Site Loader

Содержание

Как подключить резистор?

Ответ мастера:

В зависимости от схемы подключения, переменный резистор бывает источником сопротивления, и потенциометром. Это зависит от того, как подключен третий вывода переменного резистора.

Можно внимательно изучить схему или документацию, чтобы решить, каким образом подключить резистор в каждом конкретном случае. Как ранее говорилось, переменный резистор две функции может выполнять: источника сопротивления, а так же потенциометра. В документации должны были указать величину переменного сопротивления при соответствующем типе подключения. Точнее всего, можно определить нужную величину практическим методом, используя специальный измерительный прибор. Так, можно лучше подобрать подходящий переменный резистор или его аналог.

Используйте омметр, для того, чтобы вы могли померить общее сопротивление цепи. Для этого, нужно подсоединить его клемму к контактам. Величина сопротивления должна отразиться на экране. Затем сопротивление можно измерить в любом узле схемы. Если значение не определяется, значит, где-то нарушилось соединение.

Нужно внимательно осмотреть все контакты. При необходимости, надо соединить их любой металлической проволокой.

Можно обеспечить соединение, более надежное, если вы сможете запаять разрыв соединения в контактах резистора. Вы можете подобрать подходящий вам резистор, в зависимости от полученных значений, практических измерений. Теперь надо приступить к собиранию схемы.

Удалите старый резистор, который вышел из строя. Старайтесь это сделать как можно аккуратнее, чтобы соседние контакты не замкнули. Затем установите новый резистор подходящего переменного сопротивления. Припаяйте резистор таким же образом, как только что удаленный.

Соблюдайте меры предосторожности, чтобы не произошло замыканий между контактами. Включите схему, для проверки ее работоспособности. Если схема не работает, как надо, можно будет перепаять резистор. На некоторых резисторах производства других стран, контакты располагаются иначе. Попробуйте поменять местами центральный контакт с одним из крайних. Если это не привело к ожидаемым результатам, нужно проверить исправность резистора с помощью прибора.

Как подключить переменный резистор для регулировки напряжения

Всем привет! В прошлой статье я расказывал, как сделать регулятор напряжения для постоянного тока. Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов:

1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм – будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный Kh202).

4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.
5. Экономичные по току светодиоды.
6. Симистор BT136-600B или BT138-600.
7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
8. Небольшой радиатор (до 0,5кВт он не нужен).
9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.

Схема регулятора переменного напряжения:

Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата – её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем

sergei – тут.

Далее припаяем симистор, и переменный резистор.

Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.

Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:

И в конце концов последний этап – это ставим на симистор радиатор.

А вот фото готового устройства уже в корпусе.

Регулятор какой-нибуть дополнительно настройки не требует. Видео работы данного устройства:

Хочу заметить, что ставить его можно не только в сеть 220В на обычные приборы и электроинструменты, но и на любой другой источник переменного тока с напряжением от 20 до 500В (ограничивается предельными параметрами радиоэлементов схемы). С вами был

[PC]Boil-:D

Обсудить статью РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о резисторах. В первой части статьи мы познакомились с резисторами постоянного сопротивления (постоянными резисторами), а в этой части статьи поговорим о резисторах переменного сопротивления, или переменных резисторах.

Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно

изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

1. Потенциометры.

Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

В зависимости от резистивного элемента потенциометры разделяются на

непроволочные и проволочные.

1.1 Непроволочные.

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

1.2. Проволочные.

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

2. Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

3. Обозначение переменных резисторов на схемах.

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

4. Подстроечные резисторы.

Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б) перемещение контактной щетки осуществляется червячной передачей.

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

5. Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы.
Удачи!

Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

НазваниеМощностьНапряжение стабилизацииЦенаВесСтоимость одного ватта
Module ME4000 Вт0-220 В6.68$167 г0.167$
SCR Регулятор10 000 Вт0-220 В12.42$254 г0.124$
SCR Регулятор II5 000 Вт0-220 В9.76$187 г0.195$
WayGat 44 000 Вт0-220 В4.68$122 г0.097$
Cnikesin6 000 Вт0-220 В11.07$155 г0.185$
Great Wall2 000 Вт0-220 В1.59$87 г0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

 

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

 

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Подключение моделей в Matlab Simulink



Всем доброго дня!

Я попытался сделать схему в matlab simulink с AC напряжением, резистором и измерением напряжения. AV напряжение и резистор соединяются довольно хорошо, но измерение напряжения не может соединить соединение резистора.

как я могу подключить измерение напряжения к резистору? Пожалуйста, помогите мне, спасибо!

это схема, которую я хочу смоделировать

Я использовал разные типы резисторов и переменное напряжение, но те же результаты

matlab simulink simscape
Поделиться Источник Raldenors     26 июля 2016 в 07:52

1 ответ


  • C/C++ обертка для SIMULINK моделей

    У меня есть очень большой программный проект C/C++ в Visual Studio и Eclipse. Существует некоторое стороннее программное обеспечение в виде моделей SIMULINK. Возможно ли в настоящее время: 1) написать C/C++ оберточных функций для SIMULINK моделей? 2) вызывать функции из внешней среды, такие как…

  • Matlab функция Simulink

    Я строю уменьшенный наблюдатель порядка в MATLAB. Матрицы вычисляются с помощью функций / скриптовых файлов вне matlab, а функциональные блоки simulink используют эти функции для вычисления значений. Проблема в том, что некоторые команды, такие как ‘acker’, ‘place’ и т. д., которые раньше работали…



4

На мой взгляд, ваш диод из другой библиотеки ( Simscape\Foundation Library\Electrical), чем источник напряжения, сопротивление и блок измерения напряжения ( Системы питания... ). Попробуйте использовать блоки из одной и той же библиотеки.

Смотрите следующее изображение, когда я использую только блоки из Simscape\Foundation Library\Electrical

Поделиться Captain Future     26 июля 2016 в 10:29


Похожие вопросы:


модель simulink в matlab

Я работаю над обнаружением дорожных полос с помощью преобразования Хафа в simulink (matlab). Я разработал модель, но она не обнаруживает полосы движения. Поскольку я очень новичок в simulink, я…


RMS не поддерживается в функции Matlab внутри Simulink

Simulink имеет модуль под названием Matlab Function,, который позволяет создавать пользовательские функции в блок-схеме Simulink. Я реализовал простую функцию в функциональном модуле Simulink…


Matlab управление версиями Simulink с несколькими разработчиками

Мы используем Matlab Simulink для разработки моделей (и автокодирования мастерских в реальном времени) в команде из нескольких разработчиков. В настоящее время мы используем Visual Source Safe (да,…


C/C++ обертка для SIMULINK моделей

У меня есть очень большой программный проект C/C++ в Visual Studio и Eclipse. Существует некоторое стороннее программное обеспечение в виде моделей SIMULINK. Возможно ли в настоящее время: 1)…


Matlab функция Simulink

Я строю уменьшенный наблюдатель порядка в MATLAB. Матрицы вычисляются с помощью функций / скриптовых файлов вне matlab, а функциональные блоки simulink используют эти функции для вычисления…


Как перебирать значения моделей в Simulink Matlab?

Я разработал модель в simulink. Как правило, я генерирую график, устанавливая значения блоков (eg.gain) в модели, моделируя модель и открывая блок scope. Но мне нужно сгенерировать разные grpah,…


Matlab функция внутри simulink

Мне нужно использовать функцию Matlab внутри модели Simulink. Я знаю, как использовать функцию Matlab для выполнения простых вещей. Но то, что мне нужно сейчас, немного сложнее. Позвольте мне…


MatLab модель simulink

Я никогда не задавал вопросов о matlab на этом сайте, и мне не нравится matlab, но я должен создать модель в simulink. Может ли кто-нибудь помочь мне, как создать модель simulink, которая будет…


Частота дискретизации от Simulink до Matlab

Я запускаю модель simulink от simulink, используя matlab. Моя система в основном находится в matlab, но я запускаю файл slx и экспортирую выходные данные, которые будут использоваться в matlab….


MATLAB / цифры Simulink

Я хочу создать подобную фигуру с помощью Simulink, например: Рисунок-1 Это мой код MATLAB: n = importdata(‘n.txt’,’;’) cars = n(:,2) trucks = n(:,3) bus = n(:,4) t = linspace(1,365,365) t =…

Многооборотные подстроечные резисторы типоразмера 3296. Продолжаем сборку Линейного ЛабБП… 2 часть…

Несколько дней назад, я представил на суд Муськовчан, самодельный Лабораторный линейный блок питания… Не смотря на то, что Китайцы продают подобный набор, я решил продолжить тематику самодельного блока питания, надо же хоть что-то сделать лучше, чем китайская поделка… Поскольку блок — Линейный, значит, он переводит всю «лишнюю» нагрузку в тепловую энергию… Да, за всё хорошее надо платить… Потому рассмотрим в данном обзоре автоматический блок переключения обмоток трансформатора, который позволит наш Линейный БП не превращать в печку… А для данной конструкции необходимы подстроечные резисторы на разное сопротивление… В оффайне каждый многооборотный потенциометр стоит совсем не гуманную сумму денег (по крайней мере в Алматы), потому лучше купить assorted kit в Китае… Если Вы занимаетесь радиотехникой, то Вам много где еще пригодятся данные потенциометры… Всем кому интересно добро пожаловать под Кат…

Как вы можете заметить, покупал я набор потенциометров в 2013 году

Подтверждение тут


Стоили триммеры какие то нереальные деньги, по нынешнем временам, однако я до сих пор пользуюсь ими в своих конструкциях…
Мне прислали с Китая по 10шт каждого номинала резистора. И даже сохранилась транспортная коробочка (в которой собственно и храню резисторы)

Резисторы оказались приличного качества, заявленным сопротивлениям соответствуют, каких-либо обрывов, при регулировке сопротивления, не обнаружено…
Типоразмеры резистора представлены на схеме:

Основные технические характеристики резистора привожу ниже:
Резистивный элемент — Сплав резистивный кремниевый (Кермет)
Износостойкость об. — 200
Число оборотов — 25
Мощность Вт. — 0.5
Исполнение — Выводное (DIP)
CRV/ENR, % (Ом) — 1(2)
TKR, ppm/°C — ±100

Понятное дело, что лота, который я купил, уже давно не существует, потому подобрал подобный лот у другого продавца.

Я наткнулся в интернете на фото, которое показывает, как из подстроечного многооборотного резистора сделать — переменный многооборотный резистор))) Ну что сказать… Я узнаю страну по фотографии… Не перевелись еще у нас Кулибины… Но ресурс подстроечного резистора, при использовании как переменным маловат, к сожалению…

Нус, приступим к изготовлению автоматического переключателя обмоток, с использованием вышеописанных подстроечных триммеров. Там их будет использоваться 6 штук.
Принципиальная и монтажная схема приведена ниже:

Схема содержит три идентичных канала. Подстроечным резистором R3 устанавливается порог срабатывания каждого реле. А подстроечным резистором R8 порог отпускания реле. Своеобразный гистерезис, что бы при пограничных напряжениях реле не срабатывало многократно. Я устанавливаю напряжение отпускания реле ниже на 0.5В, от напряжения срабатывания. В качестве транзистора применен 2n5551. Можно использовать любой другой npn транзистор, на ток срабатывания ваших реле.
Расскажу так же, как бесплатно найти реле… Приходите в мастерскую, где устанавливают сигнализации на автомобили, и просите отдать вам несколько старых, снятых с автомобилей блоков, все равно их выбрасывают… Обычно это сигнализации «МагикКар», «Шэрхан» и подобные… Внутри вы всегда найдете несколько реле отличного качества. Я выбрал реле с током удержания 35мА. Способные выдерживать ток до 20А.
На основании этого была разработана печатная плата:
Печатная плата блока переключения обмоток:

Данную плату в формате lay6 вы можете скачать по ссылке Плата проверена и полностью рабочая. Зеркалить плату не нужно… В целях экономии травящих реактивов, вся медь используется в качестве общего провода.

Залуживаем плату:

Сначала устанавливаем все резисторы и диоды:

Потом все остальные элементы:

Плата с обратной стороны:

На схеме и плате подписываем входы обмоток. Это сделано для наглядности и воспроизводимости.

Для того, что бы показать Вам как работает переключатель обмоток, собран стенд со светодиодами, каждый из которых будет зажигаться в момент замыкания реле. Это сделано, что бы визуально показать принцип работы. Светодиоды подключены через реле и токоограничивающий резистор.

Поскольку я так и не научился делать гифы, выкладываю короткое видео, показывающее, как работает плата переключения обмоток:

Вот такой маленький обзор на сегодня… В следующем обзоре, я расскажу про самодельный ампервольтметр и можно будет собрать всё в корпус… Но пока детали еще едут ко мне из Китая…
Всем, кто смог дочитать до конца, мира и добра…

Если подключить светодиод без резистора

В статье сделана попытка показать, почему необходимо использовать токоограничивающий резистор для светодиода. И как можно управлять светодиодом без резистора. Когда вы читаете о светодиодах, вы можете заметить, что все говорят о необходимости использования токоограничивающего резистора. Но обычно не говорится почему. Светодиод с токоограничивающим резистором Если посмотреть документацию на светодиод, можно заметить, что вольт-амперная характеристика светодиода нелинейна. Поскольку светодиод является полупроводниковым элементом, его характеристика отличается от характеристики резистора.

Если к резистору приложить определенное напряжение, ток через него можно вычислить по формуле: I = R/V Пример: I = 100 Ом / 5 В = 20 мА Очевидно, что эта формула неприменима к светодиодам, потому что они являются линейным сопротивлением. Если посмотреть на приведенный выше график, то становится ясным, что повышение напряжения от 0 до 1,6 В не приводит к заметному увеличению тока. Если приложить еще немного больше напряжения, ток увеличится, и светодиод начнет светиться. Мы достигли открывающего потенциала для pn-перехода. Открывающий потенциал для типичного красного светодиода находится в диапазоне от 1,7 до 2,2 В. Небольшие изменения напряжения приводят к сильным изменениям прямого тока.

В документации обычно указывается абсолютное максимальное значение прямого тока, например, 25 мА. Если приложить напряжение, приводящее к большему току, светодиод выйдет из строя. Так что жизненно важно оставаться в рамках предельно допустимых параметров. Если подсоединить светодиод напрямую к 5 В источнику питания, он тут же сгорит. Сильный ток разрушит pn-переход. С этого момента появляется ограничивающий резистор. Предположим, что у нас имеется красный светодиод с максимальным прямым током 25 мА и открывающим потенциалом 2,1 В. Если мы хотим использовать 5 В источник питания, чтобы на нем упало оставшиеся 2,9 В. Для резистора получим: R = V / I = (5 В — 2.1 В) / 25 мА = 116 Ом. Для безопасности светодиода используйте резистор номиналом 120 Ом или лучше 150 Ом.

Так мы не доведем светодиод до предельно допустимого тока. R = V / I = (5 В — 2 В) / 20 мА = 150 Ом. Для сохранения резистора обратим внимание на рассеиваемую мощность. Она вычисляется следующим образом: P = V * I = 3 В * 20 мА = 60 мВт. Так что проще всего взять резистор 150 Ом, 0,25 Вт. Итак, это все об обычном использовании светодиода с ограничивающим резистором. Светодиод без токоограничивающего резистора Во-первых, почему мы хотим избавиться от резистора? Есть две причины. Для начала, он рассеивает энергию. Превращает электричество в тепло. А мы хотим получить свет от светодиода. Нехорошо. Еще, вы можете уменьшить количество компонентов. Устройство будет экономичнее и на печатной плате останется больше места. Есть два способа обойтись без резистора. Один из них — понизить входное напряжение.

Если все ваше устройство может работать при напряжении, равном открывающему напряжению светодиода, это замечательно. Резистор не нужен. Другим способом является использование широтно-импульсной модуляции (ШИМ). Это означает, что мы включаем и выключаем светодиод. Если это происходит достаточно быстро, человеческий глаз не замечает разницы. Он интегрирует яркость за определенный промежуток времени, как говорят. Часто в документации указывается пиковый прямой ток. Например: IF(peak) = 160 mA (пиковый прямой ток = 160 мА) Condition: Pulse W >

Смотря на график, можно оценить его уровень около 3 — 3,2 В, но автор не проверял этого. Оба метода были использованы автором для 64-пиксельной светодиодной матрицы, где светодиоды были подключены к микроконтроллеру без токоограничивающих резисторов.

Входное напряжение было 3 В, если использовать 2 батареи типа АА или около 2,4 В с использованием аккумуляторов. Это позволяет получить открывающий потенциал светодиодов. Матрица позволяет адресацию одной строки целиком в данный момент времени. Вы можете выбирать ячейки только на выбранной строке, устанавливая биты столбцов. В следующий момент времени первая строка отключается, подключается вторая, и т.д. Так вы переключаете в цикле все строки. Это делается так быстро, что видеть мигание невозможно. Каждая строка обновляется с частотой примерно 2 кГц и заполнением импульса 1/8 (потому что строк 8).

Если для управления светодиодом или светодиодной матрицей вы используете микроконтроллер, нужно обратить внимание на предельно допустимый ток для микроконтроллера. Каждый I/O вывод может быть источником или поглотителем определенного тока.

В документации к ATtiny2313 на странице 181 написано: Absolute Maximum Ratings (абсолютные максимальные параметры):

* DC Current per I/O pin: 40.0 mA (постоянный ток — 40 мА на вывод) И на странице 182 есть замечание: 4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed: 1] The sum of all IOL, for all ports, should not exceed 60 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

(4. не смотря на то, что I/O ток при тестировании составляет 10 мА при питании 5 В и 5 мА при питании 3 В, в отсутствие переходных процессов должно наблюдаться: 1] Сумма всех втекающих в процессор токов для всех портов не должна превышать 60 мА. Если втекающий ток превышает тестовые условия, то напряжение логического нуля может превышать номинальные значения. Не гарантируется, что выводы будут проводить ток, больший чем указано в тестовых условиях.)

Как можно понять, если вы пытаетесь получить ток более 10 мА, высокий или низкий уровень выходного напряжения может выйти за рамки гарантированные производителем. Взгляд на следующие два графика из документации может прояснить эту вещь.

Этот график показывает как выходное напряжение вывода просаживается при увеличении тока для питания 2,7 В. 2,7 В это не те 3 В, которые могут обеспечить 2 батареи АА типа, но на данный момент это довольно близко. Как видно, если потребляется больше тока, выходное напряжение падает. При 5 мА мы имеем напряжение 2,5 В, а при 15 мА напряжение падает до 2,1 В.

Этот график показывает как выходное напряжение вывода зависит от втекающего в вывод тока. В этом случае при потреблении большего тока выходное напряжение увеличивается. При 5 мА напряжение равно 0,15 В, и при 15 мА оно возрастает до 0,5 В. Чтобы проверить, можно ли в данной схеме использовать ATtiny2313, нужно провести некоторые вычисления. Для матрицы у нас нет документации с красивыми графиками, но есть некоторые цифры. Forward Voltage: 1.80 — 2.20 V (Прямое напряжение: 1,8 — 2,2 В) Maximum Rating: Forward Current: 25 mA (Предельный ток: 25 мА) Предположим, что светодиод работает при 1,8 В и 5 мА.

Это выглядит разумным, если посмотреть на другую документацию. Теперь, если проанализировать показанные выше 2 графика при токе 5 мА, получим 2,5 В для вывода — источника и 0,15 В для вывода — стока. 2.5 В — 0.15 В = 2.35 В Таким образом, мы получаем 2,35 В для светодиода. Это больше, чем мы предполагали (1,8 В). Большее напряжение для светодиода означает больший ток. Теперь посчитаем для 10 мА. Анализируя снова, получим 2,3 В для вывода — источника и 0,3 В для вывода — стока. 2.3 В — 0.3 В = 2.0 В Как видно, если напряжение на светодиоде повышается, ток также увеличивается. Увеличение тока приводит к уменьшению/увеличению выходного напряжения на выводе — источнике/стоке. А это означает уменьшение тока.

Т.е. на каком-то уровне ток стабилизируется. Похоже, 2,0 В при 10 мА подходит для светодиода и микроконтроллера. Это справедливо для светодиода на двух выводах. А что, если мы хотим управлять всей линейкой из 8 светодиодов? В этом случае мы имеем 8 выводов — источников, 8 светодиодов и один вывод — сток. Из вышеприведенного примера следует, что 10 мА на каждый светодиод соответствует 80 мА (!). Это много. На графике это даже не показано. Предположим, что в сумме мы имеем только 25 мА, тогда получается 3,125 мА на светодиод.

Это дает 2,6 В на каждом источнике и 1,0 В на стоке. 2.6 В — 1.0 В = 1.6 В Это означает, что для каждого светодиода остается 1,6 В, что немного меньше открывающего потенциала. Светодиоды будут затемнены. Опять же, если светодиоды потребляют больше тока, микроконтроллер даст им меньшее выходное напряжение. В таком случае яркость строк будет зависеть от числа подключенных ячеек: строки с меньшим количеством горящих диодов будут ярче. Все эти подсчеты и изучение соответствующей документации помогут понять в каких случаях нужно, а в каких не нужно использовать токоограничивающий резистор.

Перевод: Piyavka, по заказу РадиоЛоцман

Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.
Для начала определимся с терминологией (люди, знакомые с электроникой, могут перейти к следующему пункту).

Падение напряжения — напряжение U (измеряется в вольтах, V) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
Оно же — напряжение питания. Не путать с напряжением источника питания.
Рабочий ток — ток I (измеряется в амперах, А. мы будем измерять в миллиамперах — 1 мА = 0.001 А).
СопротивлениеR измеряется в омах — Ом. Именно в этих единицах измеряются резисторы (сопротивления).
Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

С терминологией вроде всё. Перейдём к теории.
Вот примерное падение напряжения для каждого из основных цветов светодиодов.

Красный — 1,6-2,03
Оранжевый — 2,03-2,1в
Жёлтый — 2,1-2,2в
Зелёный — 2,2-3,5в
Синий — 2,5-3,7в
Фиолетовый — 2,8-4в
Белый — 3-3,7в

Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА.
В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.
Да, всё так, но светодиод – предмет тёмный, изучению не подлежит интересный.
Тогда как напряжения питания он забирает на себя ровно столько, сколько ему требуется, ток превышающий его рабочий ток, попросту сожжёт кристалл.

Давайте возьмём пример. Имеется светодиод оранжевого цвета, который, согласно приведённой выше таблице, имеет напряжение питания порядка 2,1V, и рабочий ток 20мА. Если мы обрушим на него всю мощь бортовой сети нашего автомобиля, то напряжение в цепи, в которую он включен, снизится на

2.1V, правда, избыточный ток тут же его сожжёт…
Как же быть, если нам, например, нужно установить светодиод для подсветки замка зажигания?
Всё просто – нужно лишить участок цепи, в которую включен светодиод, избыточного тока.

Как? – спросите вы. Всё просто. Был такой дядя, Георг Ом, который вывел известную любому старшекласснику формулу (закон Ома для участка цепи) – U=I*R (где U – напряжение, I – ток, R – сопротивление.)
Переворачиваем эту прекрасную формулу, получая R=U/I.
В нашем случае R – сопротивление (номинал резистора), которое нам потребуется; U – напряжение в участке цепи, I – рабочий ток нашего светодиода.
Vs – напряжение источника питания
Vl – напряжение питания светодиода
Таким образом R=(Vs-Vl)/I=(12-2.1)/0.02=9.9/0.02=495 Ом – номинал резистора, который необходимо включить в цепь, дабы напрямую подключить светодиод к бортовой сети при выключенном двигателе.
Для работы при включенном двигателе рассчитываем так же, только Vs берём уже 14В.
Настоятельно рекомендую производить расчёты для авто, беря за напряжение бортовой сети 14В, иначе ваши светодиоды достаточно быстро выйдут из строя.

Если взять номинал больше, например 550-600 Ом, то светодиод будет светить чуть менее ярко.
Если номинал будет меньше, то «свет твоей звезды будет коротким, хоть и очень ярким».

Достоверно узнать, сколько вольт потребляет конкретный светодиод, можно подключив его к источнику постоянного напряжения в 3-5 вольт, подсоединив последовательно вольтметр (можно использовать электронный мультиметр, включив его в соответствующий режим), после чего посчитать насколько снизилось напряжение в цепи. И исходя уже их этих, конкретных данных, рассчитать требуемый вам резистор. Подробнее об этом методе читайте здесь.

В конце хочу сказать вам, что настоятельно рекомендую использовать номинал резистора немного выше чем расчётный, что, несомненно, продлит жизнь светодиодам.
Для определения резистора по цветовой маркировке (а именно так обозначены все современные резисторы) рекомендую использовать этот онлайн-калькулятор.
www.chipdip.ru/info/rescalc

Спасибо, что читаете мой БЖ, мне очень приятно. Если остались вопросы — задавайте не стесняясь — всем отвечу.

Распиновка светодиода

На принципиальных схемах распиновка наглядна. На катод мы всегда подаём «минус», поэтому и обозначается он прямой линией у вершины треугольника. Обычно катод – контакт, на котором располагается светоизлучающий кристалл. Он шире анода.

В сверхъярких LED полярность обычно маркируют на контактах либо корпусе. Если на ножках контактов маркировки нет, ножка с более широким основанием – катод.

Схема подключения светодиода

В классической схеме рекомендуют производить подключение через токоограничительный резистор. Действительно, правильно подобрав резисторное или индуктивное сопротивление, можно подключить диод, рассчитанный на напряжение питания 3В, даже к сети переменного тока.

Главное требование к параметрам питания – ограничение тока цепи.

Поскольку сила тока – параметр, отображающий плотность потока электронов по проводнику, при превышении этого параметра диод просто взорвется из-за мгновенного и значительного выделения тепла на полупроводниковом кристалле.

Как рассчитать ограничительный резистор

Расчет сопротивления резистораРасчет мощности резистора
  • R — сопротивление ограничительного резистора в омах;
  • Uпит — напряжение источника питания в вольтах;
  • Uпад — напряжение питания светодиода;
  • I — номинальный ток светодиода в амперах.

Если мощность резистора будет значительно меньше требуемой, он просто перегорит вследствие перегрева.

Включение светодиода через блок питания без резистора

У меня уже несколько лет работает модернизированная под LED настольная лампа. В качестве источника света используется шесть ярких светодиодов, а в качестве источника питания – старое зарядное устройство от мобильного телефона Nokia. Вот моя схема включения светодиода:

Номинальное напряжение диодов – 3,5В, ток – 140мА, мощность — 1Вт.

При выборе внешнего источника питания необходимо ограничение по току. Подключение этих светодиодов к современным зарядным устройствам с напряжением питания 5В 1-2А потребует ограничивающий резистор.

Что бы адаптировать эту схему к зарядному устройству, рассчитанному на 5В, используйте резистор на 10-20Ом мощностью 0,3А.

Если у вас другой источник питания, убедитесь, что в нем есть схема стабилизации тока.

Схема зарядного устройства от мобильного телефона

Блок питания большинства низковольтных бытовых приборов

Как правильно подключать светодиоды

Параллельное подключение

Вообще параллельное соединение не рекомендуется. Даже у одинаковых диодов параметры номинального тока могут различаться на 10-20%. В такой цепи диод с меньшим номинальным током будет перегреваться, что сократит срок его службы.

Проще всего определить совместимость диодов при помощи низковольтного либо регулируемого источника питания. Ориентироваться можно по «напряжению розжига», когда кристалл начинает лишь чуть светиться. При разбросе «стартового» напряжения в 0,3-0,5 В параллельное соединение без токоограничивающего резистора недопустимо.

Последовательное подключение

Расчёт сопротивления для цепи из нескольких диодов: R = (Uпит — N * Uсд) / I * 0.75

Максимальное количество последовательных диодов: N = (Uпит * 0,75) / Uсд

При включении нескольких последовательных цепочек LED, для каждой цепи желательно рассчитать свой резистор.

Как включить светодиод в сеть переменного тока

Если при подключении LED к источнику постоянного тока электроны движутся лишь в одну сторону и достаточно ограничить ток с помощью резистора, в сети переменного напряжения направление движения электронов постоянно меняется.

При прохождении положительной полуволны, ток, пройдя через резистор, гасящий избыточную мощность, зажжёт источник света. Отрицательная полуволна будет идти через закрытый диод. У светодиодов обратное напряжение небольшое, около 20В, а амплитудное напряжение сети – около 320 В.

Какое-то время полупроводник будет работать в таком режиме, но в любой момент возможен обратный пробой кристалла. Чтобы этого избежать перед источником света устанавливают обыкновенный выпрямительный диод, выдерживающий обратный ток до 1000 В. Он не будет пропускать обратную полуволну в электрическую цепь.

Схема подключения в сеть переменного тока на рисунке справа.

Другие виды LED

Мигающий

Особенность конструкции мигающего светодиода – каждый контакт является одновременно катодом и анодом. Внутри него находятся два светоизлучающих кристалла с разной полярностью. Если такой источник света подключить через понижающий трансформатор к сети переменного тока он будет мигать с частотой 25 раз в секунду.

Для другой частоты мигания используются специальные драйверы. Сейчас такие диоды уже не применяются.

Разноцветный

Разноцветный светодиод – два или больше диода, объединенных в один корпус. У таких моделей один общий анод и несколько катодов.

Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.

При использовании таких элементов в самодельных схемах не стоит забывать, что у разноцветных кристаллов разное напряжение питания. Этот момент необходимо учитывать и при соединении большого количества разноцветных LED источников.

Другой вариант – диод со встроенным драйвером. Такие модели могут быль двухцветные с поочерёдным включением каждого цвета. Частота мигания задаётся встроенным драйвером.

Более продвинутый вариант – RGB диод, изменяющий цвет по заранее заложенной в чип программе. Тут варианты свечения ограниченны лишь фантазией производителя.

062-Как подключить к микроконтроллеру нагрузку? — GetChip.net

В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным — Вы уж меня простите :). Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы  что-то захотите добавить – буду только рад).
Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1-включено, 0-выключено. Начнем.

 

1 НАГРУЗКА ПОСТОЯННОГО ТОКА.
Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

1.1 Подключение нагрузки через резистор.
Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА. Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

Rгасящий = (5v / 0.02A) – Rн = 250 – Rн [Om]

Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать — ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

1.2 Подключение нагрузки при помощи биполярного транзистора.
Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!

Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ. При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любой n-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность — чтоб не перегрелся.

Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
BC547.pdf (10602 Загрузки)

1.3 Подключение нагрузки при помощи полевого транзистора.
Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.

При включении полевого транзистора нужно учесть ряд моментов:
— так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
— транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

Для применения можно порекомендовать мощные транзисторы IRF630, IRF640. Их часто используют и поэтому их легко достать.
IRF640.pdf (17862 Загрузки)

1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.

Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
ULN2003.pdf (19549 Загрузок)

 

2 НАГРУЗКА ПЕРЕМЕННОГО ТОКА.
Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

2.1 Подключение нагрузки при помощи реле.
Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.
Что-то рекомендовать для применения не имеет смысла — реле много, выбирайте по нужным параметрам и цене.

2.2 Подключение нагрузки при помощи симистора (триака).
Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны  напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора — это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.

Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов — большое количество цифрового шума, создаваемого при их работе — нужны цепи подавления.

Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы  типа BT138.
BT138.pdf (6635 Загрузок)

2.3 Подключение нагрузки при помощи твердотельного реле.
С недавних пор у радиолюбителей появилась очень замечательная штука — твердотельные реле. Представляют они из себя оптические приборы (еще их называют оптореле), с одной стороны, в общем случае, стоит светодиод, а с другой полевой транзистор со светочувствительным затвором. Управляется эта штука малым током, а манипулировать может значительной нагрузкой.

Подключать твердотельное реле к микроконтроллеру очень просто — как светодиод — через резистор.
Достоинства налицо: малые размеры, отсутствие механического износа, возможность манипулировать большим током и напряжением и самое главное оптическая развязка от опасного напряжения. Нагрузка может быть как постоянного, так и переменного тока в зависимости от конструкции реле. Из недостатков следует отметить относительную медлительность (чаще всего для коммутации используется полевик) и довольно значительную стоимость реле.

Если не гнаться за завышенными характеристиками можно подобрать себе прибор по приемлемой цене. Например, реле CPC1030N управляется током от 2мА, при этом способно коммутировать нагрузку переменного и постоянного тока 120мА и 350v (очень полезная для радиолюбителей вещь!)
CPC1030N.pdf (14659 Загрузок)

 

(Visited 154 065 times, 1 visits today)

Последовательное соединение резисторов

— Codrey Electronics

Когда несколько резисторов подключены таким образом, что конец первого резистора подключен к началу второго резистора, а конец второго — к третьему резистору и так далее. Мы говорим, что резисторов в последовательном соединении .

Как вы знаете, резисторы — это электронные компоненты, используемые для управления напряжением и током в цепи. Но, правильно настроив его значение, мы можем использовать его для управления током или напряжением в цепях и приложениях.Отдельные резисторы могут быть соединены вместе последовательно или параллельно для получения номинального резистора, эквивалентное сопротивление которого представляет собой математическую комбинацию отдельных подключенных резисторов. Все типы комбинаций резисторов могут быть преобразованы в эквивалентные резисторы, независимо от того, насколько сложна эта комбинация, потому что все резисторы подчиняются одному и тому же правилу, то есть закону Ом .

Что такое закон Ома?


Закон

Ома определяет, что в любой электрической цепи ток, проходящий через компоненты, прямо пропорционален разности потенциалов, приложенной к компонентам.Закон Ома существует в трех формах. Это V = IR, I = V / R и R = V / I.

Где R — сопротивление, I — ток, протекающий в цепи, V — напряжение. Основываясь на этих трех параметрах (ток, напряжение и сопротивление), согласно закону Ома, ток изменяется напрямую с приложенным напряжением и изменяется обратно пропорционально сопротивлению.

Резисторы в последовательной цепи

Комбинация резисторов серии t размещена в виде гирляндной цепи. Здесь ток остается постоянным во всей цепи.Как только ток передается на один резистор, он никуда не идет, кроме как прямо к месту назначения, то есть к отрицательной клемме батареи.

Резистор в последовательной цепи

Поскольку ток здесь остается постоянным, ток одинаков на всех резисторах.

Следовательно, общий ток (i) в последовательной цепи = i 1 + i 2 + i 3

Когда мы говорим о напряжении, оно делится на каждом резисторе в соответствии с номиналом резисторов. Но сложение всего отдельного напряжения приведет к общему напряжению в цепи.

В = В 1 + В 2 + В 3

Теперь, согласно закону Ома,

В = ИК

∴ iR = iR 1 + iR 2 + iR 3 + iR 4

Резисторы, подключенные последовательно (а)

Следовательно, эквивалентное сопротивление указанной выше цепи (а) будет

.

R = 1 + 2 + R 3 + 4

∴ R = 1 Ом + 3 Ом + 4 Ом + 5 Ом = 13 Ом

Резистор серии

как делитель напряжения

Резистор серии

как делитель напряжения

Все напряжение делится на различные падения напряжения на каждом резисторе как V1, V2, V3 и V4 и рассчитывается как

В 1 (Напряжение на резисторе R 1 ) = iR 1 = 1 X 1 = 1 В
В 2 (Напряжение на резисторе R 2 ) = iR 2 = 3 X 1 = 3 В
В 3 (Напряжение на резисторе R 4 ) = iR 3 = 4 X 1 = 4 В
В 4 (Напряжение на резисторе R 5 ) = iR 4 = 5 X 1 = 5 В

Общее напряжение — это сумма напряжений на отдельных сопротивлениях.

Следовательно, V = V1 + V2 + V3 + V4 = 1V + 3V + 4V + 5V = 13V

Цепь (а) может быть изменена с помощью одного резистора, включенного последовательно с батареей 1 В.

Полное сопротивление в серии

Таким образом, резисторы действуют при последовательном соединении. Этот тип комбинации широко используется, когда нам нужно большое сопротивление, например 200 Ом, но 200 Ом недоступны на рынке, поэтому мы последовательно подключаем два резистора 100 Ом, чтобы получить требуемый эквивалент резистора.

Уравнение сопротивления серии

Таким образом, эквивалентное сопротивление этих отдельных последовательных резисторов является просто суммой их индивидуального сопротивления. Например, если имеется n резисторов, скажем, R1, R2 и R3, и так далее до R n. Общее сопротивление последовательно определяется уравнением или формулой ниже.

∴ R всего = R1 + R2 ± —— +… R n

Уравнение резистора серии

Что касается батареи, то несколько отдельных сопротивлений равны одному большому сопротивлению.Это сопротивление известно как эквивалентное сопротивление.

Общее сопротивление определяется как = общее напряжение / общий ток. Очевидно, что это алгебраическая сумма отдельных резисторов.

Резистор в последовательных примерах

Чтобы теоретически найти последовательное сопротивление, вот примеры проблем и решения последовательного резистора.

Пример № 1:

Для последовательного подключения резистора соедините один конец вывода резистора R1 с резистором R2, а другой конец R2 с R3.Точно так же вы можете подключить n резисторов последовательно, как показано ниже. Это повысит сопротивление.

Здесь последовательно соединены 3 резистора R1 (1K), R2 (10K) и R3 (20K). Общее сопротивление в цепи определяется суммой сопротивлений.

Следовательно, полное сопротивление (R) = R 1 + R 2 + R 3 +… .. + R n = 1K + 10K + 20K = 31K

Пример № 2:

Может возникнуть ситуация, когда вы захотите разделить напряжение ровно пополам.Когда два резистора одинакового номинала соединены последовательно, выходное напряжение станет половиной входного напряжения. Например, два резистора R1 и R2 одинакового номинала 1K подключаются друг за другом. Входное напряжение составляет 20 В, а выходное напряжение рассчитывается следующим образом.

Здесь нагрузочный резистор (R L) не рассматривается.

Без подключенного RL

Следовательно, последовательная схема делит напряжение и действует как схема делителя напряжения .

Зависимость тока от последовательного сопротивления

Зависимость тока от сопротивления

Важно соблюдать соотношение между последовательным сопротивлением и током. Как я уже сказал, последовательно включенные резисторы увеличивают сопротивление, но уменьшают ток. Следовательно, соотношение между током и сопротивлением обратное. Здесь по мере увеличения сопротивления ток быстро уменьшается.

Приложения

Некоторые из применений последовательного сопротивления в реальной жизни:

  1. Резисторы, включенные последовательно, используются для построения сети делителя напряжения.
  2. Используется как термистор (положительный температурный коэффициент) при измерении и контроле температуры.
  3. Используется как LDR (светозависимый резистор) для светочувствительных приложений.

Создание простых резисторных схем | Последовательные и параллельные схемы

Изучая электричество, вы захотите построить свои собственные схемы, используя резисторы и батареи. Некоторые варианты доступны в этом вопросе сборки схемы, некоторые проще, чем другие.В этом разделе я рассмотрю несколько методов изготовления, которые не только помогут вам построить схемы, показанные в этой главе, но и более сложные схемы.

Использование перемычек с зажимом типа «крокодил» для построения схемы

Если все, что мы хотим построить, — это простая схема с одной батареей и одним резистором, мы можем легко использовать зажимы типа «крокодил» , перемычки , например:

Перемычки с пружинными зажимами типа «крокодил» на каждом конце обеспечивают безопасный и удобный метод электрического соединения компонентов.

Если бы мы хотели построить простую последовательную схему с одной батареей и тремя резисторами, можно было бы применить ту же технику построения «точка-точка» с использованием перемычек:


Использование беспаечной макетной платы для более сложных схем

Этот метод, однако, оказывается непрактичным для схем намного более сложных, чем эта, из-за неудобства перемычек и физической хрупкости их соединений. Более распространенный метод временной конструкции для любителей — беспаечная макетная плата , устройство из пластика с сотнями подпружиненных соединительных разъемов, соединяющих вставленные концы компонентов и / или куски сплошного провода 22-го калибра.Здесь показана фотография реальной макетной платы, за которой следует иллюстрация, показывающая простую последовательную схему, построенную на одном:

Под каждым отверстием в макетной плате находится металлический пружинный зажим, предназначенный для захвата любого вставленного провода или вывода компонента. Эти металлические пружинные зажимы соединяются под лицевой стороной макета, обеспечивая соединение между вставленными выводами. Схема подключения соединяет каждые пять отверстий вдоль вертикального столбца (как показано на длинной оси макета, расположенной горизонтально):

Построение схемы серии
на макетной плате

Таким образом, когда провод или вывод компонента вставляется в отверстие на макетной плате, в этом столбце появляются еще четыре отверстия, обеспечивающие точки подключения к другим проводам и / или выводам компонентов.В результате получается чрезвычайно гибкая платформа для построения временных цепей. Например, только что показанная схема с тремя резисторами может быть построена на такой макетной плате:

Построение параллельной схемы на макетной плате

Параллельную схему также легко построить на беспаечной макетной плате:

Ограничения использования макетов
Однако у макетных плат

есть свои ограничения.В первую очередь, они предназначены только для временного строительства . Если вы возьмете макетную плату, перевернете ее и встряхнете, любые подключенные к ней компоненты обязательно расшатываются и могут выпасть из соответствующих отверстий.

Кроме того, макетные платы ограничены схемами с довольно низким током (менее 1 А). Эти пружинные зажимы имеют небольшую площадь контакта и поэтому не могут выдерживать высокие токи без чрезмерного нагрева.

Пайка или наматывание проволоки

Для большей стабильности можно выбрать пайку или обмотку проводов.Эти методы включают прикрепление компонентов и проводов к какой-либо конструкции, обеспечивающей надежное механическое расположение (например, на фенольной или стекловолоконной плате с просверленными в ней отверстиями, что очень похоже на макет без внутренних пружинных зажимов), а затем прикрепление проводов к закрепленным компонент приводит.

Пайка — это форма низкотемпературной сварки с использованием сплава олова / свинца или сплава олова / серебра, который также плавится и электрически связывает медные предметы. Концы проводов, припаянные к выводам компонентов, или слишком маленькие медные кольцевые «контактные площадки», прикрепленные к поверхности печатной платы, служат для соединения компонентов друг с другом.

При намотке проводов маломерный провод плотно наматывается на выводы компонентов, а не припаивается к выводам или медным контактным площадкам, натяжение намотанного провода обеспечивает надежное механическое и электрическое соединение для соединения компонентов друг с другом.

Печатные платы (PCB)

Пример печатной платы или PCB , предназначенной для использования любителями, показан на этой фотографии:

Эта плата выглядит медной стороной вверх: стороной, на которой сделана пайка.Каждое отверстие окружено небольшим слоем металлической меди для приклеивания к припою. Все отверстия на этой конкретной плате независимы друг от друга, в отличие от отверстий на макетной плате без пайки, которые соединены вместе группами по пять штук.

Печатные платы

с той же схемой подключения с 5 отверстиями, что и макетные платы, можно приобрести и использовать для конструирования любительских схем.

Производственные печатные платы содержат следов меди, уложенных на фенольном или стекловолоконном материале подложки, чтобы сформировать заранее спроектированные соединительные пути, которые функционируют как провода в цепи.Здесь показан пример такой платы, это устройство фактически представляет собой схему «источника питания», предназначенную для приема 120-вольтового переменного тока (AC) от бытовой настенной розетки и преобразования его в низковольтный постоянный ток (DC).

На этой плате появляется резистор, пятый компонент, считая снизу, расположен в средней правой области платы.

Вид на нижнюю часть платы показывает медные «следы», соединяющие компоненты вместе, а также серебристые отложения припоя, соединяющие компоненты, ведущие к этим следам:

Паяная или обмотанная проволокой схема считается постоянной: то есть она вряд ли случайно развалится.Однако эти методы строительства иногда считаются слишком постоянными. Если кто-то желает заменить компонент или существенно изменить схему, он должен потратить немало времени на отключение соединений. Кроме того, как для пайки, так и для намотки проводов требуются специальные инструменты, которые могут быть недоступны сразу.

Клеммные колодки

Альтернативная технология изготовления, используемая во всем промышленном мире, — это клеммная колодка .Клеммные колодки, также называемые барьерными полосами или клеммными колодками , состоят из отрезка непроводящего материала с несколькими небольшими металлическими стержнями, встроенными внутрь. Каждый металлический стержень имеет по крайней мере один крепежный винт или другой крепеж, под которым может быть закреплен провод или вывод компонента.

Несколько проводов, скрепленных одним винтом, имеют электрическую связь друг с другом, как и провода, прикрепленные к нескольким винтам на одной шине. На следующей фотографии показан один из вариантов клеммной колодки с несколькими подключенными проводами.

Другая клеммная колодка меньшего размера показана на следующей фотографии. Этот тип, иногда называемый «европейским» стилем, имеет утопленные винты для предотвращения случайного короткого замыкания между клеммами отверткой или другим металлическим предметом:

Конструкция схемы на клеммной колодке

На следующем рисунке показана схема с одной батареей и тремя резисторами, построенная на клеммной колодке:

Если в клеммной колодке используются крепежные винты для фиксации компонента и конца провода, для закрепления новых соединений или разрыва старых соединений не потребуется ничего, кроме отвертки.В некоторых клеммных колодках используются подпружиненные зажимы, аналогичные макетной плате, за исключением повышенной прочности, которые вставляются и отключаются с помощью отвертки в качестве толкателя (без скручивания). Электрические соединения, устанавливаемые клеммной колодкой, достаточно надежны и подходят как для постоянного, так и для временного строительства.

Преобразование принципиальной схемы в схему схемы

Один из важных навыков для любого, кто интересуется электричеством и электроникой, — это уметь «переводить» принципиальную схему в реальную схему, где компоненты могут быть ориентированы по-разному.

Схемы

обычно рисуются для максимальной читабельности (за исключением тех немногих примечательных примеров, нарисованных для создания максимальной путаницы!), Но при практическом построении схем часто требуется другая ориентация компонентов. Построение простых схем на клеммных колодках — это один из способов развить навык пространственного мышления «растягивать» провода для создания тех же путей соединения.

Преобразование простой параллельной схемы в схему схемы

Рассмотрим случай параллельной схемы с одной батареей и тремя резисторами, построенной на клеммной колодке:

Переход от красивой, аккуратной принципиальной схемы к реальной схеме — особенно когда подключаемые резисторы физически расположены линейно на клеммной колодке — не очевидно для многих, поэтому я опишу этап процесса пошагово.Во-первых, начните с чистой принципиальной схемы и всех компонентов, прикрепленных к клеммной колодке, без соединительных проводов:

Затем проследите соединение проводов от одной стороны батареи к первому компоненту на схеме, закрепив соединительный провод между теми же двумя точками на реальной цепи. Я считаю полезным перерисовать провод на схеме другой линией, чтобы указать, какие соединения я сделал в реальной жизни:

Продолжайте этот процесс, провод за проводом, пока не будут учтены все соединения на принципиальной схеме.Было бы полезно рассматривать общие провода в стиле SPICE: сделайте все подключения к общему проводу в схеме за один шаг, убедившись, что каждый компонент, подключенный к этому проводу, действительно имеет соединение с этим проводом, прежде чем продолжить к следующему. На следующем этапе я покажу, как верхние стороны двух оставшихся резисторов соединяются вместе, что является общим с проводом, закрепленным на предыдущем этапе:

Когда верхние стороны всех резисторов (как показано на схеме) соединены вместе, и к положительной (+) клемме батареи, все, что нам нужно сделать, это соединить вместе нижние стороны и другую сторону батареи:

Обычно в промышленности все провода маркируются цифровыми бирками, а электрические общие провода имеют тот же номер бирки, как и при моделировании SPICE.В этом случае мы можем пометить провода 1 и 2:

.

Еще одно промышленное соглашение — немного изменить принципиальную схему, чтобы указать фактические точки подключения проводов на клеммной колодке. Это требует системы маркировки для самой полосы: номер «TB» (номер клеммной колодки) для полосы, за которым следует другой номер, представляющий каждую металлическую полосу на полосе.

Таким образом, схему можно использовать в качестве «карты» для определения точек в реальной цепи, независимо от того, насколько запутанной и сложной может казаться соединительная проводка для глаз.Это может показаться чрезмерным для простой схемы с тремя резисторами, показанной здесь, но такая детализация абсолютно необходима для построения и обслуживания больших схем, особенно когда эти схемы могут охватывать большое физическое расстояние, используя более одной клеммной колодки, расположенной более чем на одна панель или коробка.

ОБЗОР:

  • Беспаечный макет — это устройство, используемое для быстрой сборки временных схем путем подключения проводов и компонентов к электрически общим пружинным зажимам, расположенным под рядами отверстий на пластиковой плате.
  • Пайка — это процесс низкотемпературной сварки, в котором используется сплав свинца / олова или сплава олова / серебра для соединения проводов и выводов компонентов вместе, обычно с компонентами, прикрепленными к плате из стекловолокна.
  • Обмотка проводов — это альтернатива пайке, в которой проволока небольшого сечения плотно обернута вокруг выводов компонентов, а не сварное соединение для соединения компонентов друг с другом.
  • Клеммная колодка , также известная как барьерная планка или клеммная колодка , является еще одним устройством, используемым для монтажа компонентов и проводов для построения цепей.Винтовые клеммы или тяжелые пружинные зажимы, прикрепленные к металлическим стержням, обеспечивают точки соединения для концов проводов и выводов компонентов, эти металлические стержни устанавливаются отдельно на кусок непроводящего материала, такого как пластик, бакелит или керамика.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Как рассчитать номинал резистора для светодиодов и цепей светодиодов

Как найти номинал резистора для различных типов цепей светодиодов

Следующее пошаговое руководство поможет вам найти правильное значение резистора (или резисторы) для одного или нескольких светодиодов и цепочек светодиодных цепочек для подключения к батарее и источнику питания.

Если вы выберете эту тему, вы сможете:

  • Рассчитать номиналы резисторов для различных схем светодиодов
  • Рассчитать прямой ток светодиодов
  • Рассчитать прямое напряжение для разных светодиодов Схемы
  • Последовательное соединение светодиодов с батареей
  • Параллельное подключение светодиодов к батарее
  • Соединение светодиодов в последовательно-параллельной комбинации Цепи

Обновление: Вы также можете использовать этот светодиод Вычислитель резисторов для этой цели

Типичный светодиодный символ, конструкция и идентификация проводов.

Щелкните изображение, чтобы увеличить

Прежде чем мы углубимся в подробности, мы попробуем прокатиться по простой схеме ниже, чтобы было легче понять другой расчет.

Щелкните изображение, чтобы увеличить

Это самая простая схема серии светодиодов .

Здесь напряжение питания составляет 6 В, прямое напряжение светодиода (V F ) составляет 1,3 В, а прямой ток (I F ) составляет 10 мА.

Теперь значение резистора (который мы подключим последовательно со светодиодом) для этой схемы будет:

Значение резистора = (В , питание — В F) / I F = (6 — 1,3) / 10 мА = 470 Ом

Потребляемый ток = 20 мА

Формула номинальной мощности резистора для этой схемы

Номинальная мощность резистора = I F 2 x Номинал резистора = (10 мА) 2 x 470 Ом = 0,047 Вт = 47 мВт

Но Это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не перегреется, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0.047 Вт x 2 = 0,094 Вт = резистор 94 мВт для этой схемы Номинальная мощность резистора (значение удвоено) = 0,094 Вт = (94 мВт)

Также имейте в виду, что:

  • Слишком сложно найти точное номинальные резисторы, которые вы рассчитали. Обычно резисторы бывают 1/4, 1/2, 1, 2, 5 и т. Д. Поэтому выберите следующее более высокое значение номинальной мощности. Например, если вы рассчитали номинальную мощность резистора 0,789 Вт = 789 мВт, то вы должны выбрать резистор 1 Вт.
  • Слишком сложно найти точное значение резисторов, которое вы рассчитали. Как правило, резисторы имеют стандартные значения. Если вы не можете найти точное значение резистора, которое вы рассчитали, а затем выберите следующее значение резистора, которое вы рассчитали, например, если рассчитанное значение составляет 313,5 Ом, вы должны использовать ближайшее стандартное значение, что составляет 330 Ом. если ближайшее значение недостаточно близко, то можно сделать это, подключив резисторы последовательно — параллельная конфигурация.
  • I F = Прямой ток светодиода: Это максимальный ток, который светодиод может принимать непрерывно. Рекомендуется обеспечить 80% номинального прямого тока светодиодов для длительного срока службы и стабильности. Например, если номинальный ток светодиода составляет 30 мА, вы должны включить этот светодиод на 24 мА. Значение тока, превышающее это значение, сократит срок службы светодиода или может начать дымиться и гореть.
  • Если вы все еще не можете найти прямой ток светодиода, предположите, что он 20 мА, потому что типичный светодиод работает на 20 мА.
  • В F = прямое напряжение светодиода: Это прямое напряжение светодиода, то есть падение напряжения при подаче номинального прямого тока. Вы можете найти эти данные на пакетах светодиодов, но они находятся в диапазоне от 1,3 В до 3,5 В в зависимости от типа, цвета и яркости. Если вы все еще не можете найти прямое напряжение, просто подключите светодиод через 200 Ом с батареей 6 В. Теперь измерьте напряжение на светодиоде. Это будет 2 В, и это прямое напряжение.

Формула для определения номинала резистора (ов) для последовательного подключения светодиодов:

Ниже приведена еще одна простая схема светодиодов (светодиодов, подключенных последовательно).В этой схеме мы подключили последовательно 6 светодиодов. Напряжение питания составляет 18 В, прямое напряжение (В F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.

Щелкните изображение, чтобы увеличить

Значение резистора (светодиоды в серии) = (В , питание — (В F x количество светодиодов)) / I F

Здесь полное прямое напряжение (V F ) из 6 светодиодов = 2 x 6 = 12 В

и прямой ток (I F ) такой же (т.е.е. 20 мА)

( Примечание: это последовательная схема, поэтому ток в последовательной цепи в каждой точке одинаков, а напряжения складываются) .Теперь значение резистора (для последовательной схемы) будет:

= (В питание — (В F x количество светодиодов)) / I F = (18 — (2 x 6)) / 20 мА

= (18-12) / 20 мА = 300 Ом

Общий ток потребления = 20 мА

(Это последовательная цепь, поэтому токи одинаковы) Номинальная мощность резистора

= I F 2 x Номинал резистора = (20 мА) 2 x 300 Ом = 0.12 = 120 мВт

Но Это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не перегреется, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0,12 Вт x 2 = 0,24 Вт = Резистор 240 мВт для этой схемы Номинальная мощность резистора (значение удвоено) = 0,24 Вт = (240 мВт)

Формула для определения номинала резистора (ов) для параллельного подключения светодиодов (с общим резистором):

Нажмите на изображение, чтобы увеличить

В этой схеме мы подключили светодиоды параллельно с общим резистором.Напряжение питания составляет 18 В, прямое напряжение (В F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.

Значение резистора (светодиоды параллельно с общим резистором) = (В , питание — В F) / (I F x количество светодиодов)

Здесь общий прямой ток (I F ) 4 светодиода = 20 мА x 4 = 0,08 А, и прямое напряжение (В F ) такое же (т.е. 2 В)

( Примечание: это параллельная цепь, поэтому напряжение параллельной цепи одинаково в каждой точке, а токи аддитивны).

Теперь значение резистора (для параллельной цепи с общим резистором) будет:

= (В , питание — В F) / (I F x количество светодиодов)

= (18 — 2) / 0,08

= 200 Ом

Общий ток потребления = 20 мА x 4 = 80 мА

(Это параллельная схема, поэтому токи складываются)

Номинальная мощность резистора = I F 2 x Значение резистора = (20 мА) 2 x 200 Ом = 0.08 Вт = 80 мВт

Но Это минимально необходимое сопротивление резистора, чтобы гарантировать, что резистор не будет перегреваться, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 1,28 Вт x 2 = 2,56 Вт. резистор для этой схемы. Номинальная мощность резистора (значение удвоено) = 2,56 Вт (280 мВт)

Формула для определения номинала резистора (ов) для параллельного подключения светодиодов (с отдельным резистором)

Нажмите на изображение, чтобы увеличить

Это еще один способ подключения светодиодов параллельно с отдельными резисторами.В этой схеме мы подключили 4 светодиода параллельно с отдельными резисторами. Напряжение питания составляет 9 В, прямое напряжение (В F ) светодиодов составляет 2 В, а прямой ток (I F ) составляет 20 мА каждый.

Значение резистора (светодиоды включены параллельно с отдельным резистором) = (В , питание — В F ) / I F Здесь общее прямое напряжение (В F ) светодиодов = 2 и прямой ток ( I F ) 20 мА (т.е. 20 мА)

( Примечание: это параллельная цепь, но мы находим номинал резистора для каждой секции, а не для всей цепи.Таким образом, в каждом разделе схема становится последовательной (обратитесь к формуле последовательной схемы или к простой схеме 1 st выше, вы обнаружите, что они такие же)

Теперь значение резистора (для параллельной схемы с отдельным резисторов) будет:

= (В , питание — В F ) / I F = (9-2) / 20 мА = 350 Ом

Общий ток потребления = 20 мА x 4 = 80 мА (Это является параллельной схемой, поэтому токи складываются)

Номинальная мощность резистора = I F 2 x Номинал резистора = (20 мА) 2 x 350 Ом = 0.14 = 140 мВт

Но это минимальное необходимое значение резистора, чтобы гарантировать, что резистор не будет перегреваться, поэтому рекомендуется удвоить номинальную мощность резистора, которую вы рассчитали, поэтому выберите 0,14 Вт x 2 = 0,28 Вт = резистор 280 мВт для этой схемы. Номинальная мощность резистора (значение удвоено) = 0,28 Вт (280 мВт)

Есть другой способ (последовательно-параллельная комбинация) для соединения светодиодов с батареей; Если вы поняли этот простой расчет, то я уверен, что вы легко сможете рассчитать номинал резисторов и для схемы подключения последовательно-параллельной комбинации светодиодов.

Связанные сообщения:

Схемы подключения для устройств HART и приложения полевого коммуникатора

Блок Trex может связываться с устройством из диспетчерской, на скамейке или любой точке подключения проводки в петле. Подключите набор проводов к к устройству Trex и к коммуникационным терминалам на устройстве или через резистор.

Под каждой диаграммой в таблице перечислены ожидаемые запросы от устройства. мастер подключения и ответы для завершения подключения.Подсказки появляются только в том случае, если приложение полевого коммуникатора не может автоматически обнаружить или подключиться к устройству.

Примечание. Устройство Trex действует как вторичное ведущее устройство HART в контуре HART.

ВНИМАНИЕ:

Отсоедините USB-кабель от Trex. перед подключением к устройству.

Питание и подключение к 2-проводному преобразователю HART

Примечание. Когда блок Trex питает датчик HART, внешний резистор не нужен.В устройстве Trex используется внутренний резистор, который автоматически используется, когда вы включаете Trex для питания передатчика.

Примечание: не вставляйте резистор параллельно ни с HART + pwr, ни с Клеммы HART на блоке Trex или параллельно с коммуникацией устройства терминалы. Это может помешать общению.

Подсказки мастера подключения устройства Ответ
Собираетесь ли вы подавать питание от Trex? Ед. изм? Да
Вы обеспечиваете питание передатчика или позиционер? Передатчик
Изменить параметр опроса? Нажмите Да, если адрес устройства не нулевой.

Подключиться к питаемому Беспроводное устройство HART (с подключенной батареей)

ВНИМАНИЕ:

Не используйте Trex для питания Беспроводное устройство HART. Обеспечение питания Wireless Устройство HART может повредить устройство.

Подсказки мастера подключения устройства Ответ
Собираетесь ли вы подавать питание от Trex? Ед. изм? Нет
Лиды прикреплены к: Передатчик
Изменить параметр опроса? Нажмите Да, если адрес устройства не нулевой.

Подключение к 2-проводному преобразователю HART с внешним питанием

Если адрес передатчика равен нулю, устройство Trex может автоматически обнаруживать и подключаться к устройству без каких-либо запросов от подключения устройства волшебник.

  1. Источник напряжения
Подсказки мастера подключения устройства Ответ
Собираетесь ли вы подавать питание от Trex? Ед. изм? Нет
Лиды прикреплены к: Передатчик
Изменить параметр опроса? Нажмите Да, если адрес устройства не нулевой.

Подключите к 2-проводному преобразователю HART с внешним питанием и используйте внутренний резистор Trex

Примечание. Устройство Trex должно быть подключено последовательно с передатчиком для используйте внутренний резистор.

  1. Источник напряжения
Подсказки мастера подключения устройства Ответ
Собираетесь ли вы подавать питание от Trex? Ед. изм? Нет
Лиды прикреплены к: Передатчик
Изменить параметр опроса? Нажмите Да, если адрес устройства не нулевой.
Увеличить сопротивление контура? Нажмите Да, чтобы включить внутренний резистор.

Подключение к 4-проводному преобразователю HART

Если у вас есть резистор на 250 Ом, вы можете вставить его между клеммы устройства и подсоедините набор проводов к резистору. В противном случае вы можно включить внутренний резистор в мастере подключения устройства.

Примечание. Обязательно ознакомьтесь с документацией к устройству. подключение / настройка связи HART. Устройства могут иметь разные терминалы или требования.

  1. Источник напряжения
Подсказки мастера подключения устройства Ответ
Собираетесь ли вы подавать питание от Trex? Ед. изм? Нет
Лиды прикреплены к: Передатчик
Изменить параметр опроса? Нажмите Да, если адрес устройства не нулевой.
Увеличить сопротивление контура? Нажмите Да, если нет внешнего резистора между выводами устройства.

Питание и подключение к позиционеру HART

Подсказки мастера подключения устройства Ответ
Собираетесь ли вы подавать питание от Trex? Ед. изм? Да
Вы обеспечиваете питание передатчика или позиционер? Позиционер
Изменить параметр опроса? Нажмите Да, если адрес устройства не нулевой.
Увеличить ток контура? Нажмите Да, чтобы увеличить ток с 4 мА до другое значение, если устройство изначально не связывалось.

Подключение к позиционеру HART с внешним питанием

  1. Источник тока
Подсказки мастера подключения устройства Ответ
Собираетесь ли вы подавать питание от Trex? Ед. изм? Нет
Лиды прикреплены к: Позиционер
Изменить параметр опроса? Нажмите Да, если адрес устройства не нулевой.
Увеличить ток контура? Нажмите Да, чтобы увеличить ток с 4 мА до другое значение, если устройство изначально не связывалось.

Почему мы используем резистор 330 Ом для подключения светодиода?

Предназначено для ограничения тока через светодиод, без резистора светодиод будет потреблять ток, пока не расплавится.

Падение напряжения на светодиоде зависит от его цвета, например, для синего светодиода — 3.4В. Поэтому, если у вас есть источник питания 5 В и вам нужен ток 5 мА через светодиод (5 мА обычно дает хорошую видимость), вам понадобится резистор (5–3,4 В) / 0,005 А = 320 Ом. (То есть это сопротивление даст падение напряжения на резисторе 1,6 В, оставшиеся 3,4 В упадут на светодиоде => всего 5 В)

Красные светодиоды обычно имеют меньшее падение напряжения (~ 2 В), поэтому у вас будет немного более высокий ток с тем же резистором, но все, что ниже 20 мА, обычно нормально. Также допустимы немного меньшие токи, светодиоды на 1 мА хорошо видны.

PS. несколько лишних вещей:

1) Световой поток светодиода линейно пропорционален току до тех пор, пока не превосходит технические характеристики. Вот почему все говорят о токе через светодиоды.

2) Лично я кидаю 220 Ом в цепи 5В, чтобы было действительно ярко 🙂

Но в моем недавнем проекте, где у меня было питание 3,3 В и светодиоды разного цвета (зеленый, красный, синий), мне пришлось более тщательно рассчитать сопротивления, и они составили 68 Ом для синего и 220 Ом для зеленого и красного.

Обзор решения:

  • Последовательный резистор ограничивает ток до значения, которое может быть рассчитано, если вы знаете, напряжение питания V, падение напряжения светодиода при желаемом токе и желаемый ток. См. Лист технических данных светодиодов для получения информации о типичном Vled при заданном токе. Затем —

    • Iled = (Vsupply-Vled) / Rseries или
    • Reseries = (Vsupply — Vled) / Iled.
  • Многие маленькие светодиоды рассчитаны на максимальный ток 20 мА.

  • Последовательное использование 330 Ом — это не требующий вычислений и продуманный метод «ленивого человека», гарантирующий, что светодиод сможет безопасно работать от источника питания 5 В, но при этом будет иметь достаточно большой процент выхода, который он мог бы есть при 20 мА.

  • Светодиодные калькуляторы тока или резистора можно найти здесь
    здесь — от Джереми Керра
    и здесь — от @AndrejaKo
    , также см. Диаграмму напряжения / цвета здесь — от Endolith


Деталь:

330 Ом может использоваться некоторыми людьми в качестве «полезного» значения, которое во многих случаях работает «достаточно хорошо».

Назначение резистора — «сбрасывать» напряжение, которое не требуется для работы светодиода, когда светодиод работает при желаемом токе.Поскольку прямое напряжение светодиодов зависит как от цвета, так и от химического состава, а также от силы тока, и поскольку «желаемый» ток зависит от потребностей пользователя, не существует единого правильного значения. См. «Процедура : » в конце для пошагового применения этого.

Однако:

Светодиод белый, прямое напряжение = Vf = ОМ 3,3В.
На резисторе питания 5 В напряжение = Vr = напряжение 5 светодиодов = 5-3,3 = 1,7 В.
Ток = холостой ход будет V / R = 1,7 / 330 = 5,15 ~ = 5 мА

Красный светодиод.Vf = ОКО 2.2V.
Вр = 5-2,2 = 2,8В.
Iled = 2,8 / 330 = 8,4848 … ~ + 8,5 мА.

ИК-светодиод. Vf = 1,8 В. Iled = ~ 10 мА.

В вышеупомянутых случаях Iled варьируется от ОКОЛО 5 мА до ОКОЛО 10 мА.
Коэффициент 2: 1.

На самом деле токи будут несколько выше, так как типичные Vfs, которые я использовал, обычно составляют 20 мА.
При более низких токах Vf ниже (см. Технические характеристики светодиодов), и поэтому R имеет большее падение напряжения, поэтому ток больше, поэтому ….

________________________________________

ПРОЦЕДУРА:

  • Задайте желаемый ток = I_LED Укажите напряжение питания = Vs

  • Используйте лист данных для определения типичного падения напряжения на светодиодах «вперед» при заданном токе = Vf

  • Падение напряжения на резисторе = Vr — это часть напряжения Vs, которая не падает на светодиод.т.е. Vr = Vs — Vf

  • Номинал резистора = R определяется законом Ома: R = V / I

    , где V — напряжение на резисторе, а
    I — ток через светодиод + резистор последовательно.

  • Итак: R = V / I = Vr / I_LED = (Vs-Vf) / I_LED

резисторов последовательно и параллельно

резисторов последовательно и параллельно
Следующий: Правила Кирхгофа Up: Electric Current Предыдущее: ЭДС и внутреннее сопротивление Резисторы, вероятно, встречаются чаще всего. компоненты в электронных схемах.Практические схемы часто содержат очень сложные комбинации резисторов. Поэтому полезно иметь набор правил для поиска эквивалентных сопротивление некоторого общего расположения резисторов. Оказывается, мы можем всегда находите эквивалентное сопротивление повторным применением два простых правила. Эти правила относятся к резисторам, включенным последовательно, и в параллели.
Рисунок 18: Два резистора, соединенных последовательно.

Рассмотрим два резистора, соединенных в серию , как показано на рис.18. Понятно, что через оба резистора протекает одинаковый ток. Ибо, если бы это было не так, заряд накапливался бы в одном или другом резисторов, которые не соответствовали бы установившаяся ситуация (таким образом нарушая основное предположение этого раздела). Предположим, что падение потенциала от точки к точке есть. Это падение представляет собой сумму потенциальных падает и на двух резисторах и соответственно. Таким образом,

(135)

Согласно закону Ома, эквивалентное сопротивление между и — отношение падения потенциала в этих точках и ток, протекающий между ними.Таким образом,
(136)

давая
(137)

Здесь мы использовали тот факт, что ток является общим для все три резистора. Следовательно, правило
Эквивалентное сопротивление двух последовательно соединенных резисторов равно сумма отдельных сопротивлений.
Для резисторов, соединенных последовательно, уравнение.(137) обобщает к .
Рисунок 19: Два резистора, включенных параллельно.

Рассмотрим два резистора, соединенных по параллельно , как показано на рис. 19. Это Из рисунка видно, что падение потенциала на двух резисторах равно тем же. В общем, однако, токи и которые протекают через резисторы и соответственно разные. По закону Ома эквивалентное сопротивление между и — отношение падения потенциала через эти точки и текущий которая течет между ними.Этот ток должен равняться сумме токи и протекающие через два резистора, в противном случае заряд будет накапливаться на одном или обоих переходах в цепи. Таким образом,

(138)

Следует, что
(139)

давая
(140)

Здесь мы использовали тот факт, что падение потенциала является общим для всех трех резисторов.Ясно, что правило
Обратное эквивалентное сопротивление двух сопротивлений. подключенных параллельно — это сумма обратных величин индивидуальные сопротивления.
Для резисторов, соединенных параллельно, уравнение. (140) обобщает на .

Следующий: Правила Кирхгофа Up: Electric Current Предыдущее: ЭДС и внутреннее сопротивление
Ричард Фицпатрик 2007-07-14

Как добавить резистор к динамику для изменения импеданса

Может быть, у вас завалялись дополнительные динамики или вы просто хотите узнать, как добавить резистор к динамику, чтобы изменить его импеданс.В любом случае, вам повезло!

В этой статье я покажу вам:

  • Как изменить (или согласовать) импеданс динамиков с помощью резисторов (с отличными диаграммами для подражания!)
  • Недостатки использования резисторов для изменения импеданса динамика
  • Какие резисторы вам понадобятся
  • Что делать, если вы не можете найти подходящие резисторы (есть несколько удобных способов обойти это!)
  • Где купить правильные резисторы — тоже без поломок!

Какие резисторы следует использовать для изменения импеданса динамика?

Примеры обычных «силовых» (высокомощных) резисторов, используемых для измерения импеданса звука и динамиков.Это резисторы, рассчитанные на более высокие уровни мощности, выдаваемые усилителем или стереосистемой.

Для работы с более высокой выходной мощностью усилителей и ресиверов вам необходимо использовать силовые резисторы при работе с динамиками.

Силовой резистор — это просто резистор большего размера, который может выдерживать намного больше энергии и тепла, чем маленькие, обычно используемые на электронных платах. На самом деле они довольно недорогие (около 5 долларов за 2-4 штуки в упаковке) и обычно используются для индивидуальных проектов акустических систем.

Для акустических систем Я рекомендую использовать одну с номинальной мощностью 25 Вт или более, чтобы быть уверенным. Для автомобильных стереосистем (не автомобильных усилителей — они более мощные) часто можно использовать от 10 до 15 Вт.

Примечание: Сопротивление обычно выражается в единицах, называемых Ом, также обычно обозначаемых греческим символом омега «Ω».

Избегать резисторов

Здесь показан резистор «осевого» типа, используемый для маломощной электроники.Эти типы резисторов не подходят для работы с динамиками, аудио и другими электрическими цепями большой мощности. Не используйте их для динамиков, так как они могут сильно нагреться и потенциально перегореть.

Хотя у вас может возникнуть соблазн попробовать их, важно избегать маломощных (малых) электронных резисторов. Обычно они рассчитаны на мощность от 1/8 до 1/2 Вт. Они слишком малы, чтобы безопасно переносить большое количество тепла, которое могут излучать динамики и усилители.

Если вы подключите их к мощной аудиосистеме, они могут стать очень горячими, могут стать очень горячими, что может вызвать ожоги или просто полностью выгореть, что приведет к поломке (если вам повезет) или даже к повреждению предметов, к которым они близки.

Как добавить резистор к динамику для изменения или согласования импеданса

Сопротивление динамика можно изменить с помощью резисторов для двух ситуаций:

  1. Для использования динамика с более низким сопротивлением, чем обычно, с усилителем или стереосистемой.
  2. Для использования громкоговорителя с более высоким сопротивлением там, где требуется более низкий (например: кроссовер громкоговорителя разработан только для громкоговорителя с определенным сопротивлением).

Из двух случаев №2 встречается гораздо реже.Однако это действительно полезно при использовании колонок с кроссоверами и в некоторых других ситуациях, с которыми вы можете столкнуться.

Если вы хотите использовать импеданс динамика на выше, чем требуется для стерео или усилителя, обычно это не проблема. Пока импеданс динамика равен или выше минимального номинального сопротивления стерео или усилителя, он будет работать безопасно.

1. Использование резисторов для увеличения общего сопротивления нагрузки динамика

Как показано на моей диаграмме выше, если вы планируете использовать динамик с более низким импедансом, вы можете добавить резисторы в серию , чтобы увеличить полное сопротивление, которое видит стерео или усилитель.Это позволяет избежать перегрева и выгорания электроники, к которой вы подключаетесь.

Для этого:

  • Подключите резистор с правильным значением сопротивления (Ом), чтобы увеличить сопротивление динамика по мере необходимости, и с номинальной мощностью не менее 1/2 номинальной выходной мощности стерео или усилителя. (Например: для стерео 50 Вт на канал вы выберете силовой резистор с номинальной мощностью 25 Вт или более)
  • Изолируйте все оголенные провода резистора, чтобы они не могли закоротиться на провод динамика или металл. Всегда проверяйте, чтобы провод динамика или резистора был полностью закрыт и не оголился.

Резистор, подключенный последовательно, просто добавляет свое сопротивление к номинальному сопротивлению динамика. (Пример: резистор 4 Ом плюс динамик 4 Ом = всего 8 Ом).

2. Использование резисторов для уменьшения общего сопротивления нагрузки динамика

Что замечательно, так это то, что вы можете не только увеличить импеданс динамика, подключенного к усилителю или ресиверу, но вы также можете эффективно его уменьшить! Это не то, с чем вы столкнетесь очень часто, но в некоторых ситуациях действительно полезно знать, как это сделать:

  • Согласование динамика с другим импедансом и кроссоверами
  • Временно используются дополнительные динамики до замены оригинальных
  • Замена устаревших громкоговорителей на следующие лучшие, которые вы можете найти, но должны соответствовать импедансу
  • Используя уцененные колонки, вы получили отличную цену на
  • .

В этом случае вы можете уменьшить общую нагрузку на динамик, подключив резисторы параллельно.

Для этого это в основном то же самое, что и последовательное соединение резисторов, но главное отличие состоит в том, что вы подключаете их параллельно:

  • Рассчитайте необходимое сопротивление резистора в Ом (обычно это то же самое, что и у динамика: например, чтобы иметь кроссовер, см. 4 Ом с динамиком 8 Ом, вы можете подключить резистор 8 Ом параллельно
  • Добавьте резистор к проводу динамика и динамику: подключите резистор к положительной и отрицательной клеммам динамика (вы можете сделать это с помощью провода динамика — нет необходимости делать это прямо на динамике, если это проблема)
  • Изолируйте и полностью закройте все оголенные провода динамика или выводы резистора, чтобы они не могли вызвать короткое замыкание на ближайшую проводку или металл.
Сопротивление параллельно немного посложнее

Сопротивление

при параллельном подключении немного сложнее вычислить.Однако не волнуйтесь! На самом деле это довольно просто, если вы поймете, как все это работает.

Сопротивление, подключенное параллельно, складывается по следующей формуле: R_total = 1 / [(1 / R1) + (1 / R2)]

Однако для параллельного сопротивления / импеданса , если все значения одинаковы, вы можете просто разделить их на их количество.

Каковы недостатки использования резисторов для изменения импедансных нагрузок динамиков?

Схема, показывающая пример разделения мощности при использовании резисторов для изменения импеданса динамика, видимого усилителем или радиоприемником.

Следует знать, что это не идеальное решение — есть недостатки.

Одна из них заключается в том, что когда вы добавляете резистор последовательно с динамиком, подаваемая мощность распределяется между ними. Вторая причина заключается в том, что вы не можете получить от усилителя или радио такую ​​же максимальную громкость, как при использовании только правильно подобранного импеданса динамиков.

Например, предположим, что вы хотите использовать динамик на 4 Ом с домашним ресивером мощностью минимум 8 Ом, 100 Вт на канал.Последовательное добавление резистора на 4 Ом доведет общее сопротивление (нагрузка динамика в Ом) до безопасного уровня в 8 Ом.

Однако наличие последовательного резистора, подключенного к динамику, означает, что каждый из них получает только 1/2 от общей мощности. Это означает, что при использовании резистора для компенсации неправильного значения сопротивления динамика вы всегда будете терять на нем некоторую мощность. Независимо от того, подключено ли соединение до или после динамика — это не имеет значения.

Общая доступная мощность снижена для параллельных резисторов, также

Аналогичным образом, при использовании резисторов параллельно с динамиком для снижения импеданса, воспринимаемого усилителем или стереосистемой, они также разделяют мощность.Например, использование резистора 8 Ом параллельно с динамиком 8 Ом даст всего 4 Ом. Однако с усилителем мощностью 50 Вт на канал мощность по-прежнему распределяется между ними, оставляя максимум 25 Вт на динамик.

Это потому, что разделяют количество электрического тока, которое может произвести усилитель. Он больше не доступен только для одного сопротивления (одного динамика).

Использование резисторов иногда может незначительно повлиять на звук

Динамики

не совсем похожи на резисторы — это означает, что в некоторых областях их импеданс изменяется в зависимости от воспроизводимых звуковых частот.Это связано с индуктивностью и воздействием на звуковую катушку музыкального сигнала переменного тока.

В этом случае добавление резистора может немного изменить звук, так как это может привести к тому, что динамик будет вести себя несколько иначе во всем диапазоне звука. Однако, как правило, это не большая проблема.

Просто имейте в виду, что если вы заметили разницу, возможно, именно поэтому.

Что делать, если вы не можете найти подходящие резисторы?

Покупка резисторов подходящего номинала и мощности может быть головной болью! Это особенно актуально, когда вы не можете найти нужные значения или их нет в наличии

Вот несколько советов по выбору резисторов подходящего номинала, если у вас возникли проблемы с поиском того, что вам нужно:

  • Можно использовать несколько резисторов, которые дают правильное значение.
  • Они не обязательно должны быть идеальным значением Ом — Ом — близкое расстояние обычно нормально. Например, если вы не можете найти резистор 4 Ом, подойдет 4,2 Ом (при условии, что он подходит для передачи мощности через него).
  • Вы можете использовать два резистора параллельно, чтобы получить меньшее значение: например, если вам нужен резистор 8 Ом, вы можете использовать два резистора 16 Ом параллельно, чтобы получить 8 Ом.

По моему опыту, не в каждом магазине электронных запчастей есть то, что вам нужно. Возможно, вам придется проявить творческий подход, если вы не можете найти то, что хотите.

Некоторые из наиболее распространенных резисторов с номинальным сопротивлением Ом имеют значения, такие как 1 Ом, 2 Ом, 5 Ом, 10 Ом и т. Д., Которые вы можете использовать, чтобы получить достаточно близкое значение к нужному вам значению.

Вы можете использовать резисторы мощности нескольких значений с динамиками, чтобы изменить их импеданс. Для этого вы можете смешивать и сопоставлять по мере необходимости, чтобы получить правильную общую ценность.

Где купить резисторы для изменения сопротивления нагрузки динамика

Силовые резисторы

— это не то, что можно найти повсюду.Я нашел их в нескольких местах:

.
  • Fry’s Electronics (однако, имейте в виду, что может прекратить свою деятельность).
  • Parts Express — отличный поставщик многих типов частей аудио и динамиков, включая резисторы.
  • Amazon, eBay и другие интернет-магазины разных запчастей.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *