Тормозные режимы синхронных машин
Дата Автор ElectricianКомментироватьПросмотров: 67 823
Как и в обычных электродвигателях в синхронных машинах помимо пусковых характеристик существуют и тормозные характеристики. Для осуществления нормального тормозного режима синхронного электропривода необходимо выбрать нужный режим электрического торможения машины.
Итак, торможение синхронного электродвигателя может быть осуществлено несколькими способами:
- Противовключением – реализуется как и режим противовключения асинхронной машины;
- Динамическое торможение;
- Рекуперативное торможение (с отдачей энергии в сеть) – такой вид торможения может быть реализован при наличии преобразователя частоты, позволяющего осуществить рекуперацию энергии в сеть;
Торможение противовключением
Торможение противовключением применяется довольно редко, так как оно может вызывать значительные толчки тока в сеть, иногда превышающие значение тока при пуске, довольно сильный нагрев пусковой обмотки, следствием чего является довольно низкий cosφ и сравнительно малый тормозной момент. На рисунке ниже показаны схемы:
На рисунке а) показан двигательный режим, на рисунке б) показан режим торможения синхронной машины противовключением.
Режим динамического торможения
Режим динамического торможения синхронного электродвигателя от асинхронного отличается тем, что в синхронном электродвигателе статорная обмотка отключается от сети и подключается к тормозным резисторам, на которых гасится энергия, вырабатываемая электрической машиной при торможении. Схема приведена ниже:
При работе в двигательном режиме выключатель QF замкнут. При переходе электродвигателя в режим динамического торможения выключатель QF размыкается, а QF1 замыкается, при этом напряжение с обмотки возбуждения не снимается. В итоге машина переходит в генераторный режим, а энергия, которая вырабатывается при этом, гасится на резисторах R1, R2, R3, создавая тем самым тормозной момент. При таком режиме работы расход электроэнергии значительно ниже, чем при противовключении. Интенсивность замедления зависит от величины сопротивлений R1, R2, R3. Также на интенсивность влияет и параметры источника постоянного тока возбуждения. Если возбудитель находится на валу машины (собственный возбудитель), то время замедления значительно возрастет, так при уменьшения скорости вращения синхронного электродвигателя будет падать ток возбуждения. Если возбудитель питается от другого источника тока, то момент торможения поддерживается постоянным.
Рекуперативное торможение
Схема показана ниже:
Приведенная схема может реализовывать две схемы торможения – рекуперативное или динамическое. При использовании схемы инвертора позволяющего проводить рекуперацию энергии, оно будет произведено, но такая схема будет немного дороже чем схема с динамическим замедлением (показана пунктиром). Если электропривод имеет частые пуски и остановы, то применять схему с рекуперативным торможением более целесообразно, чем при длительных или кратковременных режимах работы. При выборе схемы питания необходимо произвести технико – экономические расчеты целесообразности применения какой – то из схем.
Posted in ЭлектроприводРекуперативное торможение асинхронного электродвигателя
Асинхронная машина, в принципе, как и все электрические машины, является обратимой. Это значит, что она может работать как в режиме двигателя, выполняя какую-то полезную работу, так и в режиме генератора – вырабатывая электрическую энергию.
Если к валу асинхронного электродвигателя приложить момент нагрузки, то преодолевая этот момент, машина будет потреблять энергию из сети. При работе на холостом ходу будет потребляться только энергия, необходимая для покрытия механических потерь в самой машине. Если к валу асинхронной машины подсоединить еще один электродвигатель и с его помощью вращать асинхронную машину, то потери в роторе будут компенсированы за счет приводного двигателя, а в случае, если скорость вращения вала асинхронной машины превысить синхронную частоту вращения (скорость вращения магнитного поля статора), то начнется рекуперация энергии в сеть. Давайте более подробно рассмотрим процесс рекуперации энергии в сеть.
При работе машины в двигательном режиме вращающееся магнитное поле пересекает проводники роторной и статорной обмотки в одинаковом направлении, следствием чего становится совпадение ЭДС статора Е1 и ротора Е2 по фазе. При переходе асинхронника в режим рекуперативного торможения магнитное поле пересекает проводники статора в прежнем направлении, а вот роторные проводники при n>n0 – в противоположном. При этом ЭДС ротора изменит свой знак на обратный и будет равна:
Соответственно ток ротора:
Отсюда следует, что при переходе в режим рекуперации направление изменит только активная составляющая роторного тока, реактивная не поменяет свое направление. Активный ток поменяет направление из-за изменения направления момента асинхронной машины, по сравнению с двигательным режимом.
Векторная диаграмма асинхронного электродвигателя в генераторном режиме:
Векторная диаграмма показывает, что между U и I1 угол сдвига фазы φ1>(π/2), что будет соответствовать режиму, в котором первопричиной появления тока I1 будет не напряжение питающей сети, а ЭДС Е1. Таким образом, статорная обмотка работает в режиме генератора, отдавая энергию в сеть.
Такие же выражения возможно получить и с помощью эквивалентной схемы. Активная составляющая роторного тока будет равна:
Это значит, что при ω>ω0, скольжение s изменит знак, соответственно поменяет знак I2a/, что значит переход машины в режим рекуперативного торможения. Это подтверждает и выражение электромагнитной мощности:
Данное выражение показывает, что при переходе в режим рекуперативного торможения мощность электромагнитная изменяет свой знак, что означает отдачу мощности вторичным контуром.
Обратившись к выражению мощности вторичного контура:
Из этого выражения мы можем увидеть, что знак реактивной мощности будет сохранятся независимо от режима работы.
Это значит что – асинхронный электродвигатель в рекуперативном режиме тоже потребляет реактивную мощность. И чтоб осуществить рекуперацию, необходим источник реактивной мощности, который необходим для создания вращающегося магнитного поля.
Рекуперативное торможение часто используют в подъемно-транспортных механизмах, при спуске тяжелых грузов. Груз, который опускается, развивает на валу машины отрицательный момент и скорость становится n>n0. Таким образом, машина переходит в режим рекуперативного торможения и тем самым создает тормозной момент на валу. В точке пересечения характеристики со значением статического момента скорость двигателя устанавливается, и груз опускается с постоянной скоростью, как это показано ниже:
тормозной момент будет отсутствовать в том случае, если момент на валу машины будет больше, чем критический момент этой же машины.
Рекуперативное торможения при наличии на валу асинхронной машины реактивного статического момента возможно только при наличии преобразователя частоты или двигателя, с переключающимся числом пар полюсов. Рассмотрим для двигателя с переключающимся числом пар полюсов.
Если обмотки статорные двигателя, работающего на высокой скорости
То есть число пар полюсов меньше, переключить на большее число пар полюсов р1, то в таком случае скорость вращения вала асинхронной машины станет больше, чем синхронная скорость, соответствующая новому числу полюсов
Машина перейдет в режим генератора:
На рисунке, область рекуперативного торможения соответствует участку BCD на механической характеристике.
Довольно часто такой способ применяют в металлорежущих станках, в которых применяю асинхронные машины с переключающимся количеством пар полюсов.
ОСОБЕННОСТИ МОДЕЛЕЙ SINUS — RiMO GERMANY Первый адрес для электрических картов
| DE|EN|CN |
УЗНАЙТЕ БУДУЩЕЕ СЕГОДНЯ
RiMO олицетворяет технологическое будущее альтернативных приводов: СИНУС. Мы используем новейшие доступная технология. Целиком разработкой занимается RiMO, в основном отличаясь от всех остальных электрические карты по конструкции транспортных средств и/или техническому решению. RiMO использует 2 электродвигателя, каждый с номинальной мощностью 2,8 кВт и максимальной мощностью 12 кВт. | Двигатели представляют собой синхронные двигатели 48 В переменного тока с постоянными магнитами, которые, в отличие от обычных двигателей постоянного тока, не содержат ни щеток, ни углей. Литий-железо-марганцево-4-фосфатные батареи (батареи LiFeMnPO4) обеспечивают безопасную работу. |
ОСОБЕННОСТИ МОДЕЛЕЙ SINUS
|
|
* Рекуперация описывает процесс рекуперации энергии путем переключения двигателя с функции привода на функцию генератора.
404 – Страница не найдена
© 2022 Dr. Ing. ч.к. Ф. Порше АГ.
*Данные определены в соответствии с методом измерения, требуемым по закону. С 1 сентября 2018 года Всемирная гармонизированная процедура испытаний легковых автомобилей (WLTP) заменила Новый европейский ездовой цикл (NEDC). Из-за более реалистичных условий испытаний значения потребления топлива/электроэнергии и выбросов CO₂, определенные в соответствии с WLTP, во многих случаях будут выше, чем те, которые определены в соответствии с NEDC.
В настоящее время мы по-прежнему обязаны предоставлять значения NEDC, независимо от используемого процесса утверждения типа. Дополнительная отчетность о значениях WLTP является добровольной. Поскольку все новые автомобили, предлагаемые Porsche, одобрены в соответствии с WLTP, значения NEDC выводятся из значений WLTP. В той мере, в какой значения указаны в виде диапазонов, они не относятся к одному отдельному автомобилю и не являются частью предложения. Они предназначены исключительно для сравнения различных типов транспортных средств. Дополнительное оборудование и аксессуары (навесное оборудование, форматы шин и т. д.) могут изменить соответствующие параметры автомобиля, такие как вес, сопротивление качению и аэродинамика, а также, наряду с погодными и дорожными условиями и индивидуальным управлением, могут повлиять на расход топлива/электроэнергии, выбросы CO₂, запас хода и запас хода. показатели производительности автомобиля.
Дополнительную информацию о различиях между WLTP и NEDC можно найти на сайте www.porsche.com/wltp.
Дополнительную информацию об официальном расходе топлива и официальных удельных выбросах CO₂ новых легковых автомобилей можно найти в «Руководстве по расходу топлива, выбросам CO₂ и энергопотреблению новых легковых автомобилей» [Leitfaden über den Kraftstoffverbrauch, die CO₂-Emissionen und den Stromverbrauch neuer Personenkraftwagen], которые можно бесплатно получить во всех торговых точках и в Deutsche Automobil Treuhand GmbH (DAT).
** Важную информацию о полностью электрических моделях Porsche можно найти здесь.
1. Вся информация, предлагаемая в Porsche Newsroom, включая, помимо прочего, тексты, изображения, аудио- и видеодокументы, защищена авторскими правами или другими законами о защите интеллектуальной собственности. Они предназначены исключительно для использования журналистами в качестве источника для своих собственных сообщений в СМИ и не предназначены для коммерческого использования, в частности, в рекламных целях. Не допускается передача текстов, изображений, аудио- или видеоданных неуполномоченным третьим лицам.
2. Все логотипы и товарные знаки, упомянутые в разделе новостей Porsche, являются товарными знаками Dr. Ing. ч.к. F. Porsche AG (далее: Porsche AG), если не указано иное.
3. Все содержимое отдела новостей Porsche тщательно изучается и компилируется. Тем не менее, информация может содержать ошибки или неточности. Porsche AG не несет никакой ответственности за результаты, которые могут быть достигнуты благодаря использованию информации, в частности, в отношении точности, актуальности и полноты.