмикроскопическое происхождение поляризации можно смоделировать, как показано на рисунке 6.
Рис. 6. Художественное представление о поляризованном атоме. Орбиты электронов вокруг ядра слегка смещены внешними зарядами (показаны в преувеличении). Получающееся разделение зарядов внутри атома означает, что он поляризован. Обратите внимание, что непохожий заряд теперь ближе к внешним зарядам, вызывая поляризацию.
В атомной физике мы обнаружим, что орбиты электронов более правильно рассматривать как электронные облака с плотностью облака, связанной с вероятностью обнаружения электрона в этом месте (в отличие от определенных положений и путей движения планет на их орбитах). вокруг Солнца).Это облако сдвигается кулоновской силой, так что атом в среднем имеет разделенный заряд. Хотя атом остается нейтральным, теперь он может быть источником кулоновской силы, поскольку заряд, поднесенный к атому, будет ближе к одному типу заряда, чем к другому.
Некоторым молекулам, например молекулам воды, присуще разделение зарядов, поэтому они называются полярными молекулами. На рисунке 7 показано разделение зарядов в молекуле воды, которая имеет два атома водорода и один атом кислорода (H 2 O).Молекула воды несимметрична — атомы водорода отталкиваются в одну сторону, придавая молекуле форму бумеранга. Электроны в молекуле воды более сконцентрированы вокруг более заряженного ядра кислорода, чем вокруг ядер водорода. Это делает кислородный конец молекулы слегка отрицательным, а водородный конец слегка положительным. Внутреннее разделение зарядов в полярных молекулах облегчает их выравнивание с внешними полями и зарядами. Таким образом, полярные молекулы обладают более сильными поляризационными эффектами и более высокими диэлектрическими постоянными.Те, кто изучает химию, обнаружат, что полярная природа воды имеет множество эффектов. Например, молекулы воды собирают ионы гораздо эффективнее, потому что у них есть электрическое поле и разделение зарядов для притяжения зарядов обоих знаков. Кроме того, как было показано в предыдущей главе, полярная вода обеспечивает защиту или экранирование электрических полей в сильно заряженных молекулах, представляющих интерес в биологических системах.
Рис. 7. Художественная концепция молекулы воды. Существует внутреннее разделение зарядов, поэтому вода — полярная молекула.Электроны в молекуле притягиваются к ядру кислорода и оставляют избыток положительного заряда около двух ядер водорода. (Обратите внимание, что схема справа является приблизительной иллюстрацией распределения электронов в молекуле воды. На ней не показано фактическое количество протонов и электронов, участвующих в структуре.)
Исследования PhET: лаборатория конденсаторов
Узнайте, как работает конденсатор! Измените размер пластин и добавьте диэлектрик, чтобы увидеть влияние на емкость.Измените напряжение и посмотрите, как на пластинах накапливаются заряды. Наблюдайте за электрическим полем в конденсаторе. Измерьте напряжение и электрическое поле.
Щелкните, чтобы загрузить симуляцию. Запускать на Java.
Сводка раздела
- Конденсатор — это устройство для накопления заряда.
- Количество заряда Q , которое может хранить конденсатор, зависит от двух основных факторов — приложенного напряжения и физических характеристик конденсатора, таких как его размер.
- Емкость C, — это количество заряда, накопленного на вольт, или [латекс] C = \ frac {Q} {V} \\ [/ latex].
- Емкость конденсатора с параллельными пластинами составляет [латекс] C = {\ epsilon} _ {0} \ frac {A} {d} \\ [/ latex], когда пластины разделены воздухом или свободным пространством. [latex] {\ epsilon} _ {\ text {0}} [/ latex] называется диэлектрической проницаемостью свободного пространства.
- Конденсатор с параллельными пластинами с диэлектриком между пластинами имеет емкость, определяемую выражением [латекс] C = \ kappa \ epsilon_ {0} \ frac {A} {d} \\ [/ latex], где κ — диэлектрик. постоянная материала.
- Максимальная напряженность электрического поля, выше которой изолирующий материал начинает разрушаться и становится проводником, называется электрической прочностью.
Концептуальные вопросы
- Зависит ли емкость устройства от приложенного напряжения? А как насчет хранящегося в нем заряда?
- Используйте характеристики кулоновской силы, чтобы объяснить, почему емкость должна быть пропорциональна площади пластины конденсатора. Аналогичным образом объясните, почему емкость должна быть обратно пропорциональна расстоянию между пластинами.
- Объясните причину, по которой диэлектрический материал увеличивает емкость по сравнению с тем, что было бы с воздухом между пластинами конденсатора.Какова независимая причина того, что диэлектрический материал также позволяет приложить большее напряжение к конденсатору? (Таким образом, диэлектрик увеличивает C и допускает более В .)
- Как полярный характер молекул воды помогает объяснить относительно большую диэлектрическую проницаемость воды? (См. Рисунок 7.)
- Искры возникают между пластинами заполненного воздухом конденсатора при более низком напряжении, когда воздух влажный, чем когда сухой. Объясните почему, учитывая полярный характер молекул воды.
- Вода имеет большую диэлектрическую проницаемость, но редко используется в конденсаторах. Объяснить, почему.
- Мембраны в живых клетках, в том числе в человеческих, характеризуются разделением заряда через мембрану. Таким образом, мембраны представляют собой заряженные конденсаторы, важные функции которых связаны с разностью потенциалов на мембране. Требуется ли энергия для разделения этих зарядов в живых мембранах, и если да, то является ли ее источником метаболизм пищевой энергии или каким-либо другим источником?
Рисунок 8.Полупроницаемая мембрана клетки имеет разную концентрацию ионов внутри и снаружи. Диффузия перемещает ионы K + (калий) и Cl — (хлорид) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Это приводит к слою положительного заряда снаружи, слою отрицательного заряда внутри и, следовательно, к напряжению на клеточной мембране. Мембрана обычно непроницаема для Na + (ионы натрия).
Задачи и упражнения
- Какой заряд сохраняется в конденсаторе 180 мкФ, когда к нему приложено 120 В?
- Найдите накопленный заряд, когда 5.50 В подается на конденсатор емкостью 8,00 пФ.
- Какой заряд хранится в конденсаторе в Примере 1?
- Рассчитайте напряжение, приложенное к конденсатору 2,00 мкФ, когда он имеет заряд 3,10 мкКл.
- Какое напряжение необходимо подать на конденсатор емкостью 8,00 нФ для накопления заряда 0,160 мкКл?
- Какая емкость необходима для хранения заряда 3,00 мкКл при напряжении 120 В?
- Какая емкость терминала большого генератора Ван-де-Граафа, учитывая, что он хранит 8?00 мкКл заряда при напряжении 12,0 МВ?
- Найдите емкость конденсатора с параллельными пластинами, площадь пластин которого составляет 5,00 м 2 , разделенных слоем тефлона 0,100 мм.
- (a) Какова емкость конденсатора с параллельными пластинами, площадь пластин которого составляет 1,50 м 2 , разделенных 0,0200 мм неопренового каучука? (b) Какой заряд он держит, когда к нему приложено 9,00 В?
- Интегрированные концепции. Шутник подает 450 В на 80.Конденсатор 0 мкФ, а затем бросает его ничего не подозревающей жертве. Палец пострадавшего обожжен разрядом конденсатора через 0,200 г мяса. Какое повышение температуры мяса? Разумно ли предполагать отсутствие изменения фазы?
- Необоснованные результаты. (a) Конденсатор с параллельными пластинами имеет площадь пластин 4,00 м 2 , разделенных нейлоном толщиной 0,0100 мм, и накапливает 0,170 Кл заряда. Какое приложенное напряжение? б) Что неразумного в этом результате? (c) Какие допущения являются ответственными или противоречивыми?
Глоссарий
конденсатор: устройство, накапливающее электрический заряд
емкость: количество заряда на единицу вольт
диэлектрик: изоляционный материал
диэлектрическая прочность: максимальное электрическое поле, выше которого изоляционный материал начинает разрушаться и проводить
Конденсатор с параллельными пластинами: две идентичные проводящие пластины, разделенные расстоянием
полярная молекула: молекула с внутренним разделением заряда
Избранные решения проблем и упражнения
1.21,6 мК
3. 80.0 мС
5. 20,0 кВ
7. 667 пФ
9. (а) 4,4 мкФ; (б) 4.0 × 10 −5 C
11. (а) 14,2 кВ; (b) Напряжение неоправданно велико, более чем в 100 раз выше напряжения пробоя нейлона; (c) Предполагаемый заряд неоправданно велик и не может храниться в конденсаторе таких размеров.
Емкостьи заряд на пластинах конденсаторов
Конденсаторы состоят из двух параллельных проводящих пластин (обычно металлических), которые не могут касаться друг друга (разделены) изоляционным материалом, называемым «диэлектриком».Когда на эти пластины подается напряжение, электрический ток течет вверх, заряжая одну пластину положительным зарядом по отношению к напряжению питания, а другую пластину — равным и противоположным отрицательным зарядом.
Тогда конденсатор имеет способность сохранять электрический заряд Q (единицы в кулонах ) электронов. Когда конденсатор полностью заряжен, возникает разность потенциалов, p.d. между пластинами, и чем больше площадь пластин и / или чем меньше расстояние между ними (известное как разделение), тем больше будет заряд, который может удерживать конденсатор, и тем больше будет его емкость .
Способность конденсатора сохранять этот электрический заряд (Q) между пластинами пропорциональна приложенному напряжению V для конденсатора известной емкости в Фарадах. Обратите внимание, что емкость C ВСЕГДА положительная и никогда не отрицательная.
Чем больше приложенное напряжение, тем больший заряд сохраняется на пластинах конденсатора. Точно так же, чем меньше приложенное напряжение, тем меньше заряд. Следовательно, фактический заряд Q на пластинах конденсатора и может быть рассчитан как:
Заряд конденсатора
Где: Q (заряд в кулонах) = C (емкость в фарадах) x V (напряжение в вольтах)
Иногда легче запомнить эту взаимосвязь с помощью картинок.Здесь три величины Q, C и V наложены в треугольник, дающий заряд вверху, а емкость и напряжение внизу. Это расположение представляет собой фактическое положение каждой величины в формулах Capacitor Charge .
и транспонирование приведенного выше уравнения дает нам следующие комбинации того же уравнения:
Единицы из: Q измеряется в кулонах, V в вольтах и C в фарадах.
Затем, сверху, мы можем определить единицу емкости как постоянную пропорциональности, равную кулону / вольт, которая также называется Фарад , единица F.
Поскольку емкость представляет способность конденсатора (емкость) накапливать электрический заряд на своих пластинах, мы можем определить один Фарад как «емкость конденсатора, который требует заряда в один кулон для установления разности потенциалов в один вольт между его пластинами. », Как впервые описал Майкл Фарадей. Таким образом, чем больше емкость, тем выше количество заряда, сохраняемого на конденсаторе при том же напряжении.
Способность конденсатора накапливать заряд на своих проводящих пластинах дает ему значение Емкость .Емкость также можно определить по размерам или площади А пластин и свойств диэлектрического материала между пластинами. Мера диэлектрического материала определяется диэлектрической проницаемостью (ε) или диэлектрической проницаемостью. Итак, другой способ выразить емкость конденсатора:
Конденсатор с воздухом в качестве диэлектрика
Конденсатор с твердым телом в качестве диэлектрика
, где A — площадь пластин в квадратных метрах, м 2 Чем больше площадь, тем больший заряд может хранить конденсатор.d — расстояние между двумя пластинами. Чем меньше это расстояние, тем выше способность пластин накапливать заряд, поскольку -ve заряд на заряженной пластине -Q оказывает большее влияние на заряженную пластину + Q, в результате чего больше электронов отталкивается от + Q заряжает пластину, тем самым увеличивая общий заряд.
ε 0 (эпсилон) — значение диэлектрической проницаемости для воздуха, которое составляет 8,84 x 10 -12 Ф / м, а ε r — диэлектрическая проницаемость диэлектрической среды, используемой между двумя пластинами.
Параллельный пластинчатый конденсатор
Ранее мы говорили, что емкость конденсатора с параллельными пластинами пропорциональна площади поверхности A и обратно пропорциональна расстоянию d между двумя пластинами, и это верно для диэлектрической среды воздуха. Однако значение емкости конденсатора можно увеличить, вставив между проводящими пластинами твердую среду, диэлектрическая проницаемость которой выше, чем у воздуха.
Типичные значения эпсилон ε для различных обычно используемых диэлектрических материалов: Воздух = 1.0, бумага = 2,5 — 3,5, стекло = 3-10, слюда = 5-7 и т. Д.
Коэффициент, на который диэлектрический материал или изолятор увеличивает емкость конденсатора по сравнению с воздухом, известен как диэлектрическая постоянная , ( k ). «K» — это отношение диэлектрической проницаемости используемой диэлектрической среды к диэлектрической проницаемости свободного пространства, также известного как вакуум.
Следовательно, все значения емкости связаны с диэлектрической проницаемостью вакуума. Диэлектрический материал с высокой диэлектрической проницаемостью является лучшим изолятором, чем диэлектрический материал с более низкой диэлектрической проницаемостью.Диэлектрическая проницаемость является безразмерной величиной, поскольку она относится к свободному пространству.
Пример емкости №1
Конденсатор с параллельными пластинами состоит из двух пластин общей площадью 100 см 2 . Какой будет емкость конденсатора в пикофарадах (пФ), если расстояние между пластинами составляет 0,2 см, а в качестве диэлектрической среды используется воздух.
, то емкость конденсатора 44 пФ.
Зарядка и разрядка конденсатора
Рассмотрим следующую схему.
Предположим, что конденсатор полностью разряжен и переключатель, подключенный к конденсатору, только что был перемещен в положение A. Напряжение на конденсаторе 100 мкФ в этот момент равно нулю, и начинает течь зарядный ток ( i ), заряжающий конденсатор. пока напряжение на пластинах не сравняется с напряжением питания 12 В. Зарядный ток перестает течь, и конденсатор считается «полностью заряженным». Тогда Vc = Vs = 12v.
После того, как конденсатор теоретически «полностью заряжен», он будет поддерживать свое состояние заряда по напряжению даже при отключении напряжения питания, поскольку они действуют как своего рода временное запоминающее устройство.Однако, хотя это может быть верно для «идеального» конденсатора, настоящий конденсатор будет медленно разряжаться в течение длительного периода времени из-за внутренних токов утечки, протекающих через диэлектрик.
Это важный момент, о котором следует помнить, поскольку конденсаторы большой емкости, подключенные к источникам высокого напряжения, могут по-прежнему сохранять значительный заряд, даже когда напряжение питания выключено.
Если бы переключатель был отключен в этот момент, конденсатор сохранял бы свой заряд неопределенно долго, но из-за внутренних токов утечки, протекающих через его диэлектрик, конденсатор начал бы очень медленно разряжаться, поскольку электроны проходили через диэлектрик.Время, необходимое конденсатору для разряда до 37% от его напряжения питания, известно как его постоянная времени.
Если переключатель теперь переместить из положения A в положение B, полностью заряженный конденсатор начнет разряжаться через подключенную к нему лампу, освещая лампу до тех пор, пока конденсатор не будет полностью разряжен, поскольку элемент лампы имеет резистивное значение.
Яркость лампы и продолжительность освещения в конечном итоге будут зависеть от значения емкости конденсатора и сопротивления лампы (t = R * C).Чем больше емкость конденсатора, тем ярче и дольше будет свечение лампы, поскольку она может хранить больше заряда.
Пример заряда конденсатора №2
Рассчитайте заряд в указанной выше цепи конденсатора.
, то заряд конденсатора составляет 1,2 милликулоны.
Ток через конденсатор
Электрический ток не может протекать через конденсатор, как через резистор или катушку индуктивности, из-за изолирующих свойств диэлектрического материала между двумя пластинами.Однако зарядка и разрядка двух пластин создают эффект протекания тока.
Ток, протекающий через конденсатор, напрямую связан с зарядом на пластинах, поскольку ток — это скорость протекания заряда во времени. Поскольку способность конденсатора сохранять заряд (Q) между пластинами пропорциональна приложенному напряжению (В), соотношение между током и напряжением, приложенным к пластинам конденсатора, становится равным:
Отношение тока к напряжению (I-V)
По мере того, как напряжение на пластинах увеличивается (или уменьшается) с течением времени, ток, протекающий через емкость, откладывает (или удаляет) заряд с пластин, причем величина заряда пропорциональна приложенному напряжению.Тогда и ток, и напряжение, приложенные к емкости, являются функциями времени и обозначаются символами i (t) и v (t) .
Однако из приведенного выше уравнения мы также можем видеть, что если напряжение останется постоянным, заряд станет постоянным и, следовательно, ток будет равен нулю !. Другими словами, без изменения напряжения, без движения заряда и без протекания тока. Вот почему кажется, что конденсатор «блокирует» прохождение тока при подключении к установившемуся постоянному напряжению.
Фарад
Теперь мы знаем, что способность конденсатора накапливать заряд дает ему значение емкости C, которое имеет единицу Фарад, F . Но фарад сам по себе является чрезвычайно большой единицей, что делает его непрактичным в использовании, поэтому вместо него используются кратные или доли стандартной единицы Фарада.
Чтобы получить представление о том, насколько на самом деле велик Фарад, необходимо определить площадь поверхности пластин, необходимую для изготовления конденсатора емкостью всего один Фарад с разумным расстоянием между пластинами всего, скажем, 1 мм, работающим в вакууме.Если мы изменим уравнение для емкости выше, это даст нам площадь пластины:
A = Cd ÷ 8,85 пФ / м = (1 x 0,001) ÷ 8,85 × 10 -12 = 112,994,350 м 2
или 113 миллионов м 2 , что было бы эквивалентно плите размером более 10 км на 10 квадратных километров (более 6 миль). Это здорово.
Конденсаторы емкостью в один фарад или более имеют тенденцию иметь твердый диэлектрик, и поскольку «один фарад» является такой большой единицей для использования, вместо этого в электронных формулах используются префиксы со значениями конденсаторов, указанными в микрофарадах (мкФ), нано-фарады (нФ) и пикофарады (пФ).Например:
Подразделения Фарада
Преобразуйте следующие значения емкости из а) 22 нФ в мкФ , б) 0,2 мкФ в нФ , в) 550 пФ в мкФ .
а) 22 нФ = 0,022 мкФ
б) 0,2 мкФ = 200 нФ
в) 550 пФ = 0,00055 мкФ
Хотя один фарад сам по себе является большим значением, в настоящее время обычно доступны конденсаторы со значениями емкости в несколько сотен фарад и имеют названия, отражающие это: «Суперконденсаторы» или «Ультраконденсаторы».
Эти конденсаторы представляют собой электрохимические накопители энергии, в которых используется большая площадь поверхности углеродного диэлектрика для обеспечения гораздо более высокой плотности энергии, чем у обычных конденсаторов, и поскольку емкость пропорциональна площади поверхности углерода, чем толще углерод, тем больше у него емкость.
Низковольтные (примерно от 3,5 В до 5,5 В) суперконденсаторы способны накапливать большие количества заряда из-за их высоких значений емкости, поскольку энергия, запасенная в конденсаторе, равна 1/2 (C x V 2 ) .
Низковольтные суперконденсаторы обычно используются в портативных портативных устройствах для замены больших, дорогих и тяжелых аккумуляторов литиевого типа, поскольку они обеспечивают характеристики аккумуляторов и разрядки, что делает их идеальными для использования в качестве альтернативного источника питания или для резервного копирования памяти. Суперконденсаторы, используемые в портативных устройствах, обычно заряжаются с помощью солнечных батарей, установленных на устройстве.
Ультраконденсаторразрабатывается для использования в гибридных электромобилях и альтернативных источниках энергии для замены больших обычных аккумуляторов, а также для сглаживания постоянного тока в аудио- и видеосистемах автомобилей.Ультраконденсаторы можно быстро перезаряжать, и они имеют очень высокую плотность хранения энергии, что делает их идеальными для использования в электромобилях.
Энергия в конденсаторе
Когда конденсатор заряжается от подключенного к нему источника питания, создается электростатическое поле, которое накапливает энергию в конденсаторе. Количество энергии в джоулей , которое хранится в этом электростатическом поле, равно энергии, которую источник напряжения оказывает для поддержания заряда на пластинах конденсатора, и определяется формулой:
, поэтому энергия, запасенная в конденсаторной цепи емкостью 100 мкФ, рассчитывается как:
В следующем уроке нашего раздела о конденсаторах мы рассмотрим цветовые коды конденсаторов и увидим различные способы нанесения значений емкости и напряжения конденсатора на его корпус.
энергии, хранящейся в конденсаторе — University Physics Volume 2
Цели обучения
К концу этого раздела вы сможете:
- Объясните, как энергия хранится в конденсаторе
- Использование соотношений энергии для определения энергии, запасенной в конденсаторной сети
Большинство из нас видели, как медицинский персонал использует дефибриллятор, чтобы пропустить электрический ток через сердце пациента, чтобы заставить его нормально биться.Часто реалистичный в деталях, человек, применяющий электрошок, просит другого человека «сделать на этот раз 400 джоулей». Энергия, передаваемая дефибриллятором, накапливается в конденсаторе и может регулироваться в зависимости от ситуации. Часто используются единицы СИ — джоули. Менее драматично использование конденсаторов в микроэлектронике для подачи энергии при зарядке аккумуляторов ((рисунок)). Конденсаторы также используются для питания импульсных ламп на камерах.
Конденсаторы на печатной плате электронного устройства следуют соглашению о маркировке, при котором каждый из них обозначается кодом, начинающимся с буквы «C.”(Кредит: Винделл Оскей)
Энергия, запасенная в конденсаторе, является электростатической потенциальной энергией и, таким образом, связана с зарядом Q и напряжением В между пластинами конденсатора. Заряженный конденсатор накапливает энергию в электрическом поле между пластинами. По мере зарядки конденсатора нарастает электрическое поле. Когда заряженный конденсатор отсоединяется от батареи, его энергия остается в поле в пространстве между пластинами.
Чтобы понять, как можно выразить эту энергию (в терминах Q и V ), рассмотрим заряженный пустой конденсатор с параллельными пластинами; то есть конденсатор без диэлектрика, но с вакуумом между пластинами.Пространство между его пластинами имеет объем Ad и заполнено однородным электростатическим полем E . Полная энергия конденсатора содержится в этом пространстве. Плотность энергии в этом пространстве просто делится на объем Ad . Если мы знаем плотность энергии, ее можно найти как. В «Электромагнитных волнах» (после завершения изучения уравнений Максвелла) мы узнаем, что плотность энергии в области свободного пространства, занятой электрическим полем E , зависит только от величины поля и составляет
Если мы умножим плотность энергии на объем между пластинами, мы получим количество энергии, хранящейся между пластинами конденсатора с параллельными пластинами :.
В этом выводе мы использовали тот факт, что электрическое поле между пластинами однородно, так что и Поскольку, мы можем выразить этот результат в других эквивалентных формах:
Выражение на (рисунок) для энергии, запасенной в конденсаторе с параллельными пластинами, в общем, справедливо для всех типов конденсаторов. Чтобы убедиться в этом, рассмотрим любой незаряженный конденсатор (не обязательно с параллельными пластинами). В какой-то момент мы подключаем его к батарее, давая ему разность потенциалов между пластинами.Первоначально заряд на пластинах равен По мере того, как конденсатор заряжается, заряд постепенно накапливается на его пластинах и через некоторое время достигает значения Q . Чтобы переместить бесконечно малый заряд dq с отрицательной пластины на положительную (от более низкого к более высокому потенциалу), объем работы dW , который необходимо выполнить на dq , составляет.
Эта работа становится энергией, запасенной в электрическом поле конденсатора. Чтобы зарядить конденсатор до заряда Q , требуется общая работа
.Поскольку геометрия конденсатора не указана, это уравнение справедливо для любого типа конденсатора.Общая работа W , необходимая для зарядки конденсатора, представляет собой запасенную в нем электрическую потенциальную энергию, или. Когда заряд выражается в кулонах, потенциал выражается в вольтах, а емкость выражается в фарадах, это соотношение дает энергию в джоулях.
Зная, что энергия, запасенная в конденсаторе, равна, теперь мы можем найти плотность энергии, запасенную в вакууме между пластинами заряженного конденсатора с параллельными пластинами. Нам просто нужно разделить на объем Ad пространство между его пластинами и учесть, что для конденсатора с параллельными пластинами мы имеем и.Следовательно, получаем
Мы видим, что это выражение для плотности энергии, запасенной в конденсаторе с параллельными пластинами, соответствует общему соотношению, показанному на (Рисунок). Мы могли бы повторить этот расчет либо для сферического конденсатора, либо для цилиндрического конденсатора — или для других конденсаторов — и во всех случаях мы получили бы общее соотношение, представленное (рисунок).
Проверьте свое понимание Разность потенциалов на конденсаторе 5,0 пФ составляет 0,40 В.а) Какая энергия хранится в этом конденсаторе? (b) Теперь разность потенциалов увеличена до 1,20 В. На какой фактор увеличена запасенная энергия?
а .; б. 9 раз
При неотложной сердечной недостаточности портативное электронное устройство, известное как автоматический внешний дефибриллятор (AED), может быть спасением. Дефибриллятор ((Рисунок)) подает большой заряд в виде короткого импульса или разряда в сердце человека, чтобы исправить нарушение сердечного ритма (аритмию). Сердечный приступ может возникнуть в результате быстрого, нерегулярного сердцебиения, называемого фибрилляцией сердца или желудочков.Применение большого разряда электрической энергии может прекратить аритмию и позволить естественному кардиостимулятору организма вернуться к своему нормальному ритму. Сегодня машины скорой помощи носят с собой AED. AED также можно найти во многих общественных местах. Они предназначены для использования непрофессионалами. Устройство автоматически диагностирует сердечный ритм пациента, а затем применяет разряд с соответствующей энергией и формой волны. Во многих случаях перед использованием дефибриллятора рекомендуется сердечно-легочная реанимация.
Автоматические внешние дефибрилляторы можно найти во многих общественных местах. Эти портативные устройства предоставляют устные инструкции по использованию в первые несколько важных минут для человека, страдающего сердечным приступом. (кредит: Оуайн Дэвис)
Емкость дефибриллятора сердца Дефибриллятор сердца доставляет энергию путем первоначального разряда конденсатора. Какова его емкость?
Стратегия Нам дается V и , и нас просят найти емкость C .Решаем (рисунок) вместо C и подставляем.
Решение Решение этого выражения для C и ввод данных значений дает
Сводка
- Конденсаторы используются для подачи энергии на различные устройства, включая дефибрилляторы, микроэлектронику, такую как калькуляторы, и лампы-вспышки.
- Энергия, запасенная в конденсаторе, — это работа, необходимая для зарядки конденсатора, начиная с нулевого заряда на его пластинах. Энергия накапливается в электрическом поле в пространстве между пластинами конденсатора.Это зависит от количества электрического заряда на пластинах и от разности потенциалов между пластинами.
- Энергия, запасенная в конденсаторной сети, представляет собой сумму энергий, сохраненных на отдельных конденсаторах в сети. Его можно вычислить как энергию, запасенную в эквивалентном конденсаторе сети.
Концептуальные вопросы
Если вы хотите хранить большое количество энергии в конденсаторной батарее, подключите ли вы конденсаторы последовательно или параллельно? Объяснять.
Глоссарий
- плотность энергии
- энергия, запасенная в конденсаторе, деленная на объем между пластинами
— learn.sparkfun.com
Добавлено в избранное Любимый 75Введение
Конденсатор — это двухполюсный электрический компонент. Наряду с резисторами и катушками индуктивности, они являются одними из самых фундаментальных пассивных компонентов , которые мы используем.Вам придется очень внимательно поискать схему, в которой не содержит конденсатора.
Особенностью конденсаторов является их способность накапливать энергию ; они похожи на полностью заряженную электрическую батарею. Колпачки , как мы их обычно называем, находят всевозможные критические применения в схемах. Общие приложения включают локальное накопление энергии, подавление скачков напряжения и комплексную фильтрацию сигналов.
Рассмотрено в этом учебном пособии
В этом руководстве мы рассмотрим всевозможные темы, связанные с конденсаторами, в том числе:
- Как делается конденсатор
- Как работает конденсатор
- Единицы емкости
- Типы конденсаторов
- Как распознать конденсаторы
- Как емкость сочетается последовательно и параллельно
- Общие конденсаторные приложения
Рекомендуемая литература
Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники.Перед тем, как перейти к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:
Обозначения и единицы
Условные обозначения цепей
Есть два распространенных способа изобразить конденсатор на схеме. У них всегда есть две клеммы, которые подключаются к остальной цепи. Символ конденсаторов состоит из двух параллельных линий, которые могут быть плоскими или изогнутыми; обе линии должны быть параллельны друг другу, близко друг к другу, но не соприкасаться (это фактически показывает, как сделан конденсатор.Сложно описать, проще показать:
, (1) и (2) — стандартные обозначения цепи конденсатора. (3) представляет собой пример символов конденсаторов в действии в цепи регулятора напряжения.
Символ с изогнутой линией (№2 на фото выше) указывает на то, что конденсатор поляризован, то есть, вероятно, это электролитический конденсатор. Подробнее об этом в разделе о типах конденсаторов этого руководства.
Каждый конденсатор должен сопровождаться названием — C1, C2 и т. Д.. — и стоимость. Значение должно указывать на емкость конденсатора; сколько там фарадов. Кстати о фарадах …
Емкость
Не все конденсаторы одинаковы. Каждый конденсатор имеет определенную емкость. Емкость конденсатора сообщает вам, сколько заряда он может хранить , большая емкость означает большую емкость для хранения заряда. Стандартная единица измерения емкости называется фарад , что сокращенно F .
Получается, что фарад — это лот емкости, даже 0,001Ф (1 миллифарад — 1мФ) — это большой конденсатор. Обычно вы увидите конденсаторы с номиналом от пико- (10 -12 ) до микрофарад (10 -6 ).
Имя префикса | Аббревиатура | Вес | Эквивалентные фарады | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Пикофарад | pF | 10 -12 | 0,000000000001 10-12 | 0,000000000001 N32 | 0.000000001 F | ||||||||||
Микрофарад | мкФ | 10 -6 | 0.000001 F | ||||||||||||
Милифарад | mF | 10 -321 10 3 | 1000 Факс | |
Когда вы переходите к диапазону емкости от фарада до килофарада, вы начинаете говорить о специальных конденсаторах, называемых конденсаторами super или ultra .
Теория конденсаторов
Примечание : Материал на этой странице не совсем критичен для понимания новичками в электронике … и к концу все становится немного сложнее. Мы рекомендуем прочитать раздел Как делается конденсатор , остальные, вероятно, можно было бы пропустить, если они вызывают у вас головную боль.
Как делается конденсатор
Условное обозначение конденсатора на самом деле очень похоже на то, как он сделан.Конденсатор состоит из двух металлических пластин и изоляционного материала, называемого диэлектриком . Металлические пластины расположены очень близко друг к другу, параллельно, но между ними находится диэлектрик, чтобы они не соприкасались.
Ваш стандартный конденсаторный сэндвич: две металлические пластины, разделенные изолирующим диэлектриком.
Диэлектрик может быть изготовлен из любых изоляционных материалов: бумаги, стекла, резины, керамики, пластика или всего, что препятствует прохождению тока.
Пластины изготовлены из проводящего материала: алюминия, тантала, серебра или других металлов. Каждый из них подключен к клеммному проводу, который в конечном итоге подключается к остальной части схемы.
Емкость конденсатора — сколько в нем фарад — зависит от его конструкции. Для большей емкости требуется конденсатор большего размера. Пластины с большей площадью перекрытия поверхности обеспечивают большую емкость, в то время как большее расстояние между пластинами означает меньшую емкость. Материал диэлектрика даже влияет на то, сколько фарад имеет колпачок.Полная емкость конденсатора может быть рассчитана по формуле:
где ε r — относительная диэлектрическая проницаемость диэлектрика (постоянное значение, определяемое материалом диэлектрика), A — площадь перекрытия пластин друг с другом, а d — расстояние между пластинами.
Как работает конденсатор
Электрический ток — это поток электрического заряда, который электрические компоненты используют, чтобы загораться, вращаться или делать то, что они делают.Когда ток течет в конденсатор, заряды «застревают» на пластинах, потому что не могут пройти через изолирующий диэлектрик. Электроны — отрицательно заряженные частицы — засасываются одной из пластин, и она становится в целом отрицательно заряженной. Большая масса отрицательных зарядов на одной пластине отталкивает, как заряды, на другой пластине, делая ее заряженной положительно.
Положительный и отрицательный заряды на каждой из этих пластин притягиваются друг к другу, потому что это то, что делают противоположные заряды.Но с диэлектриком, сидящим между ними, как бы они ни хотели соединиться, заряды навсегда останутся на пластине (до тех пор, пока им не будет куда-то идти). Стационарные заряды на этих пластинах создают электрическое поле, которое влияет на электрическую потенциальную энергию и напряжение. Когда заряды группируются на таком конденсаторе, крышка накапливает электрическую энергию так же, как батарея может накапливать химическую энергию.
Зарядка и разрядка
Когда положительный и отрицательный заряды сливаются на пластинах конденсатора, конденсатор становится заряженным на .Конденсатор может сохранять свое электрическое поле — удерживать заряд — потому что положительный и отрицательный заряды на каждой из пластин притягиваются друг к другу, но никогда не достигают друг друга.
В какой-то момент пластины конденсатора будут настолько заряжены, что просто не смогут больше принимать их. На одной пластине достаточно отрицательных зарядов, чтобы они могли отразить любые другие, которые попытаются присоединиться. Именно здесь вступает в игру емкость конденсатора (фарады), которая говорит вам о максимальном количестве заряда, которое может хранить конденсатор.
Если в цепи создается путь, который позволяет зарядам найти другой путь друг к другу, они покинут конденсатор, и он разрядит .
Например, в схеме ниже можно использовать батарею для создания электрического потенциала на конденсаторе. Это вызовет нарастание одинаковых, но противоположных зарядов на каждой из пластин, пока они не станут настолько полными, что оттолкнут ток от протекания. Светодиод, расположенный последовательно с крышкой, может обеспечивать путь для тока, а энергия, запасенная в конденсаторе, может использоваться для кратковременного освещения светодиода.
Расчет заряда, напряжения и тока
Емкость конденсатора — сколько в нем фарад — говорит вам, сколько заряда он может хранить. Сколько заряда конденсатор хранит в настоящее время , зависит от разности потенциалов (напряжения) между его пластинами. Это соотношение между зарядом, емкостью и напряжением можно смоделировать с помощью следующего уравнения:
Заряд (Q), накопленный в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).
Емкость конденсатора всегда должна быть постоянной известной величиной. Таким образом, мы можем регулировать напряжение для увеличения или уменьшения заряда крышки. Больше напряжения означает больше заряда, меньше напряжения … меньше заряда.
Это уравнение также дает нам хороший способ определить значение одного фарада. Один фарад (F) — это способность хранить одну единицу энергии (кулоны) на каждый вольт.
Расчет тока
Мы можем пойти дальше по уравнению заряда / напряжения / емкости, чтобы выяснить, как емкость и напряжение влияют на ток, потому что ток — это скорость потока заряда.Суть отношения конденсатора к напряжению и току такова: величина тока через конденсатор зависит как от емкости, так и от того, как быстро напряжение растет или падает . Если напряжение на конденсаторе быстро растет, через конденсатор будет индуцироваться большой положительный ток. Более медленный рост напряжения на конденсаторе означает меньший ток через него. Если напряжение на конденсаторе стабильное и неизменное, через него не будет проходить ток.
(Это уродливо, и это касается вычислений. Это не все, что нужно, пока вы не перейдете к анализу во временной области, разработке фильтров и прочим грубым вещам, так что переходите к следующей странице, если вам не нравится это уравнение. .) Уравнение для расчета тока через конденсатор:
Часть dV / dt этого уравнения является производной (причудливый способ сказать мгновенная скорость ) напряжения во времени, это эквивалентно тому, как «насколько быстро напряжение растет или падает в этот самый момент».Большой вывод из этого уравнения заключается в том, что если напряжение стабильно , производная равна нулю, что означает, что ток также равен нулю . Вот почему ток не может течь через конденсатор, поддерживающий постоянное постоянное напряжение.
Типы конденсаторов
Существуют всевозможные типы конденсаторов, каждый из которых имеет определенные особенности и недостатки, которые делают его лучше для одних приложений, чем для других.
При выборе типа конденсатора необходимо учитывать несколько факторов:
- Размер — Размер как по физическому объему, так и по емкости.Конденсатор нередко является самым большим компонентом в цепи. Также они могут быть очень маленькими. Для большей емкости обычно требуется конденсатор большего размера.
- Максимальное напряжение — Каждый конденсатор рассчитан на максимальное падение напряжения на нем. Некоторые конденсаторы могут быть рассчитаны на 1,5 В, другие — на 100 В. Превышение максимального напряжения обычно приводит к разрушению конденсатора.
- Ток утечки — Конденсаторы не идеальны.Каждая крышка склонна пропускать небольшое количество тока через диэлектрик от одного вывода к другому. Эта крошечная потеря тока (обычно наноампер или меньше) называется утечкой. Утечка заставляет энергию, накопленную в конденсаторе, медленно, но верно истощаться.
- Эквивалентное последовательное сопротивление (ESR) — Выводы конденсатора не на 100% проводящие, у них всегда будет небольшое сопротивление (обычно менее 0,01 Ом). Это сопротивление становится проблемой, когда через колпачок проходит большой ток, вызывая потери тепла и мощности.
- Допуск — Конденсаторы также не могут иметь точную, точную емкость. Каждая крышка будет рассчитана на свою номинальную емкость, но, в зависимости от типа, точное значение может варьироваться от ± 1% до ± 20% от желаемого значения.
Конденсаторы керамические
Наиболее часто используемый и производимый конденсатор — керамический конденсатор. Название происходит от материала, из которого сделан их диэлектрик.
Керамические конденсаторы обычно бывают физически и емкостными малые .Трудно найти керамический конденсатор больше 10 мкФ. Керамический колпачок для поверхностного монтажа обычно находится в крошечном корпусе 0402 (0,4 мм x 0,2 мм), 0603 (0,6 мм x 0,3 мм) или 0805. Керамические колпачки со сквозными отверстиями обычно выглядят как маленькие (обычно желтые или красные) лампочки с двумя выступающими клеммами.
Две крышки в сквозном радиальном корпусе; конденсатор 22 пФ слева и 0,1 мкФ справа. Посередине — крошечная крышка 0,1 мкФ 0603 для поверхностного монтажа.
По сравнению с не менее популярными электролитическими крышками, керамические конденсаторы являются более близкими к идеальным конденсаторам (гораздо более низкие значения ESR и токи утечки), но их небольшая емкость может быть ограничивающей.Как правило, они также являются наименее дорогим вариантом. Эти колпачки хорошо подходят для высокочастотной связи и развязки.
Электролитический алюминий и тантал
Электролитикихороши тем, что они могут упаковать много емкости в относительно небольшой объем. Если вам нужен конденсатор емкостью от 1 мкФ до 1 мФ, вы, скорее всего, найдете его в электролитической форме. Они особенно хорошо подходят для высоковольтных приложений из-за их относительно высокого максимального номинального напряжения.
Алюминиевые электролитические конденсаторы, самые популярные из семейства электролитических, обычно выглядят как маленькие жестяные банки с обоими выводами, выходящими снизу.
Ассортимент электролитических конденсаторов сквозного и поверхностного монтажа. Обратите внимание, что у каждого из них есть метод маркировки катода (отрицательный вывод).
К сожалению, электролитические колпачки обычно поляризованы . У них есть положительный вывод — анод — и отрицательный вывод, называемый катодом.Когда напряжение подается на электролитический колпачок, анод должен иметь более высокое напряжение, чем катод. Катод электролитического конденсатора обычно обозначается знаком «-» и цветной полосой на корпусе. Ножка анода также может быть немного длиннее, как еще один признак. Если на электролитический колпачок подать обратное напряжение, они выйдут из строя (из-за чего лопнет и разорвется) и навсегда. После лопания электролитик будет вести себя как короткое замыкание.
Эти колпачки также известны утечкой — позволяя небольшим токам (порядка нА) проходить через диэлектрик от одного вывода к другому. Это делает электролитические колпачки менее чем идеальными для хранения энергии, что, к сожалению, с учетом их высокой емкости и номинального напряжения.
Суперконденсаторы
Если вы ищете конденсатор, предназначенный для хранения энергии, не ищите ничего, кроме суперконденсаторов. Эти колпачки имеют уникальную конструкцию, обеспечивающую высокую емкость или в диапазоне фарад.
Суперконденсатор 1Ф (!). Высокая емкость, но рассчитана только на 2,5 В. Обратите внимание, что они также поляризованы.
Несмотря на то, что они могут хранить огромное количество заряда, суперконденсаторы не справляются с очень высокими напряжениями. Этот суперконденсатор 10F рассчитан только на максимальное напряжение 2,5 В. Любое большее, чем это, разрушит его. Суперэлементы обычно устанавливаются последовательно для достижения более высокого номинального напряжения (при уменьшении общей емкости).
Основное применение суперконденсаторов в — хранение и высвобождение энергии , как батареи, которые являются их основным конкурентом.Хотя суперконденсаторы не могут удерживать столько энергии, сколько батарея того же размера, они могут высвобождать ее намного быстрее и обычно имеют гораздо больший срок службы.
Прочие
Электролитические и керамические крышки покрывают около 80% типов конденсаторов (а суперкапсы только около 2%, но они супер!). Другой распространенный тип конденсатора — пленочный конденсатор , который отличается очень низкими паразитными потерями (ESR), что делает их идеальными для работы с очень высокими токами.
Есть много других менее распространенных конденсаторов. Переменные конденсаторы могут производить емкости различной емкости, что делает их хорошей альтернативой переменным резисторам в схемах настройки. Скрученные провода или печатные платы могут создавать емкость (иногда нежелательную), потому что каждый состоит из двух проводников, разделенных изолятором. Лейденские кувшины — стеклянная банка, наполненная проводниками и окруженная ими, — это O.G. семейства конденсаторов. Наконец, конечно, конденсаторы потока (странная комбинация катушки индуктивности и конденсатора) имеют решающее значение, если вы когда-нибудь планируете вернуться в дни славы.
Последовательные / параллельные конденсаторы
Подобно резисторам, несколько конденсаторов могут быть объединены последовательно или параллельно для создания комбинированной эквивалентной емкости. Конденсаторы, однако, складываются таким образом, что полностью противоположны резисторам.
Параллельные конденсаторы
Когда конденсаторы размещаются параллельно друг другу, общая емкость равна сумме всех емкостей .Это аналогично тому, как резисторы добавляются последовательно.
Так, например, если у вас есть три конденсатора номиналом 10 мкФ, 1 мкФ и 0,1 мкФ, подключенные параллельно, общая емкость будет 11,1 мкФ (10 + 1 + 0,1).
Конденсаторы серии
Подобно тому, как резисторы сложно добавить параллельно, конденсаторы становятся странными при установке в серии . Общая емкость конденсаторов Н, , соединенных последовательно, является обратной суммой всех обратных емкостей.
Если у вас есть только два конденсатора , соединенных последовательно, вы можете использовать метод «произведение над суммой» для расчета общей емкости:
Если продолжить это уравнение, если у вас есть два одинаковых конденсатора, соединенных последовательно , общая емкость составляет половину их значения.Например, два суперконденсатора по 10 Ф, соединенные последовательно, дадут общую емкость 5 Ф (это также позволит удвоить номинальное напряжение всего конденсатора с 2,5 В до 5 В).
Примеры применения
Существует множество приложений для этого изящного маленького (на самом деле, обычно они довольно большие) пассивного компонента. Чтобы дать вам представление об их широком диапазоне использования, вот несколько примеров:
Разделительные (байпасные) конденсаторы
Многие конденсаторы, которые вы видите в схемах, особенно те, которые имеют интегральную схему, развязывают.Задача развязывающего конденсатора — подавить высокочастотный шум в сигналах источника питания. Они снимают с источника напряжения крошечные колебания напряжения, которые в противном случае могли бы нанести вред чувствительным микросхемам.
В каком-то смысле развязывающие конденсаторы действуют как очень маленький локальный источник питания для микросхем (почти как источник бесперебойного питания для компьютеров). Если в источнике питания очень быстро падает напряжение (что на самом деле довольно часто, особенно когда цепь, которую он питает, постоянно переключает требования к нагрузке), разделительный конденсатор может кратковременно подавать питание с правильным напряжением.Вот почему эти конденсаторы также называются байпасными конденсаторами , конденсаторами; они могут временно действовать как источник питания в обход источника питания.
Разделительные конденсаторы подключаются между источником питания (5 В, 3,3 В и т. Д.) И землей. Нередко для обхода источника питания используют два или более конденсаторов с разным номиналом или даже разных типов, потому что некоторые номиналы конденсаторов будут лучше, чем другие, при фильтрации определенных частот шума.
На этой схеме три развязывающих конденсатора используются для уменьшения шума в источнике напряжения акселерометра.Два керамических 0,1 мкФ и один танталовый электролитический 10 мкФ разделенные функции развязки.Хотя кажется, что это может привести к короткому замыканию между питанием и землей, только высокочастотные сигналы могут проходить через конденсатор на землю. Сигнал постоянного тока поступит на ИС, как и нужно. Другая причина, по которой они называются шунтирующими конденсаторами, заключается в том, что высокие частоты (в диапазоне кГц-МГц) обходят ИС, а не проходят через конденсатор, чтобы добраться до земли.
При физическом размещении развязывающих конденсаторов они всегда должны располагаться как можно ближе к ИС.Чем дальше они находятся, тем менее эффективны.
Вот схема физической схемы из схемы выше. Крошечная черная ИС окружена двумя конденсаторами по 0,1 мкФ (коричневые крышки) и одним электролитическим танталовым конденсатором 10 мкФ (высокая прямоугольная крышка черного / серого цвета).
В соответствии с передовой инженерной практикой всегда добавляйте хотя бы один развязывающий конденсатор к каждой ИС. Обычно хорошим выбором является 0,1 мкФ или даже дополнительные конденсаторы на 1 мкФ или 10 мкФ. Это дешевое дополнение, и они помогают убедиться, что микросхема не подвергается сильным провалам или скачкам напряжения.
Фильтрация источника питания
Диодные выпрямителимогут использоваться для преобразования переменного напряжения, выходящего из вашей стены, в постоянное напряжение, необходимое для большинства электронных устройств. Но сами по себе диоды не могут превратить сигнал переменного тока в чистый сигнал постоянного тока, им нужна помощь конденсаторов! При добавлении параллельного конденсатора к мостовому выпрямителю выпрямленный сигнал выглядит следующим образом:
Может быть преобразован в сигнал постоянного тока близкого к уровню, например:
Конденсаторы — упрямые компоненты, они всегда будут пытаться противостоять резким перепадам напряжения.Конденсатор фильтра будет заряжаться по мере увеличения выпрямленного напряжения. Когда выпрямленное напряжение, поступающее в конденсатор, начинает быстро снижаться, конденсатор получит доступ к своему банку накопленной энергии, и он будет очень медленно разряжаться, передавая энергию нагрузке. Конденсатор не должен полностью разрядиться, пока входной выпрямленный сигнал не начнет снова увеличиваться, заряжая конденсатор. Этот танец разыгрывается много раз в секунду, снова и снова, пока используется источник питания.
Цепь питания переменного тока в постоянный.Крышка фильтра (C1) имеет решающее значение для сглаживания сигнала постоянного тока, посылаемого в цепь нагрузки.
Если вы разорвите любой блок питания переменного тока в постоянный, вы обязательно найдете хотя бы один довольно большой конденсатор. Ниже показаны внутренности настенного адаптера постоянного тока на 9 В. Заметили там конденсаторы?
Конденсаторов может быть больше, чем вы думаете! Имеется четыре электролитических колпачка, напоминающих жестяную банку, в диапазоне от 47 мкФ до 1000 мкФ. Большой желтый прямоугольник на переднем плане — это высоковольтный 0.Крышка из полипропиленовой пленки 1 мкФ. И синяя дискообразная крышка, и маленькая зеленая посередине — керамические.
Хранение и поставка энергии
Кажется очевидным, что если конденсатор накапливает энергию, одно из множества его применений — подача этой энергии в цепь, как аккумулятор. Проблема в том, что конденсаторы имеют гораздо более низкую плотность энергии , чем батареи; они просто не могут вместить столько же энергии, как химическая батарея того же размера (но этот разрыв сокращается!).
Плюс конденсаторов в том, что они обычно служат дольше, чем батареи, что делает их лучшим выбором с экологической точки зрения. Они также способны выдавать энергию намного быстрее, чем аккумулятор, что делает их подходящими для приложений, которым требуется короткий, но большой всплеск мощности. Вспышка камеры может получать питание от конденсатора (который, в свою очередь, вероятно, заряжался от аккумулятора).
Батарея или конденсатор?Батарея | Конденсатор | |||||
---|---|---|---|---|---|---|
Емкость | ✓ | |||||
Плотность энергии | ✓ | |||||
Срок службы | Срок службы | ✓ | |
Фильтрация сигналов
Конденсаторыобладают уникальной реакцией на сигналы различной частоты.Они могут блокировать низкочастотные компоненты или составляющие сигнала постоянного тока, позволяя при этом проходить более высоким частотам. Они как вышибалы в очень эксклюзивном клубе только для высоких частот.
Фильтрация сигналов может быть полезна во всех видах приложений обработки сигналов. Радиоприемники могут использовать конденсатор (среди других компонентов) для отключения нежелательных частот.
Другой пример фильтрации сигнала конденсатора — это пассивные перекрестные схемы внутри громкоговорителей, которые разделяют один аудиосигнал на множество.Последовательный конденсатор блокирует низкие частоты, поэтому оставшиеся высокочастотные части сигнала могут идти на твитер динамика. При прохождении низких частот в цепи сабвуфера высокие частоты в основном могут быть шунтированы на землю через параллельный конденсатор.
Очень простой пример схемы кроссовера аудио. Конденсатор блокирует низкие частоты, а катушка индуктивности блокирует высокие частоты. Каждый из них может использоваться для доставки нужного сигнала настроенным аудиодрайверам.
Понижение рейтинга
При работе с конденсаторами важно проектировать схемы с конденсаторами, которые имеют гораздо более высокий допуск, чем потенциально самый высокий скачок напряжения в вашей системе.
Вот отличное видео от инженера SparkFun Шона о том, что происходит с различными типами конденсаторов, когда вы не можете снизить номинальные характеристики конденсаторов и превысить их максимальное напряжение. Вы можете прочитать больше о его экспериментах здесь.
Покупка конденсаторов
Храните на этих маленьких компонентах накопителя энергии или используйте их в качестве начального блока питания.
Наши рекомендации:
Комплект конденсаторов SparkFun
Распродано КОМПЛЕКТ-13698Это комплект, который предоставляет вам базовый ассортимент конденсаторов, чтобы начать или продолжить возиться с электроникой. Нет мес…
10Суперконденсатор — 10Ф / 2.5В
В наличии COM-00746Да, вы правильно прочитали — конденсатор 10 Фарад. Этот маленький колпачок можно зарядить, а затем медленно рассеять в течение…
3Конденсатор керамический 0.1 мкФ
В наличии COM-08375Это очень распространенный конденсатор емкостью 0,1 мкФ. Используется во всевозможных приложениях для разъединения микросхем от источников питания. Расстояние между отверстиями 0,1 дюйма…
1Ресурсы и дальнейшее развитие
Уф.Почувствуйте себя экспертом по конденсаторам ?! Хотите узнать больше об основах электроники? Если вы еще этого не сделали, подумайте о прочтении некоторых других распространенных электронных компонентов:
Или, может быть, некоторые из этих руководств привлекут ваше внимание?
Конденсатор
— Energy Education
Рис. 1. Схема конденсатора, включающего две параллельные пластины с площадью поверхности A и разделительным расстоянием d. Хотя не все конденсаторы имеют такую форму, часто думают, что они выглядят именно так, поскольку это простейшая геометрия.
Рисунок 2. Анимация из моделирования PhET батареи, заряжающей конденсатор до тех пор, пока ток не перестанет течь через цепь. [1]Конденсатор — это электронное устройство, которое накапливает заряд и энергию. Конденсаторы могут выделять энергию намного быстрее, чем батареи, что приводит к гораздо более высокой удельной мощности, чем батареи с таким же количеством энергии. Исследования конденсаторов продолжаются, чтобы увидеть, можно ли их использовать для хранения электроэнергии для электросети.Хотя конденсаторы — это старая технология, суперконденсаторы — это новый поворот в этой технологии.
Конденсаторы — это просто устройства, состоящие из двух проводников, несущих одинаковые, но противоположные заряды. Простой конденсатор с параллельными пластинами состоит из двух металлических пластин одинакового размера, известных как электроды, разделенных изолятором, известным как диэлектрик, который удерживается параллельно друг другу. Затем конденсатор интегрируется в электрическую цепь. В простой цепи постоянного тока каждая пластина конденсатора со временем становится противоположно заряженной из-за пути электрического тока через цепь.Батарея направляет заряд в одном направлении, так что одна пластина становится заряженной положительно, а другая — отрицательно. Это создает электрическое поле из-за накопления равных и противоположных зарядов, что приводит к разнице потенциалов или напряжению между пластинами. Поскольку емкость пластин постоянна, напряжение между пластинами пропорционально увеличивается. По мере увеличения заряда на каждой пластине напряжение между пластинами становится равным напряжению батареи, и в этот момент ток больше не будет течь через цепь. [2] Этот эффект зарядки и разрядки можно увидеть на рис. 2. Ток может возобновиться, если открыт альтернативный путь, так что конденсаторы могут разрядиться, или с использованием переменного тока, чтобы конденсатор периодически заряжался и разряжался.
Важным параметром конденсатора является емкость, мера способности объекта накапливать заряд. Есть два основных способа рассчитать емкость, используя либо физическую площадь пластин, либо напряжение, приложенное к пластинам.2} {2} [/ математика]
- [math] \ Delta V [/ math] — это напряжение между пластинами, измеренное в вольтах (В)
- [math] C [/ math] — это емкость конденсатора, измеряемая в фарадах (F)
- [math] E [/ math] — энергия, запасенная в конденсаторе, измеренная в джоулях (Дж)
Увеличение емкости или напряжения, или того и другого, увеличивает количество энергии, хранящейся в конденсаторе. .
В качестве альтернативы к конденсатору можно добавить диэлектрик. Диэлектрик — это изолятор, помещенный между электродами. Это увеличивает емкость конденсатора без изменения его размеров. Это позволяет конденсатору накапливать больше энергии, оставаясь при этом маленьким. Степень увеличения зависит от материала, из которого изготовлен диэлектрик. [3]
использует
Конденсаторы не обладают такой высокой плотностью энергии, как батареи, а это означает, что конденсатор не может хранить столько энергии, сколько батарея сопоставимого размера.Тем не менее, более высокая мощность конденсаторов означает, что они подходят для приложений, требующих хранения небольшого количества энергии с последующим ее очень быстрым высвобождением. Le Mans Prototype Гоночные автомобили используют конденсаторы для питания электродвигателей передних колес. Эти конденсаторы заряжаются за счет рекуперативного торможения и обеспечивают полный привод и дополнительную мощность при выезде из поворотов. [4]
Конденсаторы также используются во многих электронных устройствах, для которых требуется аккумулятор.Этот конденсатор накапливает энергию, чтобы предотвратить потерю памяти во время замены батареи. Распространенным (хотя и не обязательно широко известным) примером является зарядка вспышки камеры. Вот почему нельзя сделать два снимка со вспышкой в быстрой последовательности; конденсатор должен накапливать энергию от батареи. [5]
Более того, конденсаторы играют ключевую роль во многих практических схемах, в первую очередь как стабилизаторы тока и как компоненты, помогающие преобразовывать переменный ток в постоянный в адаптерах переменного тока.Их можно использовать таким образом благодаря тому факту, что конденсаторы устойчивы к внезапным изменениям напряжения, а это означает, что они обладают способностью действовать в качестве буфера для хранения и отбора электрической энергии для поддержания стабильного выходного тока. [6] Таким образом, конденсатор способен стабилизировать колеблющийся переменный ток за счет своей способности удерживать и выделять электрическую энергию в разное время.
Поскольку конденсаторы накапливают энергию в электрических полях, некоторые исследователи работают над разработкой суперконденсаторов, чтобы помочь с накоплением энергии.Это может оказаться полезным при транспортировке энергии или для хранения и высвобождения энергии из непостоянных источников, таких как энергия ветра и солнца.
Моделирование Phet
Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета. Изучите эту симуляцию, чтобы увидеть, как гравитационная потенциальная энергия и потенциальная энергия пружины перемещаются вперед и назад и создают изменяющееся количество кинетической энергии (подсказка: щелкните , чтобы показать энергию , прежде чем подвешивать массу):
Список литературы
- ↑ Университет Колорадо.(25 апреля 2015 г.). Комплект для конструирования цепей [Онлайн]. Доступно: http://phet.colorado.edu/sims/circuit-construction-kit/circuit-construction-kit-ac_en.jnlp
- ↑ Гиперфизика. (25 апреля 2015 г.). Конденсаторы [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/electric/capac.html
- ↑ Р. Д. Найт, «Потенциал и поле», в Физика для ученых и инженеров: стратегический подход, 2-е изд. Сан-Франциско: Пирсон Аддисон-Уэсли, 2008, гл.30, сек. 5. С. 922-932.
- ↑ «Суперконденсаторы берут на себя ответственность в Германии» Филиппа Болла, Бюллетень MRS, Том 37, выпуск 09, 2012 г., стр. 802-803
- ↑ (2014, 27 июня). Как работают вспышки камеры [Онлайн]. Доступно: http://electronics.howstuffworks.com/camera-flash.htm
- ↑ Sparkfun. (25 апреля 2015 г.). Конденсаторы [Онлайн]. Доступно: https://learn.sparkfun.com/tutorials/capacitors
энергии, накопленной в конденсаторе
Проблема «энергии, хранящейся в конденсаторе» — классическая, поскольку в ней есть некоторые элементы, противоречащие интуиции.Конечно, батарея выделяет энергию QV b в процессе зарядки конденсатора до равновесия при напряжении батареи V b . Но половина этой энергии рассеивается в виде тепла в сопротивлении пути зарядки, и только QV b /2 в конечном итоге сохраняется на конденсаторе в состоянии равновесия. Противоинтуитивная часть начинается, когда вы говорите: «Это слишком большие потери, чтобы их терпеть. Я просто собираюсь снизить сопротивление пути зарядки, чтобы получить больше энергии на конденсаторе».«Это не работает, потому что скорость потерь энергии в сопротивлении I 2 R резко возрастает, даже если вы заряжаете конденсатор быстрее. В этом процессе экспоненциальной зарядки совсем не интуитивно понятно, что вы все равно потеряете половину энергия превращается в тепло, поэтому эта классическая задача становится прекрасным примером ценности исчисления и интеграла как инженерного инструмента.
Часть интуитивной части, которая входит в настройку интеграла, заключается в том, что получение первого элемента заряда dq на пластинах конденсатора требует гораздо меньше работы, потому что большая часть напряжения батареи падает на сопротивлении R и только крошечная энергия dU = dqV хранится на конденсаторе.Переход к интегралу, который принимает квадратичную форму по q, дает суммарную энергию на конденсаторе Q 2 / 2C = CV b 2 /2 = QV b /2, где V b здесь напряжение аккумулятора. Итак, суть в том, что вам нужно потратить 2 джоуля из батареи, чтобы поместить 1 джоуль на конденсатор, а другой джоуль безвозвратно теряется из-за тепла — 2-й закон термодинамики снова кусает вас, независимо от вашей скорости зарядки. Неинтуитивный характер этой проблемы является причиной ценности интегрального подхода.
Хотя здесь это не будет показано, если вы продолжите решение этой проблемы, сделав сопротивление зарядки настолько малым, что начальный ток зарядки будет чрезвычайно высоким, значительная часть энергии зарядки фактически излучается в виде электромагнитной энергии. Это переступает порог теории антенн, потому что не все потери при зарядке были термодинамическими, но все же потери в процессе составляли половину энергии, поставляемой батареей при зарядке конденсатора.
Таким образом, энергия, поставляемая батареей, равна E = CV b 2 , но только половина энергии находится на конденсаторе — другая половина была потеряна из-за тепла или, в случае с чрезвычайно низким зарядным сопротивлением, из-за нагрева и электромагнитная энергия.
Гигантский конденсатор| Демонстрации лекций Гарвардского естествознания
Что показывает:Основные принципы создания конденсатора с параллельными пластинами большого размера.
Как это работает: Емкость C простого конденсатора с параллельными пластинами определяется соотношением
как отношение величины заряда Q на любом проводе к разности потенциалов между проводниками V или, что то же самое, отношение площади к расстоянию между пластинами, умноженное на диэлектрическую проницаемость. ε.
Этот конденсатор имеет C = 88 пФ для л = 10см.
Конденсатор состоит из двух круглых алюминиевых пластин 0,08 дюйма (2 мм) диаметром 1 м (, рисунок 1). Каждая установлена на прямоугольной трубчатой опоре посредством механически обработанной задней пластины ( рисунок 2). изолированы от стойки с помощью крепежных винтов из тефлона и изолирующего тефлонового листа. Одна пластина прикреплена непосредственно к базовой платформе, а другая прикреплена к деревянному основанию 60 × 30 × 1 см, которое устанавливается на латунных направляющих ящика так, чтобы разделение пластин можно варьировать.Каждая пластина также имеет алюминиевую трубку длиной 3 см, прикрепленную к ее задней части с размером отверстия для приема проводов зажима-банана от электроскопа.
рисунок 1. Конденсатор
Чаще всего демонстрация используется для приложения заряда к пластинам и наблюдения за влиянием различного расстояния между пластинами на напряжение. Подайте заряд с помощью простого химического элемента 1 (клеммы которого можно прикоснуться к пластинам с помощью проводов из крокодиловой кожи) и измерьте напряжение с помощью электрометра с высоким сопротивлением.