Site Loader

Таблица значений конденсаторов, маркировка | Техническая информация

  •  
  • Начало
  • Новости
  • Прайсы
  • DataSheet
  • Отзывы
  • Информация
  • Техническая информация
Поиск товара:   Все разделыМикросхемыТранзисторы    Биполярные транзисторы    Полевые транзисторы    IGBT транзисторыДиоды    Тиристоры    Симисторы    Стабилитроны    Диодные мостыКонденсаторы    Электролитические конденсаторы    Керамические конденсаторы    Пленочные конденсаторыПассивные компоненты    Резисторы    Варисторы    Реле    Трансформаторы    Предохранители    Термопредохранители    Кварцевые резонаторыКнопки, выключатели    Клавишные выключатели    Нажимные кнопки    Тактовые кнопкиРазъемы, соединители    USB, Mini-USB, Micro-USBFFC шлейфы и разъемыАкустикаОптоэлектроника    LED-подсветка TV    Лампы подсветки LCD    Оптопары    Светодиоды    Светодиодная лентаМодули для телевизоров    Тюнеры    Модули LCD TV    Инверторы    Модули Plasma TV    T-CON BoardМодули для мониторовЧасти для ноутбуков    Клавиатуры    Вентиляторы    Разъемы    Инверторы ноутбуковРазличные платыФото-запчасти    Дисплеи    Объективы    Основные платы    Матрицы    Шлейфы    МеханизмыПриборы    МультиметрыИнструмент    Отвертки    Паяльный инструментДругие радиотовары    Пульты ДУ    Панели для микросхем    Термоусадочная трубка    Радиоуправление    Элементы питания    Компьютерные аксессуарыАдаптерыЛазерные головкиУцененный товар    Расширенный

Популярные поиски: BD9897FS TL866CS AS15-F HAKKO 936 TMS91429CT FDD8447L 2SK4075 2SC5707 AXP209

Разделы

Товаров:   0 шт.
На сумму: 0.00 pyб.

Вы здесь: >

Техническая информация

>

Таблица значений конденсаторов, маркировка

2011-06-23

Ёмкость конденсаторов может обозначаться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF), либо кодом. Данная таблица поможет вам разобраться в одинаковых значениях при различных обозначениях и подобрать аналоги для замены.

 

Таблица обозначений конденсаторов
uF (мкФ)nF (нФ)
pF (пФ)
Code (Код)

* более подробную информацию для конкретных серий конденсаторов (DataShet-ы, описание, параметры, технические характеристики, и тд. ) вы сможете найти на сайтах поисковых систем Яндекс или Google.
 
1uF1000nF1000000pF105
0.82uF820nF820000pF824
0.8uF800nF800000pF804
0.7uF700nF700000pF704
0.68uF680nF680000pF684
0.6uF600nF600000pF604
0.56uF560nF560000pF564
0.5uF500nF500000pF504
0.
47uF
470nF470000pF474
0.4uF400nF400000pF404
0.39uF390nF390000pF394
0.33uF330nF330000pF334
0.3uF300nF300000pF304
0.27uF270nF
270000pF
274
0.25uF250nF250000pF254
0.22uF220nF220000pF224
0.2uF200nF200000pF204
0. 18uF180nF180000pF184
0.15uF150nF150000pF154
0.12uF120nF120000pF124
0.1uF100nF100000pF104
0.082uF82nF82000pF823
0.08uF80nF80000pF803
0.07uF70nF70000pF703
0.068uF68nF68000pF683
0.06uF
60nF
60000pF603
0. 056uF56nF56000pF563
0.05uF50nF50000pF503
0.047uF47nF47000pF473
0.04uF40nF40000pF403
0.039uF
39nF
39000pF393
0.033uF33nF33000pF333
0.03uF30nF30000pF303
0.027uF27nF27000pF273
0.025uF25nF25000pF253
0. 022uF22nF22000pF223
0.02uF20nF20000pF203
0.018uF18nF18000pF183
0.015uF15nF15000pF153
0.012uF12nF12000pF123
0.01uF10nF10000pF103
0.0082uF8.2nF8200pF822
0.008uF8nF8000pF802
0.007uF7nF7000pF702
0. 0068uF6.8nF6800pF682
0.006uF6nF6000pF602
0.0056uF5.6nF5600pF562
0.005uF5nF5000pF502
0.0047uF4.7nF4700pF472
0.004uF4nF4000pF402
0.0039uF3.9nF3900pF392
0.0033uF3.3nF3300pF332
0.003uF3nF3000pF302
0.
0027uF
2.7nF2700pF272
0.0025uF2.5nF2500pF252
0.0022uF2.2nF2200pF222
0.002uF2nF2000pF202
0.0018uF1.8nF1800pF182
0.0015uF1.5nF1500pF152
0.0012uF1.2nF1200pF122
0.001uF1nF1000pF102
0.00082uF0.82nF820pF821
0. 0008uF0.8nF800pF801
0.0007uF0.7nF700pF701
0.00068uF0.68nF680pF681
0.0006uF0.6nF600pF621
0.00056uF0.56nF560pF561
0.0005uF0.5nF500pF52
0.00047uF0.47nF470pF471
0.0004uF0.4nF400pF401
0.00039uF0.39nF390pF391
0. 00033uF0.33nF330pF331
0.0003uF0.3nF300pF301
0.00027uF0.27nF270pF271
0.00025uF0.25nF250pF251
0.00022uF0.22nF220pF221
0.0002uF0.2nF200pF201
0.00018uF0.18nF180pF181
0.00015uF0.15nF150pF151
0.00012uF0.12nF120pF121
0. 0001uF0.1nF100pF101
0.000082uF0.082nF82pF820
0.00008uF0.08nF80pF800
0.00007uF0.07nF70pF700
0.000068uF0.068nF68pF680
0.00006uF0.06nF60pF600
0.000056uF0.056nF56pF560
0.00005uF0.05nF50pF500
0.000047uF0.047nF47pF470
0. 00004uF0.04nF40pF400
0.000039uF0.039nF39pF390
0.000033uF0.033nF33pF330
0.00003uF0.03nF30pF300
0.000027uF0.027nF27pF270
0.000025uF0.025nF25pF250
0.000022uF0.022nF22pF220
0.00002uF0.02nF20pF200
0.000018uF0.018nF18pF180
0. 000015uF0.015nF15pF150
0.000012uF0.012nF12pF120
0.00001uF0.01nF10pF100
0.000008uF0.008nF8pF080
0.000007uF0.007nF7pF070
0.000006uF0.006nF6pF060
0.000005uF0.005nF5pF050
0.000004uF0.004nF4pF040
0.000003uF0.003nF3pF030
0. 000002uF0.002nF2pF020
0.000001uF0.001nF1pF010

 

Магазин Dalincom предлагает большой ассортимент конденсаторов — керамические, электролитические, металлопленочные, пусковые, и др, которые вы можете купить в разделе Конденсаторы. Так-же обратите внимание на наше предложение по оптовым поставкам электролитических конденсаторов.

Предыдущая публикация: Замена ламп в LCD-панелях Следующая публикация: LVDS кабели серий FIX и DF

Номиналы электролитических конденсаторов таблица мкф

Существует универсальный измерительный прибор для радиокомпонентов. Может измерять индуктивности, ESR и потери электролитических конденсаторов. Тип деталей определяется автоматически и выводит значения на дисплей. Очень часто для проведения ремонтных работ в электронных устройствах, необходимо иметь в запасе конденсаторы различных номиналов. Так как в магазине зачастую на все случаи жизни приобрести нет возможности, поэтому в большинстве случаев заказываю у китайских товарищей на площадке Aliexpress.


Поиск данных по Вашему запросу:

Номиналы электролитических конденсаторов таблица мкф

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Маркировка конденсаторов
  • Маркировка и расшифровка конденсаторов.
  • Таблица ESR
  • Кодовая и цветовая маркировка конденсаторов
  • Номиналы конденсаторов
  • Как выбрать конденсатор?
  • Маркировка конденсаторов
  • Таблицы цветовой маркировки конденсаторов

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Электролитические конденсаторы. На что они способны

Маркировка конденсаторов


Конденсатором называется система из двух или более проводников обкладок , разделенных диэлектриком, предназначенная для использования ее электрической емкости. Электрическая емкость — способность накапливать на обкладках конденсатора электрический заряд. Если взять две изолированные металлические пластины, расположенные на некотором расстоянии друг от друга, и зарядить их равными разноимёнными зарядами, то на одну из пластин при этом перейдёт некоторый отрицательный заряд добавится некоторое избыточное число электронов , а на другой появится равный ему положительный заряд соответствующее число электронов будет удалено из пластины.

Емкость характеризуется отношением заряда к величине напряжения на обкладках:. Емкость зависит от геометрических размеров обкладок, толщины диэлектрика и его диэлектрической проницаемости. Диэлектрическая проницаемость в свою очередь у конденсаторов постоянной емкости — константа, а у нелинейных конденсаторов — зависит от напряженности электрического поля.

Номинальная емкость — условное значение емкости, полученное на стадии проектирования, указываемое на корпусе электроэлемента или таре. Для справки: емкость Земли составляет мкФ. Промышленностью изготавливаются конденсаторы постоянной емкости от одного пФ до нескольких десятков тысяч мкФ.

Номинальные значения емкости выбираются из рядов Е3, Е6, Е12 и Е Основные конструкции конденсаторов изображены на рисунке 1. Для каждой из них емкость определяется по определенной формуле.

Конструкции конденсаторов : а пластинчатая; б цилиндрическая; в спиральная. Допускаемое отклонение фактической величины от номинальной называется допуском и указывается в процентах или с помощью класса точности, аналогично резисторам. Классы точности и допуски регламентированы ГОСТ Конденсаторы первого класса точности используются в колебательных контурах и в ответственных цепях, а в развязывающих и блокирующих цепях достаточно использовать элементы третьего класса. Электрическая прочность — важный параметр для конденсатора, зависящий от свойств и геометрических размеров диэлектрика.

На корпусе или на упаковке указывается U ном — максимальное обычно постоянное напряжение , под которым при нормальных условиях температура 15…25 C влажность Электрическую прочность характеризуют также:. U раб — напряжение, при котором конденсатор может работать длительное время до 10 тыс.

Для его определения необходимо использовать значение реактивной мощности при заданной емкости и частоте сигнала:. Uисп — напряжение, которое конденсатор может выдержать без пробоя незначительное время от 5 с до 1 мин ;. Величина электрической прочности конденсатора в значительной мере определяется механизмом пробоя диэлектрика. При тепловом характере пробоя повышение температуры, частоты и напряжения снижает электрическую прочность конденсатора. Наличие воздушных включений в диэлектрике и их ионизация под воздействием электрического поля приводит к местному перегреву и к снижению электрической прочности.

Помимо сквозного пробоя может наблюдаться и поверхностный. Для высоковольтных конденсаторов увеличивают закраины и изготавливают их специальной формы. Собственная индуктивность — должна учитываться при использовании конденсаторов в индуктивно-частотных цепях, поскольку конденсаторы обладают кроме емкостного Xс еще активным r и индуктивным сопротивлением Xl Индуктивное сопротивление создается за счет индукции внешних и внутренних соединительных проводников.

Последовательная эквивалентная схема конденсатора изображена на рис. Зависимость полного сопротивления конденсатора от частоты имеет U-образный характер рис. Величина fo в основном зависит от собственной индуктивности конденсатора.

Собственная индуктивность снижается при уменьшении: размеров конденсаторной секции и длины внутренних соединений электроэлемента, длины выводов, а также при увеличении толщины выводов лучше всего выводы, изготовленные в виде лент. На практике для обеспечения работы блокировочных конденсаторов, у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы, в широком диапазоне частот, параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Параметры, характеризующие потери в конденсаторе. При подаче напряжения через диэлектрик конденсатора начинает протекать ток утечки, обусловленный наличием в материале свободных ионов, перемещающихся под действием электрического поля, а также дефектами кристаллической решетки. Ток утечки замеряют после нахождения конденсатора под напряжением в течение одной минуты. Диапазон значений сопротивления изоляции: 10 Оно зависит от температуры и относительной влажности и с повышением этих параметров сопротивление изоляции может уменьшаться на несколько порядков.

Например, у бумажных конденсаторов ток утечки составляет десятые доли мкА, а у слюдяных — единицы мА. Наличие тока утечки является причиной саморазряда конденсатора. Скорость изменения напряжения снижение на выводах конденсатора в процессе саморазряда определяется постоянной времени:.

Для различных типов конденсаторов величина различна. Добротность — величина, обратная тангенсу угла потерь:. На низких частотах определяющими являются потери в диэлектрике, на высоких — в металле.

Потери зависят от температуры, влажности, частоты. Температурная зависимость потерь конденсатора определяется зависимостью потерь диэлектрика от температуры.

С повышением температуры, частоты и влажности потери в диэлектрике и металле увеличиваются, так как возрастают потери на проводимость. Параметры, характеризующие стабильность. Стабильность — это способность элементов сохранять свои первоначальные параметры в пределах, установленных ТУ и ГОСТ при воздействии внешних факторов.

В первую очередь учитывается температура окружающей среды. Изменения, вызываемые колебанием температуры делятся на обратимые и необратимые. Обратимое изменение параметра — это такое, при котором параметр изменяется в соответствии с изменением температуры, а после установления первоначальной температуры параметр возвращается к своему исходному значению.

Такие изменения характеризуются температурным коэффициентом ТК. ТК показывает относительное изменение величины параметра при изменении температуры на 1 градус Цельсия Кельвина :. Конденсаторы с линейной или близкой к ней зависимостью емкости от температуры разделены на группы по ТКЕ табл. Необратимые изменения — изменения при неоднократном воздействии температуры, когда параметр не возвращается к своему исходному значению при возвращении температуры к начальному значению.

Они характеризуются коэффициентом температурной нестабильности КТН. Необратимые изменения свидетельствуют о несовершенстве конструкции элемента, в котором могут возникать остаточные деформации и проявляться механизмы старения. Для сохранения настройки колебательных контуров при работе в широком диапазоне температур используется последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки.

Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура останется практически неизменной. Диэлектрическая абсорбция конденсаторов — явление, заключающееся в появлении напряжения на обкладках конденсатора после кратковременной разрядки конденсатора рис. Обуславливается замедленными процессами поляризации в диэлектрике.

Напряжение Uост зависит от длительности зарядки t1, времени разряда и времени, прошедшего после этих процессов. Абсорбция диэлектрика конденсаторов характеризуется коэффициентом Ка, значения которого минимальны у полистирольных и фторопластовых конденсаторов 0, С повышением температуры окружающей среды значение Ка увеличивается. Параметры, характеризующие надежность. По характеру изменения емкости конденсаторы по аналогии с резисторами делятся на следующие виды: постоянной емкости, переменной емкости и подстроечные.

На электрических схемах в зависимости от вида различается и обозначение конденсаторов см. Обозначение на электрической принципиальной схеме конденсаторов: а — постоянной емкости; б — переменной емкости и подстроечные. Конденсаторы с постоянной емкостью используются как элементы контуров в фильтрах вместе с катушками индуктивности и резисторами, для разделения сигналов, сглаживания колебаний напряжения и для блокировки.

Конденсаторы с переменной емкостью используются при настройке контуров и режимов работы схем при частых регулировка хв процессе работы аппаратуры. Изменение емкости может осуществляться механически, с помощью приложенного напряжения вариконды и варикапы и температуры термоконденсаторы.

Подстроечные конденсаторы используются при подгонке емкости до заданной величины в процессе настройки электронной аппаратуры. Конденсаторы постоянной емкости и подстроечные стандартизованы ГОСТ, а переменной емкости — выпускаются по индивидуальным заказам.

Поскольку электрические свойства и область применения конденсаторов в основном определяется диэлектриком, разделяющим обкладки, то классификация производится по типу диэлектрика. Буквенная кодировка обозначает тип, свойства и конструктивное исполнение конденсатора см. Первый элемент обозначает вид электроэлемента: К — конденсатор постоянной емкости, КП — переменной емкости, КТ — подстроечные.

Второй элемент — число, в котором закодирована группа конденсатора по типу диэлектрика и свойства электроэлемента рассмотрены ниже. По способу монтажа конденсаторы могут быть предназначены для навесного монтажа или печатного. А выводы конденсаторов могут быть жесткие или мягкие; проволочные или ленточные, в виде лепестков, с кабельным вводом, в виде опорных проходных шпилек, опорных винтов и т.

Конденсаторы постоянной емкости в зависимости от применяемого диэлектрика подразделяются на конденсаторы с воздушным и с твердым диэлектриком. Конденсаторы с воздушным диэлектриком обладают большими размерами и высокой стоимостью.

Находят в настоящее время ограниченное применение в контурах мощных радиопередатчиков и в промышленных генераторах высокой частоты ВЧ. В свою очередь конденсаторы с твердым диэлектриком делятся на: конденсаторы с органическим диэлектриком , к которым относится бумага, полистирол, фторопласт и другие органические пленки, нашедшие широкое применение в конденсаторостроении; и конденсаторы с неорганическим диэлектриком , к которым относятся керамика, стекло, стеклокерамика, слюда.

Конденсаторы с органическим диэлектриком изготавливают намоткой тонких длинных лент, а обкладки либо фольговые, либо напыляются. Эта группа конденсаторов обладает пониженной стабильностью параметров, высокими значениями потерь на переменном токе. Исключение составляют конденсаторы, изготовленные на основе неполярных пленок; для этой группы конденсаторов характерны емкости, достигающие нескольких десятков микрофарад.

К низкочастотным пленочным относятся конденсаторы с диэлектриком из полярных и слабополярных пленок: бумажные, металлобумажные, полиэтилентерефталатные, комбинированные, лакопленочные, поликарбонатные и полипропиленовые. Частота работы до 10 5 Гц. К высокочастотным пленочным относятся конденсаторы на основе неполярных пленок: полистирольные и фторопластовые.

Частота работы до 10 7 Гц. В высоковольтных конденсаторах постоянного напряжения используется бумага, полистирол, политетрафторэтилен, полиэтилентерефталат, комбинированный состав. Импульсные высоковольтные конденсаторы производят на основе бумажного и комбинированного диэлектрика, они имеют относительно большое время заряда и малое время разряда. Высоковольтные конденсаторы должны иметь большое сопротивление изоляции и возможность быстро разряжаться. Помехоподавляющие конденсаторы предназначены для ослабления электромагнитных помех в широком спектре частот.

Они обладают малой собственной индуктивностью, из-за чего повышается резонансная частота и полоса подавляемых частот. Диэлектрик в таких конденсаторах бумажный, пленочный или комбинированный. Дозиметрические конденсаторы работают с низким уровнем токовых нагрузок, но они должны обладать малым саморазрядом, большим сопротивлением изоляции, а, следовательно, большой величиной постоянной времените.

Пусковые конденсаторы используются в асинхронных двигателях, в которых конденсатор используется только в момент пуска двигателя.


Маркировка и расшифровка конденсаторов.

Маркировка конденсаторов. Маркировка тремя цифрами. В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Маркировка четырьмя цифрами. Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Буквенно-цифровая маркировка. При такой маркировке буква указывает на десятичную запятую и обозначение мкФ, нФ, пФ , а цифры — на значение емкости:.

Подстроечные конденсаторы применяются для настройки резонансных цепей в На корпусе обозначается емкость и ТКЕ (таблица 2.) . Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью невысокими значениями емкости (как правило, не более мкФ).

Таблица ESR

В данной статье речь пойдет об определении параметров конденсатора по таблицам цветовой маркировки конденсаторов. Цветовая маркировка конденсаторов содержит сокращенное обозначение параметров конденсатора и может быть представлена в виде полос, колец или точек. При этом возможно сочетание двух колец и точки, указывающий на множитель. При пяти метках цвет корпуса указывает на значение рабочего напряжения. В зависимости от технологий, которыми обладает фирма, диапазон температуры может быть другим. Буквенный код указан в таблице соответствии с EIA. Рассмотрим на примере как использовать представленные таблицы цветовой маркировки для определения параметров конденсаторов.

Кодовая и цветовая маркировка конденсаторов

Конденсаторы являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы. Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока.

Электрические конденсаторы являются средством накопления электроэнергии в электрическом поле.

Номиналы конденсаторов

Номиналы конденсаторов очень похожи на номиналы резисторов. Наиболее часто используемые ряды при производстве конденсаторов — ряд Е3 и рад Е6, так как многие типы конденсаторов сложно изготовить с большой точностью. Чтобы производить реальный диапазон конденсаторов, необходимо увеличивать шаг между номиналами ёмкостей по мере их увеличения. Стандартные ряды конденсаторов основаны на этой идее и их значения похожи в каждом интервале, кратном десяти. Ряд Е3 3 значения в каждом интервале, кратном десяти 10, 22, 47,

Как выбрать конденсатор?

Ёмкость конденсаторов может обозначаться в микрофарадах uF , нанофарадах nF , пикофарадах pF , либо кодом. Данная таблица поможет вам разобраться в одинаковых значениях при различных обозначениях и подобрать аналоги для замены. Магазин Dalincom предлагает большой ассортимент конденсаторов — керамические, электролитические, металлопленочные, пусковые, и др, которые вы можете купить в разделе Конденсаторы. Так-же обратите внимание на наше предложение по оптовым поставкам электролитических конденсаторов. Корзина Вход в аккаунт Пользовательское соглашение. FFC шлейфы и разъемы. Модули для мониторов.

Способы маркировки различных конденсаторов, в том числе SMD. показатель степени по основанию 10, для получения номинала в пикофарадах. Электролитические SMD конденсаторы маркируются двумя способами: по таблице «A» — напряжение 10В, — это 10* пФ = 1 мкФ.

Маркировка конденсаторов

Номиналы электролитических конденсаторов таблица мкф

Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин — пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение. Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов.

Таблицы цветовой маркировки конденсаторов

ВИДЕО ПО ТЕМЕ: Как определить емкость конденсатора по маркировке .

Вторым незаменимым элементом в электрических схемах является конденсатор. Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Как известно, причиной подавляющего большинства дефектов радиоэлектронной аппаратуры является неисправные электролитические конденсаторы. Поиск неисправных конденсаторов с помощью тестера или измерителя порой довольно затруднителен, так как емкость неисправного конденсатора может незначительно отличаться от номинальной, а значение ESR эквивалентного последовательного сопротивления может быть довольно большим.

Информация содержит все, необходимые для подбора компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию радиоэлементов. Допуски Температурный коэффициент емкости ТКЕ Конденсаторы с ненормируемым ТКЕ Конденсаторы с линейной зависимостью от температуры Конденсаторы с нелинейной зависимостью от температуры Кодовая маркировка Кодовая маркировка электролитических конденсаторов для поверхностного монтажа Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI». В соответствии с требованиями Публикаций 62 и IEC для конденсаторов установлены следующие допуски и их кодировка:. Реальное значение конденсатора с маркировкой J 0. Второй цвет может быть представлен цветом корпуса. Цветные полоски или точки.

Конденсатором называется система из двух или более проводников обкладок , разделенных диэлектриком, предназначенная для использования ее электрической емкости. Электрическая емкость — способность накапливать на обкладках конденсатора электрический заряд. Если взять две изолированные металлические пластины, расположенные на некотором расстоянии друг от друга, и зарядить их равными разноимёнными зарядами, то на одну из пластин при этом перейдёт некоторый отрицательный заряд добавится некоторое избыточное число электронов , а на другой появится равный ему положительный заряд соответствующее число электронов будет удалено из пластины. Емкость характеризуется отношением заряда к величине напряжения на обкладках:.


электролитических конденсаторов последовательно | diyAudio

Статус
Эта старая тема закрыта. Если вы хотите повторно открыть эту тему, свяжитесь с модератором, нажав кнопку «Пожаловаться».

Перейти к последнему

#1