Site Loader

Какая разница между током и напряжением? Напряжение и сила тока.

Электроэнергия давно используется человеком для удовлетворения своих потребностей, но она невидима, не воспринимается органами чувств, потому сложна для понимания. С целью упрощения объяснения электрических процессов их довольно часто сравнивают с гидравлическими характеристиками движущейся жидкости.

Например, к нам в квартиру приходит по проводам от далеко расположенных генераторов и вода по трубе от создающего давление насоса. Однако, отключенный выключатель не позволяет светиться лампочкам, а закрытый водопроводный кран — литься воде из крана. Чтобы совершалась работа надо включить выключатель и открыть кран.

Направленный поток свободных электронов по проводам устремится к нити накала лампочки (пойдет электрический ток) , которая станет излучать свет. Вода, вытекающая из крана, будет стекать в раковину.

Эта аналогия позволяет также понимать количественные характеристики, ассоциировать силу тока со скоростью перемещения жидкости, оценивать другие параметры.

Напряжение электросети сравнивают с потенциалом энергии источника жидкости. К примеру, возрастание гидравлического давления насосом в трубе создаст большую скорость перемещения жидкости, а увеличение напряжения (или разности между потенциалами фазы — входящего провода и рабочего нуля — отходящего) усилит накал лампочки, силу ее излучения.

Сопротивление электрической схемы сопоставляют с силой торможения гидравлическому потоку. На скорость перемещения потока влияют:

    вязкость жидкости;

    засоренность и изменение сечения каналов. (В случае с водопроводным краном — положение регулирующего вентиля.)

На величину электрического сопротивления влияет несколько факторов:

    строение вещества, определяющее наличие свободных электронов в проводнике и влияющее на ;

    площадь поперечного сечения и длина токовода;

    температура.

Электрическую мощность тоже сравнивают с энергетическими возможностями потока в гидравлике и оценивают по выполненной работе в единицу времени. Мощность электроприбора выражается через потребляемый ток и подведенное напряжение (для цепей переменного и постоянного тока).

Все эти характеристики электроэнергии исследованы известными учеными, которые дали определения току, напряжению, мощности, сопротивлению и описали математическими методами взаимные связи между ними.

В приведенной таблице показаны общие соотношения для цепей постоянного и переменного тока, которые можно применять для анализа работы конкретных схем.

Рассмотрим несколько примеров их использования.

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом.

На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой (11) в приведенной таблице.

Рассчитываем: Р=24х0,5=12 Вт.

Это же значение получим, если воспользуемся формулами (10) или (12).

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит.

Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт.

Решение.В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт.

По формуле (2) определим общий ток группы потребителей: 4100/220=18,64 А.

Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки.

Отличия параметров электросхем на переменном токе

Однофазные сети

При анализе параметров электроприборов следует учитывать особенности их работы в цепях переменного тока, когда, благодаря влиянию промышленной частоты у конденсаторов возникают емкостные нагрузки (сдвигают вектор тока на 90 градусов вперед от вектора напряжения), а у обмоток катушек — индуктивные (ток на 90 градусов отстает от напряжения). В электротехнике их называют . Они в комплексе создают реактивные потери мощности «Q», которые не выполняют полезной работы.

На активных нагрузках отсутствует сдвиг фазы между током и напряжением.

Таким образом, к активной величине мощности электроприбора в цепях переменного тока добавляется реактивная составляющая, за счет которой увеличивается общая мощность, которую принято называть полной и обозначать индексом «S».



Электрический ток и напряжение промышленной частоты меняются во времени по синусоидальному закону. Соответственно этому происходит изменение мощности. Определять их параметры в различные мгновенные моменты времени не имеет особого смысла. Поэтому выбирают суммарные (интегрирующие) значения за определенный временной промежуток, как правило — период колебания Т.

Знание отличий параметров цепей для переменного и постоянного тока позволяет правильно рассчитывать мощность через ток и напряжение в каждом конкретном случае.

Трехфазные сети

В принципе они состоят из трех одинаковых однофазных цепей, сдвинутых друг относительно друга на комплексной плоскости на 120 градусов. Они немного отличаются нагрузками в каждой фазе, сдвигающими ток от напряжения на угол фи.

За счет этой неравномерности создается ток I0 в нулевом проводе.


Напряжение в этой системе состоит из напряжений в фазах (220 В) и линейных (380 В).

Мощность прибора трехфазного тока, подключенного к схеме, складывается из составляющих в каждой фазе. Ее измеряют с помощью специальных приборов: ваттметров (активная составляющая) и варметров (реактивная). Рассчитать полную мощность потребления прибора трехфазного тока можно на основе замеров ваттметра и варметра с использованием формулы треугольника.

Существует еще косвенный метод измерения, основанный на использовании вольтметра и амперметра с последующими вычислениями полученных значений.

Вопрос только на первый взгляд может показаться глупым. Опыт показал, что не многие люди могут ответить на него грамотно. Известную сумятицу вносит язык: в выражении вроде таких — » в продаже имеется источник постоянного тока 6 вольт» смысл искажен. На самом деле в этом случае предполагается, конечно, ис­точник напряжения, а не тока, ведь ток в вольтах никто не измеряет, но так говорить нельзя. Точнее всего будет сказать — «источник питания постоянного напряжения 6 вольт», а писать можно и «источник питания = 6 В» тогда символ «=» будет говорить нам, что это именно постоянное напряжение, а ни в коем случае не переменное. Впрочем, и здесь мы иногда можем «ошибаться» — язык это язык.

Чтобы понять все это, напомним точные определения из справочника (зазубривать их — очень полезно). Итак, ток, а точнее, его величина, это количество заряда, проходящее через сечение проводника за единицу времени: I = Qlt. Единицу тока называют «ампер» и размерность ее- кулоны в секунду. Знание сего факта пригодится нам позднее. Куда запутанней выйдет история с напряжением — величина напряжения это разность потенциалов между двумя точками материи. Меряют ее в вольтах, и размерность этой единицы измерения — джоуль
на кулон. Почему это так, легко осознать, погрузившись в понимание точного определения величины напряжения: 1 вольт это такая разность потенциалов, при которой передвижение заряда в 1 кулон потребует затраты энергии, которая будет равна 1 джоулю.

Все это прекрасно можно представить, сравнивая проводник и трубу, по которой течет вода. Используя такое сравнение, видим что величину тока можно себе легко представить как количество воды протекающей за секунду (это замечательная в своей точности аналогия), тогда напряжение — как разница давлений на выходе и входе нашей трубы. Обычно труба заканчивается открытым сливом, поэтому давление на выходе будет равно атмосферному давлению, и его можно принять за эталонный уровень. Таким же образом в электрических схемах есть общий провод (или «общая шина» -для краткости ее называют «землей», хотя это и неправильно, потенциал которого принимается за ноль, и относительно которого отсчитываются все напряжения в схеме. Обычно (но не всегда!) за общий провод принимают минусовой вывод основного источника питания схемы.

Итак, вернемся к вопросу как же отличить ток от напряжения? Правильно будет сказать так: ток — это количество электричества, а напряжение — мера потенциальной энергии. Не разбирающийся в физике человек, само собой, начнет трясти головой, пытаясь понять, тогда вы дополните: представь себе камень который падает. Если камень небольшой (количество электричества мало), но падает с высоты (велико напряжение), то он может создать удар такой же мощный, как и большой камень (много электричества), падающий с скромной высоты (напряжение небольшое).

На самом деле пример с камнем красив, но не точен — труба с текущей водой гораздо точнее отображает процесс. Надо знать, что напряжение и ток обычно взаимосвязаны. (Слово «обычно» я использую так как в некоторых случаях — источники напряжения или тока — от этих связи пытаются избавиться, пусть полностью это никогда и не удается.) Да да, если вернуться к примеру с водой в трубе, то легко получить представление, как с увеличивающимся давлением в трубе(напряжения) увеличивается количество текущей воды (ток). Говоря по-другому, зачем нам приходится использовать насосы? Сложнее представить себе точно обратную зависимость — каким образом ток может влиять на напряжение. Для этого нужно понять, саму сущность сопротивления.

В первой половине девятнадцатого века физики не знали, как охарактеризовать зависимость тока от напряжения. Этому простое объяснение. Попробуйте выяснить экспериментально, как выглядит эта зависимость.

Только благодаря таланту Георга Ома удалось за всеми зарослями и преградами увидеть истинную природу сопротивления. То есть, вывести, что зависимость тока от напряжения можно описать формулой: I = U/R. Величина сопротивления R зависит от материала из которого сделан проводник и от внешних условий в среде- особенно, от температуры.

Ток – это направленное движение электронов (заряженных частиц). Возникает он, если в цепи существует разность потенциалов, то есть с одной стороны проводника электрического тока избыток заряженных частиц, а с другой их недостаток. Разность потенциалов, позволяющая электрическому току течь по проводнику, и есть напряжение. Без возникновения напряжения не будет электрического тока.

В физике эту связь выражают формулой I=U/R, где I – сила тока в проводнике, U — напряжение на концах данной электрической цепи, а R – сопротивление этой цепи. Чем выше напряжение в цепи, тем больше пройдет через нее заряженных частиц и, наоборот.

Лишь немногие способны реально осознать, что переменный и постоянный ток чем-то отличаются. Не говоря уже о том, чтобы назвать конкретные различия. Цель данной статьи — объяснить основные характеристики этих физических величин в терминах, понятных людям без багажа технических знаний, а также предоставить некоторые базовые понятия, касающиеся данного вопроса.

Сложности визуализации

Большинству людей не составляет труда разобраться с такими понятиями, как «давление», «количество» и «поток», поскольку в своей повседневной жизни они постоянно сталкиваются с ними. Например, легко понять, что увеличение потока при поливе цветов увеличит количество воды, выходящей из поливочного шланга, в то время как увеличение давления воды заставит ее двигаться быстрее и с большей силой.

Электрические термины, такие как «напряжение» и «ток», обычно трудно понять, поскольку нельзя увидеть или почувствовать электричество, движущееся по кабелям и электрическим контурам. Даже начинающему электрику чрезвычайно сложно визуализировать происходящее на молекулярном уровне или даже четко понять, что собой представляет, например, электрон. Эта частица находятся вне пределов сенсорных возможностей человека, ее невозможно увидеть и к ней нельзя прикоснуться, за исключением случаев, когда определенное количество их не пройдет через тело человека. Только тогда пострадавший определенно ощутит их и испытывает то, что обычно называют электрическим шоком.

Тем не менее, открытые кабели и провода большинству людей кажутся совершенно безвредными только потому, что они не могут увидеть электронов, только и ждущих того, чтобы пойти по пути наименьшего сопротивления, которым обычно является земля.

Аналогия

Понятно, почему большинство людей не могут визуализировать то, что происходит внутри обычных проводников и кабелей. Попытка объяснить, что что-то движется через металл, идет вразрез со здравым смыслом. На самом базовом уровне электричество не так сильно отличается от воды, поэтому его основные понятия довольно легко освоить, если сравнить электрическую цепь с водопроводной системой. Основное различие между водой и электричеством заключается в том, что первая заполняет что-либо, если ей удастся вырваться из трубы, в то время как второе для передвижения электронов нуждается в проводнике. Визуализируя систему труб, большинству легче понять специальную терминологию.

Напряжение как давление

Напряжение очень похоже на давление электронов и указывает, как быстро и с какой силой они движутся через проводник. Эти физические величины эквивалентны во многих отношениях, включая их отношение к прочности трубопровода-кабеля. Подобно тому, как слишком большое давление разрывает трубу, слишком высокое напряжение разрушает экранирование проводника или пробивает его.

Ток как поток

Ток представляет собой расход электронов, указывающий на то, какое их количество движется по кабелю. Чем он выше, тем больше электронов проходит через проводник. Подобно тому, как большое количество воды требует более толстых труб, большие токи требуют более толстых кабелей.

Использование модели водяного контура позволяет объяснить и множество других терминов. Например, силовые генераторы можно представить как водяные насосы, а электрическую нагрузку — как водяную мельницу, для вращения которой требуется поток и давление воды. Даже электронные диоды можно рассматривать как водяные клапаны, которые позволяют воде течь только в одну сторону.

Постоянный ток

Какая разница между постоянным и переменным током, становится ясно уже из названия. Первый представляет собой движение электронов в одном направлении. Очень просто визуализировать его с использованием модели водяного контура. Достаточно представить, что вода течет по трубе в одном направлении. Обычными устройствами, создающими постоянный ток, являются солнечные элементы, батареи и динамо-машины. Практически любое устройство можно спроектировать так, чтобы оно питалось от такого источника. Это почти исключительная прерогатива низковольтной и портативной электроники.

Постоянный ток довольно прост, и подчиняется закону Ома: U = I × R. измеряется в ваттах и ​​равна: P = U × I.

Из-за простых уравнений и поведения постоянный ток относительно легко осмыслить. Первые системы передачи электроэнергии, разработанные Томасом Эдисоном еще в XIX веке, использовали только его. Однако вскоре разница в переменном токе и постоянном стала очевидной. Передача последнего на значительные расстояния сопровождалась большими потерями, поэтому через несколько десятилетий он был заменен более выгодной (тогда) системой, разработанной Николой Теслой.

Несмотря на то что коммерческие силовые сети всей планеты в настоящее время используют переменный ток, ирония заключается в том, что развитие технологии сделало передачу постоянного тока высокого напряжения на очень больших расстояниях и при экстремальных нагрузках более эффективной. Что, например, используется при соединении отдельных систем, таких как целые страны или даже континенты. В этом заключается еще одна разница в переменном токе и постоянном. Однако первый по-прежнему используется в низковольтных коммерческих сетях.

Постоянный и переменный ток: разница в производстве и использовании

Если переменный ток намного проще производить с помощью генератора, используя кинетическую энергию, то батареи могут создавать только постоянный. Поэтому последний доминирует в схемах питания низковольтных устройств и электроники. Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы.

Широко распространенным примером может служить любое транспортное средство — мотоцикл, автомобиль и грузовик. Генератор, устанавливаемый на них, создает переменный ток, который мгновенно преобразуется в постоянный с помощью выпрямителя, поскольку в системе электроснабжения присутствует аккумулятор, и большинству электроники для работы требуется постоянное напряжение. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.

Направление движения

Это еще один пример разницы постоянного тока и переменного тока. Как следует из названия, последний представляет собой поток электронов, который постоянно меняет свое направление. С конца XIX века почти во всех бытовых и промышленных электрических всего мира используется синусоидальный переменный ток, поскольку его легче получить и гораздо дешевле распределять, за исключением очень немногих случаев передачи на большие расстояния, когда потери мощности вынуждают использовать новейшие высоковольтные системы постоянного тока.

У переменного тока есть еще одно большое преимущество: он позволяет возвращать энергию из точки потребления обратно в сеть. Это очень выгодно в зданиях и сооружениях, которые производят больше энергии, чем потребляют, что вполне возможно при использовании альтернативных источников, таких как солнечные батареи и Тот факт, что переменный ток позволяет обеспечить двунаправленный поток энергии, является основной причиной популярности и доступности альтернативных источников питания.

Частота

Когда дело доходит до технического уровня, к сожалению, объяснить, как работает переменный ток, становится сложно, поскольку модель водяного контура к нему не совсем подходит. Однако можно визуализировать систему, в которой вода быстро меняет направление потока, хотя не понятно, как она при этом будет делать что-то полезное. Переменный ток и напряжение постоянно меняют свое направление. Скорость изменения зависит от частоты (измеряемой в герцах) и для бытовых электрических сетей обычно составляет 50 Гц. Это означает, что напряжение и ток меняют свое направление 50 раз в секунду. Вычислить активную составляющую в синусоидальных системах довольно просто. Достаточно разделить их пиковое значение на √2.

Когда переменный ток меняет направление 50 раз в секунду, это означает, что лампы накаливания включаются и выключаются 50 раз в секунду. Человеческий глаз не может это заметить, и мозг просто верит, что освещение работает постоянно. В этом заключается еще одна разница в переменном токе и постоянном.

Векторная математика

Ток и напряжение не только постоянно меняются — их фазы не совпадают (они несинхронизированные). Подавляющее большинство силовых нагрузок переменного тока вызывает разность фаз. Это означает, что даже для самых простых вычислений нужно применять векторную математику. При работе с векторами невозможно просто складывать, вычитать или выполнять любые другие операции скалярной математики. При постоянном токе, если по одному кабелю в некоторую точку поступает 5A, а по другому — 2A, то результат равен 7A. В случае переменного это не так, потому что итог будет зависеть от направления векторов.

Коэффициент мощности

Активная мощность нагрузки с питанием от сети переменного тока может быть рассчитана с помощью простой формулы P = U × I × cos (φ), где φ — угол между напряжением и током, cos (φ) также называется коэффициентом мощности. Это то, чем отличаются постоянный и переменный ток: у первого cos (φ) всегда равен 1. Активная мощность необходима (и оплачивается) бытовыми и промышленными потребителями, но она не равна комплексной, проходящей через проводники (кабели) к нагрузке, которая может быть рассчитана по формуле S = U × I и измеряется в вольт-амперах (ВА).

Разница между постоянным и переменным током в расчетах очевидна — они становятся более сложными. Даже для выполнения самых простых вычислений требуется, по крайней мере, посредственное знание векторной математики.

Сварочные аппараты

Разница между постоянным и переменным током проявляется и при сварке. Полярность дуги оказывает большое влияние на ее качество. Электрод-позитивная сварка проникает глубже, чем электрод-негативная, но последняя ускоряет наплавление металла. При постоянном токе полярность всегда постоянная. При переменном она меняется 100 раз в секунду (при 50 Гц). Сварка при постоянном предпочтительнее, так как она производится более ровно. Разница в сварке переменным и постоянным током заключается в том, что в первом случае движение электронов на долю секунды прерывается, что приводит к пульсации, неустойчивости и пропаданию дуги. Этот вид сварки используется редко, например, для устранения блуждания дуги в случае электродов большого диаметра.

Дурацкий вопрос, скажете вы? Отнюдь. Опыт показал, что не так уж и много людей могут на него ответить правильно. Известную путаницу вносит и язык: в выражении «имеется в продаже источник постоянного тока 12 В» смысл искажен. На самом деле в данном случае имеется в виду, конечно, ис­точник напряжения, а не тока, так как ток в вольтах не измеряется, но так говорить не принято. Самое правильное будет сказать — «источник питания постоянного напряжения 12 вольт», а написать можно и «источник питания =12В» где символ «=» обозначает, что это именно постоянное напряжение, а не переменное. Впрочем, и в этой книге мы тоже иногда будем «ошибать­ся» — язык есть язык.

Чтобы разобраться во всем этом, для начала напомним строгие определения из учебника (зазубривать их- очень полезное занятие!). Итак, ток, точнее, его величина, есть количество электрического заряда, протекающее через сечение проводника за единицу времени: / = Qlt. Единица тока называется «ампер», и ее размерность в системе СИ- кулоны в секунду, знание сего факта пригодится нам позднее.

Куда более запутанно выглядит определение напряжения- величина на­пряжения есть разность электрических потенциалов между двумя точками пространства. Измеряется она в вольтах, и размерность этой единицы изме­рения — джоуль на кулон, то есть U – EIQ. Почему это так, легко понять, вникнув в смысл строгого определения величины напряжения: 1 вольт есть такая разность потенциалов, при которой перемещение заряда в 1 кулон тре­бует затраты энергии, равной 1 джоулю.

Все это наглядно можно представить себе, сравнив проводник с трубой, по которой течет вода. При таком сравнении величину тока можно себе пред­ставить, как количество (расход) протекающей воды за секунду (это доволь­но точная аналогия), а напряжение — как разность давлений на входе и вы­ходе трубы. Чаще всего труба заканчивается открытым краном, так что давление на выходе равно атмосферному давлению, и его можно принять за нулевой уровень. Точно так же в электрических схемах существует общий провод (или «общая шина» — в просторечии для краткости ее часто называ­ют «землей», хотя это и не точно — мы еще вернемся к этому вопросу позд­нее), потенциал которого принимается за ноль и относительно которого от-считываются все напряжения в схеме. Обычно (но не всегда!) за общий провод принимают минусовой вывод основного источника питания схемы.

Итак, вернемся к вопросу, сформулированному в заголовке: так чем же отли­чается ток от напряжения? Правильный ответ будет звучать так: ток — это количество электричества, а напряжение — мера его потенциальной энергии. Неискушенный в физике собеседник, разумеется, начнет трясти головой, пы­таясь вникнуть, и тогда можно дать такое пояснение. Представьте себе па­дающий камень. Если он маленький (количество электричества мало), но па­дает с большой высоты (велико напряжение), то он может наделать столько же несчастий, сколько и большой камень (много электричества), но падаю­щий с малой высоты (напряжение невелико).

Элементарный учебник физики Т2

Элементарный учебник физики Т2
  

Ландсберг Г. С. Элементарный учебник физики. Т.2. Электричество и магнетизм. — М.: Наука, 1985. — 479 c.

Один из лучших курсов элементарной физики, завоевавший огромную популярность. Достоинством курса является глубина изложения физической стороны рассматриваемых процессов и явлений в природе и технике. В новом издании структура курса осталась прежней, однако в изложении проведена система единиц СИ, терминология и обозначения единиц физических величин приведены в соответствие с действующим ГОСТ.

Для слушателей и преподавателей подготовительных отделений и курсов вузов, старшеклассников общеобразовательных и профессиональных школ, а также лиц, занимающихся самообразованием и готовящихся к поступлению в вуз.



Оглавление

ИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮ
Глава I. Электрические заряды
§ 1. Электрическое взаимодействие.
§ 2. Проводники и диэлектрики.
§ 3. Разделение тел на проводники и диэлектрики
§ 4. Положительные и отрицательные заряды
§ 5. Что происходит при электризации?
§ 6. Электронная теория.
§ 7. Электризация трением.
§ 8. Электризация через влияние.
§ 9. Электризация под действием света.
§ 10. Закон Кулона.
§ 11. Единица заряда.
Глава II. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
§ 12. Действие электрического заряда на окружающие тела.
§ 13. Понятие об электрическом поле.
§ 14. Напряженность электрического поля.
§ 15. Сложение полей.
§ 16. Электрическое поле в диэлектриках и в проводниках.
§ 17. Графическое изображение полей.
§ 18. Основные особенности электрических карт.
§ 19. Применение метода линий поля к задачам электростатики.
§ 20. Работа при перемещении заряда в электрическом поле.
§ 21. Разность потенциалов (электрическое напряжение).
§ 22. Эквипотенциальные поверхности.
§ 23. В чем смысл введения разности потенциалов?
§ 24. Условия равновесия зарядов в проводниках.
§ 25. Электрометр.
§ 26. В чем различие между электрометром и электроскопом?
§ 27. Соединение с Землей.
§ 28. Измерение разности потенциалов в воздухе. Электрический зонд.
§ 29. Электрическое поле Земли.
§ 30. Простейшие электрические поля.
§ 31. Распределение зарядов в проводнике. Клетка Фарадея.
§ 32. Поверхностная плотность заряда.
§ 33. Конденсаторы.
§ 34. Различные типы конденсаторов.
§ 35. Параллельное и последовательное соединение конденсаторов.
§ 36. Диэлектрическая проницаемость.
§ 37. Почему электрическое поле ослабляется внутри диэлектрика?
§ 38. Энергия заряженных тел. Энергия электрического поля.
Глава III. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК
§ 39. Электрический ток и электродвижущая сила.
§ 40. Признаки электрического тока.
§ 41. Направление тока.
§ 42. Сила тока.
§ 43. «Скорость электрического тока» и скорость движения носителей заряда.
§ 44. Гальванометр.
§ 45. Распределение напряжения в проводнике с током.
§ 46. Закон Ома.
§ 47. Сопротивление проводов.
§ 48. Зависимость сопротивления от температуры.
§ 49. Сверхпроводимость.
§ 50. Последовательное и параллельное соединение проводников.
§ 51. Реостаты.
§ 52. Распределение напряжения в цепи.
§ 53. Вольтметр.
§ 54. Каким должно быть сопротивление вольтметра и амперметра?
§ 55. Шунтирование измерительных приборов.
Глава IV. ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА
§ 56. Нагревание током. Закон Джоуля-Ленца.
§ 57. Работа, совершаемая электрическим током.
§ 58. Мощность электрического тока.
§ 59. Контактная сварка.
§ 60. Электрические нагревательные приборы. Электрические печи.
§ 61. Понятие о расчете нагревательных приборов.
§ 62. Лампы накаливания.
§ 63. Короткое замыкание.
§ 64. Электрическая проводка.
Глава V. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ЭЛЕКТРОЛИТЫ
§ 65. Первый закон Фарадея.
§ 66. Второй закон Фарадея.
§ 67. Ионная проводимость электролитов.
§ 68. Движение ионов в электролитах.
§ 69. Элементарный электрический заряд.
§ 70. Первичные и вторичные процессы при электролизе.
§ 71. Электролитическая диссоциация.
§ 72. Градуировка амперметров при помощи электролиза.
§ 73. Технические применения электролиза.
Глава VI. ХИМИЧЕСКИЕ И ТЕПЛОВЫЕ ГЕНЕРАТОРЫ ТОКА
§ 74. Введение. Открытие Вольты.
§ 75. Правило Вольты. Гальванический элемент.
§ 76. Как возникают э. д. с. и ток в гальваническом элементе?
§ 77. Поляризация электродов.
§ 78. Деполяризация в гальванических элементах.
§ 79. Аккумуляторы.
§ 80. Закон Ома для замкнутой цепи.
§ 81. Напряжение на зажимах источника тока и э. д. с.
§ 82. Соединение источников тока.
§ 83. Термоэлементы.
§ 84. Термоэлементы в качестве генераторов.
§ 85. Измерение температуры с помощью термоэлементов.
Глава VII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ МЕТАЛЛЫ
§ 86. Электронная проводимость металлов.
§ 87. Строение металлов.
§ 88. Причина электрического сопротивления.
§ 89. Работа выхода.
§ 90. Испускание электронов накаленными телами.
Глава VIII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ГАЗЫ
§ 91. Самостоятельная и несамостоятельная проводимость газов.
§ 92. Несамостоятельная проводимость газа.
§ 93. Искровой разряд.
§ 94. Молния.
§ 95. Коронный разряд.
§ 96. Применения коронного разряда.
§ 97. Громоотвод.
§ 98. Электрическая дуга.
§ 99. Применения дугового разряда.
§ 100. Тлеющий разряд.
§ 101. Что происходит при тлеющем разряде?
§ 102. Катодные лучи.
§ 103. Природа катодных лучей.
§ 104. Каналовые лучи.
§ 105. Электронная проводимость в высоком вакууме.
§ 106. Электронные лампы.
§ 107. Электроннолучевая трубка.
Глава IX. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ПОЛУПРОВОДНИКИ
§ 108. Природа электрического тока в полупроводниках.
§ 109. Движение электронов в полупроводниках.
§ 110. Полупроводниковые выпрямители.
§ 111. Полупроводниковые фотоэлементы.
Глава X. ОСНОВНЫЕ МАГНИТНЫЕ ЯВЛЕНИЯ
§ 112. Естественные и искусственные магниты.
§ 113. Полюсы магнита и его нейтральная зона.
§ 114. Магнитное действие электрического тока.
§ 115. Магнитные действия токов и постоянных магнитов.
§ 116. Происхождение магнитного поля постоянных магнитов.
§ 117. Гипотеза Ампера об элементарных электрических токах.
Глава XI. МАГНИТНОЕ ПОЛЕ
§ 118. Магнитное поле и его проявления. Магнитная индукция.
§ 119. Магнитный момент. Единица магнитной индукции.
§ 120. Измерение магнитной индукции поля с помощью магнитной стрелки.
§ 121. Сложение магнитных полей.
§ 122. Линии магнитного поля.
§ 123. Приборы для измерения магнитной индукции.
Глава XII. МАГНИТНЫЕ ПОЛЯ ЭЛЕКТРИЧЕСКИХ ТОКОВ
§ 124. Магнитное поле прямолинейного проводника и кругового витка с током.
§ 125. Магнитное поле соленоида. Эквивалентность соленоида и полосового магнита.
§ 126. Магнитное поле внутри соленоида. Напряженность магнитного поля.
§ 127. Магнитное поле движущихся зарядов.
Глава XIII. МАГНИТНОЕ ПОЛЕ ЗЕМЛИ
§ 128. Магнитное поле Земли.
§ 129. Элементы земного магнетизма.
§ 130. Магнитные аномалии и магнитная разведка полезных ископаемых.
§ 131. Изменение элементов земного магнетизма с течением времени. Магнитные бури.
Глава XIV. СИЛЫ, ДЕЙСТВУЮЩИЕ В МАГНИТНОМ ПОЛЕ НА ПРОВОДНИКИ С ТОКОМ
§ 132. Введение.
§ 133. Действие магнитного поля на прямолинейный проводник с током. Правило левой руки.
§ 134. Действие магнитного поля на виток или соленоид с током.
§ 135. Гальванометр, основанный на взаимодействии магнитного поля и тока.
§ 136. Сила Лоренца.
§ 137. Сила Лоренца и полярные сияния.
Глава XV. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
§ 138. Условия возникновения индукционного тока.
§ 139. Направление индукционного тока. Правило Ленца.
§ 140. Основной закон электромагнитной индукции.
§ 141. Электродвижущая сила индукции.
§ 142. Электромагнитная индукция и сила Лоренца.
§ 143. Индукционные токи в массивных проводниках. Токи Фуко.
Глава XVI. МАГНИТНЫЕ СВОЙСТВА ТЕЛ
§ 144. Магнитная проницаемость железа.
§ 145. Магнитная проницаемость различных веществ. Вещества парамагнитные и диамагнитные.
§ 146. Движение парамагнитных и диамагнитных тел в магнитном поле. Опыты Фарадея.
§ 147. Молекулярная теория магнетизма.
§ 148. Магнитная защита.
§ 149. Особенности ферромагнитных тел.
§ 150. Основы теории ферромагнетизма.
Глава XVII. ПЕРЕМЕННЫЙ ТОК
§ 151. Постоянная и переменная электродвижущая сила.
§ 152. Опытное исследование формы переменного тока. Осциллограф.
§ 153. Амплитуда, частота и фаза синусоидального переменного тока и напряжения.
§ 154. Сила переменного тока.
§ 155. Амперметры и вольтметры переменного тока.
§ 156. Самоиндукция.
§ 157. Индуктивность катушки.
§ 158. Прохождение переменного тока через конденсатор и катушку с большой индуктивностью.
§ 159. Закон Ома для переменного тока. Емкостное и индуктивное сопротивления.
§ 160. Сложение токов при параллельном включении сопротивлений в цепь переменного тока.
§ 161. Сложение напряжений при последовательном соединении сопротивлений в цепи переменного тока.
§ 162. Сдвиг фаз между током и напряжением.
§ 163. Мощность переменного тока.
§ 164. Трансформаторы.
§ 165. Централизованное производство и распределение электрической энергии.
§ 166. Выпрямление переменного тока.
Глава XVIII. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ: ГЕНЕРАТОРЫ, ДВИГАТЕЛИ, ЭЛЕКТРОМАГНИТЫ
§ 167. Генераторы переменного тока.
§ 168. Генераторы постоянного тока.
§ 169. Генераторы с независимым возбуждением и с самовозбуждением.
§ 170. Трехфазный ток.
§ 171. Трехфазный электродвигатель.
§ 172. Электродвигатели постоянного тока.
§ 173. Основные рабочие характеристики и особенности двигателей постоянного тока с параллельным и последовательным возбуждением.
§ 174. Коэффициент полезного действия генератора и двигателя.
§ 175. Обратимость электрических генераторов постоянного тока.
§ 176. Электромагниты.
§ 177. Применение электромагнитов.
§ 178. Реле и их применения в технике и автоматике.
Ответы и решения к упражнениям
Приложения
Предметный указатель
Таблицы

Разница между напряжением и током

Без категории

админ 0 Комментарии

В этой статье мы обсудим измерение разницы между напряжением и током. Мы попытаемся понять, в чем основная разница между током и напряжением.

Разница между напряжением и током

Напряжение

Текущий

1. Это разность потенциалов между двумя точками. Поскольку мы можем просто сказать, что напряжение — это разность потенциалов между двумя точками.

Это скорость потока заряда или скорость потока заряда, называемая током.

2. Обозначается  V или напряжение обозначается ,V

Представлено ,I,

Напряжение измеряется в вольтах

Ток измеряется в амперах, это означает, что ампер является единицей силы тока.

3. Измеряется вольтметром; Это электрическое устройство, которое измеряет разность потенциалов между двумя точками.

Измеряется амперметром; Это также электрическое устройство, которое является мерой тока.

4. Создает электростатическое поле

Он создает электромагнитное поле, когда мы подаем ток, он создает магнитное поле в катушке, вызывающее появление напряжения.

5. При последовательном соединении ток одинаков для всех подключенных компонентов

При параллельном соединении напряжение одинаково для всех компонентов.

6. При параллельном соединении ток каждого компонента отличается

Напряжение при последовательном соединении различается в каждом компоненте

7. Напряжение = один джоуль / кулон

Это означает, что если один кулоновый заряд работает в один джоуль, то рабочее напряжение равно одному вольту

В= W/Q

В, соответствует напряжению

Вт, представляет работу

Q, представляет заряд (кулон)

Ток = Кулон в секунду

Это означает, что скорость течения кулоновского заряда называется током. Если один кулоновый заряд течет за одну секунду, то величина тока равна одному Амперу.

I= Q/t

I, представляет текущий

Q, представляет заряд (кулон)

T, представляет время

8. В= I*R

В, соответствует напряжению

I, представляет текущий

R, представляет сопротивление

Где     I=V/R

R, соответствует сопротивлению

I, представляет текущий

В, соответствует напряжению

9. Это количество потенциальной энергии между двумя точками

В основном это момент электрона

Измеряет разницу между напряжением и током.

10. Основная разница между напряжением и током

Напряжение = Давление

Что означает В целом форма напряжения ведет себя как давление.

Ток = Поток воды

Что означает, что в целом ток ведет себя как вода.

В чем разница между операционными усилителями с обратной связью по току и с обратной связью по напряжению?

Джефф Шепард

Операционные усилители с обратной связью по току (CFB) и операционные усилители с обратной связью по напряжению (VFB) имеют почти столько же сходств, сколько и различий. CFB и VFB имеют инвертирующие и неинвертирующие входы, сигнальный выход, входы для подачи положительного и отрицательного напряжения и используют резисторы обратной связи и усиления для стабилизации работы схемы и установки усиления схемы. Это может затруднить определение различий, поскольку различия невидимы снаружи.

Полное сопротивление входов является основным отличием: VFB имеют симметричные входы с высоким импедансом, а CFB имеют асимметричные входы. Различия во входных сигналах приводят к различиям между сигналами ошибки, используемыми операционными усилителями VFB и CFB. Операционный усилитель VFB использует напряжение ошибки, в то время как операционный усилитель CFB использует ток ошибки.

Рис. 1. Идеальные модели операционных усилителей VFB (слева) и CFB (справа), демонстрирующие различия в симметрии входов.

Существуют дополнительные различия между CFB и VFB, некоторые из которых обсуждаются ниже. Суть в том, что CFB и VFB имеют разные рабочие характеристики и подходят для разных приложений:

Характеристики операционного усилителя CFB включают:

  • Асимметричные входы
  • Меньшее усиление без обратной связи и точность по постоянному току
  • Более высокое напряжение смещения
  • Инвертирующий входной импеданс низкий, неинвертирующий входной импеданс высокий
  • Входные токи смещения не такие низкие, как у VFB, или не согласуются с ними
  • Постоянный резистор обратной связи необходим для оптимальной работы

Изготовление операционных усилителей с CFB больше подходит для приложений, которым необходимы:

  • Относительно постоянная полоса пропускания для различных коэффициентов усиления;
  • Сверхширокая полоса пропускания и скорость нарастания при наименьших искажениях;
  • И относительно простые реализации фильтров, такие как активные фильтры Саллена-Ки.

Характеристики операционного усилителя VFB включают:

  • Импеданс симметричного входа
  • Гибкая сеть обратной связи
  • Доступны входы и выходы Rail-to-Rail
  • Высокий коэффициент усиления без обратной связи и точность по постоянному току
  • Доступно низкое напряжение смещения (может быть <20 мкВ)
  • Доступен низкий ток смещения (может быть <200 фА)

Изготовление операционных усилителей VFB больше подходит для:

  • Применений, требующих гибкости в цепи обратной связи;
  • Высокоточные приложения с низким уровнем шума и низкой пропускной способностью;
  • Приложение с однополярным питанием;
  • И для использования в сложных активных фильтрах.

Подробнее о различиях CFB и VFB

Идеальные уравнения усиления с обратной связью для инвертирующих операционных усилителей CFB и VFB идентичны. Но в практических приложениях эти операционные усилители отклоняются от идеальных характеристик по-разному, поскольку предположения, используемые для получения коэффициентов усиления с обратной связью, более сложны для CFB. Степень, в которой эти операционные усилители отклоняются от идеальных уравнений усиления с обратной связью, зависит от справедливости допущений. Для операционных усилителей VFB единственное допущение состоит в том, что прямое усиление очень велико. С другой стороны, при использовании CFB делается два предположения; трансимпеданс очень высок, а выходной импеданс выходного буфера очень низок. Поскольку выполнить два критерия сложнее, чем выполнить один, CFB обычно отклоняются от идеала больше, чем VFB.

Операционные усилители VFB могут использовать ряд методов компенсации для предотвращения нестабильности, и обычно не существует конкретных ограничений на выбор резисторов при использовании VFB. С другой стороны, разработчики, использующие операционные усилители с обратной связью, не могут свободно выбирать номиналы резисторов обратной связи. В даташитах на операционные усилители с обратной связью обычно указываются номиналы резисторов обратной связи, которые следует использовать при различных настройках усиления, что обеспечивает самую широкую полосу пропускания с наиболее стабильными фазовыми условиями.

Полоса пропускания операционного усилителя с обратной связью с обратной связью относительно не зависит от коэффициента усиления; Он определяется значением внутреннего конденсатора и (внешнего) резистора обратной связи. В результате CFB хорошо подходят для приложений с программируемым усилением, которым требуется независимая от усиления полоса пропускания. VFB чаще встречаются в инвертирующих усилителях. Инвертирующие усилители, использующие CFB, встречаются реже, поскольку инвертирующий входной импеданс очень низок.

VFB обеспечивают высокий коэффициент усиления без обратной связи, низкое напряжение смещения и малый ток смещения, что делает их привлекательным выбором для прецизионных низкочастотных приложений. Многие операционные усилители VFB доступны с входами и выходами rail-to-rail, что делает их подходящими для использования в приложениях с однополярным питанием.

Операционные усилители VFB больше подходят для конструкций с активными фильтрами. CFB предлагают превосходную полосу пропускания, скорость нарастания и характеристики искажения, но за счет меньших характеристик постоянного тока, соображений шума и необходимости в резисторе обратной связи с фиксированным значением.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *