Расчет вторичной обмотки трансформатора
Русский: English:. Бесплатный архив статей статей в Архиве. Справочник бесплатно. Параметры радиодеталей бесплатно.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Калькулятор расчёта трансформатора
- Как рассчитать количество витков и диаметр провода обмоткок трнасформатора? FAQ Часть 3
- Расчет тороидального трансформатора для сварки
- Как сделать расчет трансформатора. Расчёт и изготовление силового трансформатора
- Расчет трансформатора для сварочного полуавтомата
Расчёт трансформатора на калькуляторе в домашних условиях - Упрощенный расчет маломощных силовых однофазных и трехфазных трансформаторов
- Упрощенный вид расчета трансформатора
- Расчет трансформатора, онлайн калькулятор
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как узнать ток выходной, вторичной обмотки трансформатора, зная диаметр провода, используя формулу.
Калькулятор расчёта трансформатора
Сложные многофункциональные устройства, способные преобразовывать электроэнергию из одной величины в другую, на языке электротехники, называют трансформаторами. Для создания такого оборудования, в зависимости от конкретных величин преобразования, применяется специальный расчет. Как правильно проводить расчет трансформаторов, знать в нем основные параметры и формулы, правильно их использовать, уметь пользоваться упрощенной системой проектирования трансформаторов распространенных энерговеличин и становится целью содержания этой статьи.
Любая энергосистема, установка, особенно в сети трехфазного 3ф тока и напряжения просто не могла и не может обойтись без такого функционального устройства, как трансформатор. В высоковольтных сетях он производит повышение напряжения, получая его непосредственного из недр генератора и направляя в высоковольтные линии электропередач.
Трансформаторы тока в тех же мощных электроустановках производят преобразования первоначальной токовой величины в номинальные его значения, допустимые для питания контрольных и измерительных приборов, защит, учетных систем и прочих энергетических элементов. В бытовых нуждах, однофазного тока и напряжения широко используют различные трансформаторы, которые преобразуя электрические величины обеспечивают питанием многие бытовые приборы, являются источником различного освещения, питают системы электроники и мультимедиа.
В целом, без таких преобразователей в электричестве никуда. На примере простейшего однофазного трансформатора возможно подробно рассмотреть его основные конструктивные элементы и узнать основы принципа его работы.
Конструктивно такой трансформатор состоит из трех главных элементов:.
Подключенная к сети переменного тока первичная обмотка создает в замкнутом контуре магнитное поле с движущимся по кольцу магнитопровода магнитным потоком. Его движение проходит, через обе намотки обмоток и согласно закону индукции, создает в них электродвижущую силу ЭДС. Величина ЭДС напрямую зависит от количества витков в обмотках, сечения проводников и отличительными особенностями между первичной и вторичной обмотками.
ЭДС, в системе трансформатора, это и есть выходное напряжение на выводах преобразователя. Чтобы ее величина стала меньше входного сигнала — количество витков вторичной обмотки должно быть меньше первичной катушки трансформатора. Проектирование функций устройств преобразования, точное определение способности преобразования электровеличины — мощности трансформатора, количества витков обмоток, формы их намотки, выбор материала магнитопровода, его форма и размеры как раз и определяется в процессе расчета трансформатора.
В силовой энерго установки при проектировании модели и типа трансформатора применяются основные формулы расчета его главных параметров и конструктивных величин.
Как выполнить в некоторых подробностях стоит разобрать ниже. В зависимости от того, в какой сети однофазной или трехфазной участвует трансформатор, какой по типу трансформации — повышающей или понижающей, будет являться его вторичная обмотка, а так же при наличии конкретных данных указанных величин возможно произвести расчет мощности вторичной обмотки, согласно известной формулы электротехники.
P 2 — величина электрической мощности вторичной обмотки, единицы измерения — Вт;. U 2 — напряжение сети вторичной обмотки, на выходе трансформатора, единицы измерения — В;. I 2 — ток вторичной обмотки, возникшей на выходе трансформатора, и предназначенный для питания подключенного к нему потребителя и другого энергоустройства.
Для силовых трансформаторов, особенно повышающего типа, всегда стоит учитывать потери, возникающие в проводниках обмоток, стали магнитопровода, которые влияют на коэффициент полезного действия устройства.
Поданная мощность на первичную обмотку трансформатора, за счет электрических потерь в устройстве преобразователя всегда будет больше ее вторичного выходного сигнала. Отсюда КПД силового трансформатора будет равен 0,,85 от ее величины. При расчете общей мощности трансформатора потери и оставшееся полезное действие на выходе электроагрегата стоит учитывать в виде произведения полученной мощности вторичной обмотки P 2 и КПД устройства.
Это будет более реальная величина мощности выходной обмотки трансформатора. Остальные параметры в расчетных формулах будут зависеть от количества витков первичной и вторичной обмоток, их сечения, материала проводников. Строение, материал и форма сердечников в свою очередь тоже имеет немаловажное значение в проведении точных и верных расчетов силовых трансформаторов.
Понятие полной мощности трансформатора так же включает в себя более широкое понятие мощностных характеристик в зависимости от типа устройства. Если трансформатор имеет несколько вторичных обмоток, то его полная мощность S полн.
Так в общей мощности участвуют активная и реактивные составляющие трансформатора, единицы измерения ее представлены в вольтамперном произведении — ВА.
Это значение реактивной составляющей является справочным табличным значением в зависимости от трансформатора, строения, сечения и материала его сердечника. Строение сердечника в любом трансформаторе в зависимости от его назначения имеет несколько основных видовых особенностей.
Магнитопроводы преобразователей электро энергетических величин всегда выполняются из прессованных шихтованных железных или стальных пластин. Отказ в применении монолитного сердечника в трансформаторе, выбор в пользу пластинчато-прессованного его строения связан, с уменьшением потерь выходных величин трансформатора, уменьшением вихревых токов в магнитопроводе, а значит повышением его КПД.
От того, где преимущественно будет использован трансформатор, применяют три основных конструктивных формы строения его сердечника:. Методы изготовления каждого из них в зависимости от детальных форм и различий выполняют производственными процессами типа штамповки или навивания стальной проволоки. Рисунок 1. Типы сердечников и параметры расчета сечения магнитопровода. На Рис.
Произведением этих двух величин можно получить значение сечения магнитопровода, которое будет крайне необходимо для проведения остальных расчетов трансформатора. Первоначальный этап расчета трансформатора электроэнергии. От значения зависят величины трансформации энергии оборудования, а также изменения выходных номиналов на клеммах вторичных обмоток. Вычисления количества витков в намотке первичной и вторичной обмотки тесно связаны с предыдущем понятием — сечения магнитопровода.
Производится по двум формулам: начальной и конечной. В состав расчета начальной формулы входит выяснения расчетного значения витков обмоток трансформаторов на единицу напряжения, равную 1В. Формула в составе имеет справочный коэффициент сердечника. N 1 v — количество витков обмотки на единицу напряжения равную 1 В;. K — технический коэффициент формы магнитопровода: для Ш-образного сердечника значение принято — 60; П-образного из пластин — 50; кольцевого — S — сечение сердечника, полученного из расчета, выполненного ранее и описанного выше.
Конечная формула расчета сводится к применению следующей формулы, из которой можно получить значение количества витков в полном объеме. U — величина напряжения обмотки без нагрузки на холостом ходу. Зависимость применения различных материалов самих магнитопроводов, их форм, конструкции и производству пластин сердечника трансформаторов, строится на уменьшении потерь различного рода в результате преобразовательных процессов работы устройства, уменьшении значения вихревых токов на сердечнике, по средствам увеличения электрического сопротивления сердечника.
Для производства, создания сердечников силовых трансформаторов применяются разнообразные типы электротехнической стали. Из нее производят пластины, которые после изолировании между собой производят сборку определенных форм магнитопровода. Самые распространенные виды сердечников выполняются из:. Оценивая при расчете параметры напряжения, тока, мощности в значениях активной и реактивной энергии, выяснив количество витков обмотки и сечение магнитопровода стоит обратится к детальному выбору пластин сердечника и его оптимальной формы в конкретике расчетного проекта конкретного преобразователя.
Один из окончательных расчетов геометрии сердечника, который выполняется в большинстве случаев, обращаясь к справочной технической литературе, где указаны табличные значения геометрии шаблонных форматов сердечников разного вида пластин и их материала. Формулы расчета этого параметра существуют, исходят из показателей диаметра стержня магнитопровода, толщины листа пластин при их сборке, специальных коэффициентов заполнения в зависимости от толщины листа и прочих технически сложных параметров.
S ш — значение площади сечение Ш-образного магнитопровода;. Полная мощность трансформатора, если имеет место двух катушечный тип устройства рассчитывается по Формуле 2, если вторичных обмоток много — рассчитывается по Формуле 3. S ш — площадь сечения Ш-образного сердечника, см 2 ;. Для сборки в заводских условиях подобные расчеты имеют автоматизированный характер, если значения необходимы радиолюбителям или начинающим электронщикам — проще обратится к стандартным базовым шаблонам того или иного сердечника.
Получить такие параметры из справочника возможно, зная значение диаметр стержня сердечника. Окончательный геометрический параметр трансформатора зависит от комплекса всех ранее рассчитанных величин магнитопровода, добавляя к ним электромагнитные справочные значения, а также значения проводников первичной и вторичной обмоток, их сечения, материал и остальное.
Существует вариант определения мощности, на которую максимально рассчитан трансформаторный материал сердечника, его сталь, по величине сечения магнитопровода. Такой вариант расчета мощности магнитопровода является крайне наглядным. Поэтому лучше, воспользовавшись несколькими основными геометрическими величинами и справочными данными произвести расчет геометрической мощности по формуле. P геом. B — справочное значение и параметр индукции, наводящейся в конкретном магнитопроводе, измеряется в Тесла;.
Зная параметры геометрии проектируемого трансформатора, используя приведенную формулу достаточно легко рассчитать геометрическую мощность трансформаторного изделия, с целью понимания его максимальных значений и возможностей в размерном эквиваленте. Главный фактор в расчете параметра мощности геометрии трансформатора — превышение ее расчетной величины над значением электрической мощности.
Этот электромеханический параметр очень важный при дальнейшем определении параметров проводников в обмотках. Зная геометрическую мощность проекта преобразователя, уже точно нельзя будет ошибиться с диаметром проводника в расчетах обмоточных данных устройства.
Электротехническая сталь тонкими пластинами, изолированными между друг другом различными диэлектриками образуют строение наиболее популярных сердечников стержневого и броневого типа.
Площадь поперечного сечения для таких сердечников оказывает громадное влияние на электрическую мощность трансформатора. Рассматривая стандартный Ш-образный магнитопровод, зная, что сечение его сердечника рассчитывается по Формула 4, и не имея других электрических параметров, таких как допустимый ток первичной или вторичной обмотки, напряжение на обоих выводах, вполне точно и правильно возможно вычислить электрическую мощность устройства.
P тр-р — электрическая мощность расчетного сердечника, Вт;. S — площадь сечения магнитопровода оборудования, см 2. Зависимость двух мощностей в расчетном проекте преобразователя энергии видно из формулы достаточно наглядно.
Учет площади сечения сердечника к тому же еще необходим для недопущения попадания стали магнитопровода в большую зону магнитного насыщения.
Неправильный расчет площади может привезти именно к этому. Создать режим трансформатора от микроволновки, но обеспечения кратковременного режима работы. А это значит получение режима перегрузки в работе, износ, потери на выходе вторичной обмотки.
Окончательный показатель, оценивающий важность верного расчета площади сечения сердечника, называется коэффициентом заполняемости окна сердечника проводниковой медью первичной и вторичных обмоток. Если сравнивать по этому параметру кольцевой трансформатор с броневым или стержневым — значения конечно же сильно будут разница в пользу тороидального трансформатора, но для двух последних этот коэффициент как раз можно улучшить вышеприведенным расчетом. Первичная намотка проводников оборудования тоже имеет определенное количество витков в своем номинале.
Чем больше витков на этой обмотке — тем больше электрическое сопротивление ввода, а значит меньше нагрев. Определить количество витков обоих обмоток в процессе проекта расчета трансформатора возможно по отношению следующих равенств.
N 1 , N 2 — количество витков намотки первичной и вторичной катушек трансформатора;. U 1 , U 2 — номинальные напряжение обмоток трансформатора. Из такого равенства отношений, особенно, когда уже успешно посчитано количество витков вторичной обмотки, используя математику, можно вывести формулу расчета витков обмотки на вводе трансформатора. Если проект имеет не только теоретическое обоснование, но и практическую составляющую в виде реального трансформатора, то с помощью медного проводника в изоляции если позволяет конструкция устройства и мультиметра возможно измерениями получить это же значение витков трансформатора на вводной обмотке, отталкиваясь от количества витков на 1В, и разматывая старую или наматывая новую первичную обмотку.
Всю теорию легко показывать и пояснять на практическом примере ведения расчета трансформаторного устройства.
Как рассчитать количество витков и диаметр провода обмоткок трнасформатора? FAQ Часть 3
Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом. Случается так, что при выходе трансформатора из строя или при самостоятельном изготовлении радиоприборов не получается найти устройство с нужными параметрами серийного производства. Поэтому приходится выполнять расчёт трансформатора и его изготовление самостоятельно. Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов :.
В промышленных условиях расчет трансформатора — весьма трудоемкая Мощность любой из вторичных обмоток определяем из произведения.
Расчет тороидального трансформатора для сварки
По сравнению с обычными конструкциями тороидальные трансформаторы имеют ряд существенных преимуществ. При незначительных размерах и массе, они обладают значительно большим коэффициентом полезного действия. Поэтому данные устройства нашли широкое применение в сварочных аппаратах и стабилизаторах напряжения. Большое значение имеет правильный расчет тороидального трансформатора, применительно к конкретным условиям эксплуатации. Существуют различные способы расчетов, позволяющие получить результаты с разной степенью точности. Чаще всего для расчетов используются таблицы. Перед началом расчетов необходимо определиться с основными параметрами трансформатора. В первую очередь это касается типа проводов и количества витков, от которых зависит общая длина проводника.
Как сделать расчет трансформатора. Расчёт и изготовление силового трансформатора
В радиолюбительской практике иногда возникает необходимость в изготовлении трансформатора с нестандартными значениями напряжения и тока. Хорошо, если удается подобрать готовый трансформатор с нужными обмотками, в противном случае трансформатор приходится изготавливать самостоятельно. Эта страничка посвящена изготовлению силового трансформатора своими силами. В промышленных условиях расчет трансформатора — весьма трудоемкая работа, но для радиолюбителей созданы упрощенные методики расчета. С одной из таких методик я и хочу вас познакомить.
Как рассчитать силовой трансформатор и намотать самому.
Расчет трансформатора для сварочного полуавтомата
Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД — коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее. Изначально так и было в моём расчете. Пока не появились предложения от посетителей сайта внести изменения в расчет. По имеющимся размерам трансформаторного железа рассчитываем полную мощность трансформатора, а уж потом видим, какой ток и напряжение можно снять с этого железа. Далее все как по типовому расчёту, выбираем тип: броневой или стержневой, указываем напряжение первичной обмотки, вторичной, частоту переменного тока и так далее.
Расчёт трансформатора на калькуляторе в домашних условиях
Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до — Вт проводится следующим образом. Зная напряжение и наибольший ток, который должна давать вторичная обмотка U2 и I2 , находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток. Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:. При использовании трансформаторной стали. Теперь можно рассчитать число витков обмоток.
При расчете трансформатора необходимо учитывать, что габаритная ВеличинаСуммарная мощность вторичных обмоток Рвых.
Упрощенный расчет маломощных силовых однофазных и трехфазных трансформаторов
Занимаясь расчетами мощного источника питания, я столкнулся с проблемой — мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы — где найти такой расчет.
Упрощенный вид расчета трансформатора
ВИДЕО ПО ТЕМЕ: Как намотать трансформатор? Первичная обмотка (Расчёт и перемотка трансформатора #4. 1)
Но проще и дешевле собрать его своими руками. К тому же сам процесс сборки достаточно интересный. Но как показывает практика, в основе сборки лежит расчет трансформатора, он же блок питания. Поэтому стоит поговорить именно о проводимых расчетах, то есть, разобраться с формулами и указать на нюансы. Если посмотреть на трансформатор с внешней стороны, то это Ш-образное устройство, состоящее из металлического сердечника, картонного или пластикового каркаса и обмотки из медной проволоки. Обмоток две.
Дата публикации: 11 декабря
Расчет трансформатора, онлайн калькулятор
В этой статье попытаюсь вам рассказать, как рассчитать трансформатор для сварочного аппарата. На самом деле ни чего сложного здесь нет. Этот расчет относится как к простым П и Ш образным так и к тороидальным трансформаторам. Где:Sc — площадь сечения сердечника см. So — площадь сечения окна см.
Код для вставки без рекламы с прямой ссылкой на сайт. Код для вставки с рекламой без прямой ссылки на сайт. Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор.
Расчет трансформатора: формулы для расчета
Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц. Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения. Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.
Содержание
Расчет силового трансформатора
Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.
В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее. Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.
Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).
Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2: . С помощью сечения сердечника необходимо определить количество витков n, соответствующее 1 вольту напряжения: n= 50/Q.
На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xnxU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…
Любая обмотка трансформатора имеет следующий диаметр проводов:
где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1. Здесь используется общая мощность трансформатора.
Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника. Необходимо воспользоваться формулой: Sм = 4 x (d12n1 + d22n2 +d32n3 + d42n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках. В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.
Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.
Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.
Как рассчитать мощность трансформатора
Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.
Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.
Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.
Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.
Расчёт трансформатора по сечению сердечника
Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и тороидальными. В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых – магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.
Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.
Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора. КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока. Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.
В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью. Эта взаимная связь отражается и в расчетной формуле: Sо хSс = 100 хРг /(2,22 * Вс х j х f х kох kc). Здесь Sо и Sс являются соответственно площадями окна и поперечного сечения сердечника, Рг – значение габаритной мощности, Вс – показатель магнитной индукции в сердечнике, j – плотность тока в проводниках обмоток, f – частота переменного тока, kо и kc – коэффициенты заполнения окна и сердечника.
Как определить число витков обмотки трансформатора не разматывая катушку
При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.
Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.
com/embed/eJx3uxQPZHo?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>Расчет трансформатора | EC&M
Примечание. Эта статья основана на NEC 2020 года.
Трансформатор передает электрическую энергию (мощность) от одной системы к другой посредством индукции без физического соединения между двумя системами (кроме заземления и соединения). Таким образом, Национальный электротехнический кодекс (NEC) называет трансформаторы «отдельно производными системами».
Большинство трансформаторов повышают или понижают напряжение, но изолирующие трансформаторы этого не делают; они просто отделяют первичную обмотку от вторичной.
Некоторые основы
Обмотка трансформатора, подключенная к источнику напряжения, является «первичной». Обмотка трансформатора, подключенная к нагрузке, является «вторичной».
Напряжение, которое может индуцироваться во вторичной обмотке первичным магнитным полем, зависит от количества петель (витков) вторичного проводника, разрезаемых первичным электромагнитным полем. Напряжение на первичной стороне — это «первичное линейное напряжение», а напряжение на вторичной стороне — «вторичное линейное напряжение».
Трансформаторы рассчитаны на киловольт-ампер (кВА), где 1 кВА = 1000 вольт-ампер (ВА).
Треугольник и звезда
Трансформаторы, соединенные треугольником, имеют три обмотки, соединенные встык. Линейные проводники подключаются к каждой точке, где встречаются две обмотки. Эта система называется «Дельта», потому что в развернутом виде она выглядит как треугольник (греческий символ «Дельта» для буквы D). Для трансформатора треугольник/треугольник и первичная, и вторичная обмотки соединены треугольником ( Рис. 1 ).
При работе с дельта-трансформаторами не забывайте о «высокой ножке» (см. врезку в конце этой статьи).
Трансформаторы, соединенные звездой, имеют по одному проводу от каждой из трех обмоток, соединенных с общей точкой. Другие выводы от каждой из обмоток подключаются к линейным проводникам. Вторичная обмотка со звездообразным расположением часто представлена Y-образным расположением обмоток ( рис. 2 )
Линейные токи
Вы можете рассчитать линейный ток трансформатора, используя соответствующую формулу для однофазных или трехфазных систем:
Однофазный: I = ВА ÷ E
3-фазный: I = ВА ÷ (E × 1,732 )
Защита от перегрузки по току
Для защиты обмоток трансформатора от перегрузки по току используйте проценты, указанные в таблице 450.3(B) и соответствующих примечаниях.
Раздел 450.3(B) касается защиты обмоток трансформатора, а не проводников, питающих или выходящих из трансформатора.
Для токов 9А и более, гл. 450.3(B), применяется Примечание 1. Если 125 % первичного тока не соответствует стандартному предохранителю или нерегулируемому автоматическому выключателю, вы можете использовать следующий более высокий номинал устройства защиты от перегрузки по току (OCPD), как указано в гл. 240,6 (А).
Первичная максимальная токовая защита, менее 9 А пример
Вопрос: Каков максимальный первичный номинал OCPD для однофазного трансформатора 240 В с постоянной нагрузкой 2 кВА?
Первичный ток = (Номинальная мощность трансформатора ВА) ÷ (Первичное напряжение)
Первичный ток = 2000 ВА ÷ 240 В
Первичный ток = 8,33 А
Первичная защита = (Первичный ток) × (Таблица 450. 3(B) в процентах) 8,33 A × 167 %
Первичная защита = 13,92 A
Первичная максимальная токовая защита более 9 А пример
Вопрос: Какова максимальная первичная номинальная мощность OCPD для 3-фазного трансформатора 480 В с непрерывной нагрузкой 45 кВА ( Рис. 3 )?
Первичный ток = Номинальная мощность трансформатора ВА ÷ (Первичное напряжение × 1,732)
Первичный ток = 45 000 ВА ÷ (480 В × 1,732)
Первичный ток = 54 А
Первичная защита = 54A × 125%
Первичная защита = 68A
Таким образом, в этой ситуации используйте OCPD на 70A. [Разд. 240.6(A) и таблица 450.3(B), примечание 1]
Размер первичного проводника
Размер первичных проводников должен составлять не менее 125 % длительных нагрузок, плюс 100 % непостоянных нагрузок, исходя из номинальных токов клемм при температуре, как перечисленных в Таблице 310.15(B)(16), перед любой регулировкой тока [Sec. 210.19(А)(1)].
Защита проводников от перегрузки по току в соответствии с их силой тока после регулировки емкости, как указано в гл. 310,15 [240,4]. Вы можете использовать следующий более высокий стандартный номинал OCPD (выше допустимой нагрузки защищаемых проводников), если номинал OCPD не превышает 800 А [разд. 240.4(В)].
Пример размера первичного проводника
Вопрос: Первичный проводник какого размера можно использовать для трехфазного трансформатора мощностью 45 кВА с непрерывной нагрузкой, 480 В, где первичный OCPD рассчитан на 70 А?
Шаг 1 : Размер первичного проводника должен быть равен 125 % номинального тока первичной обмотки.
I = 45 000 ВА ÷ (480 В × 1,732) = 54 А
54 А × 1,25 = 68 А
Проводник 4 AWG рассчитан на 70 А при 60°C [Разд. 110.14(C)(1)(a)(1) и табл. 310.15(B)(16)].
Шаг 2 : Убедитесь, что проводники защищены в соответствии с их током [Разд. 240.4].
Проводник 4 AWG с номинальным током 70 А при 60°C может быть защищен первичным OCPD на 70 А.
Сечение вторичного проводника
Сила тока вторичного проводника должна быть как минимум равна номиналу устройства, питаемого вторичными проводниками или OCPD на конце вторичных проводников [разд. 240.21(С)(2)]. Предположим, что вторичные проводники будут непрерывно нести полную мощность трансформатора.
Шаг 1 : Определите номинал устройства, питаемого от вторичных проводников, при 125% вторичного номинала [Разд. 215.2(А)(1)(а)].
Шаг 2 : Размер вторичных проводников должен быть таким, чтобы их допустимая нагрузка была не меньше номинала устройства, обеспечиваемого вторичными проводниками [Разд. 240.21(С)].
Пример размера вторичного проводника
Вопрос: Какой размер вторичного проводника можно использовать для трехфазного трансформатора мощностью 45 кВА с непрерывной нагрузкой, 480–120/208 В?
Шаг 1 : Определите номинальный ток вторичной обмотки.
Вторичный ток = Трансформатор ВА ÷ (Вторичное напряжение × 1,732)
I = 45 000 ВА ÷ (208 В × 1,732)
I = 125 A
Шаг 2 : Определите размер вторичного OCPD для постоянной нагрузки (125 % от номинального тока вторичной обмотки) [Разд. 215.3].
125 А × 1,25 = 156 А
Таким образом, в этой ситуации используйте OCPD на 175 А [разд. 240,6 (А)].
Шаг 3 : Размер вторичного проводника должен быть таким, чтобы он имел допустимую нагрузку не менее 175 А вторичного OCPD (Шаг 2) [Разд. 240.21(С)(2)].
Используйте 2/0 AWG номиналом 175 А при 75°C [Разд. 110.14(C)(1)(b) и таблица 310.15(B)(16)]
Заземление и соединение
Системная соединительная перемычка, размеры указаны в сек. 250.102(C) в зависимости от площади вторичных проводников [Sec. 250.30(А)(1) и гл. 250.28(D)(1)], должен быть установлен в том же месте, где проводник заземляющего электрода заканчивается в нейтральной точке трансформатора [разд. 250.102(С)].
Проводник заземляющего электрода должен соединять нейтральную точку отдельной системы с заземляющим электродом типа, указанного в гл. 250,30 (А) (4). Размер проводника заземляющего электрода в сек. 250.66, исходя из площади незаземленного вторичного провода [гл. 250.30(А)(5)].
Как избежать ошибок
Ошибка в расчетах может иметь трагические последствия. Так как же уменьшить вероятность ошибки в расчетах трансформатора?
Математика здесь несложная, но если вы выберете неправильную формулу, ваши результаты будут неправильными, даже если ваши математические расчеты верны. Эти четыре простых шага помогут выбрать правильную формулу для данного приложения:
- Дважды проверьте номинал ВА.
- Определите первичное и вторичное напряжение, а также однофазное или трехфазное.
- Дважды проверьте параметры нагрузки и расчеты.
- Убедитесь, что вы использовали правильные формулы. Вот совет, который поможет вам сделать это без остекления глаз: ссылайтесь на неправильные формулы. Например, вы работаете в однофазной системе. Посмотрите на формулу для 3-х фазного. Это то, что вы использовали? Если нет, отлично. Перейдите к следующему элементу и используйте аналогичный процесс.
Эти материалы предоставлены нам компанией Mike Holt Enterprises из Лисбурга, штат Флорида. Чтобы ознакомиться с учебными материалами Code, предлагаемыми этой компанией, посетите сайт www.mikeholt.com/code.
Формула трансформатора с примерами — GeeksforGeeks
Трансформатор представляет собой устройство, которое преобразует энергию из одной цепи в другую. За это отвечает электромагнитная индукция. Его называют высокоэффективным преобразователем напряжения, поскольку он может преобразовывать высокое напряжение в низкое и наоборот. Исправный трансформатор состоит из двух обмоток: первичной и вторичной. Повышающие и понижающие трансформаторы — это два типа трансформаторов.
Формула трансформатора
Трансформатор — это электрическое устройство, которое позволяет поддерживать мощность при повышении или понижении напряжения в электрической цепи переменного тока. Мощность, поступающая в оборудование, равна мощности, получаемой на выходе в случае исправного трансформатора. Реальное оборудование имеет скромный уровень потерь. Это устройство, которое преобразует переменную электрическую энергию одного уровня напряжения в переменную электрическую энергию другого уровня напряжения, основанное на явлении электромагнитной индукции.
Напряжение умножается на силу тока для расчета мощности электрической цепи. В случае трансформатора значение мощности в первичной обмотке такое же, как мощность во вторичной обмотке.
Vp × Ip = Vs × Is
Выходное напряжение трансформатора можно рассчитать, используя входное напряжение и количество витков на основной и вторичной обмотках.
Vp / Vs = Np / Ns
Где,
Vp = первичное напряжение
Vs= Вторичное напряжение
Np = количество витков в первичной обмотке
Ns = количество витков во вторичной обмотке
Is= Входной ток во вторичной обмотке.
Ip= Входной ток на первичной обмотке.
Примеры задач
Задача 1: количество первичных и вторичных обмоток 80 и 120 соответственно. Вторичное напряжение определяется как 240 В, определяют первичное напряжение.
Раствор
NP = 80
NS = 120
VS = 240 В
Формула трансформатора определяется,
VP / VS = NP / NS
VP = NP / NS × VS
= 80 / 1205. 240
Vp = 160 В
Задача 2: Количество первичных и вторичных обмоток 60 и 100 соответственно. Вторичное напряжение дается 250В, определите первичное напряжение.
Раствор
Np = 60
Ns = 100
VS = 250 В
Формула трансформатора определяется как,
VP / VS = NP / NS
VP = NP / NS × VS
= 60/100 x 250
В. Задача 3: Количество первичных и вторичных обмоток 100 и 350 соответственно. Первичное напряжение дается 200В, определите вторичное напряжение.
Раствор
Np = 100
Ns = 350
Vp = 200 В
Формула трансформатора:
Vp/Vs = Np/Ns
Vs = Vp × Ns/Np
Vs = 200 × 350/100
Vs = 700 В соответственно. Вторичное напряжение составляет 310 В, что определяет первичное напряжение.
Раствор
Np = 90
Ns= 120
Vs = 310 В
Используя формулу расчета трансформатора, получаем,0005
Vp = Np/Ns × VS
Vp = 90/120 x 310
Vp = 232,5 В
Задача 5. Число первичных и вторичных обмоток 110 и 240 соответственно. Первичное напряжение составляет 300 В, что определяет вторичное напряжение.
Solution
Np = 110
Ns = 240
Vp = 300V
The Transformer Formula is Given By,
Vp/Vs = Np/Ns
Vs = Ns/Np × Vp
Vs = 240/110 × 300
Vs = 654,5 В
Задача 6: Количество первичных и вторичных обмоток 70 и 140 соответственно. Вторичное напряжение равно 300 В, что определяет первичное напряжение.
Решение
NP = 90
NS = 120
VS = 310V
с использованием формулы расчета трансформатора, мы получаем,
VP/VS = NP/NS
VP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NP = NS = NS.