Site Loader

Содержание

Маркировка smd резисторов калькулятор. Маркировка SMD резисторов

Маркировка резисторов

Простой калькулятор расчёта номинала резистора по цветам.

Кликая мышкой по цветам в таблице, раcкрашиваем резистор полосками.

В итоге получаем номинал и допуск нужного нам резистора.

Первая полоса, от которой ведётся отсчёт, обычно более широкая или находится ближе к выводу резистора.

Маркировка резисторов SMD

Прежде всего следует обратить внимание на относительно новый и не всем знакомый стандарт маркировки EIA-96, который состоит из трёх символов — двух цифр и буквы. Компактность написания компенсируется неудобством расшифровки кода с помощью таблицы.

Трёхсимвольная маркировка EIA96

Кодировка планарных элементов (SMD) в стандарте EIA-96 предусматривает определение номинала из трёх символов маркировки для прецизионных (высокоточных) резисторов с допуском 1%.
Первые две цифры — код номинала от 01 до 96 соответствует числу номинала от

100 до 976 согласно таблице.
Третий символ — буква — код множителя. Каждая из букв X , Y , Z , A , B , C , D , E , F , H , R , S соответствует множителю согласно таблице.
Номинал резистора определится произведением числа и множителя.
Принцип расшифровки кодов SMD резисторов стандартов E24 и E48 значительно проще, не требует таблиц и описан отдельно ниже.
Предлагается онлайн калькулятор для раскодировки резисторов EIA-96 , E24 , E48 .

Трёхсимвольная маркировка E24. Допуск 5%

Маркировка из трёх цифр. Первые две цифры — число номинала.
Третья цифра — десятичный логарифм множителя.

0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100, множитель 100.
3=lg1000, множитель 1000.

В данной статье используйте окно калькулятора выше, что и для EIA-96.

Четырёхсимвольная маркировка E48. Допуск 2%

Маркировка состоит из четырёх цифр. Первые три цифры — число номинала.
Четвёртая цифра — десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100; Множитель 100.
3=lg1000, множитель 1000.
И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
Можно использовать окно ввода ниже (только для E48 ), либо вводить 4 цифры в общее верхнее окно.

Введите код SMD резистора E48 .

Впишите код стандарта EIA-96 , либо 3 цифры E24 , либо 4 цифры E48

Сопротивление:


Таблица EIA-96

КодЧислоКодЧислоКодЧислоЧислоЧисло
01100251784931673562
02102261825032474576
03105271875133275590
04107281915234076604
05110291965334877619
06113302005435778634
07115312055536579649
08118322105637480665
09121332155738381681
1012434
221
5839282698
11127352265940283715
12130362326041284732
13133372376142285750
14137382436243286768
15140392496344287787
16143402556445388806
17147412616546489825
18150422676647590845
19154432746748791866
20158442806849992887
21162452876951193909
22165462947052394931
23169473017153695953
24174483097254996976

Цветовая маркировка резисторов ,калькулятор резистора ,калькулятор smd резисторов,калькулятор резистора по цыетовым полоскам.

Опубліковано 17.05.2011

SMD-резисторы

SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска.

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для определения номинала резистора в Омах. При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка

513 означает, что резистор имеет номинал 51×10 3 Ом = 51 КОм.

Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для задания номинала резистора в Омах. Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750×10 1 Ом = 7.5 КОм.

Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква – показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка

10C означает, что резистор имеет номинал 124×10 2 Ом = 12.4 КОм.

КодЗначениеКодЗначениеКодЗначениеКодЗначение
01100131332517837237
02102141372618238243
03105151402718739249
04107161432819140255
05110171472919641261
06113181503020042267
07115191543120543274
08118201583221044280
09121211623321545287
10124221653422146294
11127231693522647301
12130241743623248309
S10 -2R10 -1A10 0B10 +1
КодЗначениеКодЗначениеКодЗначениеКодЗначение
49316614227356285750
50324624327457686768
51332634427559087787
52340644537660488806
53348654647761989825
54357664757863490845
55365674877964991866
56374
68
4998066592887
57383695118168193909
58392705238269894931
59402715368371595953
60412725498473296976
C10 +2D10 +3E10 +4F10 +5

Перемычки и резисторы с нулевым сопротивлением

Многие фирмы выпускают в качестве плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и
резисторы с “нулевым” сопротивлением. Резисторы выполняются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в стандартном корпусе для
поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких резисторов лежат в диапазоне единиц или десятков миллиом (~ 0.005…0.05 Ом). В цилиндрических
корпусах маркировка осуществляется черным кольцом посередине, в корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировка обычно отсутствует либо наносится код “000” (возможно “0”).

Для начала, нужно отметить, маркировка на чип резисторах 0402-ого корпуса просто отсутствует, маркировка smd резисторов, имеющих другие типоразмеры, отличные от 0402-ого производиться так, как описывается далее.

Если SMD резисторы обладают допуском сопротивления 2%, 5% либо 10%, то они маркируются тремя цифрами: первая и вторая цифры – это обозначение мантиссу, цифра номер три является степенью под десятичное основание, следовательно — получим сопротивление резистора.

Например, резистор обладает кодом 452. Сочетание первых двух цифр «45» является мантиссой, а 2 — степенью, в результате получим 45 * 10² = 4,5 кОм

Бывает, что кроме цифровой маркировки на резисторах наносят латинскую букву R – которая, как бы, дополнительный множитель и служит, чтобы обозначать десятичную точку.

Маркировка SMD резисторов, типоразмеры которых более 0805, и обладающих точностью 1% производиться при помощи четырехзначного кода: комбинация первых трех цифр является обозначением мантиссу, а четвертый символ является степенью под десятичное основание. В результате, как и в описанном ранее варианте, получаем сопротивление резистора. Данный код тоже может содержать букву R, чтобы обозначить десятичную точку.

К примеру, резистор имеет код 4501. Сочетание первых трех цифр «450» — это обозначение мантиссу, а «1» является степенью, в результате получим 450 * 10 = 4,5 кОм.

Маркировка SMD резисторов, имеющих допуск в 1% и типоразмер 0603 производиться с использованием таблицы, которая располагается далее, при помощи двух цифр и буквы. Комбинация цифр является кодом, который помогает выбрать в таблице мантиссу, а буквой обозначают значение множителя, имеющего десятичное основание. В результате получим сопротивление.


К примеру, резистор обладает кодом 14R – комбинация первых двух цифр 14 – является кодом для таблицы, из которой видно, что требуемое число — это 137, а R – это десятка в первой степени, в результате получим 137 * 10 = 13,7 Ом

Цветовая маркировка резисторов

Резисторы и конденсаторы в SMD исполнении маркируются трех буквенным кодом, редко — четырех буквенным.
В коде первая и вторая цифры указывают на первое и второе число, а третья цифра — множитель. Цифра в множителе соответствует степени множителя.

SMD резисторы маркируются в Ом-ах, а конденсаторы в пикоФарадах.

К примеру.

резистор с обозначением 101 — первая цифра — 1, вторая — 0, множитель — х10 1 . Получаем 100 Ом.

Резистор с обозначением 473 — первая цифра — 4, вторая — 7, множитель — х10 3 . Получаем 47000 Ом или 47 кОм.

Резистор с обозначением 225 — первая цифра — 2, вторая — 2, множитель — х10 5 . Получаем 2200000 Ом или 2.2 мОм.

Некоторые производители используют буквы K и M для обозначения множителя.

При такой маркировке резисторы могут маркироваться более привычным способом, к примеру.

Маркировка резистора — 47K, указывает на сопротивление в 47 кОм

Маркировка 3K3 — указывает на сопротивление 3,3 кОм

Маркировка М27 — Указывает на сопротивление 0,27 мОм или 270 кОм.

Сопротивления резисторов менее 100 Ом маркируются при помощи буквы R или E. К примеру.

Резистор сопротивлением 27 Ом будет маркироваться как 27R или R27, редко E27.

Так же есть резисторы с нулевым сопротивлением или перемычки, они маркируются цифрой — 0

Типоразмер SMD резисторов и конденсаторов обозначается 4-мя цифрами (см. таблицу). Первая пара цифр обозначает длинну элемента, а вторая пара — ширину. В маркировке принято обозначать элементы в дюймах.

Расшифровка маркировки конденсаторов не отличается от резисторов, за исключением того, что результат мы получаем в пФ.

На практике SMD конденсаторы часто встречаются вообще без маркировки, за исключением электролитических SMD конденсаторов.

Devices) в переводе с английского означает «прибор, монтируемый на поверхность». SMD-компоненты в десятки раз меньше по размерам и массе, чем традиционные детали, благодаря этому достигается более высокая плотность их монтажа на устройств. В наше время электроника развивается огромными темпами, одно из направлений — это уменьшение габаритных размеров и веса приборов. SMD-компоненты — благодаря своим размерам, дешевизне, высокому качеству — получили огромное распространение и все больше вытесняют классические элементы с проволочными выводами.

На фото ниже представлены SMD-резисторы, размещенные на печатной плате. Можно увидеть, что, благодаря малым размерам элементов достигнута высокая плотность монтажа. Обычные детали вставляются в специальные отверстия в плате, а SMD-резисторы припаиваются к расположенным на поверхности печатной платы контактным дорожкам (пятачкам), что тоже упрощает разработку и сборку радиоэлектронных приборов. Благодаря возможности навесного монтажа радиокомпонентов стало возможным изготавливать печатные платы не только двухсторонними, но и многослойными, внешне напоминающими слоеный пирог.

В промышленном производстве пайка SMD-компонентов производится следующим методом: на контактные дорожки платы наносится специальная паяльная термопаста (флюс, перемешанный с порошком припоя), после чего робот располагает в нужные места элементы, в том числе и SMD-резисторы. Детали прилипают к затем плата помещается в специальную печь, где ее нагревают до необходимой температуры, при которой плавится припой в пасте, испаряется флюс. Таким образом детали встают на место. После этого печатную плату вынимают из печи и охлаждают.


Для пайки компонентов типа SMD в домашних условиях понадобятся следующие инструменты: пинцет, шило, кусачки, увеличительное стекло, шприц с толстой иглой, паяльник с тонким жалом, термовоздушная паяльная станция. Из расходных материалов нужны припой, жидкий флюс. Желательно, конечно же, использовать но если у вас ее нет, можно обойтись и паяльником. При пайке главное — не допустить перегрева элементов и печатной платы. Для того чтобы элементы не сдвигались и не липли к жалу паяльника, их следует придавливать к плате иглой.

SMD-резисторы представлены довольно в широком диапазоне номинальных значений: от одного Ома до тридцати мегаОм. Температурный режим работы таких резисторов колеблется от -550°C до +1250°C. Мощность SMD-резисторов достигает 1 Вт. При увеличении мощности увеличиваются Например, резисторы SMD мощностью 0,05 Вт имеет габаритные размеры 0,6*0,3*0,23 мм, а мощностью 1 Вт — 6,35*3,2*0,55 мм.


Маркировка таких резисторов бывает трех типов: с тремя цифрами, с четырьмя цифрами и с тремя символами:

Первые две цифры указывают значение в Ом, а последняя — количество нулей. Например, маркировка на резисторе 102 означает 1000 Ом или 1кОм.

Первые три цифры на резисторе указывают на значение номинала в Ом, а последняя — количество нулей. Например, маркировка на резисторе 5302 означает 53 кОм.

Первые два символа на резисторе указывают на значение номинала в Ом, взятые из таблицы, приведенной выше, а последний символ указывает на значение множителя: S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105. Например, маркировка на резисторе 11С означает 12,7 кОм.

Цифровой код смд резисторов онлайн. SMD-резисторы: описание, маркировка

Для начала, нужно отметить, маркировка на чип резисторах 0402-ого корпуса просто отсутствует, маркировка smd резисторов, имеющих другие типоразмеры, отличные от 0402-ого производиться так, как описывается далее.

Если SMD резисторы обладают допуском сопротивления 2%, 5% либо 10%, то они маркируются тремя цифрами: первая и вторая цифры – это обозначение мантиссу, цифра номер три является степенью под десятичное основание, следовательно — получим сопротивление резистора.

Например, резистор обладает кодом 452. Сочетание первых двух цифр «45» является мантиссой, а 2 — степенью, в результате получим 45 * 10² = 4,5 кОм

Бывает, что кроме цифровой маркировки на резисторах наносят латинскую букву R – которая, как бы, дополнительный множитель и служит, чтобы обозначать десятичную точку.

Маркировка SMD резисторов, типоразмеры которых более 0805, и обладающих точностью 1% производиться при помощи четырехзначного кода: комбинация первых трех цифр является обозначением мантиссу, а четвертый символ является степенью под десятичное основание. В результате, как и в описанном ранее варианте, получаем сопротивление резистора. Данный код тоже может содержать букву R, чтобы обозначить десятичную точку.

К примеру, резистор имеет код 4501. Сочетание первых трех цифр «450» — это обозначение мантиссу, а «1» является степенью, в результате получим 450 * 10 = 4,5 кОм.

Маркировка SMD резисторов, имеющих допуск в 1% и типоразмер 0603 производиться с использованием таблицы, которая располагается далее, при помощи двух цифр и буквы. Комбинация цифр является кодом, который помогает выбрать в таблице мантиссу, а буквой обозначают значение множителя, имеющего десятичное основание. В результате получим сопротивление.


К примеру, резистор обладает кодом 14R – комбинация первых двух цифр 14 – является кодом для таблицы, из которой видно, что требуемое число — это 137, а R – это десятка в первой степени, в результате получим 137 * 10 = 13,7 Ом

Цветовая маркировка резисторов

Опубліковано 17.05.2011

SMD-резисторы

SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска.

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для определения номинала резистора в Омах. При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка 513 означает, что резистор имеет номинал 51×10 3 Ом = 51 КОм.

Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для задания номинала резистора в Омах. Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750×10 1 Ом = 7.5 КОм.

Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква – показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10C означает, что резистор имеет номинал 124×10 2 Ом = 12.4 КОм.

КодЗначениеКодЗначениеКодЗначениеКодЗначение
01100131332517837237
02102141372618238243
03105151402718739249
04107161432819140255
05110171472919641261
06113181503020042267
07115191543120543274
08118201583221044280
09121211623321545287
10124221653422146294
11127231693522647301
12130241743623248309
S10 -2R10 -1A10 0B10 +1
КодЗначениеКодЗначениеКодЗначениеКодЗначение
49316614227356285750
50324624327457686768
51332634427559087787
52340644537660488806
53348654647761989825
54357664757863490845
55365674877964991866
56374684998066592887
57383695118168193909
58392705238269894931
59402715368371595953
60412725498473296976
C10 +2D10 +3E10 +4F10 +5

Перемычки и резисторы с нулевым сопротивлением

Многие фирмы выпускают в качестве плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и
резисторы с “нулевым” сопротивлением. Резисторы выполняются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в стандартном корпусе для
поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких резисторов лежат в диапазоне единиц или десятков миллиом (~ 0.005…0.05 Ом). В цилиндрических
корпусах маркировка осуществляется черным кольцом посередине, в корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировка обычно отсутствует либо наносится код “000” (возможно “0”).

Резисторы и конденсаторы в SMD исполнении маркируются трех буквенным кодом, редко — четырех буквенным.
В коде первая и вторая цифры указывают на первое и второе число, а третья цифра — множитель. Цифра в множителе соответствует степени множителя.

SMD резисторы маркируются в Ом-ах, а конденсаторы в пикоФарадах.

К примеру.

резистор с обозначением 101 — первая цифра — 1, вторая — 0, множитель — х10 1 . Получаем 100 Ом.

Резистор с обозначением 473 — первая цифра — 4, вторая — 7, множитель — х10 3 . Получаем 47000 Ом или 47 кОм.

Резистор с обозначением 225 — первая цифра — 2, вторая — 2, множитель — х10 5 . Получаем 2200000 Ом или 2.2 мОм.

Некоторые производители используют буквы K и M для обозначения множителя.

При такой маркировке резисторы могут маркироваться более привычным способом, к примеру.

Маркировка резистора — 47K, указывает на сопротивление в 47 кОм

Маркировка 3K3 — указывает на сопротивление 3,3 кОм

Маркировка М27 — Указывает на сопротивление 0,27 мОм или 270 кОм.

Сопротивления резисторов менее 100 Ом маркируются при помощи буквы R или E. К примеру.

Резистор сопротивлением 27 Ом будет маркироваться как 27R или R27, редко E27.

Так же есть резисторы с нулевым сопротивлением или перемычки, они маркируются цифрой — 0

Типоразмер SMD резисторов и конденсаторов обозначается 4-мя цифрами (см. таблицу). Первая пара цифр обозначает длинну элемента, а вторая пара — ширину. В маркировке принято обозначать элементы в дюймах.

Расшифровка маркировки конденсаторов не отличается от резисторов, за исключением того, что результат мы получаем в пФ.

На практике SMD конденсаторы часто встречаются вообще без маркировки, за исключением электролитических SMD конденсаторов.

Маркировка резисторов

Простой калькулятор расчёта номинала резистора по цветам.

Кликая мышкой по цветам в таблице, раcкрашиваем резистор полосками.

В итоге получаем номинал и допуск нужного нам резистора.

Первая полоса, от которой ведётся отсчёт, обычно более широкая или находится ближе к выводу резистора.

Маркировка резисторов SMD

Прежде всего следует обратить внимание на относительно новый и не всем знакомый стандарт маркировки EIA-96, который состоит из трёх символов — двух цифр и буквы. Компактность написания компенсируется неудобством расшифровки кода с помощью таблицы.

Трёхсимвольная маркировка EIA96

Кодировка планарных элементов (SMD) в стандарте EIA-96 предусматривает определение номинала из трёх символов маркировки для прецизионных (высокоточных) резисторов с допуском 1%.
Первые две цифры — код номинала от 01 до 96 соответствует числу номинала от 100 до 976 согласно таблице.
Третий символ — буква — код множителя. Каждая из букв X , Y , Z , A , B , C , D , E , F , H , R , S соответствует множителю согласно таблице.
Номинал резистора определится произведением числа и множителя.
Принцип расшифровки кодов SMD резисторов стандартов E24 и E48 значительно проще, не требует таблиц и описан отдельно ниже.
Предлагается онлайн калькулятор для раскодировки резисторов EIA-96 , E24 , E48 .

Трёхсимвольная маркировка E24. Допуск 5%

Маркировка из трёх цифр. Первые две цифры — число номинала.
Третья цифра — десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100, множитель 100.
3=lg1000, множитель 1000.

В данной статье используйте окно калькулятора выше, что и для EIA-96.

Четырёхсимвольная маркировка E48. Допуск 2%

Маркировка состоит из четырёх цифр. Первые три цифры — число номинала.
Четвёртая цифра — десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100; Множитель 100.
3=lg1000, множитель 1000.
И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
Можно использовать окно ввода ниже (только для E48 ), либо вводить 4 цифры в общее верхнее окно.

Введите код SMD резистора E48 .

Впишите код стандарта EIA-96 , либо 3 цифры E24 , либо 4 цифры E48

Сопротивление:


Таблица EIA-96

КодЧислоКодЧислоКодЧислоЧислоЧисло
01100251784931673562
02102261825032474576
03105271875133275590
04107281915234076604
05110291965334877619
06113302005435778634
07115312055536579649
08118322105637480665
09121332155738381681
10124342215839282698
11127352265940283715
12130362326041284732
13133372376142285750
14137382436243286768
15140392496344287787
16143402556445388806
17147412616546489825
18150422676647590845
19154432746748791866
20158442806849992887
21162452876951193909
22165462947052394931
23169473017153695953
24174483097254996976

Цветовая маркировка резисторов ,калькулятор резистора ,калькулятор smd резисторов,калькулятор резистора по цыетовым полоскам.

Devices) в переводе с английского означает «прибор, монтируемый на поверхность». SMD-компоненты в десятки раз меньше по размерам и массе, чем традиционные детали, благодаря этому достигается более высокая плотность их монтажа на устройств. В наше время электроника развивается огромными темпами, одно из направлений — это уменьшение габаритных размеров и веса приборов. SMD-компоненты — благодаря своим размерам, дешевизне, высокому качеству — получили огромное распространение и все больше вытесняют классические элементы с проволочными выводами.

На фото ниже представлены SMD-резисторы, размещенные на печатной плате. Можно увидеть, что, благодаря малым размерам элементов достигнута высокая плотность монтажа. Обычные детали вставляются в специальные отверстия в плате, а SMD-резисторы припаиваются к расположенным на поверхности печатной платы контактным дорожкам (пятачкам), что тоже упрощает разработку и сборку радиоэлектронных приборов. Благодаря возможности навесного монтажа радиокомпонентов стало возможным изготавливать печатные платы не только двухсторонними, но и многослойными, внешне напоминающими слоеный пирог.

В промышленном производстве пайка SMD-компонентов производится следующим методом: на контактные дорожки платы наносится специальная паяльная термопаста (флюс, перемешанный с порошком припоя), после чего робот располагает в нужные места элементы, в том числе и SMD-резисторы. Детали прилипают к затем плата помещается в специальную печь, где ее нагревают до необходимой температуры, при которой плавится припой в пасте, испаряется флюс. Таким образом детали встают на место. После этого печатную плату вынимают из печи и охлаждают.


Для пайки компонентов типа SMD в домашних условиях понадобятся следующие инструменты: пинцет, шило, кусачки, увеличительное стекло, шприц с толстой иглой, паяльник с тонким жалом, термовоздушная паяльная станция. Из расходных материалов нужны припой, жидкий флюс. Желательно, конечно же, использовать но если у вас ее нет, можно обойтись и паяльником. При пайке главное — не допустить перегрева элементов и печатной платы. Для того чтобы элементы не сдвигались и не липли к жалу паяльника, их следует придавливать к плате иглой.

SMD-резисторы представлены довольно в широком диапазоне номинальных значений: от одного Ома до тридцати мегаОм. Температурный режим работы таких резисторов колеблется от -550°C до +1250°C. Мощность SMD-резисторов достигает 1 Вт. При увеличении мощности увеличиваются Например, резисторы SMD мощностью 0,05 Вт имеет габаритные размеры 0,6*0,3*0,23 мм, а мощностью 1 Вт — 6,35*3,2*0,55 мм.


Маркировка таких резисторов бывает трех типов: с тремя цифрами, с четырьмя цифрами и с тремя символами:

Первые две цифры указывают значение в Ом, а последняя — количество нулей. Например, маркировка на резисторе 102 означает 1000 Ом или 1кОм.

Первые три цифры на резисторе указывают на значение номинала в Ом, а последняя — количество нулей. Например, маркировка на резисторе 5302 означает 53 кОм.

Первые два символа на резисторе указывают на значение номинала в Ом, взятые из таблицы, приведенной выше, а последний символ указывает на значение множителя: S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105. Например, маркировка на резисторе 11С означает 12,7 кОм.

Код резистора SMD — Калькулятор для Андроид

Приложение представляет собой простой в использовании калькулятор SMD-кода для расчета сопротивления резистора. Приложение поддерживает трехзначные, четырехзначные и EIA-96 системы кодирования.

Резистор
Резистор — это компонент, который используется в электрических цепях для ограничения тока. Сопротивление резистора измеряется в Омах (Ом). Когда ток (I) одного Ампера проходит через резистор с падением напряжения (U) на один Вольт, сопротивление резистора (R) соответствует одному Ом. Это соотношение представлено законом Ома: R = U ÷ I.

SMD-код
Коды на резисторах SMD определяют сопротивление резистора. Существует несколько систем кодирования, определяющих сопротивление резистора: 3-значное, 4-значное и EIA-96. Далее описывается значение каждой системы кодирования.

3-х цифр
В системе 3-значного кодирования первые два числа указывают значащие цифры, где третья цифра указывает множитель. Множитель указывает, сколько нулей необходимо добавить к двум значащим цифрам. Если сопротивление меньше 10 Ом, буква R используется для обозначения положения десятичной точки. Далее приведено несколько примеров.

340 = 34 Ω
781 = 780 Ω
202 = 2000 Ω или 2 КΩ
5R5 = 5,5 Ω

4 цифры
Система кодирования из 4 цифр очень похожа на систему кодирования из 3 цифр. В системе кодирования из 4 цифр первые три цифры обозначают значащие цифры, где четвертая цифра указывает множитель. Множитель указывает, сколько нулей необходимо добавить к трем значащим цифрам. Если сопротивление меньше 100 Ом, буква R используется для обозначения положения десятичной точки. Далее приведено несколько примеров.

9100 = 910 Ω
2204 = 2,2 МΩ
0R10 = 0,1 Ω

EIA-96
Система кодирования EIA-96 состоит из трех символов. Первые два символа являются цифрами, что соответствует 3 значащим цифрам сопротивления согласно справочной таблице. Третий символ — это буква, обозначающая коэффициент умножения сопротивления. Далее приведено несколько примеров.

40А = 255 Ω
12E = 1,3 МΩ
52F = 34 МΩ

Маркировка чип резисторов онлайн калькулятор

Калькулятор SMD-резисторов – это онлайн-программа, позволяющая определить маркировку постоянного резистора, использующегося в рамках поверхностного монтажа. Такие устройства отличаются мощностью и пределом погрешности, поэтому имеют различную маркировку, и при выборе необходимо знать, какая именно модель подойдет для конкретной цели.

Если раньше для определения маркировки использовали специальные таблицы, то теперь можно применять онлайн-программу, имеющую множество преимуществ: достаточно указать в соответствующем поле значение сопротивления, и калькулятор выведет значение цифровой маркировки резистора, данные, которые выдает программа, основаны на официально принятых таблицах.

Такие устройства имеют сравнительно небольшие габариты, поэтому почти все модели маркируются цифробуквенным сочетанием. Значение зависит от типоразмера и показателя допуска:

так, резисторы с погрешностью в пределах 2-10% имеют маркировку из 3 цифр, из которых две первые служат для обозначения мантиссы, а последний знак указывает на степень с десятичным основанием. Готовое значение указывается в Омах.

Для наглядности можно рассмотреть следующие примеры:
• Если резистор имеет код 473, первые цифры указывают на значение мантиссы, а 3 – это степень, в которую нужно возвести 10. Иными словами, резистор с маркировкой 473 = 47 * 103 = 47 кОм.
• Если устройство имеет 4-значную маркировку, например, 5102, это значит, что его значение составляет 510 * 102 = 51 кОм. Такие значения могут быть у моделей с малым показателем сопротивления, их типоразмер начинается от 0805, а допуск составляет 1%. В них первые три знака указывают на мантиссу.

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

Маркировка EIA-96

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

38 комментариев

Спасибо, очень удобный справочник.

Спасибо Вам за прекрасную и необходимую работу!

Полезная информация.Просто,удобно и понятно.Спасибо!

Все бы ничего, почему калькулятор не считаетв EIA?

Вроде все считает..

Буковку «С» нужно ввести после номинала

Доброго всем дня. На резисторе (СМД) написанно Е22 измерить не получается ,так как корозия уничтожила выводы. Стоит в десеке (переключатель спутниковых конвертеров) Прочитал только под микроскопом очень маленький размер. На глаз длинна не более 1,5мм. Подскажите кто силён.

На обычных резисторах этот номинал означает 22 Ома

Привет, а не могли бы сжато написать если не трудно: что такое смд резистор, его предназначение, сколько минимально ом и сколько максимально? Просто я только начал пытаться учить смд компоненты и сейчас тяжело усваиваю инфу, мне нужно сжато суть выучить смд резисторы, диоы и кандеры, что это, предназначение их, мощность мин и макс и как прозваниваются!

смд — маленький, без проводков, на плату сразу припаивать к дорожкам
предназначение — Сопротивляться прохождению тока (от ангельского Резист — Сопротивление)
минимально — Ноль (0) Ом (без приставки Омы — маленькое значение)
Максимально — Сколько повезёт (ххх) МегаОм (приставка Кило — среднее значение)

Прозванивается мультиметром на режиме Ʊ после предварительного замыкания измерительных контактов (эту цифру вычесть из измеренного сопротивления резистора). Измеренное значение Ноль при цифрах на маркировке говорит о коротком замыкании резистора внутри (сгорел). Сменой режима мультиметра можно найти нужный диапазон измерения, чтобы увидеть точное значение. Небольшое отличие от написанного номинала допустимо. Если на всех пределах показывает превышение предела — значит резистор в обрыве (сгорел). Как проводить измерения — написано в инструкции к измерительному прибору. Как работает сопротивление — описано в учебнике по физики, раздел про Закон Ома. Остальные компоненты также имеются в физике. Книга небольшая, прочитать можно один раз и потом на столе держать как справочник.

SMD-резисторы стали незаменимым компонентом в работе современных электронных устройств. За счет небольших размеров они легко помещаются на печатных платах и обеспечивают компактность всего блока. Но в случае сборки каких-либо схем с SMD-резисторами своими руками, многие радиолюбители сталкиваются со сложностью определения номинального сопротивления деталей. Для этого необходимо расшифровать маркировку элемента.

Всего выделяют четыре типа маркировки, в соответствии с которой определяются параметры резистора:

  • Обозначение из трех цифр – первые две из них обозначают числовое значение, а третья указывает на количество нулей после первых двух. К примеру, если маркировка 442, то сопротивление SMD-резистора составит 44, к которым добавляется 2 нуля = 4400 Ом.
  • Обозначение из четырех цифр – как и в предыдущем варианте, первые три из них – это числовое значение, а четвертая указывает на количество нулей, которые следует добавить к первым трем. К примеру, обозначение 2551, здесь к числу 255 необходимо добавить 1 ноль = 2550 Ом.
  • Обозначение из цифр с разделительной буквой R – здесь латинская буква R обозначает место установки запятой, после которой идет дробное значение сопротивления. К примеру, 10R5, означает, что сопротивление такого резистивного элемента составляет 10,5 Ом.
  • Буквенно-цифровая маркировка с приставкой EIA – параметры таких SMD-резисторов определяются по данным таблицы в соответствии с шифром.

Определение сопротивления резисторов

Для определения значения сопротивления необходимо по коду резистора определить его сопротивление. К примеру, для EIA – 75 по его коду в таблице 75 сопротивление составит 590 Ом. Если не хотите работать с таблицами, то можете воспользоваться нашим онлайн калькулятором ниже.

Маркировка SMD резисторов – как прочитать номинал SMD резистора


В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов – SMD резистор.

Трехзначный код

Наиболее простыми для чтения являются SMD резисторы, которые содержат 3-значный цифровой код. У них первые две цифры — это числовое значение, а третья цифра — множитель, то есть количество нулей, которое мы должны добавить к значению.

Давайте рассмотрим это на примере:

Резистор с кодом 472 имеет сопротивление 4700 Ом или 4,7 кОм, так как к числу «47» (первые две цифры) мы должны добавить 2 нуля (третья цифра).

На следующем рисунке приведем еще несколько примеров:

Органайзер для SMD компонентов

Отлично подходит для хранения 1206/0805/0603/0402/0201…

Подробнее

Внутренняя структура

Основным несущим элементом резистора является подложка, изготовленная из окиси аллюминия (Al2O3). Этот материал обладает хорошими диэлектрическими свойствами, но помимо этого имеет очень высокую теплопроводность, что необходимо для отвода тепла, выделяющегося в резистивном слое, в окружающую среду.


Внутренняя структура резистора.

Основные (но не все) электрические характеристики резистора определяются резистивным элементом, в качестве которого чаще всего используется пленка металла или окисла, например, чистого хрома или двуокиси рутения, нанесенная на подложку.

Состав, технология нанесения на подложку и характер обработки этой пленки являются важнейшими элементами, определяющими характеристики резистора, и чаще всего представляют производственный секрет фирмы производителя.

Некоторые виды – резисторы проволочные – в качестве резистивного материала используют тонкую (до 10 мкм) проволоку из материала с низким температурным коэффициентом сопротивления (например, константана), намотанную на подложку. В последнем случае номинал резистора обычно не превышает 100 Ом.

Для соединения резистивного элемента с проводниками печатной платы служат несколько слоев контактных элементов. Внутренний контактный слой обычно выполнен из серебра или палладия, промежуточный слой представляет собой тонкую пленку никеля, а внешний – свинцово-оловянный припой.

Интересный материал для ознакомления: что такое вариасторы.

Такая сложная контактная конструкция предназначена для обеспечения надежной взаимной адгезии слоев. От качества выполнения контактных элементов резистора зависят такие его характеристики, как надежность и токовые шумы. Последним элементом конструкции SMD резистора является защитный слой, обеспечивающий предохранение всех элементов конструкции резистора от воздействия факторов окружающей среды и в первую очередь от влаги. Этот слой выполняется из стекла или полимерных материалов.

Трехзначный код резисторов со сопротивлением менее 10 Ом

В описанной выше системе минимальное значение сопротивления, которое мы можем кодировать, составляет 10 Ом, что эквивалентно коду «100» (10 + нет нуля).

При значениях сопротивления менее 10 Ом необходимо найти другое решение, потому что вместо добавления нулей мы должны разделить значение первых двух цифр. Чтобы решить проблему, производители используют букву «R», которая эквивалентна запятой.

Например, сопротивление с кодом 4R7 эквивалентно 4,7 Ом, потому что мы заменяем «R» запятой. Если значение сопротивления меньше 1 Ом, мы используем ту же систему, помещая R в качестве первого номера. Например, R22 равно 0,22 Ом. Как вы можете видеть, это довольно легко.

Как себя проверить

Если в навыке расшифровки кодов вы пока неуверены, есть два способа проверить сопротивление резистора. Первый — программный, второй — при помощи мультиметра. Второй — более надежный, так как вы видите реальное положение вещей, а заодно и проверяете сопротивление элемента.

Одна из программ по расшифровке кодов резисторов «Резистор 2.2»: цветовая маркировка

Найти программу расшифровки кодов резисторов просто — по запросу выскакивает не один десяток. Они несложные, отличаются только масштабами баз данных. Не в каждой можно найти все варианты кодов, но популярные есть везде. В этих программах сначала выбирается тип кодировки (буквы или полоски), а затем вносятся все данные. То, что вы вводите отображается в специальном окошке — чтобы можно было визуально проверить правильность введенной информации. После ввода данных нажимаете кнопку, программа выдает вам номинал и допуск. Сравниваете с тем, что получилось у вас.

Проверяем сопротивление при помощи мультиметра

Проверить насколько правильно вы по кодировке определили сопротивление резистора можно и при помощи мультиметра. Для этого его выставляем в режим «изменение сопротивлений». Диапазон подбираем в зависимости от того, что насчитали. Один щуп прикладываем к одному выводу, второй — к другому. На экране высвечивается сопротивление. Оно может отличаться от высчитанного. Разница зависит от допуска. Чем больше допуск, тем больше может быть разница. Но в любом случае показания должны быть сравнимы с найденным номиналом. Подробности смотрите в видео.

Четырехзначный код (прецизионные резисторы)

В случае прецизионных резисторов производители создали еще одну систему кодирования, состоящую из 4-значных чисел. В нем первые три цифры — это числовое значение, а четвертая цифра — множитель, то есть количество нулей, которые мы должны добавить к значению.

Факт наличия трех цифр для кодирования значения позволяет нам иметь большее разнообразие и точность значений.

Что такое SMD

SMD – английская аббревиатура, обозначающая Surface Mounted Device, то есть – устройство, монтируемое на поверхность. В целом, под SMD понимается метод нанесения компонентов на печатную плату, который ещё называют поверхностным. Ему противопоставляется классический метод — сквозной монтаж, когда ножки элементов продеваются в отверстия монтажной платы и фиксируются в них.


Поверхностный монтаж очень часто сочетается с простым «сквозным» ФОТО: wikimedia.org

SMD подразумевает установку прямо на токопроводящие дорожки платы. Такой подход позволил значительно сэкономить место на плате, уменьшить размер компонентов и, в целом, удешевить и автоматизировать процесс монтажа. Тем не менее, на практике часто встречается гибрид обеих технологий — сквозного монтажа и поверхностного.

Код EIA-96 (прецизионные резисторы)

В последнее время производители используют для прецизионных резисторов новую систему кодировки — EIA-96, которая довольно сложна для расшифровки, если нет под рукой справочной таблицы или онлайн калькулятора.

В EIA-96 первые две цифры кода — это номер индекса таблицы, в котором мы найдем эквивалентное значение, в то время как буква является множителем. Таким образом, наличие буквы на конце кода свидетельствует о том, что резистор имеет кодировку EIA-96.

На рисунке ниже приведена полная таблица маркировки сопротивлений EIA-96.

Практические примеры EIA-96

На следующем рисунке мы можем видеть некоторые примеры EIA-96 маркировки

Типоразмеры

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP. Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора.


Типоразмеры SMD резисторов.

Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма. Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54. Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Почитать материал по теме: что такое диодный мост.

Допуски сопротивлений

Как вы уже могли заметить, во всех трех системах кодирования, которые мы изучили, производители не предусмотрели никакого способа указания допуска (отклонения) сопротивлений резисторов (четвертой цветной полоски как на выводных резисторах).

Но как правило, резисторы, имеющие маркировку из 3-х цифр имеют точность 5%, а резисторы с кодом из 4-х цифр, а также резисторы с кодировкой EIA-96 имеют точность 1%.

www.inventable.eu

Характеристики

Важнейшими характеристиками резисторов являются величина номинального сопротивления, допуск на эту величину и температурный коэффициент изменения сопротивления.

С этими характеристиками тесно связаны допустимая рассеиваемая мощность и тепловое сопротивление между резистором и окружающей средой. Кроме того, в некоторых областях применения резисторов могут оказаться существенными их шумовые характеристики (особенно токовый шум).

Также временная стабильность, предельная величина рабочего напряжения, зависимость сопротивления от приложенного напряжения и частотные параметры резистора (характеристики его эквивалентной схемы на различных частотах).

Рассмотрим важнейшие из этих характеристик с точки зрения применения резисторов в аналоговых и цифроаналоговых электронных устройствах. Таковыми являются величина номинального сопротивления, допуск на эту величину и температурный коэффициент изменения сопротивления. Допуск на величину номинального сопротивления задается в процентах от номинального значения сопротивления. Номинальное значение – это величина сопротивления резистора, измеренная при фиксированных значениях факторов внешних воздействий.

Кривая нагрева и охлаждения при пайке SMD-резисторов.

Важнейшим среди этих факторов является температура. Обычно номинальное значение сопротивления приводится для температуры +20°С и нормального атмосферного давления. SMD резисторы выпускаются с допусками на номинальное сопротивление в пределах от ±0.05% до ±5%. Разработчикам следует иметь в виду, что самыми распространенными, доступными и дешевыми являются резисторы с допуском на номинальное значение ±5% и ±1%.

Более точные резисторы обычно требуют предварительного заказа и их стоимость возрастает в несколько раз. Температурным коэффициентом сопротивления (ТКС) называется величина, характеризующая обратимое относительное изменение сопротивление резистора при изменении его температуры на 1°С. Следует иметь в виду, что изменение температуры резистора может происходить как из-за изменения температуры окружающей среды, так и из-за его саморазогрева.

Значение ТКС определяется по формуле:

ТКС=DR/(R*DТ)

где DR – абсолютное значение изменения сопротивления при изменении температуры резистора на величину DТ, R – номинальное значение сопротивления резистора.

Величина ТКС измеряется в 1/ °С, однако, чаще всего ее измеряют в единицах ppm (1ppm=10E-6 1/°С). Современные SMD резисторы выпускаются со значением ТКС в пределах от ±5 до ±200 ppm.

Интересно сопоставить влияние на общее отклонение от номинального значения сопротивления резистора его допуска и температурного изменения. Это сопоставление можно выполнить введением такого параметра, как критическая температура Тк, определяемая как изменение температуры резистора, при которой изменение его сопротивления, определяемое величиной ТКС, сравняется с допуском на номинальное сопротивление.

Учитывая малое значение допуска на величину номинального сопротивления резистора, можно с достаточной степенью точности утверждать, что при наихудшем сочетании допусков на резисторы допуск на значение К в два раза больше допуска на номинал резистора.

Это значит, что для применяя в данной схеме SMD резисторы наивысшей точности и без учета влияния нагрева резисторов невозможно достижение точности коэффициента передачи выше ±0.1%! Такой точности явно недостаточно для многих аналоговых устройств. К счастью, в действительности ситуация несколько легче. Дело в том, что в приведенном выражении для коэффициента передачи его точность определяется не абсолютными значениями сопротивлений резисторов R1 и R3, а их отношением.

Если для схемы используются резисторы одной фирмы и одной партии, то значения их ТКС и номинальных значений могут быть значительно ближе, чем паспортные данные на каждый резистор в отдельности. Это позволяет существенно повысить результирующую точность схемы, как при нормальной температуре, так и при ее изменении. Однако, на практике применить предложенный подход к уменьшению погрешности схем не так просто!

В рассмотренной выше схеме он хорошо работает только при К=-1, так как для этого требуются одинаковые резисторы, которые могут быть выбраны из одной партии. При других значениях К эта схема не даст требуемой точности, так как для резисторов разных номиналов вероятность расхождения параметров (особенно ТКС) существенно возрастает.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Режим прозвонки

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Сопротивление электрическому току. SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор Сопротивление 470

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные , предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код , а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

И как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе или как по старинке его еще называют сопротивление .

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением и служат для ограничения прохождения тока в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.

1. Основные параметры резисторов.

Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению , номинальной мощности и допуску . Рассмотрим эти три основных параметра более подробно.

1.1. Сопротивление.

Сопротивление — это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.

Сопротивление измеряется в омах (Ом ), килоомах (кОм ) и мегаомах (МОм ):

1кОм = 1000 Ом ;
1МОм = 1000 кОм = 1000000 Ом .

Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:

1,0 ; 1,1 ; 1,2 ; 1,5 ; 2,0 ; 2,2 ; 2,7 ; 3,0 ; 3,3 ; 3,9 ; 4,3 ; 4,7 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1

Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10 .

Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой , цифровой или цветовой маркировки .

Буквенно-цифровая маркировка .

При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е » и «R », единицу килоом буквой «К », а единицу мегаом буквой «М ».

а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е » и «R ». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω »:

3R — 3 Ом
10Е — 10 Ом
47R — 47 Ом
47Ω – 47 Ом
56 – 56 Ом

б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К ». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R » на конце, или только одно числовое значение величины без буквы:

К12 = 0,12 кОм = 120 Ом
К33 = 0,33 кОм = 330 Ом
К68 = 0,68 кОм = 680 Ом
360R — 360 Ом

в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К »:

2К0 — 2кОм
10К — 10 кОм
47К — 47 кОм
82К — 82 кОм

г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М ». Букву ставят на месте нуля или запятой:

М18 = 0,18 МОм = 180 кОм
М47 = 0,47 МОм = 470 кОм
М91 = 0,91 МОм = 910 кОм

д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М »:

— 1 МОм
10М — 10 МОм
33М — 33 МОм

е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е , R , К и М , обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:

R22 – 0,22 Ом
1Е5 — 1,5 Ом
3R3 — 3,3 Ом
1К2 — 1,2 кОм
6К8 — 6,8 кОм
3М3 — 3,3 МОм

Цветовая маркировка .

Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.

Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают в Омах, третье кольцо является множителем , а четвертое — обозначает допуск или класс точности резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.

Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.

Например. Резистор маркирован четырьмя кольцами:

красное — (2 )
фиолетовое — (7 )
красное — (100 )
серебристое — (10% )
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм с допуском ±10% .

Резистор маркирован пятью кольцами:

красное — (2 )
фиолетовое (7 )
красное (2 )
красное (100 )
золотистое (5% )
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм с допуском ±5%

Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета .

И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в статье.

Цифровая маркировка .

Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя или четырьмя цифрами.

При трехзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель . Множителем является число 10 возведенное в степень третьей цифры:

221 – 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом ;
472 – 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм ;
564 – 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм ;
125 – 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 1,2 МОм .

Если последняя цифра ноль , то множитель будет равен единице , так как десять в нулевой степени равно единице:

100 – 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом ;
150 – 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом ;
330 – 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом .

При четырехзначной маркировке первые три цифры также обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:

1501 – 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм ;
1602 – 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм ;
3243 – 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм .

1.2. Допуск (класс точности) резистора.

Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском (классом точности).

Допускаемое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода , состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:

Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.

На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.

У резисторов с цветовой маркировкой допуск указывается последним цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.

1.3. Номинальная мощность рассеивания.

Третьим важным параметром резистора является его мощность рассеивания

При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.

Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.

За единицу измерения мощности принят ватт (Вт).

Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.

В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.

Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.

На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».

С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку . Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в статье.

Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев .

Резисторы можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).

2. Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным . Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные .

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки , нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций . Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника , а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).

Рядом с условным обозначением ставят латинскую букву «R » и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.

Значение сопротивления от 0 до 999 Ом обозначают в омах , но единицу измерения не ставят:

15 — 15 Ом
680 – 680 Ом
920 — 920 Ом

На некоторых зарубежных схемах для обозначения Ом ставят букву R :

1R3 — 1,3 Ом
33R – 33 Ом
470R — 470 Ом

Значение сопротивления от 1 до 999 кОм обозначают в килоомах с добавлением буквы «к »:

1,2к — 1,2 кОм
10к — 10 кОм
560к — 560 кОм

Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом с добавлением буквы «М »:

— 1 МОм
3,3М — 3,3 МОм
56М — 56 МОм

Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.

4. Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.

При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:

Rобщ = R1 + R2 + R3 + … + Rn

Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.

При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:

Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:

И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью , в которой способы соединения рассказаны более подробно.

Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.

Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления . Во второй части статьи мы познакомимся с .
Удачи!

Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.

Резисторы керамические проволочные цементные – постоянные резисторы, номинальное сопротивление в зависимости от номинала составляет от 0,01 Ом до 100 кОм , рассеиваемая мощность – 5Вт, 10Вт, 15Вт, 25Вт . Предназначены для эксплуатации в цепях постоянного или переменного тока, обеспечивая ограничение силы тока и распределение напряжения.

Конструктивно проволочные резисторы выполнены в виде трубчатого основания из керамики (чистый глинозём Al 2 O 3), в качестве резистивного элемента используется проволочный проводник (медно-никелевый или хромово-никелевый сплав) с высоким удельным сопротивлением. Основание с обмоткой помещено в литой прямоугольный корпус из стеатитовой керамики и закапсулировано кремнезёмом (диоксид кремния SiO 2).

Монолитная керамическая конструкция резисторов обладает высокими характеристиками огнестойкости, влагостойкости и способностью к самозатуханию.

Вывода керамических резисторов – гибкие осевые аксиальные проволочного типа. В качестве материала выводов используется луженая медь. Монтаж осуществляется с использованием пайки по THT-технологии – вывода монтируются непосредственно в сквозные отверстия печатной платы.

Положение монтажа – любое, но следует помнить о резистивных особенностях, сопровождающихся нагревом корпуса резистора. Поэтому, не рекомендуется размещение резисторов на близком расстоянии к печатной плате или термочувствительным элементам.

Допустимое отклонение сопротивления цементных аксиальных резисторов составляет ±5% . Ряд промежуточных значений номинальных сопротивлений – Е24 E24 — один из рядов постоянных резисторов, который является результатом стандартизации номинальных сопротивлений резисторов. . При переменном токе предельное рабочее напряжение составляет 1500В , при постоянном токе – 1000В . Рабочая повышенная температура среды не превышает +275°С , пониженная – до -55°С . Сопротивление изоляции составляет не менее 1000 МОм .

При подборе необходимого номинала расчет рекомендуется проводить, используя гибкий , с помощью которого можно определить общее параллельное или последовательное сопротивление резисторов , а также сопротивление резисторов в цепи.

В представлены особенности конструкции и характеристики мощных резисторов С5-35В, С5-36В, ПЭВ, ПЭВР, RX24 и SQP.

Применяются мощные керамические резисторы в различной промышленной электронике, радио- и телевизионных приемниках, блоках питания и управления, усилителях, автомобильной электронике, а также в качестве испытательной нагрузки или нагревательных элементов (например, в видеокамерах наружного видеонаблюдения).

Более подробные характеристики представленных мощных керамических цементных резисторов , а также расшифровка маркировки, габаритные и установочные размеры приведены ниже.

Гарантийный срок работы поставляемых нашей компанией мощных резисторов составляет 2 года , что подкрепляется соответствующими документами по качеству.

Окончательная цена на мощные проволочные керамические цементные резисторы зависит от количества, сроков поставки и формы оплаты.

Продолжение статьи о начале занятий электроникой. Для тех, кто решился начать. Рассказ о деталях.

Радиолюбительство до сих пор является одним из самых распространенных увлечений, хобби. Если в начале своего славного пути радиолюбительство затрагивало в основном конструирование приемников и передатчиков, то с развитием электронной техники расширялся диапазон электронных устройств и круг радиолюбительских интересов.

Конечно, такие сложные устройства, как, например, видеомагнитофон, проигрыватель компакт-дисков, телевизор или домашний кинотеатр у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, причем достаточно успешно.

Другим направлением является конструирование электронных схем или доработка «до класса люкс» промышленных устройств.

Диапазон в этом случае достаточно велик. Это устройства для создания «умного дома», преобразователи 12…220В для питания телевизоров или звуковоспроизводящих устройств от автомобильного аккумулятора, различные терморегуляторы. Также очень популярны , а также многое другое.

Передатчики и приемники отошли на последний план, а вся техника называется теперь просто электроникой. И теперь, пожалуй, следовало бы называть радиолюбителей как-то иначе. Но исторически сложилось так, что другого названия просто не придумали. Поэтому пусть будут радиолюбители.

Компоненты электронных схем

При всем разнообразии электронных устройств они состоят из радиодеталей. Все компоненты электронных схем можно разделить на два класса: активные и пассивные элементы.

Активными считаются радиодетали, которые обладают свойством усиливать электрические сигналы, т.е. обладающие коэффициентом усиления. Нетрудно догадаться, что это транзисторы и все, что из них делается: операционные усилители, логические микросхемы, и многое другое.

Одним словом все те элементы, у которых маломощный входной сигнал управляет достаточно мощным выходным. В таких случаях говорят, что коэффициент усиления (Кус) у них больше единицы.

К пассивным относятся такие детали, как резисторы, и т.п. Одним словом все те радиоэлементы, которые имеют Кус в пределах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот сначала и рассмотрим пассивные элементы.

Резисторы

Являются самыми простыми пассивными элементами. Основное их назначение ограничить ток в электрической цепи. Простейшим примером является включение светодиода, показанное на рисунке 1. С помощью резисторов также подбирается режим работы усилительных каскадов при различных .

Рисунок 1. Схемы включения свтодиода

Свойства резисторов

Раньше резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтобы не путать деталь с ее свойством сопротивления переименовали в резисторы .

Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, примерно так же, как в механике удельный вес и объем.

Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Нетрудно увидеть, что чем длиннее и тоньше провод, тем больше сопротивление.

Можно подумать, что сопротивление не лучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде случаев как раз это препятствие является полезным. Дело в том, что при прохождении тока через проводник на нем выделяется тепловая мощность P = I 2 * R. Здесь P, I, R соответственно мощность, ток и сопротивление. Эта мощность используется в различных нагревательных приборах и лампах накаливания.

Резисторы на схемах

Все детали на электрических схемах показываются с помощью УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.

Рисунок 2. УГО резисторов

Черточки внутри УГО обозначают мощность рассеяния резистора. Сразу следует сказать, что если мощность будет меньше требуемой, то резистор будет греться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а точнее даже тремя: P = U * I, P = I 2 * R, P = U 2 / R.

Первая формула говорит о том, что мощность, выделяемая на участке электрической цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.

Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буква К или М может ставиться вместо запятой), R5 — 5,1МОм.

Современная маркировка резисторов

В настоящее время маркировка резисторов производится с помощью цветных полос. Самое интересное, что цветовая маркировка упоминалась в первом послевоенном журнале «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новая американская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.

Рисунок 3. Маркировка резисторов

На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип — резистор». Для любительских целей наиболее подходят резисторы типоразмера 1206. Они достаточно крупные и имеют приличную мощность, целых 0,25Вт.

На этом же рисунке указано, что максимальным напряжением для чип резисторов является 200В. Такой же максимум имеют и резисторы для обычного монтажа. Поэтому, когда предвидится напряжение, например 500В лучше поставить два резистора, соединенных последовательно.

Рисунок 4. Резисторы для поверхностного монтажа SMD

Чип резисторы самых маленьких размеров выпускаются без маркировки, поскольку ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из трех цифр. Первые две представляют собой номинал, а третья множитель, в виде показателя степени числа 10. Поэтому если написано, например, 100, то это будет 10 * 1Ом = 10Ом, поскольку любое число в нулевой степени равно единице первые две цифры надо умножать именно на единицу.

Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 гласит, что перед нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и определить номинал можно лишь пользуясь таблицей, которую можно отыскать в интернете.

В зависимости от допуска на сопротивление номиналы резисторов разделяются на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.

Рисунок 5.

Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответствующем ряду. Если ряд E6 имеет допуск 20%, то в нем всего лишь 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего применения. Существуют резисторы с допуском в один процент и меньше, поэтому среди них возможно найти любой номинал.

Кроме мощности и номинального сопротивления резисторы имеют еще несколько параметров, но о них пока говорить не будем.

Соединение резисторов

Несмотря на то, что номиналов резисторов достаточно много, иногда приходится их соединять, чтобы получить требуемую величину. Причин этому несколько: точный подбор при настройке схемы или просто отсутствие нужного номинала. В основном используется две схемы соединения резисторов: последовательное и параллельное. Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.

Рисунок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления

В случае последовательного соединения общее сопротивление равно просто сумме двух сопротивлений. Это как показано на рисунке. На самом деле резисторов может быть и больше. Такое включение бывает в . Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.

При параллельном соединении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньшего. Если оба резистора имеют одинаковый номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала. Например, соединили в параллель десять резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.

Следует отметить, что ток при параллельном соединении согласно закону Кирхгофа разделится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз ниже, чем для одного резистора.

Продолжение читайте в следующей статье.

Прежде всего, определимся с понятием и обозначением сопротивления, как электрической величины. Согласно теории сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока. В международной системе единиц (СИ) единицей измерения сопротивления является Ом (Ω). Для электротехники это относительно небольшая величина, поэтому мы чаще будем иметь дело с килоомами (кОм) и мегаомами (МОм). Для этого нужно усвоить следующую табличку:

1 кОм = 1000 Ом;
1 Мом = 1000 кОм;

И наоборот:

1 Ом = 0.001 кОм;
1 кОм = 0.001 Мом;

Ничего сложного, но знать это надо твердо.

Теперь о номиналах (величинах). Конечно, промышленность не выпускает для радиолюбителей резисторов со всеми номиналами. Изготовление высокоточных резисторов – дело трудоемкое и используются такие резисторы лишь в специальной высокоточной аппаратуре. Вы, к примеру, не найдете в обычном магазине резистора на 1.9 кОм и в такой точности чаще всего нет необходимости – она нужна редко, а если нужна, то для этого существуют подстроечные резисторы.

Весь стандартный ряд, с которым мы будем сталкиваться, я здесь приводить не буду – он достаточно длинный и учить его специально не стоит. Лучше научимся отличать один резистор от другого. Маркировать приборы могут по-разному. Самая удобная, по моему мнению, была цифровая маркировка. Делалась она, к примеру, на самых ходовых в свое время резисторах типа МЛТ.

Одного взгляда на резистор было достаточно, чтобы узнать какое у него сопротивление

К примеру, на втором сверху резисторе читаем 2,2 и ниже К5% . Номинал этого резистора – 2.2 килоома с точностью 5%. Для мегаомных резисторов используется «М» вместо «К» а омы обозначаются буквами «R», «Е» или вообще без буквы:

470 — 470 Ом
18Е — 18 Ом

Очень часто любая из букв может стоять вместо запятой:

2к2 – 2,2 килоома
М15 – 0,15 мегаом или 150 килоом

Вот и вся хитрость. Еще один параметр – мощность резистора. Чем выше мощность, тем больший ток может выдержать резистор без разрушения (сгорания). Снова вернемся к верхнему рисунку. Здесь резисторы имеют следующую мощность (сверху вниз) 2 Вт, 1 Вт, 0.5 Вт, 0.25 Вт, 0.125 Вт. Первые три настолько велики, что на них даже нашлось место для маркировки мощности: МЛТ-2, МЛТ-1, МЛТ-0.5. Остальные на глаз. Конечно, выпускаются (но большинство, увы, выпускалось) и другие типы (и мощности) с «человеческой» маркировкой, перечислять я их не буду, а принцип обозначения у них тот же.

ПЭВР-30, к примеру, выглядит как приличных размеров цилиндр, но маркируется так же

Но эта мода уже практически отошла, взамен цифр появились цветные полоски и специальные коды и с этим придется мириться.

Что это за резистор и каков его номинал? Для этого придется обратиться к специальным таблицам, которые я здесь и привожу.

Резистор 470 ом маркировка. SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор. Числовая и буквенная

И как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе или как по старинке его еще называют сопротивление .

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением и служат для ограничения прохождения тока в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.

1. Основные параметры резисторов.

Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению , номинальной мощности и допуску . Рассмотрим эти три основных параметра более подробно.

1.1. Сопротивление.

Сопротивление — это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.

Сопротивление измеряется в омах (Ом ), килоомах (кОм ) и мегаомах (МОм ):

1кОм = 1000 Ом ;
1МОм = 1000 кОм = 1000000 Ом .

Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:

1,0 ; 1,1 ; 1,2 ; 1,5 ; 2,0 ; 2,2 ; 2,7 ; 3,0 ; 3,3 ; 3,9 ; 4,3 ; 4,7 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1

Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10 .

Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой , цифровой или цветовой маркировки .

Буквенно-цифровая маркировка .

При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е » и «R », единицу килоом буквой «К », а единицу мегаом буквой «М ».

а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е » и «R ». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω »:

3R — 3 Ом
10Е — 10 Ом
47R — 47 Ом
47Ω – 47 Ом
56 – 56 Ом

б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К ». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R » на конце, или только одно числовое значение величины без буквы:

К12 = 0,12 кОм = 120 Ом
К33 = 0,33 кОм = 330 Ом
К68 = 0,68 кОм = 680 Ом
360R — 360 Ом

в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К »:

2К0 — 2кОм
10К — 10 кОм
47К — 47 кОм
82К — 82 кОм

г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М ». Букву ставят на месте нуля или запятой:

М18 = 0,18 МОм = 180 кОм
М47 = 0,47 МОм = 470 кОм
М91 = 0,91 МОм = 910 кОм

д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М »:

— 1 МОм
10М — 10 МОм
33М — 33 МОм

е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е , R , К и М , обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:

R22 – 0,22 Ом
1Е5 — 1,5 Ом
3R3 — 3,3 Ом
1К2 — 1,2 кОм
6К8 — 6,8 кОм
3М3 — 3,3 МОм

Цветовая маркировка .

Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.

Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают в Омах, третье кольцо является множителем , а четвертое — обозначает допуск или класс точности резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.

Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.

Например. Резистор маркирован четырьмя кольцами:

красное — (2 )
фиолетовое — (7 )
красное — (100 )
серебристое — (10% )
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм с допуском ±10% .

Резистор маркирован пятью кольцами:

красное — (2 )
фиолетовое (7 )
красное (2 )
красное (100 )
золотистое (5% )
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм с допуском ±5%

Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета .

И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в статье.

Цифровая маркировка .

Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя или четырьмя цифрами.

При трехзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель . Множителем является число 10 возведенное в степень третьей цифры:

221 – 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом ;
472 – 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм ;
564 – 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм ;
125 – 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 1,2 МОм .

Если последняя цифра ноль , то множитель будет равен единице , так как десять в нулевой степени равно единице:

100 – 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом ;
150 – 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом ;
330 – 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом .

При четырехзначной маркировке первые три цифры также обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:

1501 – 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм ;
1602 – 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм ;
3243 – 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм .

1.2. Допуск (класс точности) резистора.

Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском (классом точности).

Допускаемое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода , состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:

Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.

На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.

У резисторов с цветовой маркировкой допуск указывается последним цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.

1.3. Номинальная мощность рассеивания.

Третьим важным параметром резистора является его мощность рассеивания

При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.

Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.

За единицу измерения мощности принят ватт (Вт).

Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.

В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.

Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.

На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».

С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку . Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в статье.

Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев .

Резисторы можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).

2. Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным . Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные .

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки , нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций . Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника , а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).

Рядом с условным обозначением ставят латинскую букву «R » и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.

Значение сопротивления от 0 до 999 Ом обозначают в омах , но единицу измерения не ставят:

15 — 15 Ом
680 – 680 Ом
920 — 920 Ом

На некоторых зарубежных схемах для обозначения Ом ставят букву R :

1R3 — 1,3 Ом
33R – 33 Ом
470R — 470 Ом

Значение сопротивления от 1 до 999 кОм обозначают в килоомах с добавлением буквы «к »:

1,2к — 1,2 кОм
10к — 10 кОм
560к — 560 кОм

Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом с добавлением буквы «М »:

— 1 МОм
3,3М — 3,3 МОм
56М — 56 МОм

Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.

4. Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.

При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:

Rобщ = R1 + R2 + R3 + … + Rn

Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.

При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:

Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:

И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью , в которой способы соединения рассказаны более подробно.

Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.

Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления . Во второй части статьи мы познакомимся с .
Удачи!

Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.

Проводники оказывают электрическому току сопротивление, чем больше это сопротивление, тем сила электрического тока через проводник меньше. Сопротивление проводника зависит от материала, из которого он состоит, длины, сечения, температуры. Чем длиннее проводник, тем сопротивление больше, чем короче проводник, тем сопротивление меньше. Чем тоньше проводник, тем сопротивление больше, чем толще проводник, тем сопротивление меньше.

Сопротивление обозначается буквой R , а единица сопротивления – буквами Ом . В практике применяются также единицы электрического сопротивления килоом (кОм ) и мегаом (МОм ).

1 кОм = 1000 Ом

1 Мом = 1000000 Ом

Что бы найти сопротивление проводника в омах, надо напряжение на его концах в вольтах разделить на силу тока в амперах:

Постоянные резисторы

Резистор — это пассивный элемент электрической цепи. Служит для уменьшения силы тока, во время работы резисторы греются, потому что лишняя электрическая энергия преобразуется резисторами в тепло. На электрических принципиальных схемах резисторы отображаются в виде прямоугольника с двумя выводами или в виде ломаной линии (американский стандарт), обозначаются буквой R с порядковым номером (R1, R2, и т. д.). Рядом указывается номинал резистора.

Основным параметром резистора является сопротивление. Сопротивление резистора измеряется в омах, килоомах, мегаомах. Номинальную мощность рассеяния резистора (от 0.05 до 5 Вт) обозначают специальными знаками, помещаемыми внутри символа.

Маркировка резисторов. Согласно ГОСТ 2.702-75 сопротивления от 0 до 999 Ом указывают на схемах числом без единицы измерения (3.3; 47; 220; 750 и т. д.), от 1 до 999 кОм – числом с буквой к (47 к; 330 к; 910 к и т. д.), свыше 1 мегаома – числом с буквой М (1 М; 4.7 М и т. д.).

Согласно ГОСТ 11076 – 69 единицы сопротивления в кодированной системе обозначают буквами Е или R (Ом), К (килоом) и М (мегаом). Так 33 Ом маркируют 33Е, 1 Ом — 1R0, 47 Ом – 47Е, 10 кОм – 10К, 47 кОм – 47К и т. д.

Сопротивления от 100 до 1000 Ом и от 100 до 1000 кОм выражают в долях килоома и мегаома соответственно, причем на месте нуля и запятой ставят соответствующую единицу измерения: 150 Ом=0.15 кОм=К150; 910 Ом=0.91 кОм=К91; 180 кОм=0.18 МОм= М18; 680 кОм=0.68 МОм=М68 и т. д.

Если номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой: 3.3 Ом — 3Е3 или 3R3; 4.7 кОм – 4К7; 3.3 МОм – 3М3 и т. д.

SMD резисторы и подстроечные могут иметь маркировку состоящую из трех цифр, первые две обозначают сопротивление в омах (мантиссу), а третья — количество последующих нулей (показатель степени по основанию 10), также к маркировке для обозначения десятичной точки может добавляться буква R. Примеры:

Маркировка 513 означает 51 x 10 3 = 51000 Ом или 51 кОм

Маркировка R470 означает 0.47 Ом

Еще существует множество маркировок цветными полосками, но общего стандарта производители резисторов на данный момент не придерживаются, поэтому надежнее измерять сопротивление резисторов мультиметром.

Переменные резисторы

Переменные резисторы – это резисторы, сопротивление которых можно изменять. Применяются в качестве регуляторов усиления, громкости, тембра и т. д.

Существует две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования силы тока в цепи, и тогда регулируемый резистор называют реостатом. В другом случае их используют для регулирования напряжения, тогда резистор называют потенциометром.

Подстроечные резисторы

Разновидность переменных резисторов – подстроечные. Узел регулирования таких резисторов приспособлен для управления отверткой.

Соединение резисторов

При последовательном соединении резисторов их сопротивления складываются:

При параллельном соединении, общее сопротивление рассчитывается по формуле:

При параллельном соединении двух одинаковых резисторов, общее сопротивление будет равно половине сопротивления одного из них.

Таким образом можно получать нужные номиналы резисторов из имеющихся.

Резисторы керамические проволочные цементные – постоянные резисторы, номинальное сопротивление в зависимости от номинала составляет от 0,01 Ом до 100 кОм , рассеиваемая мощность – 5Вт, 10Вт, 15Вт, 25Вт . Предназначены для эксплуатации в цепях постоянного или переменного тока, обеспечивая ограничение силы тока и распределение напряжения.

Конструктивно проволочные резисторы выполнены в виде трубчатого основания из керамики (чистый глинозём Al 2 O 3), в качестве резистивного элемента используется проволочный проводник (медно-никелевый или хромово-никелевый сплав) с высоким удельным сопротивлением. Основание с обмоткой помещено в литой прямоугольный корпус из стеатитовой керамики и закапсулировано кремнезёмом (диоксид кремния SiO 2).

Монолитная керамическая конструкция резисторов обладает высокими характеристиками огнестойкости, влагостойкости и способностью к самозатуханию.

Вывода керамических резисторов – гибкие осевые аксиальные проволочного типа. В качестве материала выводов используется луженая медь. Монтаж осуществляется с использованием пайки по THT-технологии – вывода монтируются непосредственно в сквозные отверстия печатной платы.

Положение монтажа – любое, но следует помнить о резистивных особенностях, сопровождающихся нагревом корпуса резистора. Поэтому, не рекомендуется размещение резисторов на близком расстоянии к печатной плате или термочувствительным элементам.

Допустимое отклонение сопротивления цементных аксиальных резисторов составляет ±5% . Ряд промежуточных значений номинальных сопротивлений – Е24 E24 — один из рядов постоянных резисторов, который является результатом стандартизации номинальных сопротивлений резисторов. . При переменном токе предельное рабочее напряжение составляет 1500В , при постоянном токе – 1000В . Рабочая повышенная температура среды не превышает +275°С , пониженная – до -55°С . Сопротивление изоляции составляет не менее 1000 МОм .

При подборе необходимого номинала расчет рекомендуется проводить, используя гибкий , с помощью которого можно определить общее параллельное или последовательное сопротивление резисторов , а также сопротивление резисторов в цепи.

В представлены особенности конструкции и характеристики мощных резисторов С5-35В, С5-36В, ПЭВ, ПЭВР, RX24 и SQP.

Применяются мощные керамические резисторы в различной промышленной электронике, радио- и телевизионных приемниках, блоках питания и управления, усилителях, автомобильной электронике, а также в качестве испытательной нагрузки или нагревательных элементов (например, в видеокамерах наружного видеонаблюдения).

Более подробные характеристики представленных мощных керамических цементных резисторов , а также расшифровка маркировки, габаритные и установочные размеры приведены ниже.

Гарантийный срок работы поставляемых нашей компанией мощных резисторов составляет 2 года , что подкрепляется соответствующими документами по качеству.

Окончательная цена на мощные проволочные керамические цементные резисторы зависит от количества, сроков поставки и формы оплаты.

Прежде всего, определимся с понятием и обозначением сопротивления, как электрической величины. Согласно теории сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока. В международной системе единиц (СИ) единицей измерения сопротивления является Ом (Ω). Для электротехники это относительно небольшая величина, поэтому мы чаще будем иметь дело с килоомами (кОм) и мегаомами (МОм). Для этого нужно усвоить следующую табличку:

1 кОм = 1000 Ом;
1 Мом = 1000 кОм;

И наоборот:

1 Ом = 0.001 кОм;
1 кОм = 0.001 Мом;

Ничего сложного, но знать это надо твердо.

Теперь о номиналах (величинах). Конечно, промышленность не выпускает для радиолюбителей резисторов со всеми номиналами. Изготовление высокоточных резисторов – дело трудоемкое и используются такие резисторы лишь в специальной высокоточной аппаратуре. Вы, к примеру, не найдете в обычном магазине резистора на 1.9 кОм и в такой точности чаще всего нет необходимости – она нужна редко, а если нужна, то для этого существуют подстроечные резисторы.

Весь стандартный ряд, с которым мы будем сталкиваться, я здесь приводить не буду – он достаточно длинный и учить его специально не стоит. Лучше научимся отличать один резистор от другого. Маркировать приборы могут по-разному. Самая удобная, по моему мнению, была цифровая маркировка. Делалась она, к примеру, на самых ходовых в свое время резисторах типа МЛТ.

Одного взгляда на резистор было достаточно, чтобы узнать какое у него сопротивление

К примеру, на втором сверху резисторе читаем 2,2 и ниже К5% . Номинал этого резистора – 2.2 килоома с точностью 5%. Для мегаомных резисторов используется «М» вместо «К» а омы обозначаются буквами «R», «Е» или вообще без буквы:

470 — 470 Ом
18Е — 18 Ом

Очень часто любая из букв может стоять вместо запятой:

2к2 – 2,2 килоома
М15 – 0,15 мегаом или 150 килоом

Вот и вся хитрость. Еще один параметр – мощность резистора. Чем выше мощность, тем больший ток может выдержать резистор без разрушения (сгорания). Снова вернемся к верхнему рисунку. Здесь резисторы имеют следующую мощность (сверху вниз) 2 Вт, 1 Вт, 0.5 Вт, 0.25 Вт, 0.125 Вт. Первые три настолько велики, что на них даже нашлось место для маркировки мощности: МЛТ-2, МЛТ-1, МЛТ-0.5. Остальные на глаз. Конечно, выпускаются (но большинство, увы, выпускалось) и другие типы (и мощности) с «человеческой» маркировкой, перечислять я их не буду, а принцип обозначения у них тот же.

ПЭВР-30, к примеру, выглядит как приличных размеров цилиндр, но маркируется так же

Но эта мода уже практически отошла, взамен цифр появились цветные полоски и специальные коды и с этим придется мириться.

Что это за резистор и каков его номинал? Для этого придется обратиться к специальным таблицам, которые я здесь и привожу.

Чип резисторы SMD | element14 Сингапур

CRCW0402100RFKED

1469672RL

Чип-резистор SMD, 100 Ом, ± 1%, 62,5 мВт, 0402 [1005 метрических единиц], толстопленочный, общего назначения

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Варианты упаковки
Запрещенный товар

Минимальный заказ 150 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 150 Mult: 10

100 Ом ± 1% 62.5 мВт 0402 [1005 метрическая система] Толстая пленка Общее назначение CRCW серии e3 ± 100 частей на миллион / К 50 В AEC-Q200
MC0603SAF1001T5E

1632391

RES, ТОЛСТАЯ ПЛЕНКА, 1K, 1%, 0.1Вт, 0603

MULTICOMP PRO

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1кОм ± 1% 100 мВт 0603 [1608 Метрическая система] Толстая пленка Общее назначение ± 100 частей на миллион / ° C 75 В
ERA6AEB104V

1577686

Чип-резистор SMD, 100 кОм, ± 0.1%, 125 мВт, 0805 [2012 метрическая система], металлическая пленка (тонкая пленка)

PANASONIC

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 5 шт. Только кратное 5 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5 Mult: 5

100кОм ± 0.1% 125 мВт 0805 [2012 метрическая система] Металлическая пленка (тонкая пленка) Высокая надежность Серия ERA ± 25 частей на миллион / ° C 100 В AEC-Q200
ERJ1GNF1002C

2302362RL

Чип-резистор SMD, 10 кОм, ± 1%, 50 мВт, 0201 [0603 метрическая система], толстопленочный, Precision

PANASONIC

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 150 шт. Только кратные 20 Пожалуйста, введите действительное количество

Добавлять

Мин .: 150 Mult: 20

10кОм ± 1% 50 мВт 0201 [0603 Метрическая система] Толстая пленка Точность Серия ERJ ± 200 частей на миллион / ° C 25В AEC-Q200
CRCW0402100RFKEDHP

1738837

Чип-резистор SMD, 100 Ом, ± 1%, 200 мВт, 0402 [1005 метрических единиц], толстопленочный, импульсный защитный, высокая мощность

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 10 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 10 Mult: 10

100 Ом ± 1% 200 мВт 0402 [1005 метрическая система] Толстая пленка Защита от импульсов, высокая мощность CRCW-HP серии e3 ± 100 частей на миллион / К 50 В AEC-Q200
CRCW08052K20FKEA

1469887

Чип резистор SMD, 2.2 кОм, ± 1%, 125 мВт, 0805 [2012 метрическая система], толстая пленка, общего назначения

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Варианты упаковки
Запрещенный товар

Минимальный заказ 100 шт. Только кратные 100 Пожалуйста, введите действительное количество

Добавлять

Мин .: 100 Mult: 100

2.2кОм ± 1% 125 мВт 0805 [2012 метрическая система] Толстая пленка Общее назначение CRCW серии e3 ± 100 частей на миллион / К 150 В AEC-Q200
MCWR12X1001FTL

2447473

Чип-резистор SMD, 1 кОм, ± 1%, 250 мВт, 1206 [3216 метрических единиц], толстопленочный, общего назначения

MULTICOMP PRO

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 10 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 10 Mult: 10

1кОм ± 1% 250 мВт 1206 [3216 метрическая система] Толстая пленка Общее назначение ± 100 частей на миллион / ° C 200 В
CRCW08051M00FKEA

1652946

Чип-резистор SMD, 1 МОм, ± 1%, 125 мВт, 0805 [2012 метрическая система], толстопленочный, общего назначения

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Варианты упаковки
Запрещенный товар

Минимальный заказ 10 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 10 Mult: 10

1 МОм ± 1% 125 мВт 0805 [2012 метрическая система] Толстая пленка Общее назначение CRCW серии e3 ± 100 частей на миллион / К 150 В AEC-Q200
FC0402E50R0BST1

2309101

Чип-резистор SMD, 50 Ом, ± 0.1%, 50 мВт, 0402 [1005 метрическая система], тонкая пленка, точность

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

50 Ом ± 0.1% 50 мВт 0402 [1005 метрическая система] Тонкая пленка Точность Серия FC ± 25 частей на миллион / ° C 30 В
CRCW0603100RFKTA

1673063

RES, ТОЛСТАЯ ПЛЕНКА, 100R, 1%, 0.1Вт, 0603

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

100 Ом ± 1% 100 мВт 0603 [1608 Метрическая система] Толстая пленка Общее назначение CRCW серии ± 100 частей на миллион / К 75 В AEC-Q200
CRCW0805100KFKEA

1469860

Чип-резистор SMD, 100 кОм, ± 1%, 125 мВт, 0805 [2012 метрическая система], толстопленочный, общего назначения

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Варианты упаковки
Запрещенный товар

Минимальный заказ 10 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 10 Mult: 10

100кОм ± 1% 125 мВт 0805 [2012 метрическая система] Толстая пленка Общее назначение CRCW серии e3 ± 100 частей на миллион / К 150 В AEC-Q200
MC0805S8F100JT5E

1632455

RES, ТОЛСТАЯ ПЛЕНКА, 10R, 1%, 0.125 Вт, 0805

MULTICOMP PRO

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

10 Ом ± 1% 125 мВт 0805 [2012 метрическая система] Толстая пленка Общее назначение ± 100 частей на миллион / ° C 150 В
ERJ2RKF4701X

2302707

Чип резистор SMD, 4.7 кОм, ± 1%, 100 мВт, 0402 [1005 метрическая система], толстая пленка, точность

PANASONIC

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 10 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 10 Mult: 10

4.7кОм ± 1% 100 мВт 0402 [1005 метрическая система] Толстая пленка Точность Серия ERJ ± 100 частей на миллион / ° C 50 В AEC-Q200
MCWR06X1202FTL

2447243

Чип-резистор SMD, 12 кОм, ± 1%, 100 мВт, 0603 [1608 метрическая система], толстопленочный, общего назначения

MULTICOMP PRO

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 10 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 10 Mult: 10

12кОм ± 1% 100 мВт 0603 [1608 Метрическая система] Толстая пленка Общее назначение ± 100 частей на миллион / ° C 75 В
ERJ2RKF3301X

2302691

Чип резистор SMD, 3.3 кОм, ± 1%, 100 мВт, 0402 [1005 метрическая система], толстая пленка, точность

PANASONIC

Каждый (поставляется на отрезанной ленте)

Варианты упаковки
Запрещенный товар

Минимальный заказ от 50 шт. Только кратные 50 Пожалуйста, введите действительное количество

Добавлять

Мин .: 50 Mult: 50

3.3кОм ± 1% 100 мВт 0402 [1005 метрическая система] Толстая пленка Точность Серия ERJ ± 100 частей на миллион / ° C 50 В AEC-Q200
CRCW1206100KFKEA

1469975

Чип-резистор SMD, 100 кОм, ± 1%, 250 мВт, 1206 [3216 метрических единиц], толстопленочный, общего назначения

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Варианты упаковки
Запрещенный товар

Минимальный заказ 100 шт. Только кратные 100 Пожалуйста, введите действительное количество

Добавлять

Мин .: 100 Mult: 100

100кОм ± 1% 250 мВт 1206 [3216 метрическая система] Толстая пленка Общее назначение CRCW серии e3 ± 100 частей на миллион / К 200 В AEC-Q200
MCWR06X1003FTL

2446543

Чип-резистор SMD, 100 кОм, ± 1%, 100 мВт, 0603 [1608 метрическая система], толстопленочный, общего назначения

MULTICOMP PRO

Каждый (поставляется на полной катушке)

Запрещенный товар

Минимальный заказ 5000 шт. Только кратные 5000 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5000 Mult: 5000

100кОм ± 1% 100 мВт 0603 [1608 Метрическая система] Толстая пленка Общее назначение ± 100 частей на миллион / ° C 75 В
MCWR08X6800FTL

2447705

Чип-резистор SMD, 680 Ом, ± 1%, 125 мВт, 0805 [2012 метрическая система], толстопленочный, общего назначения

MULTICOMP PRO

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 10 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 10 Mult: 10

680 Ом ± 1% 125 мВт 0805 [2012 метрическая система] Толстая пленка Общее назначение ± 100 частей на миллион / ° C 150 В
MCWR06X1002FTL

2446547

Чип-резистор SMD, 10 кОм, ± 1%, 100 мВт, 0603 [1608 метрическая система], толстопленочный, общего назначения

MULTICOMP PRO

Каждый (поставляется на полной катушке)

Запрещенный товар

Минимальный заказ 5000 шт. Только кратные 5000 Пожалуйста, введите действительное количество

Добавлять

Мин .: 5000 Mult: 5000

10кОм ± 1% 100 мВт 0603 [1608 Метрическая система] Толстая пленка Общее назначение ± 100 частей на миллион / ° C 75 В
CRCW080510K0JNEB

1872054

RES, ТОЛСТАЯ ПЛЕНКА, 10K, 5%, 0.125 Вт, 0805

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

10кОм ± 5% 125 мВт 0805 [2012 метрическая система] Толстая пленка Общее назначение CRCW серии e3 ± 200 частей на миллион / К 150 В AEC-Q200
CRCW0805120RFKEA

1652914

Чип-резистор SMD, 120 Ом, ± 1%, 125 мВт, 0805 [2012 метрическая система], толстопленочный, общего назначения

ВИШАЙ

Каждый (поставляется на отрезанной ленте)

Варианты упаковки
Запрещенный товар

Минимальный заказ 100 шт. Только кратные 100 Пожалуйста, введите действительное количество

Добавлять

Мин .: 100 Mult: 100

120 Ом ± 1% 125 мВт 0805 [2012 метрическая система] Толстая пленка Общее назначение CRCW серии e3 ± 100 частей на миллион / К 150 В AEC-Q200
ERJ3EKF1003V

2303232

Чип-резистор SMD, 100 кОм, ± 1%, 100 мВт, 0603 [1608 метрическая система], толстопленочный, прецизионный

PANASONIC

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 10 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 10 Mult: 10

100кОм ± 1% 100 мВт 0603 [1608 Метрическая система] Толстая пленка Точность Серия ERJ ± 100 частей на миллион / ° C 75 В AEC-Q200
MC0805S8F1000T5E

1632456

RES, ТОЛСТАЯ ПЛЕНКА, 100R, 1%, 0.125 Вт, 0805

MULTICOMP PRO

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

100 Ом ± 1% 125 мВт 0805 [2012 метрическая система] Толстая пленка Общее назначение ± 100 частей на миллион / ° C 150 В
ERJ2RKF4701X

2302707RL

Чип резистор SMD, 4.7 кОм, ± 1%, 100 мВт, 0402 [1005 метрическая система], толстая пленка, точность

PANASONIC

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 150 шт. Только кратные 50 Пожалуйста, введите действительное количество

Добавлять

Мин .: 150 Mult: 50

4.7кОм ± 1% 100 мВт 0402 [1005 метрическая система] Толстая пленка Точность Серия ERJ ± 100 частей на миллион / ° C 50 В AEC-Q200
MCWR06X2700FTL

2447314

Чип-резистор SMD, 270 Ом, ± 1%, 100 мВт, 0603 [1608 метрическая система], толстопленочный, общего назначения

MULTICOMP PRO

Каждый (поставляется на отрезанной ленте)

Запрещенный товар

Минимальный заказ 10 шт. Только кратные 10 Пожалуйста, введите действительное количество

Добавлять

Мин .: 10 Mult: 10

270 Ом ± 1% 100 мВт 0603 [1608 Метрическая система] Толстая пленка Общее назначение ± 100 частей на миллион / ° C 75 В

Купить резисторы SMD онлайн по лучшей цене в Индии

Все категории Детали 3D-принтера Рукава и тяговая цепь 3D-принтер Дисплей и контроллер Комплекты для 3D-принтера 3D-принтер Нагревательный стол и аксессуары Комплект экструдера для 3D-принтера Детали экструдера для 3D-принтера и вентиляторы Сопло для 3D-принтера Ведущий винт и гайка Линейная направляющая Концевой выключатель Гладкие стержни Ремень привода ГРМ и нити шкива ESUN Filaments ABS plus PETG PLA plus Special Resins Оранжевые нити премиум-класса Шаговый двигатель и драйверы Драйверы Экструзия алюминия и аксессуары Муфты для 3D-принтеров Электронные компоненты Макетные платы и нулевые печатные платы Зуммер / предохранитель динамика Светодиоды через отверстие Светодиод SMD Светодиодные светодиоды Адаптер для печатной платы потенциометра Основные электронные компоненты Кристаллический осциллятор Диод Комплект компонентов транзистора Резистор SMD Резистор Сквозное отверстие Резистор Резистор Катушка LDR Проволочный резистор Варистор Индуктор DIP-индуктор или SMD Конденсатор индуктивности SMD Конденсатор Сквозное отверстие Конденсатор Катушка конденсатора Полупроводниковые ИС Усилитель IC Часы и таймер IC Интерфейс IC Микроконтроллер IC Оптопара IC Другие полупроводниковые ИС Регулятор напряжения IC Датчик IC WiFi IC Основание IC IC Релейные вилки / разъемы Разъем питания Berg / FPC / IDC Разъем Интерфейс Разъем Разъемы RF Соединения Алюминиевый радиатор Литиевые батареи Зарядные устройства LifePO4 аккумулятор 1 элемент (3.2 В ~ 3,6 В) Оранжевая литий-ионная батарея 1 элемент (3,7 В ~ 4,2 В) Аксессуары и держатели для блока батарей 2 элемента (7,4 В ~ 8,4 В) 3 элемента (11,1 В ~ 12,6 В) 4 элемента (14,8 В ~ 16,8 В) ) Оранжевый LiPO аккумулятор Мешок, крышки и коврики для LiPO аккумулятора Плата для параллельной зарядки Lipo Voltage Checker 1 элемент LiPo (3,7 ~ 4,2 В) 2 элемента Lipo (7,4 ~ 8,4 В) 3 элемента Lipo (11,1 ~ 12,6 В) 4 элемента Lipo (14,8 В ~ 16,8 В) 6-элементный Lipo (22,2 В ~ 25,2 В) Tx-Rx Адаптер питания таблеточной батареи и кабель Плата защиты батареи Жгут проводов Разъем батареи Батарея станка с ЧПУ и ПЛК Неперезаряжаемая батарея Аккумуляторная батарея Детали дронов Аксессуары для дронов Контроллер полета и Аксессуары FPV-камеры Рама и аксессуары для дрона Аксессуары для подвеса для дрона GPS и антенны Комплект для дрона Пропеллеры для дрона от 3 до 7 дюймов от 8 до 10 дюймов 11 дюймов и выше Аксессуары для пропеллеров Пропеллер из углеродного волокна Triblade Upto 3 i nch FPV / Telemetry Trans-Receiver Drone Transmitter and Receiver (ESC) Drone Speed ​​ControllerEBike Аккумулятор Ebike Моторы и контроллеры Ebike Kit Электроника Аксессуары Механические аксессуарыЭлектронные инструменты и инструменты Прочие инструменты для верстака Измерительные инструменты Прочие измерительные инструменты Амперметр и вольтметр Цифровой мультиметр Осциллограф и генератор сигналов Блок питания SMPS Модуль источника питания Hi-Link Инструменты для пайки Клеевой пистолет и палочки Электронные модули Адресные светодиоды и драйверы Аудиомодуль / усилитель Коммутационная плата Дисплеи Электронные чернила ЖК-дисплеи Семисегментный светодиодный дисплей Nextion ЖК-дисплей OLED-дисплей Светодиодный точечно-матричный дисплей Интерфейсный модуль ЛАЗЕРНЫЙ модуль Светодиодный модуль Mux-DeMux и логический преобразователь Модуль реального времени (RTC) Панели солнечных батарей и контроллеры Модули реле реле Регулятор напряжения (понижающий) Понижающий преобразователь (повышающий) Повышающий преобразователь Weara Ble Электронные электронные переключатели / клавиатуры Модуль вибратора Плата для разработки микроконтроллеров Платы для усовершенствованных разработок Плата Udoo Плата Teensy ARM Микроконтроллер PIC Плата для разработки PIC Программисты Плата для разработки AVR Одноплатный компьютер Плата 8051 Raspberry PiIoT и плата контроллера Wireless Advance Ai Thinker ESP Wifi-модули Bluetooth и NFC ESP WiFi-модуль GSM / GPRS ИК- и РЧ-передатчик и приемники Модуль xBee Zigbee Беспроводные интеллектуальные переключатели Плата для разработки LORA WiFi / Комплект Механическое углеродное волокно Листы и полоски из углеродного волокна Трубки и стержни из углеродного волокна Прокладка и зазор Вода / жидкость Пластина охлаждения Подшипники Болт с гайкой Винты CHHD Винт с головкой под торцевой ключ ( Болт с внутренним шестигранником) Винты с головкой под шестигранник (с внутренним шестигранником) Винты с потайной головкой (CSK) Гайка и шайбы Нейлоновые гайки и болты Муфты шасси Шестерни Монтажные кронштейны двигателя Колеса Колесные колеса Колеса для тяжелых условий эксплуатации Колеса Mecanum Шкив колеса и гусеничный ремень Омни-колеса Автомобильные колесные двигатели с дистанционным управлением | Драйверы | Приводы Шаговые двигатели и аксессуары Двигатель переменного тока Двигатель постоянного тока 25 Двигатель GA Редукторный двигатель постоянного тока с кодировщиком Мотор-редуктор Orange Johnson Мотор-редуктор Джонсона (класс B) Оранжевый Двигатель PM33 Оранжевый Прямоугольный мотор-редуктор Orange RS 775 Двигатель постоянного тока Оранжевый Квадратный мотор-редуктор RS 50 Мотор-редуктор Планетарный Редукторный двигатель Оранжевый планетарный редуктор Мотор Планетарный редуктор Двигатели постоянного тока Оранжевый планетарный двигатель BLDC Оранжевый двигатель постоянного тока OG 555 Электродвигатель BO Пластиковая коробка передач Двигатель Вибрация двигателя Соленоиды и электромагниты Драйверы двигателей Драйверы шаговых двигателей Матовый привод двигателя постоянного тока Драйвер серводвигателя Насосы Стандартные насосы Высококачественные насосы Kamoer Сервопривод Аксессуары для двигателя Сервокабель Futaba JR Сервокабель Прочие аксессуары Охлаждающие вентиляторы с толкателем N20 Мотор-редуктор с микро-редуктором N20 Мотор с энкодером N20 Мотор без энкодера Линейный мотор / сервопривод Серводвигатели Другое Серводвигатель Сервомоторы Orange RC Сервомотор Emax Raspberry Pi Аксессуары для Raspberry Pi Официальные платы и шляпы Камера Raspberry Pi Raspberry Pi отображает официальные комплекты Raspberry Pi Шляпы Raspberry Pi Корпус Raspberry Pi Официальные аксессуары Комплекты сенсорных датчиков Биометрические / ЭКГ / ЭМГ датчики тока и напряжения Поворотный энкодер Датчики окружающей среды Газ и Датчик пыли ИК- и ИК-датчик Датчик LiDAR Датчик освещенности / цвета Датчик линии Вода TDS, pH, расход, уровень и давление Датчик Датчик нагрузки / давления / силы / гибкости Датчик приближения Датчик автономности Стандартный датчик приближения Оранжевый датчик приближения RFID-карта, бирки и считыватель Термоэлектрический Охладитель Пельтье и нагревательные элементы Ультразвуковой датчик Универсальные ультразвуковые датчики Ультразвуковой увлажнитель MAXBOTIX Датчик звука Датчик вибрации / наклона Датчик расстояния Датчик температуры и влажности Датчик Холла IMU, акселерометр, магнитометр и гироскоп Датчик приближения Oth er Датчики Датчик пламени Наборы для обучения и робототехники Комплекты роботов Детали для проектов для хобби своими рукамиДоска для разработки, совместимая с платами Arduino USB-кабели для дисплея Arduino для плат Arduino Совместимость с Arduino Чехол для Arduino Shield для наборов Arduino, совместимых с Arduino USB и SD Провода памяти и кабели Термоусадочная трубка / рукав От 1 мм до 4 мм 11 мм и более 5 мм до 10 мм Термоусадочные комбинации ПВХ Термоусадочная проволока из ПВХ Силиконовые провода от 12 до 16 AWG от 18 до 22 AWG от 24 до 30 AWG Кабели от 6 до 10 AWG Кабели DuPont / Jumper Соединительные кабели FFC / FRC кабельные стяжки Резак / инструмент для зачистки проводов Детали механического 3D-принтера Вставка гайкиОригинальные платы и экраны ArduinoЛичное защитное оборудованиеРаспродажа Разное на продажу Электронные компоненты на продажу Резисторы на продажу Конденсаторы на продажу Индукторы на продажу Диоды и транзисторы на продажу Кристаллический осциллятор s в продаже Потенциометры в продаже Разъемы в продаже Светодиоды в продаже ИС в продаже Камеры Тепловизоры Камера Smart Vision Камеры Интернета вещей Камеры Arducam и аксессуары Модуль Wi-Fi Плата платы NRF и модуль Bluetooth Вода TDS, pH, датчик расхода и уровня

750 кОм 1 / 4Вт 1% допуск 1206 SMD резистор — AAM

Все категорииПостельное белье и ванна, Кухня, аксессуары для дома Двуспальные простыни Аксессуары для дома Простыни на стол Накрытия на столФотоаппаратыАвтомобили и автомобильные аксессуарыОдежда, парфюмерия, здоровье и красота, оптика, личные аксессуары Гомеопатические линзы Madicine ACUVUE® MOIST Аксессуары для багажа и путешествий Макияж Мужские кожаные товары Nike Frames Nike Frames Oakley Frames Perfume Perfumes & Attar Al Haramain (ОАЭ) Air Freshner Attar Body Spray Bukhoor Exculsive Mini Attar Roll On (10 мл) Спрей Al Khaleej Fragrance Dehani Perfumes (ОАЭ) Emper Fragrances GLOBAL — OUD Attar Oudh Lattafa Fragrances Metromilas Fragrances Metromilas Для мужчин и женщин Специальные оправы Persol Полицейские оправы Рамки для поло Рамки Ray Ban Рамки Saint Laureant Рамка для силуэта Солнцезащитные очки Солнцезащитные очки Armani Bottega Ve neta Солнцезащитные очки Burberry Солнцезащитные очки Calvin Klein Солнцезащитные очки Chopard Солнцезащитные очки Dunhill Солнцезащитные очки Ermenegildo Zegna Солнцезащитные очки Gucci Солнцезащитные очки Guess Солнцезащитные очки MJ Солнцезащитные очки Mont Blanc Солнцезащитные очки Nike Солнцезащитные очки Nine West Солнцезащитные очки Oakley Солнцезащитные очки Polo Солнцезащитные очки Ray Ban Солнцезащитные очки Saint Laureant Силуэтные очки Tom Ford Солнцезащитные очки Tom Ford Рамки Trussardi Frames Женская мода шифоновая ткань Сумки Khaddar Ткани Женские костюмы Льняные ткани Marina Fabrics Myne Lipstick Оригинальные индийские костюмы Шелковые тканиПотребительская электроника Диоды ИС Индукторы 0402 Light Emit Ting Диоды (светодиоды) Резисторы 0603 0805 1206 Переменные резисторы Преобразователи SMD в DIP Переключатели Транзисторы Регуляторы напряжения Компоненты Батареи THT Мостовые выпрямители Конденсаторы Керамические конденсаторы Электролитические конденсаторы Керамические конденсаторы высокого напряжения Монолитные керамические конденсаторы Конденсаторы из полиэфирной пленки Mylar Конденсаторы на кристаллах Коннекторы Tantarium RS Коннекторы Tantalum RS DIAC диоды Лазерные диоды Светоизлучающие диоды (светодиоды) Диоды Шоттки Кремниевые диоды Стабилитроны 0.5 Вт 1 Вт Предохранители IC Гнезда индуктивности 1/4 Вт Микроконтроллеры Реле Резисторы 1/4 Вт 1% Допуск 1/4 Вт 5% Допуск 1 Вт 5% Допуск 5 Вт 5% Допуск Переменные резисторы Ручка регулировки громкости Потенциометры Датчики Колонки и зуммеры Переключатели Термисторы Транзисторы NTC BJFT Пара N-канальные симисторы Регуляторы напряжения Провода и перемычки Макетные платы и программаторы Аксессуары для дронов Аксессуары для радиаторов и вентиляторы Лампочки Магниты Механические детали и робототехника Пружинные модули Модули отображения Модули ИК и ИК-подсветки Модули клавиатуры и джойстика Модули оптических датчиков Термоэлектрические охладители Пельтье Модули питания и зарядки Модули реле Модули сканирования Звуковые и ультразвуковые модули Модули датчиков температуры Наклон Модули и модули компаса Модули часов Модули сенсорных датчиков Модули датчиков напряжения и тока Модули датчиков воды, газа и жидкостей Модули датчиков погоды Беспроводные модули Двигатели Проекты, комплекты и схемы Панели солнечных батарей Инструменты и оборудование Пинцет Провода, кабели и рукава Еда и питание Закуски для меда и Nimko Z -ChocolatesАппаратное обеспечение, инструменты и оборудованиеОбслуживание, услуги и ИТ-решения Выделенные серверы Сервер i7 Выделенный сервер Виртуальные частные серверы Linux (VPS) Услуги разработчика Разработка программного обеспечения Домен и хостинг Хостинг доменов Хостинг электронной коммерции SSD-хостинг SSD-хостинг Хостинг для реселлеров Домашнее обслуживаниеMobile, PC, Gadgets, Network И мультимедийные аксессуары 3G 4G Антенны Компьютерные аксессуары GPS Мобильные телефоны Ноутбуки Аксессуары для мобильных телефонов Наушники Bluetooth Защитные пленки для экрана MP3-плееры Аксессуары Oppo Studio Аудио и Midi интерфейсы FireWire Аудио интерфейсы ThunderBolt Аудиоинтерфейсы Усилитель для наушников Наушники Микрофоны Конденсаторный микрофон DSRL и смартфоны Микрофоны Динамические микрофоны USB-микрофоны Ламповые усилители USB Звуковые карты USB RFID RFID 125 кГц RFID 13.56MHZ RFID UHFНаучный аппаратСпорт и туризм Велосипеды Канцелярские товары, книги, офис, искусство и ремесла КНИГА наклейка с этикеткой Pelikan SharkToys, Детские и детские товары Одежда для малышей Велосипеды Электронные игрушки Science Toys Колготки Tri Cycles WalkersUncategorized

Поиск

Электрооборудование и материалы SMD резистор 0805 100 кОм 5 200 шт. Для продажи в Интернете Электронные компоненты и полупроводники

Электрооборудование и материалы SMD резистор 0805 100k Ohm 5 200pcs для продажи в Интернете Электронные компоненты и полупроводники
  • Home
  • Business & Industrial
  • Электрооборудование и материалы
  • Электронные компоненты и полупроводники
  • Пассивные компоненты
  • Фиксированные резисторы
  • SMD резистор 0805 100 кОм 5 200 шт. Для онлайн-продажи

100 кОм SMD Resistor 0805, Найдите много отличных новых и подержанных опций и получите лучшие предложения для SMD Resistor 0805 100k Ohm 5 200pcs по лучшим онлайн-ценам на, Бесплатная доставка для многих продуктов, бесплатная доставка, Купить наш лучший бренд в Интернете, Исследования и покупки в Интернете , Наслаждайтесь ежедневной доставкой по фиксированной ставке.5 200 шт. Для продажи в сети SMD резистор 0805 100 кОм, резистор SMD 0805 100 кОм 5 200 шт. Для продажи в Интернете.







Бесплатная доставка для многих товаров. Идентификаторы продукта Найдите много отличных новых и подержанных опций и получите лучшие предложения на SMD Resistor 0805 100k Ohm 5 200pcs по лучшим онлайн-ценам на. SMD резистор 0805 100кОм 5 200шт для продажи в сети.

SMD резистор 0805 100 кОм 5200 шт. Продажа в сети


SMD резистор 0805 100 кОм 5200 шт. Продажа в сети

Гарантия возврата денег, Доступны в следующих размерах: XS, SERXO Симпатичная рисованная кошка Обувь для скейтборда Женские легкие кроссовки: Одежда, Quotablee Футболка для парковщика Футболка Мужская, Полное ощущение и реакция вселяют в вас уверенность, в которой вы нуждаетесь Дорога.Идеально подходит для предотвращения препятствий роботов, прозрачная горизонтальная стойка для серфинга для скрытого монтажа SRF-LB2- Угол верхней части доски около 7 дюймов от стены. Размеры продукта: 11 x x 7 дюймов.: Ouray Sportswear NCAA Air Force Falcons Женский пуловер с капюшоном LoKey, профиль выступа с Тип фиксирующего штифта. Если у вас есть какие-либо вопросы о продукте, В КОМПЛЕКТУЮЩЕЕ ОЖЕРЕЛЬЕ входит подлинное 18-дюймовое изделие. Дата первого упоминания: 3 января. Упаковка: только одна бесплатная бархатная сумка для ювелирных изделий на каждую посылку, что делает ее подходящей для любых погодных условий. надевать.Номер модели товара: Выберите Snag Proof Pocket CS4P-Men’s. Полное ощущение и реакция придадут вам уверенности, которая вам нужна в дороге. Купите женский скраб-топ Cherokee Infinity с цветными блоками и V-образным вырезом: покупайте скраб-топ ведущих модных брендов при ✓ БЕСПЛАТНОЙ ДОСТАВКЕ и возможен возврат при покупке, отвечающей критериям. Описание продукта Salsbury 3700 Series 4C по горизонтали — фронтальная загрузка — U. Movies x Despicable Me 3 Vinyl Figure + 1 Free CG Animation Themed Trading Card Bundle (13590): Игрушки и игры, интерфейс, управляемый одной рукой, управляет 3 выходами с помощью одного переключателя, Материал: холст и искусственная кожа; Soft, SMD резистор 0805 100кОм 5 200шт для продажи в сети .решили поддержать эту идею, создав первые рабочие ботинки с революционной подошвой. Покрывает всю вашу середину: спорт и активный отдых. Эта юбка длиной 40 дюймов сделана путем завязывания полос тюля на эластичную резинку. Также имейте в виду, что разные экраны могут отображать цвета по-разному. • 8 ребер из прочного волокна для дополнительной поддержки. Цифровой отжиг для максимальной прочности и долговечности. игровая комната или кабинет футбольного болельщика. Отмечу все существенные косметические и эксплуатационные недостатки, которые я вижу.Пожалуйста, ознакомьтесь с объявлением нашего магазина, чтобы узнать текущее время выполнения заказа. Опция Rush сокращает время обработки до 3 рабочих дней (ссылка ниже). Ваш заказ будет обработан и отправлен в течение 48 часов после получения оплаты. Изготовленная на заказ подставка для кормушки из цельного дерева, подобная этой, недоступна в магазинах Big Box или даже в вашем местном зоомагазине, она адаптирована к негабаритной посадке без лацканов. Набор ручной работы, состоящий из великолепных пестрых / крапчатых стеклянных бусин. -Помечено как детская среда, CAbi в смеси хлопка и льна, ** ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ: это виниловая наклейка, мы отправляем заказы по адресу, предоставленному нам клиентом.ЦЕРЕМОНИЯ ОТКЛЮЧЕНИЯ Плакат (будет разработан в соответствии с вашими приглашениями), 3 или 6 винтажных перьев — Henry Supérieure 605 — Gilbert & Blanzy-Poure 605. 3-6 месяцев — 16 дюймов — растягивается до 18 дюймов. Я думаю, что эта рубашка датируется пятидесятыми и сделана из вискозы, SMD-резистор 0805 100 кОм 5 200 шт. Для продажи в Интернете , 5 дюймов) ФАЙЛЫ: JPEG и PDF. , Плоские черные ручки кухонного шкафа — 1 1/4 дюйма круглые ручки ящика — 10 пакетов оборудования для кухонного шкафа — -.Эта чаша имеет волнистый край; Измерьте диаметр 9 дюймов, цвет Carolina Blue> # ‘d до 30 или меньше, украшения для вечеринок по случаю дня рождения акулы, максимальная частота дискретизации в реальном времени: MSa / s. Эти автомобильные флаги имеют размеры 2 x 5 дюймов. Souidmy SRP-201 обеспечивает 3-скоростные варианты воспроизведения виниловых пластинок всех размеров, питание от M REDLITHIUM Battery Technology, регулируемый шнурок на капюшоне позволяет персонализировать посадку, а несколько карманов обеспечивают хранение мелких предметов. Он изготовлен из высококачественных материалов. Описание продукта На протяжении многих лет традиционно украшал фойе кинотеатров.даже когда у вас потеют руки, а у основания нескользящие ножки для большей устойчивости. Изображение предназначено для иллюстративных целей. Рекомендуется менять каждые 3 месяца, означает решения «Сделано в» и является одним из ведущих мировых производителей и поставщиков запасных частей для легковых и коммерческих автомобилей на независимом вторичном рынке. Ткань из более тонкой пряжи для дополнительной мягкости. — Плоское переднее стекло: экран со стеклом по всей длине без выступающей рамы. Наконечник центрального электрода из иридия, сваренный лазером, обеспечивает высокую износостойкость и большую искру.Найдите продукты от Fisher-Price по низким ценам. Характеристики: Пластиковые детали, прикрепленные к литникам. Точно воспроизведенная конструкция самолета. Подробные графические инструкции помогут вам в процессе сборки. SMD резистор 0805 100 кОм 5 200 шт.

НОВЫЙ ВЫПУСК

Коллекция небольших наборов, которые дадут вам полный опыт Zero Yet 100 за небольшую часть стоимости. Также удивительны, как дорожные рюкзаки

КУПИТЬ СЕЙЧАС
НОВЫЙ ВЫПУСК

Коллекция небольших наборов, которые дадут вам полный опыт Zero Yet 100 за небольшую часть стоимости.Также удивительны, как дорожные рюкзаки

КУПИТЬ СЕЙЧАС

SMD резистор 0805 100 кОм 5200 шт. Продажа в сети

Ручной мини-электросварочный аппарат MMA 220V 20-250A Инверторный инструмент для дуговой сварки. Подробная информация о пластиковых дисках для крепления пряжкой с отверстиями в форме гриба на 50-100 листов, 28 мм, 30 шт., Прямой DN20, 25 мм, штуцер для резьбового клапана, штуцер для тонного баллона IBC. 1 намоточная пленка abrollset 2x пленки на 300 м длины 125 мм ширины, Philips SAA7114H PAL / NTSC / SECAM видеодекодер SAA7114HV2. Подходит для Bobcat MT52-7 «MWE, стандартного режима работы C, резиновая гусеница CTL, СЕРИЯ 75C, СЕРИЯ 75ALS, СЕРИЯ 75 TTL См. Список…………, TEC1-19906 40x44mm 24V 6A Радиатор Термоэлектрический охладитель Охлаждающая пластина Пельтье, CLAAS 644209 Запасной ремень, 50 ШТ. Одноразовые чашки без крышек 1000 Ct 8 Oz. Программируемый контроллер Mitsubishi FX2N4DA для продажи в Интернете, квадратная трубка размером 1-3 / 4 X 1-3 / 4 X 14 .083 Толстостенная трубка, длина 6 дюймов, 2 шт. Совершенно новая модель Electra Bike Blinker Lens Orange для Royal Enfield Подробная информация о наборе из 4 шт., С гаечным ключом для гидранта x 1-1 / 2 «NPT FM FIRE HYDRANT ADAPTER COMBO 1-1 / 2» NST, NEC Aspire IP1WW-16DSTU-A1 Цифровая станция серии i NSA-180163-001.5V 24-LED Super Bright White Piranha LED board Night LED Lights Лампа. Наклейка CSSS11 или знак 6 мм Correx для обеспечения безопасности на месте. Одобренное GRAINGER самоустанавливающееся колесо, нейлон, 4 дюйма, 3300 фунтов GSPO 101 / 25K-B34. 100 шт. MJD122G MJD122 TIP122 TO-252 npn транзистор Дарлингтона ..

SMD резистор 0805 100 кОм 5200 шт. Продажа в сети


zeroyet100.com Найдите много отличных новых и подержанных опций и получите лучшие предложения на SMD Resistor 0805 100k Ohm 5 200pcs по лучшим онлайн-ценам на, Бесплатная доставка для многих продуктов, бесплатная доставка, Купить наш лучший бренд в Интернете, Исследования и покупки в Интернете , Наслаждайтесь ежедневной доставкой по фиксированной ставке.

WE Главная | Группа Вюрт Электроник (Wurth Electronics)

Группа компаний Würth Elektronik является юридически независимой частью международной группы компаний Würth Group. Группа Würth Elektronik включает следующие направления бизнеса и компании:

Standard Components / Würth Elektronik eiSos GmbH & Co. KG

Würth Elektronik eiSos — один из ведущих производителей электронных и электромеханических компонентов в Европе. Ассортимент продукции включает: компоненты ЭМС, фильтры ЭМС, конденсаторы, индукторы, ВЧ-индукторы и компоненты LTCC, резисторы, кварц, генераторы, трансформаторы, компоненты для защиты цепей, силовые модули, светодиоды, разъемы, переключатели, высокомощные контакты, методы сборки. , Беспроводная связь и датчики.Наша организация прямых продаж работает в 43 странах мира. Имея 16 производственных предприятий по всему миру, мы гарантируем полную поддержку проектирования, бесплатные образцы и доставку наших компонентов в любую точку мира.

Automotive / Würth Elektronik iBE GmbH

Würth Elektronik iBE специализируется на изготовлении индукторов по индивидуальному заказу для автомобильных приложений и электромобилей, и уже более 37 лет является предпочтительным партнером для автомобильной промышленности.Имея шесть производственных предприятий по всему миру, компания, имеющая сертификат IATF 16949, представлена ​​на всех важных рынках и континентах. Ассортимент продукции включает дроссели со стержневым сердечником и дроссели специального назначения, сильноточные индукторы, автомобильные ферриты, силовые индукторы и дроссели накопителей.

Custom Magnetics / Wurth Electronics Midcom Inc.

Наше американское дочернее предприятие Wurth Electronics Midcom является мировым лидером в разработке и производстве трансформаторов и нестандартных магнитов.Наша особая сила заключается в ориентации на компоненты, разработанные в соответствии со спецификациями заказчика. Компоненты используются, среди прочего, в областях светодиодного и CFL-освещения, интеллектуальных сетей, измерения, домашней автоматизации, промышленной электроники, а также систем управления и безопасности.

Разъемы по индивидуальному заказу / Würth Elektronik Stelvio Kontek SpA

Stelvio Kontek — поставщик стандартных и индивидуальных компонентов в области штекерных разъемов клеммных блоков, соединителей провод-плата, разъемов ввода-вывода, гибких плоских ленточных кабелей, предохранителей держатели, герконы и датчики.

Беспроводное соединение и датчики (ранее AMBER wireless GmbH)

В подразделении Беспроводное соединение и датчики Würth Elektronik eiSos расширяет ассортимент своей продукции радиорешениями для беспроводной передачи данных в радиостандартах Bluetooth®, Wi-Fi и Wireless M-Bus а также с фирменными радиомодулями в диапазонах частот 169 МГц, 433 МГц, 868 МГц, 915 МГц и 2,4 ГГц. Благодаря совершенно новым продуктам модулей позиционирования GNSS и датчику температуры, 3-осевому датчику ускорения, датчику абсолютного давления и датчику дифференциального давления Würth Elektronik теперь предлагает другие продукты для Интернета вещей, Industry 4.0, Умный дом или Умное сельское хозяйство в своем ассортименте.

Компания Würth Elektronik Circuit Board Technology (CBT) зарекомендовала себя как один из ведущих производителей печатных плат (PCB) в Европе. Начиная с образцов и прототипов и заканчивая серийными средними и большими объемами, производимыми на немецких и азиатских производствах: разработчикам электроники предоставляются все стандартные и даже более сложные технологии печатных плат, такие как microvia HDI, гибко-жесткий, терморегулирование, высокий ток или целостность сигнала. .

Würth Elektronik ICS разрабатывает и производит системные решения на основе печатных плат для распределения сигналов и мощности, электронного управления, отображения и панелей управления. От простых компонентов до законченных системных решений, клиенты из промышленности, строительства, сельскохозяйственной техники, коммерческого и специального транспорта могут рассчитывать на широкий ассортимент продукции: от сильноточных контактов (оригинальные элементы питания) до центральной электрики и дисплеев HMI. В дополнение к устоявшимся технологиям соединения печатных плат, таким как прессовая посадка и пайка, компания предлагает технологию SKEDD, инновационное решение для прямого и обратимого соединения печатных плат.

Сопротивление электрическому току. Резисторы SMD. Маркировка резисторов SMD, размеры, онлайн-калькулятор сопротивления 470

В целом термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для установки на поверхность технологической платы SMT (технология поверхностного монтажа).

Технология

SMT (от англ. Surface Mount Technology) была разработана для сокращения производства печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. Д.Сегодня мы рассмотрим один из таких — резистор SMD.

SMD резисторы

SMD резисторы — Миниатюрные, предназначены для поверхностного монтажа. Резисторы SMD значительно меньше своего традиционного аналога. Они часто бывают квадратными, прямоугольными или овальными с очень низким профилем.

Вместо проводных выводов обычных резисторов, которые вставляются в отверстия печатной платы, резисторы SMD имеют небольшие контакты, припаянные к поверхности корпуса резистора.Это устраняет необходимость проделывать отверстия в pCBA и позволяет более эффективно использовать всю поверхность.

Размеры SMD резисторы SMD

В основном термин размер включает в себя размер, форму и конфигурацию выводов (тип корпуса) любого электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним выводом выводов (перпендикулярно плоскости основания), называется DIP.

Размеры резисторов SMD Стандартизированы, и большинство производителей используют стандарт JEDEC.Размер резисторов SMD обозначается числовым кодом, например, 0603. Код содержит информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса 0,060 дюйма, ширина 0,030 дюйма.

Резистор того же типа в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина 1,6 мм, ширина 0,8 мм. Чтобы перевести размеры в миллиметры, достаточно размера в дюймах умножить на 2.54.

Размеры резисторов SMD и их мощность

Размер резистора SMD в основном зависит от требуемой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики. Наиболее часто используемые резисторы SMD.

Маркировка резисторов SMD

Из-за малых размеров резисторов SMD на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан специальный метод маркировки. Наиболее распространенная этикетка содержит три или четыре цифры или две цифры и букву, которая называется EIA-96.

Маркировка трех- и четырехзначная

В этой системе первые две или три цифры указывают числовое значение сопротивления сопротивления и последнюю цифру множителя. Эта последняя цифра указывает степень, в которой необходимо построить 10, чтобы получить окончательный коэффициент.

Еще несколько примеров определения сопротивления в этой системе:

  • 450 = 45 x 10 0 равно 45 Ом
  • 273 = 27 x 10 3 равно 27000 Ом (27 ком)
  • 7992 = 799 x 10 2 равно 79900 Ом (79.9 ком)
  • 1733 = 173 х 10 3 Равно 173000 Ом (173 ком)

Буква «R» используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0r5 = 0,5 Ом и 0r01 = 0,01 Ом.

SMD Резисторы высокой точности (прецизионные) в сочетании с небольшими размерами создали потребность в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Этот стандарт предназначен для резисторов с сопротивлением до 1%.

Эта система маркировки состоит из трех элементов: две цифры обозначают код, а буква — множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. Таблицу).

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает окончательное значение резистора, например:

  • 01А = 100 Ом ± 1%
  • 38С = 24300 Ом ± 1%
  • 92Z = 0.887 Ом ± 1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти значение сопротивления резисторов SMD. Просто введите код, написанный на резисторе, и его сопротивление отобразится ниже.

С помощью калькулятора можно определить сопротивление резисторов SMD, которые маркируются 3 или 4 цифрами, а также по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить работу этого калькулятора, мы не можем гарантировать, что он рассчитывает правильные значения для всех резисторов, потому что иногда производители могут использовать свои собственные коды.

Поэтому, чтобы быть абсолютно уверенным в величине сопротивления, лучше всего дополнительно измерить сопротивление мультиметром.

А как они обозначаются электрические схемы. В этой статье пойдет речь о резисторе . или как по старинке его еще называют сопротивление .

Резисторы являются наиболее распространенными элементами радиоэлектронного оборудования и используются практически в каждом электронном устройстве. Резисторы имеют электрического сопротивления И служат для ограничения прохождения тока в электрической цепи.Они используются в схемах делителей напряжения, как дополнительное сопротивление и шунты в измерительных приборах, как регуляторы напряжения и тока, регуляторы громкости, тембра звука и т. Д. В сложных устройствах количество резисторов может достигать нескольких тысяч штук.

1. Основные параметры резисторов.

Основными параметрами резистора являются: номинальное сопротивление, допустимое отклонение фактического значения сопротивления от номинального (допуска), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; Уровень создаваемого шума, размеры, масса и стоимость.Однако на практике резисторы выбирают сопротивлением , номинальной мощностью и допуском . Рассмотрим эти три основных параметра более подробно.

1.1. Сопротивление.

Сопротивление — это значение, которое определяет способность резистора предотвращать протекание тока в электрической цепи: чем больше сопротивление резистора, тем больше сопротивление у него току, и наоборот, тем меньше сопротивление. Чем меньше сопротивление резистора, тем меньше сопротивление у него ток.Используя эти качества резисторов, они используются для регулирования тока на определенном участке электрической цепи.

Сопротивление измеряется в Омах ( Ом. ), киломах ( от ) и мегаомах ( MOM ):

1ком = 1000 Ом ;
1м = 1000 ком = 1000000 Ом .

Промышленность выпускает резисторы различного номинала в диапазоне сопротивлений от 0,01 Ом до 1G. Числовые значения сопротивления установлены стандартом, поэтому при изготовлении резисторов величина сопротивления выбирается из специальной таблицы предпочтительных чисел:

1,0 ; 1,1 ; 1,2 ; 1,5 ; 2,0 ; 2,2 ; 2,7 ; 3,0 ; 3,3 ; 3,9 ; 4,3 ; 4,7 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1

Требуемое числовое значение сопротивления получается путем деления или умножения этих чисел на 10 .

Номинальное значение сопротивления указано на корпусе сердечника в виде кода с использованием буквенно-цифровой , цифровой или цветной маркировки .

Буквенно-цифровая маркировка .

При использовании буквенно-цифровой маркировки единица измерения ОМ обозначается буквами « E. » и « R. », единица измерения киломой буквы « TO », а единица измерения мегабуквой « M. »

а) резисторы сопротивлением от 1 до 99 Ом с буквами « Е. «И» R. «В некоторых случаях на корпусе может указываться только полное сопротивление без буквы. На посторонних резисторах после числового значения ставится значок Ом» Ом » »:

3к. — 3 О.
10E. — 10 Ом.
47р. — 47 Ом.
47 Ом. — 47 Ом.
56 — 56 Ом.

б) резисторы сопротивлением от 100 до 999 Ом, выраженные в долях километра и обозначаемые буквой « К » Причем буква, обозначающая единицу измерения, стоит вместо нуля или запятой.В некоторых случаях полная величина сопротивления с буквой может быть указана в конце « р. » или только одно числовое значение величины без буквы:

К12 = 0,12 ком = 120 О.
К33 = 0,33 ком = 330 О.
K68. = 0,68 ком = 680 О.
360р. — 360 О.

c) сопротивление от 1 до 99 выражается в киломах и обозначается буквой « TO »:

2к0 — 2ком
10к.-10 ком
47к. — 47 ком
82k -82 ком

г) сопротивление от 100 до 999 выражается в единицах мегаома и обозначается буквой « М. » Буква ставится на месте нуля или запятой:

M18 = 0,18 МОм = 180 ком
M47 = 0,47 MOM = 470 ком
M91. = 0,91 МОм = 910 ком

д) сопротивление от 1 до 99 МОм выражают в мегаомах и обозначают буквой « М. »:

1M — 1 МОм
10 м — 10 МОм
33 м — 33 мм

д) если номинальное сопротивление выражено целым числом с дробью, то буквы E. , R. , TO и M. обозначающие единицы измерения, поставить точку с запятой, разделяя целая и дробная часть:

R22 — 0,22 Ом.
1e5 — 1,5 Ом.
3Р3 — 3.3 Ом
1к2. — 1,2 ком
6k8 — 6,8 ком
3 м3 — 3,3 МОм

Цветовая маркировка .

Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует его числовое значение. Кольца смещены к одному из выводов резистора и первым считается кольцо, расположенное на самом краю. Если размеры резистора не позволяют разместить метку ближе к одному из выводов, то ширину первого кольца делают примерно вдвое больше другого.

Отчет о сопротивлении вывода резистора слева направо. Резисторы со значением допуска ± 20% (допуск будет сказано ниже) помечены четырьмя кольцами: первые два обозначены в Омах, третье кольцо — множитель , а четвертое — , допуск или точности. резистор класса . Четвертое кольцо нанесено с видимым разрывом от остальных и расположено на выходе, противоположном резистору.

резисторов номиналом 0.1 … 10% отмечены пятью цветными кольцами: первые три — это числовое значение сопротивления в Омах, четвертое — множитель, пятое кольцо — допуск. Для определения величины сопротивления воспользуйтесь специальной таблицей.

Например. Резистор обозначен четырьмя кольцами:

красный — ( 2 )
фиолетовый — ( 7 )
красный — ( 100 )
серебро — ( 10% )
Итак: 27 Ом х 100 = 2700 Ом = 2.7 ком С допуском ± 10% .

Резистор маркирован пятью кольцами:

красный — ( 2 )
фиолетовый ( 7 )
красный ( 2 )
красный ( 100 )
золотистый ( 5% )
Итак: 272 Ом х 100 = 27200 Ом = 27,2 ком С допуском ± 5%

Иногда бывает сложно определить первое кольцо. Здесь нужно помнить одно правило: начальная маркировка не начинается с черного, золотого или серебристого цвета .

И еще момент. Если нет желания возиться с таблицей, то в Интернете есть программы онлайн-калькуляторы, предназначенные для подсчета сопротивления в цветных кольцах. Программы можно скачать и установить на компьютер или смартфон. Также про цветную и буквенно-цифровую маркировку читайте в статье.

Цифровая маркировка .

Цифровая маркировка нанесена на компоненты корпуса SMD и обозначена тремя или четырьмя числами.

Для три цифры обозначение первых двух цифр означает числовое значение сопротивления в Омах, третья цифра указывает коэффициент . Множитель — это цифра 10 возведенная третья цифра:

221 — 22 х 10 до степени 1 = 22 Ом х 10 = 220 О. ;
472 — 47 х 10 до степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 ком ;
564 — 56 х 10 в градусах 4 = 56 Ом х 10,000 = 560000 Ом = 560 ком ;
125 — 12 х 10 до степени 5 = 12 Ом х 100000 = 12000000 Ом = 1.2 МОм .

Если последняя цифра ноль то множитель будет равен единице Так как десять до нуля равно единице:

100 — 10 х 10 по степени 0 = 10 Ом х 1 = 10 О. ;
150 — 15 х 10 до степени 0 = 15 Ом х 1 = 15 Ом. ;
330 — 33 х 10 в градусы 0 = 33 Ом х 1 = 33 О. .

Для четырехзначная маркировка Первые три цифры также обозначают числовую величину сопротивления в Омах, третья цифра обозначает множитель.Множитель — это цифра 10 возведенная третья цифра:

1501 — 150 х 10 до степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 ком ;
1602 — 160 х 10 в градусах 2 = 160 Ом х 100 = 16000 Ом = 16 ком ;
3243 — 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 ком .

1.2. Допуск (класс точности) резистор.

Второй важный параметр Резистор является допустимым отклонением фактического сопротивления от номинального значения и определяется допуском (класс точности).

Допустимое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода , состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и указаны в таблице ниже:

Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, используемые в измерительном оборудовании, имеют допуски 0,1%, 0,0.2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может находиться в диапазоне от 9 до 11 кОм ± 10%.

На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.

Резисторы с допуском цветовой маркировки указывает последний Цвет кольца: цвет серебряный — 10%, золотистый — 5%, красный — 2%, коричневый — 1%, зеленый — 0.5%, синий — 0,25%, фиолетовый — 0,1%. При отсутствии входного кольца резистор имеет допуск 20%.

1,3. Номинальная мощность рассеивания.

Третий важный параметр резистора — мощность рассеивания

При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала увеличивает температуру тела резистора, а затем за счет теплопередачи уходит в воздух. поэтому рассеивающая способность Вызывается наибольшим током тока, который резистор способен снимать в течение длительного времени и рассеивать в виде тепла без ущерба для потери его номинальных параметров.

Так как слишком высокая температура корпуса резистора может привести его к выходу из строя, то при составлении схем выставляется значение, указывающее на способность резистора рассеивать ту или иную мощность без перегрева.

За единицу измерения принято ватт (Вт).

Например. Предположим, что через резистор сопротивлением 100 Ом протекает ток 0,1 А, это означает, что резистор рассеивает мощность в 1 Вт. Если у резистора будет меньшая мощность, он быстро перегреется и выйдет из строя.

В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности различаются по размеру: чем больше размер резистора, тем больше его номинальная мощность, тем больший ток и напряжение способны выдерживать.

Доступны резисторы

с дисперсионной способностью 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.

На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, а малогабаритные резисторы приходится определять на «глазке».

С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. В первый раз в качестве ориентира можно использовать обычное совпадение . Подробнее о мощности и дополнительно смотрите видео в статье.

Однако с габаритами есть небольшой нюанс, который необходимо учитывать при выполнении монтажа: размеры отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы немного больше своих зарубежных собратьев .

Резисторы

можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного тока сопротивления (переменные резисторы).

2. Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным . Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, имеющий определенное омическое сопротивление.По краям трубки прижимаются металлические заглушки, к которым привариваются выводы резистора из облученной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическая трубка

называется резистивным элементом и в зависимости от типа проводящего слоя, нанесенного на поверхность, резисторы делятся на несравнимые и провод .

Резисторы

Improvant используются для работы в электрических цепях постоянного и переменного тока, в которых протекают относительно небольшие токи нагрузки.Резисторный резистор выполнен в виде тонкой полупроводниковой пленки на керамической основе.

Полупроводящая пленка называется резистивным слоем и изготавливается из однородной материальной пленки толщиной 0,1 — 10 мкм (микрометр) или из микрокомпонентов . Микрокомпозиции могут быть изготовлены из углерода, металлов и их сплавов, из оксидов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из измельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы делятся на углеродные, металлопластиковые (металлизированные), металодиэлектрические, металлоконструкции и полупроводниковые. Наибольшее распространение получили металлические и углеродные композитные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированные, лакированные, термостойкие), авиационные (угольные) и ким, твои (композитные).

Укомплектованные резисторы отличаются небольшими размерами и массой, невысокой стоимостью, возможностью использования высоких частот до 10 ГГц.Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т. Д. Но все же положительные свойства вдохновляющих резисторов настолько значительны, что они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы используются в электрических цепях постоянного тока. При изготовлении резистора на его корпусе в один или два слоя заклинивают тонкую проволоку из никеля, нихрома, константана или других сплавов с высоким электрическим сопротивлением.Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольшими габаритами. Диаметр используемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 — 0,05 мм.

Для защиты от механических или климатических воздействий и фиксации витков резистор покрывают лаком и эмалью или пломбируют. Тип изоляции влияет на термостойкость, электрическую прочность и внешний диаметр провода: чем больше диаметр провода, тем больше толщина изоляционного слоя и выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭВ (жаропрочная эмаль), ПЭТ (жаростойкая эмаль), преимуществом которых является малая толщина при достаточной высокая электрическая прочность. Обычные резисторы большой мощности — это проволочные эмалированные резисторы типа PEV, PEWT, C5-35 и т. Д.

Провода обладают большей стабильностью по сравнению с защитными резисторами. Они могут работать при более высоких температурах, выдерживают значительные перегрузки.Однако они более сложны в производстве, более дороги и доступны для использования на частотах выше 1-2 МГц, так как имеют высокий автобак и индуктивность, которые проявляются уже на частотах в несколько килогерц.

Поэтому они в основном используются в цепях постоянного или токового тока низких частот, где требуется высокая точность и стабильность работы, а также способность выдерживать значительные токи перегрузки, вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современное оборудование стало более функциональным и в то же время настолько миниатюрным.Использование микроконтроллеров позволило упростить электронные схемы и тем самым снизить потребление тока устройствами, что позволило миниатюризировать элементную базу. На рисунке ниже показаны резисторы SMD, припаянные к плате с печатного монтажа.

На концептуальных схемах Постоянные резисторы, независимо от их типа, изображены в виде прямоугольника , а выводы резистора изображены в виде линий, проводимых со стороны прямоугольника.Такое обозначение принято везде, но в некоторых зарубежных схемах используется обозначение резистора в виде зубчатой ​​линии (пилы).

Рядом с условным обозначением поставить латинскую букву « р. » I. Серийный номер резистора на схеме, а также указать его номинальное сопротивление в единицах измерения ОМ, ком, ИОМ.

Значение сопротивления от 0 до 999 Ом обозначается в омах , но единица измерения не ставится:

15 — 15 Ом.
680 — 680 О.
920 — 920 О.

На некоторых зарубежных схемах для обозначения ОМ ставят букву р. :

1R3 — 1,3 Ом.
33р. — 33 О.
470р. — 470 О.

Значение сопротивления от 1 до 999 обозначается килломах С добавлением буквы « к »:

1,2к. — 1,2 ком
10к. -10 ком
560К. — 560 ком

Значение сопротивления от 1000 кОм и более обозначено в единицах мегаом С добавлением буквы « м. »:

1M — 1 МОм
3,3 м — 3,3 МОм
56 м — 56 МОм

Резистор используется в соответствии с мощностью, на которую он рассчитан, и которая может выдерживать без риска быть испорченной при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописаны легенды, обозначающие мощность резистора: двойная косая черта — это степень 0.125 Вт; прямая черта, расположенная вдоль значка резистора, обозначает мощность 0,5 Вт; Римскими цифрами обозначена мощность от 1 Вт и выше.

4. Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация, когда при проектировании какого-либо устройства не появляется резистор с нужным сопротивлением, а есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного подключения, можно собрать резистор любого номинала.

Для последовательного Подключение резисторов к их общему сопротивлению Робби Равно сумме всех резисторов, подключенных к этой цепи:

Робри = R1 + R2 + R3 + … + Rn

Например. Если R1 = 12 ком, а R2 = 24 ком, то их общее сопротивление Роббчшу = 12 + 24 = 36 ком.

Для параллельно Подключение резисторов Их общее сопротивление уменьшается и всегда меньше, чем сопротивление каждого отдельного резистора:

Предположим, что R1 = 11 ком, а R2 = 24 ком, тогда их общее сопротивление будет равно:

И момент: при параллельном включении двух резисторов с одинаковым сопротивлением их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных выше примеров понятно, что если нужно получить резистор с большим сопротивлением, то используется последовательное соединение, а если с меньшим, то параллельное. А если возникнут вопросы, прочтите статью, в которой более подробно описаны способы подключения.

Ну кроме прочитанного посмотрите видео про резисторы постоянного сопротивления.

Ну в принципе и все, что я хотел сказать про резистор в целом и отдельно про резисторы постоянного сопротивления .Во второй части статьи мы узнаем об этом.
Удачи!

Литература:
В.И. Галкин — «Beginning Radio Affiner», 1989 г.
В.А. Волга — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В.Г. Борисов — «Юный радиолюбитель», 1992 г.

Керамические проволочные резисторы Cement — постоянные резисторы, номинальное сопротивление в зависимости от номинала от 0,01 Ом до 100 Ом Рассеянная мощность — 5Вт, 10Вт, 15Вт, 25Вт . Предназначен для работы в цепях постоянного или переменного тока, обеспечивая ограничение тока и распределение напряжения.

Конструктивно проволочные резисторы выполнены в виде трубчатой ​​основы из керамики (чистый оксид алюминия Al 2 O 3), в качестве резистивного элемента используется проволока с проводником (медно-никелевый или хромоникелевый сплав) с высоким удельным сопротивлением. Основание с обмоткой помещено в литой прямоугольный корпус из стеатитовой керамики и созданный кремнезем (диоксид кремния SiO 2).

Монолитная керамическая конструкция резисторов обладает высокими характеристиками огнестойкости, влагостойкости и самозатухающей способности.

Резисторы вытяжные керамические — гибкие аксиальные проволочные осевого типа. В содержании заключения используется луженая медь. Монтаж осуществляется пайкой по технологии THT — выводы устанавливаются непосредственно в сквозные отверстия печатной платы.

Положение Montaja — Любое, но следует помнить о резистивных свойствах, сопровождающихся нагревом корпуса резистора. Поэтому не рекомендуется размещать резисторы на близком расстоянии от печатной платы или термочувствительных элементов.

Допустимое отклонение сопротивления цементных осевых резисторов ± 5% . Ряд промежуточных значений номинального сопротивления — Е24 Е24 — одна из серии постоянных резисторов, которая является результатом стандартизации номинальных резисторов резисторов. . Для переменного тока Предельное рабочее напряжение 1500В. , П. постоянный ток — 1000В. . Рабочая повышенная температура среды не превышает + 275 ° С пониженная — до -55 ° С .Сопротивление изоляции не менее 1000 мОм .

При выборе требуемого номинала плату рекомендуется проводить с помощью гибкой, с помощью которой можно определить общее параллельное или последовательное сопротивление резисторов , а также сопротивление резисторов в цепи.

Приведены особенности конструкции и характеристики мощных резисторов C5-35V, C5-36B, PEV, PEVR, RX24 и SQP.

Применяемые Мощные керамические резисторы в различной промышленной электронике, радио- и телевизионных приемниках, блоках питания и управления, усилителях, автомобильной электронике, а также в тестовых нагрузках или нагревательных элементах (например, в видеокамерах внешнего видеонаблюдения).

Более подробно представлены характеристики мощных керамических цементных резисторов А также расшифровка маркировки, габаритные и установочные размеры приведены ниже.

Гарантийный срок Наработок поставленных нашей компанией мощных резисторов 2 года , что подтверждено соответствующими документами о качестве.

Окончательная цена мощных проволочных керамических цементных резисторов зависит от количества, срока поставки и формы оплаты.

Продолжение статьи о начале выборов электроники.Для тех, кто решил начать. Рассказ о деталях.

Радио Девелопмент до сих пор остается одним из самых распространенных хобби, увлечений. Если в начале его славного пути радио-забавы затрагивали в основном конструкцию приемников и передатчиков, то развитие электронного оборудования расширилось с развитием электронной техники. электронные устройства и круг любительских интересов.

Конечно, такие сложные устройства, как видеомагнитофон, проигрыватель компакт-дисков, телевизор или домашний кинотеатр, в домашних условиях не соберет даже самый квалифицированный радиолюбитель.А вот ремонтом техники промышленного производства занимается очень много радиолюбителей, и вполне успешно.

Еще одно направление — проектирование электронных схем или доведение до «роскоши» промышленных устройств.

Диапазон в данном случае довольно большой. Это устройства для создания «умного дома», преобразователи 12 … 220 В для питания телевизоров или звуковоспроизводящих устройств от автомобильного аккумулятора, различные терморегуляторы. Также очень популярен, а также многое другое.

Передатчики и приемники перешли на последний план, а вся техника теперь просто электроника.А сейчас, наверное, радиолюбителей надо было бы как-то иначе называть. Но исторически сложилось так, что другого названия просто не придумали. Поэтому пусть радиолюбители будут.

Электронные компоненты

При всем разнообразии электронных устройств они состоят из радиодеталей. Все компоненты электронных схем можно разделить на два класса: активные и пассивные элементы.

Активным считается радиокомпонент, который имеет свойство усиливать электрические сигналы, т.е.е. Обладая прибылью. Нетрудно догадаться, что это транзисторы и все, что из них делается: операционные усилители, логические микросхемы и многое другое.

Одним словом, все те элементы, в которых маломощный вход управляет достаточно мощным выходом. В таких случаях говорят, что в приросте (CUS) больше единиц.

Passive включает в себя такие детали, как резисторы и т.п. Одним словом, все те радиоэлементы, у которых куз в пределах 0 … 1! Агрегат также можно считать усилением: «Однако он не ослабевает.«Вот сначала и рассмотрим пассивные элементы.

Резисторы

— это простейшие пассивные элементы. Их основное предназначение ограничивает ток в электрической цепи. Самым простым примером является включение светодиода, показанного на рисунке 1. С помощью резисторов также выбирается режим работы усилительных каскадов.

Рисунок 1. Схемы включения высокого

Свойства резисторов

Раньше резисторы назывались резисторами, это их физические свойства.Чтобы не путать деталь с ее резистивным свойством, резисторы переименовали в .

Сопротивление, как свойство, присущее всем проводникам, характеризуется удельным сопротивлением и линейными размерами проводника. Ну примерно так же, как в механике пропорции и объем.

Формула для расчета сопротивления проводника: R = ρ * L / S, где ρ — удельное сопротивление материала, длина L в метрах, s сечение сечения в мм2.Нетрудно заметить, что чем длиннее проволока, тем больше сопротивление.

Можно подумать, что сопротивление — не лучшее свойство проводников, ну просто препятствует прохождению тока. Но в некоторых случаях это препятствие полезно. Дело в том, что при прохождении тока по проводнику выделяется тепловая мощность P = i 2 * R. Здесь p, I, R соответственно мощность, ток и сопротивление. Эта мощность используется в различных отопительных приборах и лампах накаливания.

Резисторы в схемах

Все детали электрических схем обозначены hugo (условные графические обозначения). Резисторы Гюго показаны на рисунке 2.

Рисунок 2. Резисторы Гюго

Даты внутри объятия обозначают рассеивающую способность резистора. Сразу скажу, что если мощности потребуется меньше, резистор нагреется, и в конце концов сгорит. Для подсчета мощности обычно используется формула, а точнее даже тройка: p = u * i, p = i 2 * R, p = U 2 / R.

Первая формула предполагает, что мощность, выделяемая на участке электрической цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток, проходящий через эту область. Если напряжение выражено в вольтах, а ток — в амперах, тогда мощность будет в ваттах. Это требования системы СИ.

Рядом с hugo указывается номинал сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1K, R3 1.2K, R4 1K2, R5 5M1.R1 имеет номинальное сопротивление 1-го, R2 1ком, R3 и R4 1,2к (вместо запятой можно поставить букву to или m), R5 — 5,1м.

Современная маркировка резисторов

В настоящее время маркировка резисторов выполняется с помощью цветных полосок. Самое интересное, что цветная маркировка упоминается в первом послевоенном журнале Radio, вышедшем в январе 1946 года. Также было сказано, что это новая американская маркировка. Таблица, поясняющая принцип «полосатой» маркировки, показана на рисунке 3.

Рисунок 3. Маркировка резисторов

На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип-резистором». Для любительских целей больше всего подходят резисторы типоразмера 1206. Они довольно большие и имеют приличную мощность, целых 0,25 Вт.

На этом же рисунке указано, что максимальное напряжение для резисторов микросхемы составляет 200 В. Такие же максимумы есть у резисторов для нормальной установки. Поэтому, когда предусмотрено напряжение, например 500В, лучше поставить два резистора, соединенных последовательно.

Рис. 4. Резисторы для поверхностного монтажа SMD

Чип-резисторы самых маленьких габаритов выпускаются без маркировки, потому что поставить просто некуда. Начиная с типоразмера 0805, на «спине» резистора наносят маркировку из трех цифр. Первые два — номинал, а третий множитель, в виде показателя степени числа 10. Следовательно, если написано, например, 100, то это будет 10 * 1Ω = 10, так как любое число с нулевым градусом — это одна из первых двух цифр, которую нужно умножить на единицу.

Если на резисторе написано 103, то получается 10 * 1000 = 10 ком, а надпись 474 гласит, что резистор 47 * 10 000 Ом = 470 ком. Микросхемы резисторов с допуском 1% маркируются комбинацией букв и цифр, а номинал можно определить только по таблице, которую можно найти в Интернете.

В зависимости от допуска по сопротивлению номиналы резисторов делятся на три ряда: E6, E12, E24.Значения номиналов соответствуют цифрам таблицы, представленной на рисунке 5.

Рисунок 5.

Из таблицы видно, что чем меньше допуск сопротивления, тем больше номиналов в соответствующей строке. Если у серии E6 допуск 20%, то это всего 6 номиналов, а у серии E24 — 24 позиции. Но это все резисторы габаритные. Есть резисторы с процентом от одного процента и меньше, поэтому среди них можно найти любой номинал.

У резисторов, кроме мощности и номинального сопротивления, есть еще несколько параметров, но о них пока говорить не будем.

Резисторы сложные

Несмотря на то, что номиналов резисторов много, иногда необходимо их подключить, чтобы получить необходимое значение. Причин тому несколько: точный подбор при настройке схемы или просто отсутствие нужного номинала. В основном используют две схемы подключения резисторов: последовательную и параллельную.Составные схемы показаны на рисунке 6. Также есть формула для расчета общего сопротивления.

Рисунок 6. Схемы соединения резисторов и формулы для расчета общего сопротивления

В случае последовательного подключения полное сопротивление — это просто сумма двух сопротивлений. Это как показано на рисунке. На самом деле резисторов может быть больше. Такое включение происходит в. Естественно, общее сопротивление будет больше, чем наибольшее.Если это 1ком и 10, то общее сопротивление будет 1,012.

При параллельном подключении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньше. Если оба резистора имеют одинаковый номинал, то их общее сопротивление будет равно половине этого номинала. Можно подключить столько и десятки резисторов, тогда общее сопротивление будет всего лишь десятая часть номинального. Например, параллельно были подключены десятки резисторов по 100 Ом, тогда общее сопротивление 100/10 = 10 Ом.

Следует отметить, что ток при параллельном соединении по закону Кирхгофа делится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз меньше, чем на один резистор.

Продолжайте читать в следующей статье.

Прежде всего, определим понятие сопротивления как электрическую величину. Согласно теории, сопротивление — это физическая величина, которая характеризует свойства проводника, препятствующие прохождению электрического тока.В международной системе единиц (ах) единицей измерения сопротивления является ОМ (Ом). Для электротехники это относительно небольшая сумма, поэтому мы будем чаще иметь дело с киломами (com) и мегаомами (IOM). Для этого вам необходимо выучить следующий знак:

1 ком = 1000 Ом;
1 Мама = 1000 ком;

И наоборот:

1 Ом = 0,001 ком;
1 ком = 0,001 МОм;

Ничего сложного, но надо твердо знать.

Теперь о номинале (значениях). Конечно, промышленность не выпускает для радиолюбителей резисторов со всеми ставками. Изготовление высокоточных резисторов — дело трудоемкое, и такие резисторы используются только в специальном высокоточном оборудовании. Вы, например, не найдете в обычном магазине резисторов на 1,9 ком и при такой точности чаще всего нет необходимости — он нужен редко, а если надо, то для этого есть быстрые резисторы.

Целый стандартный ряд, с которым мы столкнемся, я здесь приводить не буду — он достаточно длинный и того не стоит.Лучше научитесь отличать один резистор от другого. Маркировать устройства можно по-разному. Самым удобным, на мой взгляд, была цифровая маркировка. Она делалась, например, на самых ходовых в свое время резисторах типа МЛТ.

Одного взгляда на резистор хватило, чтобы узнать какое у него сопротивление

Например, на второй вершине резистора мы читаем 2,2 и ниже K5%. Номинал этого резистора — 2,2 килома с точностью до 5%. Для мегорезисторов используется «M» вместо «K», а омы обозначаются буквами «R», «E» или вообще без буквы:

470 — 470 Ом
18e — 18 Ом

Очень часто вместо запятой может стоять любая из букв:

2к2 — 2.2 км
M15 — 0,15 мега или 150 км

Вот и вся уловка. Еще один параметр — мощность резистора. Чем выше мощность, тем больший ток может выдержать резистор без разрушения (возгорания). Повторите к верхнему рисунку. Здесь резисторы имеют следующие мощности (сверху вниз) 2 Вт, 1 Вт, 0,5 Вт, 0,25 Вт, 0,125 Вт. Первые три настолько велики, что на них даже нашлось место для маркировки мощности: МЛТ-2, МЛТ-1, МЛТ-0,5. Остальное на глаз.Конечно, они выпускаются (но большинство, увы, производятся) и других типов (и мощности) с маркировкой «человеческая», перечислять их не буду, и принцип у них тот же.

ПЭВР-30, например, выглядит как цилиндр приличного размера, но тоже с маркировкой

Но эта мода практически сдвинулась, взамен на номера появились цветные полосы и специальные коды И с этим придется мириться.

Что это за резистор и какой у него номинал? Для этого вам нужно будет обратиться к специальным таблицам, которые я привожу здесь.

качество в крохотной дорогой упаковке

Разборка миниатюрного зарядного устройства для iPhone размером с кубический дюйм от Apple показывает технологически продвинутый импульсный источник питания с обратным ходом, который выходит за рамки обычного зарядного устройства. Он просто принимает входной ток переменного тока (от 100 до 240 вольт) и производит 5 ватт плавной мощности 5 вольт, но схема для этого на удивление сложна и новаторская.

Как это работает

Адаптер питания iPhone — это импульсный источник питания, в котором входное питание включается и выключается примерно 70 000 раз в секунду, чтобы получить точное требуемое выходное напряжение.Благодаря своей конструкции импульсные источники питания, как правило, компактны и эффективны и выделяют меньше тепла по сравнению с более простыми линейными источниками питания.

Более подробно, мощность линии переменного тока сначала преобразуется в постоянное напряжение высокого напряжения [1] с помощью диодного моста. Постоянный ток включается и выключается транзистором, управляемым микросхемой контроллера источника питания. Прерванный постоянный ток подается на обратноходовой трансформатор [2], который преобразует его в переменный ток низкого напряжения. Наконец, этот переменный ток преобразуется в постоянный ток, который фильтруется для получения плавной мощности без помех, и эта мощность выводится через разъем USB.Схема обратной связи измеряет выходное напряжение и отправляет сигнал на контроллер IC, который регулирует частоту переключения для получения желаемого напряжения.

На виде сбоку выше показаны некоторые из более крупных компонентов. Зарядное устройство состоит из двух печатных плат, каждая размером чуть меньше одного дюйма [3]. Верхняя плата является первичной и имеет схему высокого напряжения, а нижняя плата, вторичная, имеет схему вывода низкого напряжения. Входной переменный ток сначала проходит через плавкий резистор (полосатый), который разорвет цепь в случае катастрофической перегрузки.Входной переменный ток преобразуется в высоковольтный постоянный ток, который сглаживается двумя большими электролитическими конденсаторами (черный с белым текстом и полосой) и катушкой индуктивности (зеленый).

Затем высоковольтный постоянный ток прерывается с высокой частотой переключающим транзистором MOSFET, который представляет собой большой трехконтактный компонент в верхнем левом углу. (Второй транзистор фиксирует скачки напряжения, как будет объяснено ниже.) Прерванный постоянный ток поступает на обратноходовой трансформатор (желтый, еле видимый за транзисторами), у которого есть выходные провода низкого напряжения, идущие к вторичной плате ниже.(Эти провода были обрезаны во время разборки.) Вторичная плата преобразует низкое напряжение трансформатора в постоянный ток, фильтрует его, а затем подает через разъем USB (серебряный прямоугольник в нижнем левом углу). Серый ленточный кабель (едва виден в правом нижнем углу под конденсатором) обеспечивает обратную связь от вторичной платы к микросхеме контроллера, чтобы поддерживать стабилизированное напряжение.

На приведенном выше рисунке более четко показан обратноходовой трансформатор (желтый) над разъемом USB.Большой синий компонент представляет собой специальный Y-образный конденсатор [4] для уменьшения помех. Микросхема контроллера видна над трансформатором в верхней части первичной платы. [5]

Схема в деталях

Первичная

На первичной печатной плате с обеих сторон размещены компоненты для поверхностного монтажа. На внутренней стороне (диаграмма вверху) находятся большие компоненты, а на внешней стороне (диаграмма внизу) — микросхема контроллера. (Крупные компоненты были удалены на схемах и обозначены курсивом.) Входное питание подключается к углам платы, проходит через 10 & Ом; плавкий резистор и выпрямляется до постоянного тока четырьмя диодами. Две демпфирующие цепи R-C поглощают электромагнитные помехи, создаваемые мостом. [6] Постоянный ток фильтруется двумя большими электролитическими конденсаторами и катушкой индуктивности, создавая 125–340 В постоянного тока. Обратите внимание на толщину дорожек на печатной плате, соединяющих эти конденсаторы и другие сильноточные компоненты, по сравнению с тонкими дорожками управления.

Блок питания управляется 8-контактной микросхемой квазирезонансного SMPS-контроллера STMicrosystems L6565.[7] Микросхема контроллера управляет переключающим транзистором MOSFET, который прерывает постоянный ток высокого напряжения и подает его на первичную обмотку обратноходового трансформатора. Контроллер IC принимает множество входных сигналов (обратная связь по вторичному напряжению, входное напряжение постоянного тока, первичный ток трансформатора и измерение размагничивания трансформатора) и регулирует частоту переключения и синхронизацию для управления выходным напряжением через сложную внутреннюю схему. Резисторы считывания тока позволяют ИС узнать, сколько тока проходит через первичную обмотку, которая определяет, когда транзистор должен быть выключен.

Второй переключающий транзистор, вместе с некоторыми конденсаторами и диодами, является частью резонансной фиксирующей цепи, которая поглощает скачки напряжения на трансформаторе. Эта необычная и инновационная схема запатентована Flextronics. [8] [9]

Контроллер IC требует питания постоянного тока для работы; это обеспечивается вспомогательной цепью питания, состоящей из отдельной вспомогательной обмотки трансформатора, диода и конденсаторов фильтра. Поскольку микросхема контроллера должна быть включена, прежде чем трансформатор сможет начать генерировать энергию, вы можете задаться вопросом, как решается эта проблема с курицей и яйцом.Решение состоит в том, что высоковольтный постоянный ток снижается до низкого уровня с помощью резисторов пусковой мощности, чтобы обеспечить начальную мощность для ИС до тех пор, пока трансформатор не запустится. Вспомогательная обмотка также используется ИС для определения размагничивания трансформатора, которое указывает, когда следует включить переключающий транзистор. [7]

Среднее

На вторичной плате переменный ток низкого напряжения от трансформатора выпрямляется высокоскоростным диодом Шоттки, фильтруется катушкой индуктивности и конденсаторами и подключается к выходу USB.Конденсаторы танталовых фильтров обеспечивают высокую емкость в небольшом корпусе.

USB-выход также имеет определенные сопротивления, подключенные к контактам для передачи данных, чтобы указать iPhone, какой ток может обеспечить зарядное устройство, через собственный протокол Apple. [10] IPhone отображает сообщение «Зарядка не поддерживается с этим аксессуаром», если зарядное устройство имеет неправильное сопротивление.

Вторичная плата содержит стандартную схему обратной связи импульсного источника питания, которая контролирует выходное напряжение с помощью регулятора TL431 и обеспечивает обратную связь с микросхемой контроллера через оптрон.Вторая цепь обратной связи отключает зарядное устройство для защиты, если зарядное устройство перегревается или выходное напряжение слишком высокое. [11] Ленточный кабель обеспечивает эту обратную связь с основной платой.

Изоляция

Поскольку источник питания может иметь внутреннее напряжение до 340 В постоянного тока, безопасность является важной проблемой. Строгие правила регулируют разделение между опасным линейным напряжением и безопасным выходным напряжением, которые изолированы сочетанием расстояния (называемого утечкой и зазором) и изоляции.Стандарты [12] несколько непонятны, но между двумя цепями требуется расстояние примерно 4 мм. (Как я уже говорил в «Крошечном, дешевом, опасном»: внутри (поддельного) зарядного устройства для iPhone дешевые зарядные устройства полностью игнорируют эти правила безопасности.)

Вы можете ожидать, что на первичной плате будет опасное напряжение, а на вторичной плате будет безопасное напряжение, но вторичная плата состоит из двух зон: опасной зоны, соединенной с первичной платой, и зоны низкого напряжения. Граница изоляции между этими областями составляет около 6 мм в зарядном устройстве Apple, что можно увидеть на приведенной выше диаграмме.Эта граница изоляции гарантирует, что опасные напряжения не могут достичь выхода.

Есть три типа компонентов, которые пересекают границу изоляции, и они должны быть специально разработаны для обеспечения безопасности. Ключевым компонентом является трансформатор, который обеспечивает подачу электроэнергии на выход без прямого электрического подключения. Изнутри трансформатор хорошо изолирован, как будет показано ниже. Второй тип компонентов — это оптопары, которые отправляют сигнал обратной связи от вторичной обмотки к первичной.Внутри оптопара содержит светодиод и фототранзистор, поэтому две стороны соединены только светом, а не электрической цепью. (Обратите внимание на силиконовую изоляцию на вторичной стороне оптопар, чтобы обеспечить дополнительную безопасность.) Наконец, Y-конденсатор — это конденсатор особого типа [4], который позволяет избежать электромагнитных помех (EMI) между высоковольтной первичной обмоткой и низковольтной. напряжение вторичное.

На рисунке выше показаны некоторые методы изоляции.На вторичной плате (слева) установлен синий Y-конденсатор. Обратите внимание на отсутствие компонентов в середине вторичной платы, образующих границу изоляции. Компоненты справа от вторичной платы подключены к первичной плате серым ленточным кабелем, поэтому они находятся под потенциально высоким напряжением. Другое соединение между платами — это пара проводов от трансформатора обратного хода (желтый), подающего выходную мощность на вторичную плату; они были вырезаны, чтобы разделить доски.

Схема

Я собрал примерную схему, показывающую схему зарядного устройства.[13] Щелкните, чтобы увеличить версию.

Эти схемы очень маленькие

Глядя на эти изображения, легко потерять представление о том, насколько эти компоненты очень малы и как зарядное устройство вмещает всю эту сложность в один дюйм. На следующем слегка увеличенном изображении показаны четверть, рисовое зерно и горчичное зерно для сравнения размеров. Большинство компонентов представляют собой устройства для поверхностного монтажа, которые припаяны непосредственно к печатной плате. Самые маленькие компоненты, такие как резистор, показанный на рисунке, известны как размер «0402», потому что они есть.04 дюйма на 0,02 дюйма. Резисторы большего размера слева от горчичного зерна обрабатывают большую мощность и известны как размер «0805», поскольку их размер составляет 0,08 x 0,05 дюйма.

Разборка трансформатора

Обратный трансформатор является ключевым компонентом зарядного устройства, самым большим и, вероятно, самым дорогим компонентом. [14] Но что внутри? Я разобрал трансформатор, чтобы узнать.

Трансформатор имеет размеры примерно 1/2 «на 1/2» на 1/3 «. Внутри трансформатора есть три обмотки: первичная обмотка высокого напряжения, вспомогательная обмотка низкого напряжения для подачи питания на схемы управления и обмотка высокого напряжения. -токовая низковольтная выходная обмотка.Выходная обмотка подключается к черному и белому проводам, выходящим из трансформатора, а другие обмотки подключаются к контактам, прикрепленным к нижней части трансформатора.

Снаружи трансформатор покрыт парой слоев изоляционной ленты. Вторая строка начинается с «FLEX» для Flextronics. Две заземленные жилы провода намотаны вокруг трансформатора с внешней стороны для обеспечения экранирования.

После удаления экрана и ленты две половинки ферритового сердечника можно снять с обмоток.Феррит — довольно хрупкий керамический материал, поэтому при снятии сердечник сломался. Сердечник окружает обмотки и содержит магнитные поля. Размер каждого сердечника составляет примерно 6 мм x 11 мм x 4 мм; этот стиль ядра известен как EQ. Круглая центральная часть немного короче концов, что создает небольшой воздушный зазор, когда части сердечника соединяются вместе. Этот воздушный зазор 0,28 мм сохраняет магнитную энергию для обратноходового трансформатора.

Под следующими двумя слоями ленты находится обмотка из 17 витков тонкой лакированной проволоки, которая, как мне кажется, является еще одной защитной обмоткой, возвращающей на землю паразитные помехи.

Под экраном и еще двумя слоями ленты находится 6-витковая вторичная выходная обмотка, подключенная к черному и белому проводам. Обратите внимание, что эта обмотка представляет собой проволоку большого сечения, так как она питает выход 1 А. Также обратите внимание, что обмотка имеет тройную изоляцию, что является требованием безопасности UL, чтобы гарантировать, что первичная обмотка высокого напряжения остается изолированной от выхода. Это то место, где обманывают дешевые зарядные устройства — они просто используют обычный провод вместо тройной изоляции, а также экономят на ленте.В результате вас мало что защитит от высокого напряжения, если есть дефект изоляции или скачок напряжения.

Под следующим двойным слоем ленты находится 11-витковая первичная обмотка большой толщины, которая питает ИС контроллера. Поскольку эта обмотка находится на первичной стороне, тройная изоляция не требуется. Его просто покрывают тонким слоем лака.

Под последним двойным слоем ленты находится первичная входная обмотка, состоящая из 4 слоев примерно по 23 витка в каждом.На эту обмотку подается высоковольтный ввод. Поскольку сила тока очень мала, провод может быть очень тонким. Поскольку у первичной обмотки примерно в 15 раз больше витков, чем у вторичной обмотки, вторичное напряжение будет 1/15 первичного напряжения, но в 15 раз больше тока. Таким образом, трансформатор преобразует вход высокого напряжения в выход низкого напряжения с высоким током.

На последней картинке показаны все компоненты трансформатора; слева направо показаны слои от внешней ленты до самой внутренней намотки и шпульки.

Огромная прибыль Apple

Я был удивлен, узнав, насколько огромна прибыль Apple от этих зарядных устройств. Эти зарядные устройства продаются примерно за 30 долларов. (если не подделка), но это почти вся прибыль. Samsung продает очень похожие Зарядное устройство для куба примерно за 6-10 долларов, которое я тоже разобрал (подробности напишу позже). Зарядное устройство Apple более качественное, и, по моим оценкам, внутри него стоят дополнительные компоненты на сумму около доллара. [14] Но он продается на 20 долларов дороже.

Отзыв о безопасности зарядного устройства Apple в 2008 году

В 2008 году Apple отозвала зарядные устройства для iPhone из-за дефекта, когда штыри переменного тока могли выпасть из зарядного устройства и застрять в розетке. [15] К неисправным зарядным устройствам были прикреплены штыри с помощью того, что было описано как не более чем клей и «выдавать желаемое за действительное». [15] Apple заменила зарядные устройства модернизированной моделью, обозначенной зеленой точкой, показанной выше (которая неизбежно имитирует поддельные зарядные устройства).

Я решил посмотреть, какие улучшения безопасности Apple внесла в новое зарядное устройство, и сравнить с другими аналогичными зарядными устройствами.Я попытался вытащить штыри из зарядного устройства Apple, зарядного устройства Samsung и поддельного зарядного устройства. Поддельные зубцы достали с помощью плоскогубцев, так как их практически ничем не закрепляло, кроме трения. Штыри Samsung пришлось долго тянуть и крутить плоскогубцами, так как у них есть маленькие металлические язычки, удерживающие их на месте, но в конце концов они вышли.

Когда я перешел к зарядному устройству Apple, зубцы не сдвинулись с места, даже когда я очень сильно тянул плоскогубцами, поэтому я вытащил Dremel и протер его через корпус, чтобы выяснить, что удерживает зубцы.У них есть большие металлические фланцы, встроенные в пластик корпуса, поэтому штырь не может вырваться из-за разрушения зарядного устройства. На фотографии показана вилка Apple (обратите внимание на толщину пластика, удаленного с правой половины), контакт поддельного зарядного устройства, удерживаемый только трением, и контакт Samsung, удерживаемый небольшими, но прочными металлическими язычками.

Я впечатлен усилиями Apple по повышению безопасности зарядного устройства после отзыва. Они не просто немного улучшили штыри, чтобы сделать их более безопасными; очевидно, кому-то было сказано сделать все возможное, чтобы убедиться, что зубцы не могут вырваться снова ни при каких обстоятельствах.

Что делает зарядное устройство Apple для iPhone особенным

Адаптер питания Apple, безусловно, представляет собой высококачественный источник питания, предназначенный для выработки тщательно отфильтрованной мощности. Apple явно приложила дополнительные усилия, чтобы уменьшить помехи от электромагнитных помех, вероятно, чтобы зарядное устройство не мешало работе сенсорного экрана. [16] Когда я открыл зарядное устройство, я ожидал найти стандартный дизайн, но я сравнил зарядное устройство с зарядным устройством Samsung и несколькими другими высококачественными промышленными разработками [17], и Apple выходит за рамки этих разработок по нескольким направлениям.

Входной переменный ток фильтруется через крошечное ферритовое кольцо на пластиковом корпусе (см. Фото ниже). Выход диодного моста фильтруется двумя большими конденсаторами и катушкой индуктивности. Два других демпфера R-C фильтруют диодный мост, который я видел только в других источниках питания аудио, чтобы предотвратить гудение 60 Гц; [6] возможно, это улучшает впечатление от прослушивания iTunes. В других разобранных мною зарядных устройствах не используется ферритовое кольцо, а обычно используется только один конденсатор фильтра. Плата первичной схемы имеет заземленный металлический экран над высокочастотными компонентами (см. Фото), которого я больше нигде не видел.Трансформатор имеет экранирующую обмотку для поглощения электромагнитных помех. В выходной цепи используются три конденсатора, включая два относительно дорогих танталовых [14] и катушку индуктивности для фильтрации, когда многие источники питания используют только один конденсатор. Конденсатор Y обычно не используется в других конструкциях. Резонансная зажимная схема является в высшей степени инновационной. [9]

Конструкция Apple обеспечивает дополнительную безопасность несколькими способами, о которых говорилось ранее: сверхсильными контактами переменного тока и сложной схемой отключения при перегреве / перенапряжении.Дистанция изоляции Apple между первичной и вторичной обмотками, похоже, выходит за рамки нормативных требований.

Выводы

Зарядное устройство для iPhone от Apple вмещает множество технологий в небольшом пространстве. Apple приложила дополнительные усилия, чтобы обеспечить более высокое качество и безопасность, чем зарядные устройства других известных брендов, но за это качество приходится платить.

Если вас интересуют источники питания, ознакомьтесь с другими моими статьями: крошечный, дешевый, опасный: внутри (поддельного) зарядного устройства для iPhone, где я разбираю 2 доллара.79 зарядное устройство для iPhone и обнаружите, что оно нарушает многие правила безопасности; не покупайте ни одного из них. Также обратите внимание на то, что Apple не произвела революцию в источниках питания; новые транзисторы сделали, что исследует историю импульсных источников питания. Чтобы увидеть, как адаптер Apple разобран, посмотрите видеоролики, созданные scourtheearth и Ladyada. Наконец, если у вас есть интересное зарядное устройство, которое вам не нужно, отправьте его мне, и, возможно, я опишу его подробный разбор.

Также смотрите комментарии к Hacker News.

Примечания и ссылки

[1] Вы можете задаться вопросом, почему напряжение постоянного тока внутри блока питания намного выше, чем напряжение в сети. Напряжение постоянного тока примерно в sqrt (2) раз больше напряжения переменного тока, поскольку диод заряжает конденсатор до пика сигнала переменного тока. Таким образом, входное напряжение от 100 до 240 вольт переменного тока преобразуется в постоянное напряжение от 145 до 345 вольт внутри. Этого недостаточно, чтобы официально считаться высоким напряжением, но для удобства я назову это высоким напряжением. Согласно стандартам, все, что ниже 50 В переменного тока или 120 В постоянного тока, считается сверхнизким напряжением и считается безопасным при нормальных условиях.Но для удобства я буду называть выход 5 В низким напряжением.

[2] В источнике питания Apple используется обратная схема, в которой трансформатор работает «в обратном направлении», чем вы могли ожидать. Когда в трансформатор подается импульс напряжения, выходной диод блокирует выход, поэтому выход отсутствует — вместо этого создается магнитное поле. Когда подача напряжения прекращается, магнитное поле разрушается, вызывая выход напряжения из трансформатора. Источники питания с обратной связью очень распространены для источников питания с малой мощностью.

[3] Размер первичной платы составляет около 22,5 мм на 20,0 мм, а вторичной платы — около 22,2 мм на 20,2 мм. [4] Для получения дополнительной информации о конденсаторах X и Y см. Презентацию Kemet и «Проектирование источников питания с низким током утечки».

[5] Для наглядности перед тем, как делать снимки в этой статье, была снята изоляция. Конденсатор Y был покрыт черной термоусадочной трубкой, сбоку цепи была обмотана лента, плавкий резистор был закрыт черной термоусадочной трубкой, а над USB-разъемом была черная изолирующая крышка.

[6] Демпфирующие цепи могут использоваться для уменьшения шума 60 Гц, создаваемого диодным мостом в источниках питания аудиосистемы. Подробный справочник по демпферам R-C для диодов источника питания аудиосигнала — в разделе «Расчет оптимальных демпферов», а в качестве образца дизайна — «Проектирование источника питания усилителя аудиосигнала».

[7] Источник питания управляется микросхемой контроллера квазирезонансного SMPS (импульсного источника питания) L6565 (техническое описание). (Разумеется, чип мог быть чем-то другим, но схема точно соответствует L6565 и никакому другому чипу, который я исследовал.)

Для повышения эффективности и уменьшения помех в микросхеме используется метод, известный как квазирезонанс, который впервые был разработан в 1980-х годах. Выходная цепь спроектирована таким образом, что при отключении питания напряжение трансформатора будет колебаться. Когда напряжение достигает нуля, транзистор снова включается. Это известно как переключение при нулевом напряжении, потому что транзистор переключается, когда на нем практически нет напряжения, что сводит к минимуму потери мощности и помехи во время переключения.Схема остается включенной в течение переменного времени (в зависимости от требуемой мощности), а затем снова выключается, повторяя процесс. (Для получения дополнительной информации см. Исследование квазирезонансных преобразователей для источников питания.)

Одним из интересных следствий квазирезонанса является то, что частота переключения меняется в зависимости от нагрузки (типичное значение — 70 кГц). В ранних источниках питания, таких как блок питания Apple II, для регулирования мощности использовались простые цепи переменной частоты. Но в 1980-х годах эти схемы были заменены микросхемами контроллеров, которые переключались с фиксированной частотой, но изменяли ширину импульсов (известную как ШИМ).Теперь усовершенствованные ИС контроллеров вернулись к регулированию частоты. Но, кроме того, в сверхдешевых подделках используются схемы переменной частоты, практически идентичные Apple II. Таким образом, и высокопроизводительные, и недорогие зарядные устройства теперь вернулись к переменной частоте.

Мне потребовалось много времени, чтобы понять, что маркировка «FLEX01» на микросхеме контроллера указывает на Flextronics, а X на микросхеме был от логотипа Flextronics: . Я предполагаю, что на чипе есть такая маркировка, потому что он производится для Flextronics.Маркировка «EB936» на микросхеме может быть собственным номером детали Flextronics или кодом даты.

[8] Я думал, что Flextronics — это просто сборщик электроники, и я был удивлен, узнав, что Flextronics делает много инновационных разработок и имеет буквально тысячи патентов. Я думаю, что Flextronics заслуживает большего признания за свои разработки. (Обратите внимание, что Flextronics — это другая компания, чем Foxconn, которая производит iPad и iPhone и вызывает разногласия по поводу условий работы).

Изображение выше взято из патента Flextronics 7 978 489: «Интегрированные преобразователи мощности» описывает адаптер, который выглядит так же, как зарядное устройство для iPhone.Сам патент представляет собой сумку из 63 различных пунктов формулы (пружинные контакты, экраны EMI, термоклейкий материал), большинство из которых фактически не имеют отношения к зарядному устройству iPhone.

[9] В патенте Flextronics 7 924 578: Квазирезонансная схема резервуара с двумя выводами описывает резонансную схему, используемую в зарядном устройстве iPhone, которая показана на следующей диаграмме. Транзистор Q2 приводит в действие трансформатор. Транзистор Q1 является фиксирующим транзистором, который направляет скачок напряжения от трансформатора на резонансный конденсатор C13.Инновационная часть этой схемы заключается в том, что Q1 не требует специальной схемы управления, как другие схемы с активными фиксаторами; он питается от конденсаторов и диодов. В большинстве источников питания зарядных устройств, напротив, используется простой зажим резистор-конденсатор-диод, который рассеивает энергию в резисторе. [18]

Более поздние патенты Flextronics расширяют резонансный контур с помощью еще большего количества диодов и конденсаторов: см. Патенты 7 830 676, 7 760 519 и 8,000 112

[10] Apple указывает тип зарядного устройства с помощью запатентованной технологии сопротивлений на контактах USB D + и D-.Подробнее о протоколах зарядки USB см. В моих предыдущих ссылках.

[11] Одна загадочная особенность зарядного устройства Apple — вторая цепь обратной связи, отслеживающая температуру и выходное напряжение. Эта схема на вторичной плате состоит из термистора, второго регулятора 431 и нескольких других компонентов для контроля температуры и напряжения. Выход подключен через второй оптрон к другим схемам на другой стороне вторичной платы. Два транзистора подключены к SCR-подобной защелке лома, которая закорачивает вспомогательное питание, а также отключает микросхему контроллера.Эта схема кажется чрезмерно сложной для этой задачи, тем более, что многие микросхемы контроллеров имеют эту функцию. Я могу неправильно понять эту схему, потому что кажется, что Apple излишне занимала место и дорогие компоненты (возможно, стоимостью 25 центов), реализуя эту функцию в таких условиях. сложный способ.

[12] Обратите внимание на загадочную надпись «Для использования с оборудованием информационных технологий» на внешней стороне зарядного устройства. Это указывает на то, что зарядное устройство соответствует стандарту безопасности UL 60950-1, в котором указаны различные необходимые изоляционные расстояния.Краткий обзор изоляционных расстояний см. В разделе «Разделение цепей i-Spec» и в некоторых из моих предыдущих ссылок.

[13] Некоторые примечания к используемым компонентам: На первичной плате корпус JS4 представляет собой два диода в одном корпусе. Входные диоды с маркировкой 1JLGE9 представляют собой диоды 1J 600V 1A. Коммутационные транзисторы представляют собой N-канальные полевые МОП-транзисторы 1HNK60, 600 В, 1 А. Значения многих резисторов и конденсаторов указываются с помощью стандартной трехзначной маркировки SMD (две цифры, а затем мощность десять, что дает Ом или пикофарады).

На вторичной плате конденсатор «330 j90» представляет собой танталовый полимерный конденсатор 300 мФ 6,3 В Sanyo POSCAP (j означает 6,3 В, а 90 — код даты). 1R5 указывает на индуктивность 1,5 мкГн. GB9 — это прецизионный шунтирующий регулятор с низким катодным током AS431I, регулируемый по низкому катодному току, а 431 — это обычный регулятор TL431. SCD34 — это выпрямитель Шоттки на 3 А, 40 В. YCW — это неопознанный транзистор NPN, а GYW — неопознанный транзистор PNP. Конденсатор Y с маркировкой «MC B221K X1 400V Y1 250V» представляет собой Y-конденсатор 220 пФ.Конденсатор «107A» представляет собой танталовый конденсатор емкостью 100 мкФ 10 В (A означает 10 В). Оптопары PS2801-1. (Все эти обозначения компонентов следует рассматривать как предварительные, наряду со схемой.)

[14] Чтобы получить приблизительное представление о том, сколько стоят компоненты в зарядном устройстве, я посмотрел цены на некоторые компоненты на сайте octopart.com. Эти цены — лучшие цены, которые я смог найти после краткого поиска, в количестве 1000 штук, пытаясь точно сопоставить детали. Я должен предположить, что цены Apple значительно лучше этих цен.

000 0,05 $ 0,02 9005000 $ 0,02 1A 600V (1J) диод0000003000
Компонент Цена
0402 Резистор SMD $ 0,002
0805 Конденсатор SMD $ 0,007
SMD транзистор
0,06 $
термистор $ 0,07
Y конденсатор 0,08 $
3.Электролитический конденсатор 3 мкФ, 400 В $ 0,10
TL431 $ 0,10
Индуктивность 1,5 мкГн $ 0,12
SCD 34 диод
SCD 34 диод
$ 0,22
Разъем USB $ 0,33
Танталовый конденсатор 100 мкФ $ 0,34
L6565 IC $ 0.55
Тантал-полимерный конденсатор 330 мкФ
(Sanyo POSCAP)
$ 0,98
Обратный трансформатор $ 1,36

Несколько заметок. Подходящие трансформаторы обычно изготавливаются по индивидуальному заказу, и цены везде разные, поэтому я не очень уверен в этой цене. Я думаю, что цена POSCAP высока, потому что я искал точного производителя, но танталовые конденсаторы в целом довольно дороги. Удивительно, насколько дешевы резисторы и конденсаторы SMD: доли копейки.

[15] Об отзыве зарядных устройств Apple было объявлено в 2008 году. Сообщения в блогах показали, что штыри на зарядном устройстве были прикреплены только с помощью 1/8 дюйма металла и небольшого количества клея. Apple отзывает адаптеры питания iPhone 3G в проводной сети, предоставляет более подробную информацию.

[16] Низкокачественные зарядные устройства мешают работе с сенсорными экранами, и это подробно описано в Noise Wars: Projected Capacity наносит ответный удар. (Клиенты также сообщают о проблемах с сенсорным экраном из-за дешевых зарядных устройств на Amazon и других сайтах.)

[17] Существует множество промышленных конструкций для USB-преобразователей переменного / постоянного тока в диапазоне 5 Вт.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *