Site Loader

Содержание

Схемы и онлайн расчёт элементов регулируемых стабилизаторов напряжения

Онлайн расчёт элементов схем линейных стабилизаторов с фиксированным и
регулируемым выходным напряжением.

Для поддержания стабильной работы и сохранения заявленных параметров электрооборудования его питание в большинстве случаев должно осуществляться постоянным и неподконтрольным никаким внешним воздействиям напряжением. Как правило, эта функция возлагается на устройства, называемые стабилизатором напряжения.
Стабилизатор напряжения — это преобразователь электрической энергии, предназначенный для поддержания уровня выходного напряжения в заданных пределах при изменениях следующих величин: входного напряжения, сопротивления нагрузки, а также в идеале — температуры и иных внешних воздействий.

Ещё не так давно подобные узлы строились на стабилитронах и транзисторах, однако с появлением специализированных микросхем, необходимость в самостоятельном конструировании подобных схем скоротечно отпочковалась, ввиду очевидной простоты реализации стабилизаторов, выполненных на интегральных микросхемах. А зря!

Там, где значения коэффициента стабилизации Кст допустимо исчислять десятками, а не сотнями-тысячами, простейший параметрический стабилизатор не только имеет право на существование, но и выигрывает у своих интегральных собратьев по такому важному параметру, как чистота выходного напряжения и отсутствие импульсных помех в момент резкого изменения тока нагрузки.
Давайте рассмотрим такие простейшие устройства стабилизаторов напряжения.

Рис.1 а) Простейшая схема     б) С эмиттерным повторителем     в) С регулируемым вых. напряжением

Схема стабилизатора напряжения, приведённая на Рис.1 а), используется в основном с устройствами, через которые не протекает существенных токов. От номинала резистора Rст зависит величина тока Iвх, протекающего как через стабилитрон, так и через нагрузку. Величина этого тока рассчитывается по формуле:

Rст = (Uвх — Uст)/ Iвх,
а Iвх должен удовлетворять условию Iвх ≥ Iн. макс + Iст. мин, где Iн. макс — максимальный ток в нагрузке при заданном выходном напряжении, а Iст. мин — минимальный ток стабилизации стабилитрона, указанный в характеристиках полупроводника. В стабилитронах отечественных производителей параметр Iст. мин, как правило, задан в явном виде, у зарубежных может быть не указан вообще. Куда податься бедному еврею? Я бы рекомендовал в этом случае ориентироваться на значение тока из datasheet-ов «Izk» (значение при котором стабилитрон обладает максимальным импедансом) и увеличить эту величину в 2…3 раза. Хотя, по большому счёту, оптимальным (с точки зрения достижения максимальных параметров) током для стабилитрона является тестовый ток, при котором измеряются основные характеристики полупроводника.

Для наиболее эффективного выполнения своих задач стабилитрону довольно важно, чтобы мощность нагрузки не превышала мощности, рассеиваемой на полупроводнике. Поэтому если возникает потребность стабилизации напряжения в нагрузках, потребляющих значительную мощность, используется дополнительный усилитель тока — эмиттерный повторитель (Рис.1 б)). В этом случае нагрузкой для стабилитрона является входное сопротивление повторителя Rвх ≈ Rн x (1 + β), т.е. ток нагрузки можно увеличить в β раз. Тут важно учитывать падение напряжения на эмиттерном переходе транзистора, в связи с чем

напряжение на выходе стабилизатора будет на 0,6…0,7 В (на 1,2…1,4 В для составного транзистора) меньше напряжения стабилизации стабилитрона .

Установив параллельно стабилитрону переменный резистор (Рис.1 в)), возникает возможность изменять напряжение стабилизации в нагрузке от нуля почти до максимального значения напряжения стабилизации стабилитрона (за вычетом падения напряжения Uбэ на переходе транзистора). Естественно, что ток, протекающий через переменник, также необходимо учитывать, задаваясь его значением — не меньшим, чем входной ток эмиттерного повторителя.
Сдобрим пройденный материал калькулятором.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ ЛИНЕЙНОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

Схемы компенсационных линейных стабилизаторов являются основой большинства интегральных микросхем, выполняющих функцию стабилизации напряжений и токов, и в простейшем виде могут быть выполнены на стабилитроне и паре транзисторов (Рис.2).

Рис.2 Схемы компенсационных линейных стабилизаторов напряжения

Здесь стабилитрон является источником опорного напряжения, а транзистор Т2 — устройством сравнения выходного напряжения, поступающего через резистивный делитель на его базу, с опорным значением напряжения на его эмиттере. Повысилось выходное напряжение, а вместе с ним напряжение на базе Т2, транзистор приоткрывается и притягивает напряжение на базе регулирующего транзистора Т1 к минусовой (земляной) шине, тем самым, уменьшая напряжение на его эмиттере, а соответственно и на выходе схемы. Снизилось выходное напряжение — всё то же самое, только наоборот. Компенсационные стабилизаторы на транзисторах имеют более высокий коэффициент стабилизации по сравнению с устройствами, представленными на Рис.1, но в связи наличием обратной связи имеют и свои недостатки.

В связи с этим подробно останавливаться на них мы не будем, а перейдём сразу к интегральным стабилизаторам, имеющим похожий принцип действия, но значительно более сложным по структуре, обладающих более высокими характеристиками и при этом — очень простых и удобных в реализации.

Существует два типа подобных интегральных микросхем: регулируемые стабилизаторы напряжения и стабилизаторы с фиксированным значением выходного напряжения. Во втором случае схема стабилизатора приобретает неприлично примитивный вид, незаслуживающий какого-то серьёзного обсуждения.
В случае же стабилизаторов с регулируемым выходным напряжением, схема всё ещё остаётся достаточно простой, но требует некоторых умственных манипуляций, связанных с расчётом резистивного делителя для получения требуемого выходного напряжения.

Типовая схема включения большинства регулируемых микросхем приведена на Рис.3.


Рис.3

Формула для расчёта выходного напряжения имеет вид Vout = Vref x (1+R2/R1) + Iadj x R2,
причём номинал сопротивления R1, как правило, задаётся производителем микросхемы для достижения наилучших параметров выходных характеристик.

Отдельные бойцы для снижения пульсаций ставят дополнительные электролиты значительных величин параллельно резистору R2. Оно, конечно, бойцы эти герои, но зачем же стулья ломать?
Любое резкое увеличение тока нагрузки, приводящее к снижению выходного напряжения, не сможет моментально отработаться схемой автоматической регулировки из-за задержки в цепи обратной связи, обусловленной данным конденсатором, а это в значительной степени снизит быстродействие устройства.

И если для статических нагрузок параметр быстродействия стабилизатора по барабану, то для динамических (к примеру, таких как УНЧ) — очень даже немаловажен. Поэтому — либо эти электролиты вообще не нужны, либо (если их настоятельно рекомендует Datasheet) ставить конденсаторы небольших номиналов в строгом соответствии с рекомендациями производителя.

Для начала — справочная таблица с основными техническими характеристиками наиболее часто используемых интегральных стабилизаторов с регулировкой выходного напряжения.

Приведённая ниже таблица позволяет рассчитать номиналы резисторов делителя некоторых популярных типов микросхем регулируемых стабилизаторов, представленных разными производителями.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ МИКРОСХЕМ — СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ


Если не хотите, чтобы вдруг «раздался мощный пук» — послеживайте за полярностью включения конденсатора С2. Она должна совпадать с полярностью входного (выходного) напряжения.

Отдельно хочу остановиться на МИКРОМОЩНЫХ СТАБИЛИЗАТОРАХ С МАЛЫМ СОБСТВЕННЫМ ПОТРЕБЛЕНИЕМ.

Такого рода стабилизаторы окажутся совсем не лишними в хозяйстве, так как смогут обеспечить такой важнейший показатель радиоэлектронной аппаратуры с автономным питанием, как экономичность входящих в её состав узлов.

Здесь выбор интегральных микросхем заметно беднее, а цены, как правило, заметно ощутимей, чем на аналоги со стандартным потреблением, поэтому начну я с простой, но проверенной временем схемы на дискретных элементах.


Рис.2

Чем хорош КТ315 в данном включении?
На обратно смещённом переходе КТ315 при напряжении 6 — 7,5В, в зависимости от экземпляра транзистора, возникает электрический (не побоюсь этого слова) пробой, что позволяет использовать его в качестве стабилитрона на эту-же самую величину напряжения пробоя. При этом транзистор в таком включении, в отличие от многих промышленных стабилитронов, хорошо работает и при малых токах стабилизации, порядка 100 мкА.

Из относительно гуманных по цене интегральных стабилизаторов с малым собственным потреблением, могу порекомендовать LP2950, LP2951, LM2931, LM2936 и им подобные.

 

  Тип
 U вх макс 
   В
І вых макс 
   А
І вых мин 
  мА
U вых мин 
   В
U вых макс 
   В
  КР142ЕН11  -40    1,5    10   -1,2   -37 
  КР142ЕН12   40    1,5    10    1,2    37 
  КР142ЕН18  -40    1,5    10 
 -1,2 
 -37 
  КР142ЕН22   35    5    10    1,25    34 
  КР142ЕН22А   35    7,5    10    1,25    34 
  КР142ЕН22Б   35    10    10    1,25    34 
  LT1083   35    7,5    10    1,2    34 
  LT1084   35    5    10    1,2    34 
  LT1085   35    3    10    1,2    34 
  LM117   40    1,5    5    1,2    37 
  LM137  -40 
  1,5 
  10   -1,2   -37 
  LM138   35    5    10    1,2    32 
  LM150   35    5    10    1,2    33 
  LM217   40    1,5    5    1,2    37 
  LM317
  40 
  1,5    5    1,2    37 
  LM317LZ   40    0,1    5    1,2    37 
  LM337  -40    1,5    10   -1,2   -37 
  LM337LZ  -40    0,1    10   -1,2   -37 
  LM338   35    5    10    1,2    32 
  LM350   35    3    10    1,2    33 
  TL783   126    0,7    0,1    1,25    125 

Расчет параметрического стабилизатора напряжений на стабилитроне

Любой электронной схеме требуется стабилизированное напряжение, необходимое для питания входящих в её состав активных элементов (транзисторов, микросхем и т. п.). Несмотря на большое разнообразие видов линейных источников в основе всех их лежит классический параметрический стабилизатор напряжения (смотрите рис. ниже).

Упрощённая схема

При построении большинства таких устройств используется нелинейный полупроводниковый элемент – диод, называемый в этом случае стабилитроном.

Порядок включения

Классический стабилизатор на стабилитроне относится к простейшему виду устройств данного класса и является самым дешёвым и лёгким в исполнении. Своеобразная «расплата» за эту простоту – невысокий стабилизирующий эффект, сильно зависящий от величины нагрузки и наблюдаемый в очень узком диапазоне.

Входящий в состав стабилизатора напряжения полупроводниковый элемент (стабилитрон) представляет собой выпрямительный диод, включенный в обратном направлении. Благодаря этому, рабочая точка элемента может быть установлена на нелинейном участке вольтамперной характеристики (ВАХ) с резко уходящей вниз ветвью.

Дополнительная информация. Её точное положение задаётся величиной балластного резистора Rо (смотрите схему выше).

С примером типовой вольтамперной характеристики стабилитрона можно ознакомиться на приводимом ниже рисунке.

ВАХ стабилитрона

Принцип работы параметрического стабилизатора на стабилитроне (ПСН) неразрывно связан с видом обратной ветви характеристики стабилитрона, имеющей следующие особенности:

  • При значительных изменениях тока через прибор напряжение на этом участке колеблется совсем в небольших пределах;
  • Путём выставления величины токовой составляющей можно установить рабочую точку по центру обратной ветви;
  • За счёт выбора напряжения стабилизации в фиксированной зоне ВАХ удаётся расширить динамический диапазон изменения тока стабилитрона (или его дифференциального сопротивления).

Обратите внимание! Именно из-за возможности выставления фиксированных параметров в этой схеме она получила своё название – параметрическая.

Принцип работы

Суть работы стабилизатора напряжения удобнее всего пояснить на примере диода, включённого в цепь постоянного тока. Когда напряжение на нём имеет прямую полярность (плюс подключён к аноду, а минус – к катоду), полупроводниковый переход смещён в проводящем направлении и пропускает ток.

При обратном порядке подачи полярности n-p переход закрыт и поэтому тока практически не проводит. Но если продолжать увеличивать обратное напряжение между электродами, то в соответствии с его ВАХ можно достичь точки, в которой диод вновь начинает пропускать поток электронов (но уже в другую сторону за счёт пробоя перехода).

Важно! Полупроводниковый элемент в этом случае работает в режиме обратных напряжений, значительно превышающих по величине прямое падение на нём (0,5-0,7 Вольта).

Обратный ток в данной ситуации может считаться рабочим параметром, изменяющимся в пределах регулировки напряжения, а сам диод, работающий в режиме обратного включения, носит название стабилитрона.

Основные параметры

При изучении функционирования параметрического стабилизатора напряжения особое значение придаётся техническим характеристикам самого регулирующего прибора. К ним следует отнести:

  • Напряжение стабилизации, определяемое как падение потенциала на нём при протекании тока средней величины;
  • Максимальное и минимальное значения тока, пропускаемого через обратно смещенный переход;
  • Допустимая рассеиваемая мощность на приборе Pmax.;
  • Проводимость перехода в динамическом режиме (или дифференциальное сопротивление стабилитрона).

Последний параметр определяется как отношение приращения напряжения ΔUCT к вызвавшему его изменению стабилизирующего тока ΔICT.

Относительно первых двух параметров следует заметить, что для разных образцов полупроводниковых диодов они могут сильно различаться по своей величине (в зависимости от мощности прибора). Напряжение стабилизации для большинства современных стабилитронов варьируется в диапазоне от 0,7 до 200 Вольт.

Допустимая мощность рассеяния определяется уже перечисленными ранее параметрами и также сильно зависит от типа элемента. Это же можно сказать и о дифференциальном сопротивлении, в определённой мере влияющем на эффективность процесса стабилизации.

Схема параметрического стабилизатора

Особенности схемы

Полное схемное представление стабилизатора параметрического типа, в котором стабилитрон выполняет функцию опорного элемента, приводится на размещённом ниже рисунке.

Рабочая схема стабилизатора

Эту схему можно рассматривать как делитель напряжения, состоящий из резистора R1 и стабилитрона VD с подключённой в параллель нагрузкой RН.

При изменениях входного потенциала соответственно будет меняться и ток через стабилитрон; при этом величина напряжения на нём (а значит и на нагрузке) останется практически неизменной. Её значение будет соответствовать напряжению стабилизации при колебаниях входного тока в некоторых пределах, определяемых характеристиками диода и величиной нагрузки.

Расчёт рабочих параметров

Исходными данными, согласно которым осуществляется расчет стабилизатора параметрического типа, являются:

  • Подаваемое на вход питание Uп;
  • Напряжение на выходе Uн;
  • Выходной номинальный ток IH=Iст.

С учётом этой информации рассчитаем искомую величину, воспользовавшись функцией онлайн-калькулятора, например.

В качестве примера положим:

Uп=12 Вольт, Uн=5 Вольт, IH=10 мА.

Исходя из этих данных, вводимых предварительно в онлайн-калькулятор или вручную, выбираем стабилитрон типа BZX85C5V1RL с напряжением стабилизации 5,1 Вольт и дифференциальным сопротивлением порядка 10 Ом. С учётом этого вычисляем величину балластного сопротивления R1, определяемую следующим образом:

R1= Uо–Uн/Iн+Iст =12-5/0,01+0,01= 350 Ом.

Таким образом, весь расчет параметрического стабилизатора сводится к определению номинала балластного резистора R1 и выбору типа стабилитрона (исходя из того, на какое рабочее напряжение он рассчитан).

Возможности по увеличение мощности

Выходная мощность стабилизатора параметрического типа определяется максимальным током стабилитрона и его допустимой мощностью Pmax, которую при желании можно увеличить. Для этого следует дополнить схему транзисторным элементом, включаемым параллельно или последовательно с нагрузкой. Соответственно этому различают стабилизаторы параллельного и последовательного типа, в которых транзистор выполняет функцию усилителя постоянного тока.

Рассмотрим каждую их этих схем более подробно.

Параллельный стабилизатор

В схеме стабилизатора параллельного типа транзистор используется как эмиттерный повторитель, включённый параллельно нагрузке (смотрите рисунок ниже).

Схема стабилизатора параллельного типа

Дополнительная информация. В этой схеме резистор R1 может располагаться как со стороны коллектора, так и в эмиттере транзистора.

Напряжение на нагрузочном резисторе Rн составляет:

Uн=Uст+Uбэ (транзистора).

Схема работает по принципу отвода излишков тока через открытый переход К-Э транзистора, на базе которого постоянно присутствует напряжение (Uст). В этой схеме IСТ является одновременно базовым током транзистора, вследствие чего его величина в нагрузке может в h31e раз превышать исходное значение, то есть транзистор в данном случае работает как усилитель по току.

Последовательный стабилизатор

ПСН, собранный по последовательной схеме, представляет собой тот же эмиттерный повторитель на транзисторе VT, но с сопротивлением нагрузки Rн, включённым последовательно с переходом К-Э (смотрите рисунок).

Схема последовательного ПСН

Выходное напряжение устройства в данной ситуации равно:

Uн=Uст-Uбэ.

В этой схеме любые колебания тока в нагрузке приводят к противоположным по знаку изменениям напряжения на базе транзистора. Подобная зависимость вызывает открывание или закрывание перехода Э-К, что означает автоматическую стабилизацию выходного напряжения.

В заключение описания отметим, что как в последовательной, так и в параллельной схеме ПСН стабилитрон используется в качестве источника опорного напряжения, а транзистор – как усилитель тока.

Видео

Оцените статью:

Стабилизатор напряжения трехфазный ВОЛЬТ ГЕРЦ Э 16-3/40 v3.0

Диапазон работы

Трехфазный стабилизатор напряжения ВОЛЬТ ГЕРЦ предназначен для работы в электрических сетях с колебаниями напряжения от 150 до 260В. В этом диапазоне аппарат гарантированно выдает на выходе напряжение в рамках 220±2.3-2.5% и 220±1-1.5%, что обеспечивается за счет использования 16 и 36 ступеней стабилизации соответственно. Модельный ряд ВОЛЬТ ГЕРЦ по мощности может быть на 16.5, 22.5, 27, 33, 41 и 53 кВт, что соответствует рабочему току на 25, 32 ,40, 50, 63 и 80А на фазу.

Особенности модели

К особенностям данного стабилизатора можно отнести двойной LED-индикатор на фазу, линейная полоса загрузки, наличие механического транзита (байпас), напольное исполнение, наличие входных и выходных фильтров для защиты от высокочастотных помех, бесшумную работу за счет использования тороидальных трансформаторов и тиристорных ключей. При необходимости получить на выходе стабилизатора напряжение отличное от 220В в ВОЛЬТ ГЕРЦ имеется функция регулировки данного значения в диапазоне 200-230В. В ручном режиме можно поменять напряжение на выходе с шагом 1В. При это изменения будут применяться одновременно ко всем фазам. Стабилизатор ВОЛЬТ ГЕРЦ имеет возможность ручной подстройки нижнего порога отключения (60-135В). Данная функция востребована для нагрузки с высокими пусковыми токами, при запуске которой возможна сильная просадка напряжения и аварийное отключение стабилизатора. При активации данной опции стабилизатор в течении минуты даст возможность запустить любой двигатель или насос даже при просадке напряжения до 60В в сети. Встроенный режим синхронизации фаз позволит мгновенно отключить трехфазную нагрузку, защищая ее от перебоев с напряжением и пропадания питания на фазах (одной или двух). Данная функция имеет ручное управление и поэтому может в любое время быть отключена. В этом случае фазы будут работают независимо друг от друга.

Установка и подключение

Устанавливать и эксплуатировать стабилизатор ВОЛЬТ ГЕРЦ рекомендуется в сухих и отапливаемых помещениях. Данный аппарат предназначен для напольной установки. Подключение осуществляется к существующей проводке через клеммную колодку.

виды приборов и технологий стабилизации

Содержание

Технология стабилизации напряжения, основанная на эффекте феррорезонанса

В 1938 году был изобретен и запатентован феррорезонансный трансформатор (автор Джозеф Сола). Именно это устройство, изначально названное «трансформатор постоянного напряжения», стали впервые использовать для стабилизации параметров электрической энергии, так как оно за счет электромагнитного явления, называемого феррорезонансом, при колебаниях входного напряжения сохраняло неизменным значение выходного.

Отметим, что феррорезонансный эффект не регулирует напряжение напрямую, однако при правильном применении позволяет минимизировать влияние первичного (входного) напряжения на вторичное (выходное).

Феррорезонансный трансформатор включает в себя две магнитные цепи (обмотки) со слабой связью друг с другом. Магнитопроводы цепей имеют различную магнитную проницаемость, поэтому во время работы выходная цепь находится в режиме постоянного насыщения, а входная, наоборот, не достигает насыщенности. Благодаря этому даже значительные отклонения напряжения на входе не приводят к существенным колебаниям на выходе. Разница между величиной фактически снимаемого с трансформатора напряжения и его номинальным значением обычно не превышает пяти процентов (при соблюдении определённых условий).

Феррорезонансные трансформаторы выпускаются по сей день, правда, современные модели из-за высокой цены и некоторых особенностей эксплуатации, практически не используются в качестве стабилизаторов напряжения.

Первые стабилизаторы напряжения в СССР

В нашей стране разработки приборов, обеспечивающих коррекцию переменного напряжения, начались в конце 1950-х годов. Именно тогда возникла потребность в качественном электропитании бытовой техники, начавшей массово появляться в советских квартирах и домах.

За основу для первых серийных стабилизаторов отечественные инженеры взяли описанную выше технологию феррорезонанса – она не требовала сложной схемы и, самое главное, полностью удовлетворяла существующие на тот момент требования к качеству электропитания.

В широкий обиход советские феррорезонансные стабилизаторы вошли уже в 1960-х годах. Их конструкция включала в себя автотрансформатор, входной и фильтрующий дроссель, а также конденсатор.

Данные изделия не отличались большой мощностью и в основном были рассчитаны на 200-300 Вт. Но этого вполне хватало для питания типичных нагрузок того времени: цветных и чёрно-белых телевизоров, радиоаппаратуры, магнитофонов и измерительных приборов (более мощные трехфазные стабилизаторы использовались для защиты ответственного электрооборудования на промышленных предприятиях).

В течение 1960-1970-х годов наибольшее распространение в бытовом секторе получили модели ТСН-170, ФСН-200, СНБ-200, СН-200, УСН-200, ТСН-200 СН-250, СН-315 и СНП-400 (цифра в названии означает выходную мощность устройства). Перечисленные устройства выпускались как в пластиковых, так и металлических корпусах и предназначались для настенного или напольного размещения. Для сети предусматривался выведенный шнур со штепсельной вилкой, для нагрузки – розеточное гнездо.

Использовались советские феррорезонансные стабилизаторы в первую очередь для защиты телевизоров от сильно завышенного или заниженного сетевого напряжения: они обеспечивали возможность нормального приема телевизионных передач, сохранность и увеличение срока службы кинескопа, ламп и других элементов телевизионного приёмника.

Что касается технических характеристик, то данные изделия в основном были рассчитаны на работу от сети переменного тока с частотой 50 Гц и номинальным напряжением 127 или 220 В. При этом рабочий диапазон входных напряжений составлял 85-140 В (для сети 127 В) и 155-250 В (для сети 220 В). Приборы имели коэффициент полезного действия не менее 80%, не боялись перегрузок и коротких замыканий. Кроме того, феррорезонансные стабилизаторы благодаря отсутствию электромеханических частей имели длительный срок службы. У некоторых пользователей сделанные во времена СССР устройства до сих пор исправно работают!

Были у этих стабилизаторов и свои недостатки: постоянный гул при работе (доходил до 32 дБА), существенные искажения формы выходного напряжения, большая зависимость от входной частоты и величины подключённой нагрузки, а также сильное электромагнитное поле, которое при близком расположении к телевизору создавало помехи в его работе.

Отметим, что разработки в области стабилизации сетевого напряжения велись в СССР непрерывно, поэтому параллельно с феррорезонансными стабилизаторами с конвейеров профильных заводов выходили и приборы иных типов. В частности, автотрансформаторные регуляторы моделей АРН-250, АРБ-400 и АТ-2, которые предполагали ручное поддержание выходного напряжения в установленных пределах. Однако ни одна разновидность изделий не получила в советский период такого распространения, как стабилизаторы на базе феррорезонанса.

Лишь с начала 90-х годов, когда в нашей стране появляется большое количество требовательной к качеству электропитания зарубежной бытовой техники и электроники, российские производители начинают выпуск стабилизаторов напряжения, в основу которых положены рассмотренные далее технологии.

Стабилизация напряжения с помощью сервопривода

В 1960-х стали активно распространяться сервоприводы – специальные электромоторы, механизм которых мог поворачиваться под разным углом и удерживать необходимое положение.

В тех же годах сервопривод начал использоваться и в стабилизаторах напряжения. Так, в 1961 году был запатентован электромеханический стабилизатор, силовая честь которого состояла из регулируемого автотрансформатора, подвижного токосъемного контакта с приводом от двигателя постоянного тока и источника напряжения собственных нужд. Прибор позволял автоматически стабилизировать сетевое напряжение, не искажая при этом форму его кривой.

Сегодня электромеханические стабилизаторы по-прежнему выпускаются и несмотря на разнообразие моделей имеют схожий принцип работы – плата управления сравнивает значение напряжения на входе изделия с установленным образцовым. В случае различия этих двух параметров сервопривод с графитовым ползунком, роликом или щеткой (в зависимости от конкретной модели стабилизатора) перемещается по обмотке автотрансформатора и подключает к цепи количество витков, достаточное для получения выходного напряжения максимально приближенного к эталонной величине.

Такой принцип работы сопряжен с существенными недостатками. Речь, в первую очередь, о невысокой скорости срабатывания – сервоприводу при возникновении сетевого отклонения требуется определенное время, чтобы передвинуть токосниматель в необходимое положение. Кроме того, быстрый механический износ подвижных деталей обуславливает необходимость их периодической замены.

Шум при передвижении щеток сервопривода, возможное искрение во время работы и громоздкая конструкция создают дополнительные сложности при бытовой эксплуатации данных устройств.

Подробнее об электромеханических стабилизаторах можно узнать в статье «Электромеханические стабилизаторы напряжения».

Релейная технология стабилизации напряжения

Появившееся еще в 19 веке электромеханическое реле – это, наверное, самый распространённый в автоматике элемент. В нашей стране оно сначала применялось в промышленности для управления технологическими процессами, а затем вошло и в состав различной бытовой техники. Разработка в СССР стабилизаторов напряжения, действующих на основе релейного элемента и получивших соответствующее название «релейные», приходится на 1970-е годы.

Основные элементы типичного релейного стабилизатора – это автотрансформатор, электронная плата управления и блок силовых реле, каждое из которых по сути представляют собой автоматический выключатель, соединяющий или разъединяющий электрическую цепь под внешним воздействием либо при достижении определенных параметров.

Во время работы релейного стабилизатора управляющая плата постоянно контролирует входное напряжение и в случае его отклонения от номинальных показателей подает сигнал на релейный блок. Последующее замыкание (размыкание) определённого реле коммутирует обмотки трансформатора и обеспечивает необходимый для нейтрализации входного искажения коэффициент трансформации.

Устройства данного типа имеют повышенную скорость срабатывания, но регулировка сетевого напряжения выполняется ступенчато (не плавно), что сказывается на форме подаваемого на нагрузку сигнала. Кроме того, срабатывание реле всегда сопровождается щелчками, создающими определенный шум во время работы устройства.

Подробнее о данном типе стабилизаторов можно узнать в статье «Релейные стабилизаторы напряжения».

Стабилизация напряжения на основе тиристоров и симисторов

Активное проникновение в электротехнику полупроводниковых компонентов нашло своё отражение и в вопросе стабилизации электрической энергии. В конце 1970-х начались разработки стабилизаторов напряжения, работающих на основе тиристоров – полупроводниковых приборов, имеющих два состояния «закрытое» с низкой проводимостью и «открытое» с высокой.

Обычно тиристоры используются как силовые ключи в различных электронных устройствах, например, в переключателях скорости электродвигателей, таймерах, диммерах и т.д. Отметим, что тиристоры в зависимости от конструкции могут проводить ток как в одном направлении, так и в двух (приборы второго типа получили название – симисторы).

Тиристорные и симисторные стабилизаторы напряжения по принципу своей работы схожи с релейными и отличаются лишь тем, что коммутация обмоток автотрансформатора выполняется не релейными блоками, а электронными, состоящими из тиристоров или симисторов. Применение таких блоков позволяет регулировать напряжение гораздо быстрее, чем с помощью классических электромеханических реле. Другие преимущества данной технологии: абсолютная бесшумность работы и отсутствие требующих технического обслуживания деталей.

Сегодня симисторные и тиристорные стабилизаторы являются одними из самых распространённых и популярных, что, однако, не отменяет их главного недостатка – ступенчатого регулирования напряжения (аналогично релейным моделям).

Более подробно о тиристорных и симисторных стабилизаторах рассказано в статье «Электронные стабилизаторы напряжения».

Технология двойного преобразования энергии

Инверторы и выпрямители – статические преобразователи напряжения, совместное использование которых в 1980-х породило технологию двойного бестрансформаторного преобразования энергии. Данная технология в течение нескольких десятилетий успешно применялась в онлайн ИБП, а в 2015 году была использована и при создании стабилизаторов напряжения нового поколения. Полученные устройства, названые инверторными стабилизаторами, обеспечили непревзойдённые технические характеристики и стали настоящим прорывом в своей отрасли.

Инверторные стабилизаторы избавлены от громоздкого автотрансформатора и каких-либо электромеханических частей, силовая часть приборов состоит исключительно из электронных модулей: выпрямителя, накопительной емкости и инвертора.

Работа такого стабилизатора заключается в двукратном преобразовании поступающего на вход напряжения. Сначала оно с помощью выпрямителя преобразуется в постоянное, затем проходит через промежуточную (накопительную) емкость и попадает на инвертор, где снова становится переменным. В итоге на выход устройства подаётся снятое с инвертора напряжение, которое обладает точным значением и синусоидальной формой.

Важно!
Двойное преобразование в инверторных стабилизаторах является штатным рабочим процессом и осуществляется постоянно, а не только в момент отклонения сетевых параметров от нормы. Именно из-за этого данные устройства отличаются мгновенным срабатыванием и бесступенчатой стабилизацией, а генерируемая ими идеальная синусоидальная форма выходного сигнала не зависит от любых колебаний и помех во внешней сети. Кроме того, инверторные стабилизаторы работают в расширенном диапазоне входного напряжения и способны обеспечить эталонную точность стабилизации.

В настоящее время инверторные стабилизаторы удовлетворяют даже самые жесткие требования к качеству электропитания и входят в число наиболее популярных устройств в соответствующем им сегменте рынка.

Подробнее об инверторных стабилизаторах читайте в статье «Инверторные стабилизаторы: строение и принцип работы».

Амиком — системы видеонаблюдения и безопасность

  • Каталог продукции
    • Видеонаблюдение
      • Камеры видеонаблюдения
      • Видеорегистраторы
      • Видеосерверы
      • Комплекты видеонаблюдения
      • Мониторы для видеонаблюдения
      • ИК-прожекторы
      • Муляжи камер видеонаблюдения
      • CCTV тестеры
      • Автомобильные видеорегистраторы
      • Комплектующие видеонаблюдения
        • Аксессуары для регистраторов
        • Аксессуары для тепловизоров
        • Видеокодеры и декодеры
        • Кожухи для камер видеонаблюдения
        • Кронштейны для камер видеонаблюдения
        • Кронштейны для монитора
        • Монтажные коробки
        • Объективы для камер видеонаблюдения
        • Перчатки
        • Платы видеозахвата
        • Пульты управления камерами
      • Приборы событийного видеоконтроля
      • Программное обеспечение
    • Источники питания
      • Блоки питания
      • Стабилизаторы напряжения
      • Преобразователи напряжения
      • Аккумуляторные батареи
      • Солнечные батареи
      • Дополнительное оборудование
        • SNMP-модули
        • Аккумуляторные отсеки
        • Балансиры АКБ
        • Блоки контроля АКБ
        • Зарядные устройства
        • Модули визуализации
        • Телефонные дозваниватели
        • Термокомпенсаторы
        • Тестеры АКБ
        • Устройства сопряжения
    • Кабельная продукция и разъёмы
      • Кабели
      • Разъемы
      • Штекеры
      • Изоляция для кабеля
      • Инструмент
    • Металлодетекторы
    • Микрофоны и переговорные устройства
      • Аудиомикшеры
      • Микрофоны
      • Переговорные устройства
      • Фильтры питания
    • Охранно-пожарные системы
      • Датчики движения (извещатели)
      • Комплектующие охранных извещателей
        • Башни
        • Вентиляторы башен
        • Кронштейны для башни
        • Кронштейны для извещателей
        • Крышки башен

Калькулятор расчета стабилизатора напряжения — MOREREMONTA

И умыслил Фарадей явление электромагнитной индукции, провёл он опыт физический, да очертил схему трансформатора досель невиданного.
И увидел Господь, что это хорошо, и благословил мужей усердных в науках естественных на сотворение кенотрона вакуумного, а совокупно и фильтра ёмкостного сглаживающего, воеже в триединстве и целостности явился миру источник питания на всяку потребу богоприятный.

Ладно, с этим разобрались.
А для чего сиим источникам питания вдруг понадобились какие-то стабилизаторы напряжения?

«Стабилизатор напряжения — это электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки» — учит нас википедия.

Отлично сказано мужики, ни убавить, ни прибавить — для стабильной работы и сохранения высоких параметров большинства схем требуется постоянное, неподконтрольное никаким воздействиям напряжение питания.

Ещё совсем недавно такие узлы строились на стабилитронах и транзисторах, однако с появлением специализированных микросхем, необходимость в самостоятельном конструировании подобных схем скоротечно отпочковалась, ввиду простоты реализации и высоких параметров стабилизаторов, выполненных на интегральных микросхемах.

Существует два типа подобных микросхем — регулируемые стабилизаторы напряжения и стабилизаторы с фиксированным значением выходного напряжения. Во втором случае схема стабилизатора приобретает неприлично примитивный вид, незаслуживающий какого-то серьёзного обсуждения.
В случае же стабилизаторов с регулируемым выходным напряжением, схема всё ещё остаётся достаточно простой, но требует некоторых умственных манипуляций, связанных с расчётом резистивного делителя для получения требуемого выходного напряжения.

Типовая схема включения большинства регулируемых микросхем приведена на Рис.1.


Рис.1

Формула для расчёта выходного напряжения имеет вид Vout = Vref * (1+R2/R1) + Iadj * R2 ,
причём номинал сопротивления R1, как правило, задаётся производителем микросхемы для достижения наилучших параметров выходных характеристик.

Отдельные бойцы для снижения пульсаций рекомендуют ставить дополнительные электролиты параллельно резистору R2. Оно, конечно, бойцы эти герои, но зачем же стулья ломать?
Любое резкое увеличение тока нагрузки, приводящее к снижению выходного напряжения, не сможет моментально отработаться схемой автоматической регулировки из-за задержки в цепи обратной связи, обусловленной данным конденсатором, а это в значительной степени снизит быстродействие устройства.
И если для статических нагрузок параметр быстродействия стабилизатора по барабану, то для динамических (к примеру, таких как УНЧ) — очень даже немаловажен.

Справочная таблица с основными техническими характеристиками наиболее часто используемых интегральных стабилизаторов с регулировкой выходного напряжения.

Тип
U вх макс
В
І вых макс
А
І вых мин
мА
U вых мин
В
U вых макс
В
КР142ЕН11 -40 1,5 10 -1,2 -37
КР142ЕН12 40 1,5 10 1,2 37
КР142ЕН18 -40 1,5 10 -1,2 -37
КР142ЕН22 35 5 10 1,25 34
КР142ЕН22А 35 7,5 10 1,25 34
КР142ЕН22Б 35 10 10 1,25 34
LT1083 35 7,5 10 1,2 34
LT1084 35 5 10 1,2 34
LT1085 35 3 10 1,2 34
LM117 40 1,5 5 1,2 37
LM137 -40 1,5 10 -1,2 -37
LM138 35 5 10 1,2 32
LM150 35 5 10 1,2 33
LM217 40 1,5 5 1,2 37
LM317 40 1,5 5 1,2 37
LM317LZ 40 0,1 5 1,2 37
LM337 -40 1,5 10 -1,2 -37
LM337LZ -40 0,1 10 -1,2 -37
LM338 35 5 10 1,2 32
LM350 35 5 10 1,2 33
TL783 126 0,7 0,1 1,25 125

Приведённая ниже таблица позволяет рассчитать номиналы резисторов делителя некоторых популярных типов микросхем регулируемых стабилизаторов, представленных разными производителями.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ СТАБИЛИЗАТОРА

Если не хотите, чтобы вдруг «раздался мощный пук» — послеживайте за полярностью включения конденсатора С2. Она должна совпадать с полярностью входного (выходного) напряжения.

Отдельно хочу остановиться на МИКРОМОЩНЫХ СТАБИЛИЗАТОРАХ С МАЛЫМ СОБСТВЕННЫМ ПОТРЕБЛЕНИЕМ.

Такого рода стабилизаторы окажутся совсем не лишними в хозяйстве, так как смогут обеспечить такой важнейший показатель радиоэлектронной аппаратуры с автономным питанием, как экономичность входящих в её состав узлов.

Здесь выбор интегральных микросхем заметно беднее, а цены, как правило, заметно ощутимей, чем на аналоги со стандартным потреблением, поэтому начну я с простой, но проверенной временем схемы на дискретных элементах.


Рис.2

Чем хорош КТ315 в данном включении?
На обратно смещённом переходе КТ315 при напряжении 6 — 7,5В, в зависимости от экземпляра транзистора, возникает электрический (не побоюсь этого слова) пробой, что позволяет использовать его в качестве стабилитрона на эту-же самую величину напряжения пробоя. При этом транзистор в таком включении, в отличие от многих промышленных стабилитронов, хорошо работает и при малых токах стабилизации, порядка 100 мкА.

Из относительно гуманных по цене интегральных стабилизаторов с малым собственным потреблением, могу порекомендовать LP2950, LP2951, LM2931, LM2936 и им подобные.

Для того, чтобы рассчитать мощность стабилизатора необходимо отметить пункты в таблицах ниже. Но не стоит выбирать все, т.к. необходимая мощность, в этом случае будет, как у производственного цеха.

Вспомните сценарий активности своей семьи в выходные дни и отметьте, то, что будет работать одновременно. Например: Холодильник + Электроплита + Пылесос + Освещение + Бойлер + Электроточило.

Указана мощность в Вт, расчет ведется по среднему значению. Абсолютному большинству потребителей хватит стабилизатора на 8-12 кВт, смотрите в рейтинге соответствующие модели.

  • Электроплита 1100-6000
  • Холодильник 150-600
  • Тостер 600-1500
  • Кофеварка 800-1500
  • Духовка 1000-2000
  • СВЧ-печь 1500-2000
  • Гриль 1200-2000
  • Электрочайник 1000-2000
  • Освещение 20-250
  • Телевизор 100-400
  • Компьютер 400-750
  • Пылесос 400-2000
  • Утюг 500-2000
  • Обогреватель 1000-2400
  • Аудиосистема 400-2000
  • Кондиционер 1000-3000
  • Вентиляторы 750-1700
  • Освещение 20-250
  • Фен 450-2000
  • Стиральная машина 2500-5000
  • Триммер 750-2500
  • Освещение 20-250
  • Бойлер 1200-1500
  • Водяной насос 500-900
  • Насос высокого давления 2000-2900
  • Проточный нагреватель воды 3000-6000
  • Освещение 20-250
  • Дрель 400-800
  • Перфоратор 600-1400
  • Электроточило 300-1400
  • Дисковая пила 750-1600
  • Электрорубанок 400-1000
  • Электролобзик 250-700
  • Шлифмашина 650-2200
  • Электромоторы 550-3000
  • Сварочный аппарат 1500-5000
  • Газонокосилка 750-2500
  • Компрессор 750-2800
  • Освещение 20-250
Сайт для радиолюбителей

На рисунке показаны схемы простых параметрических стабилизаторов. Стабилизатор состоит из транзистора VT1 и стабилитрона VD с балластным резистором Rб. Вторая схема аналогична первой, но в нее добавлен эмиттерный повторитель на транзисторе VT2. Эмиттерный повторитель позволяет снизить максимальный ток нагрузки для стабилитрона, соответственно дает возможность применить маломощный стабилитрон.

Онлайн калькулятор расчета стабилизатора позволит Вам подобрать нужный транзистор, стабилитрон и определить сопротивление балластного резистора.

Расчет стабилизатора в онлайн калькуляторе происходит в три этапа:

  • Ввод первоначальных данных, входное и выходное напряжение, ток нагрузки. Первоначальные данные позволяю рассчитать максимальную рассеиваемую мощность транзистора. Нам основе этих данных из справочника выбирают регулирующий транзистор. Его предельно допустимая рассеиваемая мощность должна быть больше значения Рmax, предельно допустимое напряжение между эмиттером и коллектором — больше Uвх, а максимально допустимый ток коллектора — больше Iн.

Для примера в таблице показаны основные параметры отечественных транзисторов большой мощности низкочастотные КТ 800-819

Тип
прибора
Прово-
димость
Предельные значения
параметров при Т=25°С
Значения параметров
при Т=25°С
1 2 3 4 5 7 8 9
КТ801А n-p-n 80 2 5 13…50 2 10 (2,0)
КТ801Б n-p-n 60 2 5 30…150 2 10 (2,0)
КТ802А n-p-n (130) 5 50 і 15 5 60
КТ803А n-p-n 60 (80) 10 60 10…70 2,5 30 (50)
2Т803А n-p-n 60 (80) 10 60 10…50 2,5 30 (20)
КТ805А n-p-n (160) 5,0 (8,0) 30 і 15 2,5 (1,5) 60 (100)
КТ805Б n-p-n (135) 5,0 (8,0) 30 і 15 5,0 (5,0) 70 (100)
КТ805АМ n-p-n (160) 5,0 (8,0) 30 і 15 2,5 (1,5) 60 (100)
КТ805БМ n-p-n (135) 5,0 (8,0) 30 і 15 5,0 (5,0) 70 (100)
КТ805ВМ n-p-n (135) 5,0 (8,0) 30 і 15 2,5 (5,0) 70 (100)
КТ807А n-p-n 100 (120) 0,5 (1,5) 10 15…45 1 5,0 (15)
КТ807Б n-p-n 100 (120) 0,5 (1,5) 10 30…100 1 5,0 (15)
КТ807АМ n-p-n 100 (120) 0,5 (1,5) 10 15…45 1 5,0 (15)
КТ807БМ n-p-n 100 (120) 0,5 (1,5) 10 30…100 1 5,0 (15)
КТ808А n-p-n 120 (250) 10 50 10…50 2,0 (2,5) 3,0 (50)
КТ808АМ n-p-n 130 (250) 10 60 20…150 2,0 (2,5) 2,0 (50)
КТ808БМ n-p-n 100 (250) 10 60 20…150 2,0 (2,5) 2,0 (50)
КТ808ВМ n-p-n 80 (250) 10 60 20…150 2,0 (2,5) 2,0 (50)
КТ808ГМ n-p-n 70 (250) 10 60 20…150 2,0 (2,5) 2,0 (50)
2Т808А n-p-n 120 (250) 10 50 10…50 2,0 (2,5) 3,0 (50)
2Т808А-2 n-p-n 120 (250) 10 50 10…50 2,0 (2,5) 3,0 (50)
КТ809А n-p-n 400 3,0 (5,0) 40 15…100 1,5 (2,3) 3,0 (50)
2Т809А n-p-n 400 3,0 (5,0) 40 15…100 1,5 (2,3) 3,0 (50)
КТ812А n-p-n (700) 8 (12) 50 і 4 2,5 (2,5) 5,0 (150)
КТ812Б n-p-n (500) 8 (12) 50 і 4 2,5 (2,5) 5,0 (150)
КТ812В n-p-n (300) 8 (12) 50 10…125 2,5 (2,5) 5,0 (150)
2Т812А n-p-n (700) 10 (17) 50 5…30 2,5 (2,5) 5,0 (50)
2Т812Б n-p-n (500) 10 (17) 50 5…30 2,5 (2,5) 5,0 (50)
КТ814А p-n-p 25 1,5 (3,0) 10 і 40 0,6 (1,2) 0,05
КТ814Б p-n-p 40 1,5 (3,0) 10 і 40 0,6 (1,2) 0,05
КТ814В p-n-p 60 1,5 (3,0) 10 і 40 0,6 (1,2) 0,05
КТ814Г p-n-p 80 1,5 (3,0) 10 і 30 0,6 (1,2) 0,05
КТ815А n-p-n 25 1,5 (3,0) 10 і 40 0,6 (1,2) 0,05
КТ815Б n-p-n 40 1,5 (3,0) 10 і 40 0,6 (1,2) 0,05
КТ815В n-p-n 60 1,5 (3,0) 10 і 40 0,6 (1,2) 0,05
КТ815Г n-p-n 80 1,5 (3,0) 10 і 30 0,6 (1,2) 0,05
КТ816А p-n-p 25 3,0 (6,0) 25 і 25 0,6 (1,5) 0,1
КТ816Б p-n-p 45 3,0 (6,0) 25 і 25 0,6 (1,5) 0,1
КТ816В p-n-p 60 3,0 (6,0) 25 і 25 0,6 (1,5) 0,1
КТ816Г p-n-p 80 3,0 (6,0) 25 і 25 0,6 (1,5) 0,1
КТ817А n-p-n 25 3,0 (6,0) 25 і 25 0,6 (1,5) 0,1
КТ817Б n-p-n 45 3,0 (6,0) 25 і 25 0,6 (1,5) 0,1
КТ817В n-p-n 60 3,0 (6,0) 25 і 25 0,6 (1,5) 0,1
КТ817Г n-p-n 80 3,0 (6,0) 25 і 25 0,6 (1,5) 0,1
КТ818А p-n-p 40 10 (15) 60 і 15 2,0 (3,0) 1
КТ818Б p-n-p 50 10 (15) 60 і 20 2,0 (3,0) 1
КТ818В p-n-p 70 10 (15) 60 і 15 2,0 (3,0) 1
КТ818Г p-n-p 90 10 (15) 60 і 12 2,0 (3,0) 1
КТ818АМ p-n-p 40 15 (20) 100 і 15 2,0 (3,0) 1
КТ818БМ p-n-p 50 15 (20) 100 і 20 2,0 (3,0) 1
КТ818ВМ p-n-p 70 15 (20) 100 і 15 2,0 (3,0) 1
КТ818ГМ p-n-p 90 15 (20) 100 і 12 2,0 (3,0) 1
КТ818А1 p-n-p 40 15 (20) 100 і 15 2,0 (3,0) 1
КТ818Б1 p-n-p 50 15 (20) 100 і 20 2,0 (3,0) 1
КТ818В1 p-n-p 60 15 (20) 100 і 15 2,0 (3,0) 1
КТ818Г1 p-n-p 80 15 (20) 100 і 12 2,0 (3,0) 1
2Т818А p-n-p 100 15 (20) 100 і 20 1,0 (1,5)
2Т818Б p-n-p 80 15 (20) 100 і 20 1,0 (1,5)
2Т818В p-n-p 60 15 (20) 100 і 20 1,0 (1,5)
2Т818А2 p-n-p 100 15 (20) 40 і 20 1,0 (1,5)
2Т818Б2 p-n-p 80 15 (20) 40 і 20 1,0 (1,5)
2Т818В2 p-n-p 60 15 (20) 40 і 20 1,0 (1,5)
КТ819А n-p-n 40 10 (15) 60 і 15 2,0 (3,0) 1
КТ819Б n-p-n 50 10 (15) 60 і 20 2,0 (3,0) 1
КТ819В n-p-n 70 10 (15) 60 і 15 2,0 (3,0) 1
КТ819Г n-p-n 100 10 (15) 60 і 12 2,0 (3,0) 1
КТ819АМ n-p-n 40 15 (20) 100 і 15 2,0 (3,0) 1
КТ819БМ n-p-n 50 15 (20) 100 і 20 2,0 (3,0) 1
КТ819ВМ n-p-n 70 15 (20) 100 і 15 2,0 (3,0) 1
КТ819ГМ n-p-n 100 15 (20) 100 і 12 2,0 (3,0) 1
КТ819А1 n-p-n 40 15 (20) 100 і 15 2,0 (3,0) 1
КТ819Б1 n-p-n 50 15 (20) 100 і 20 2,0 (3,0) 1
КТ819В1 n-p-n 60 15 (20) 100 і 15 2,0 (3,0) 1
КТ819Г1 n-p-n 80 15 (20) 100 і 12 2,0 (3,0) 1
2Т819А n-p-n 100 15 (20) 100 і 20 1,0 (1,5)
2Т819Б n-p-n 80 15 (20) 100 і 20 1,0 (1,5)
2Т819В n-p-n 60 15 (20) 100 і 20 1,0 (1,5)
2Т819А2 n-p-n 100 15 (20) 40 і 20 1,0 (1,5)
2Т819Б2 n-p-n 80 15 (20) 40 і 20 1,0 (1,5)
2Т819В2 n-p-n 60 15 (20) 40 і 20 1,0 (1,5)
  • На втором этапе расчета необходимо указать минимальный коэффициент передачи тока выбранного (по справочнику) транзистора, для расчета ток базы регулирующего транзистора. Так же можно указать минимальный коэффициент передачи тока для транзистора эмиттерного повторителя, что позволяет снизить максимальный ток нагрузки для стабилитрона, соответственно дает возможность применить маломощный стабилитрон.
  • Третий этап расчета. Подбирают подходящий стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы.

Тип
прибора

Предельные значения
параметров при Т=25°С

Значения параметров
при Т=25°С

Расчитать мощность стабилизатора напряжения

Очень важная характеристика для надежной, долгой работы. Всем известно, если любое оборудование использовать на все сто процентов его возможностей, срок службы значительно сокращается. Мощность стабилизатора указывает максимальное значение нагрузки, которое можно подключить. Перед покупкой следует первым делом вычислить общее потребление бытовой техники дома, лишь после этого рассматривать модели, способные обеспечить соответствующий режим работы по нагрузке.

Как она влияет на работоспособность? Если неправильно подобрать мощность стабилизатора, периодически будет срабатывать защита — перегрузка. Результат, возникает дискомфорт от постоянных отключений. Работа будет в перегруженном режиме, последствия — перегрев трансформатора. Случай без гарантийный. Чтобы правильно рассчитать данный параметр электронного стабилизатора, существует несколько способов. Рассмотрим подробнее.

Расчет по техническим характеристикам

Каждый бытовой прибор имеет паспорт, где есть таблица характеристик прибора. В этой таблице без особого труда можно посмотреть сколько потребляет прибор. На каждом приборе (обычно на задней стороне прибора) есть шильдик с указанием основных характеристик. Собрав все значения с приборов которыми Вы можете пользоваться одновременно, суммируем. Получаем приблизительное значение необходимой мощности стабилизатора. Значение приблизительное. Поэтому рекомендуется всегда закладывать небольшой запас для Российских производителей, и 50% запаса для произведенных в Китае.

Мощность стабилизатора по входным автоматам

Самый простой способ определения мощности стабилизатора — посмотреть номинал входных автоматов установленных в щитке. Автоматы находятся рядом со счетчиком электроэнергии. На фото показан пример расположения автоматов, место обозначения номинала. Расчет мощности электронного стабилизатора прост. Смотрим значения номинала автомата. Приблизительно делим значение на 5, получаем мощность стабилизатора. Например стоят автоматы 25 Ампер (25 А). Будет прописано С25. Делим, получаем значение 5 кВа. Если автоматы не выбивало, значит Ваша нагрузка не превышает 5 кВа. Начинаем просматривать модели с данной характеристикой. Сложнее определить если в щитке много автоматических выключателей. Внимательно рассматриваем номиналы всех. Как правило вводной (входной) автомат имеет значение выше, чем все остальные, ставят его первым от счетчика электроэнергии.

Расчет мощности в онлайн калькуляторе

В процессе расчета надо сложить все электроприборы, которыми пользуетесь одновременно. Прибавить несколько киловатт на свет. Не забывайте учитывать мощные нагревательные элементы. Получив определенное значение, надо теперь заложить запас на падение мощности стабилизатора при пониженном напряжении. В нижней части калькулятора предусмотрена дополнительная шкала, которая учитывает падение, закладывая небольшой запас.

Серия ЛЮКС работает без падения мощности стабилизатора при пониженном напряжении. Измерительный элемент стоит на выходе стабилизирующего устройства. В результате защита по перегрузке сработает только тогда, когда потребитель даст нагрузку в 100% от заданных параметров. Естественно, законы физики не отменяли, на входе устройства при низком напряжении потребление тока будет больше. В результате само падение оплачивает не потребитель, а производитель. Что очень удобно для конечного потребителя.

Хотите получить бесплатную консультацию, узнать стоимость и действующие скидки?

Отправьте запрос, заполнив все поля в онлайн консультанте.

Рассчитать мощность стабилизатора можно позвонив по бесплатному номеру

Калькулятор регулирования напряжения

| Рассчитать стабилизацию напряжения

Формула регулирования напряжения

Voltage_regulation = ((Конечное напряжение отправки — Конечное напряжение приема) * 100) / Конечное напряжение отправки
% v = ((Vs-Vr) * 100) / Vs

Что такое регулирование напряжения?

В электротехнике, особенно в энергетике, регулирование напряжения — это мера изменения величины напряжения между передающим и принимающим концом компонента, такого как линия передачи или распределения.Регулирование напряжения описывает способность системы обеспечивать почти постоянное напряжение в широком диапазоне условий нагрузки. Термин может относиться к пассивному свойству, которое приводит к большему или меньшему падению напряжения при различных условиях нагрузки, или к активному вмешательству с устройствами для конкретной цели регулировки напряжения.

Как рассчитать стабилизацию напряжения?

Калькулятор регулирования напряжения использует Voltage_regulation = ((Конечное напряжение отправки — Конечное напряжение приема) * 100) / Конечное напряжение отправки для расчета стабилизации напряжения, Стабилизация напряжения — это разница в напряжении на принимающем конце линии передачи между условиями «нет». загрузка и полная загрузка.Стабилизация напряжения и обозначается символом % v .

Как рассчитать стабилизацию напряжения с помощью этого онлайн-калькулятора? Чтобы использовать этот онлайн-калькулятор для регулирования напряжения, введите конечное напряжение передачи (Vs) и конечное напряжение приема (Vr) и нажмите кнопку расчета. Вот как можно объяснить расчет регулирования напряжения с заданными входными значениями -> -9,000E + 16 = ((10000-9E + 18) * 100) / 10000 .

LM317 Калькулятор напряжения | REUK.co.uk

1,43 В R1 = 470, R2 = 68
1,47 В R1 = 470, R2 = 82
1,48 В R1 = 370, R2 = 68
1,51 В R1 = 330, R2 = 68
1,51 В R1 = 390, R2 = 82
1,52 В R1 = 470, R2 = 100
1,53 В R1 = 370, R2 = 82
1,56 В R1 = 330, R2 = 82
1,57 В R1 = 270, R2 = 68
1,57 В R1 = 470, R2 = 120
1,57 В R1 = 390, R2 = 100
1.59 В R1 = 370, R2 = 100
1,60 В R1 = 240, R2 = 68
1,63 В R1 = 330, R2 = 100
1,63 В R1 = 270, R2 = 82
1,64 В R1 = 390, R2 = 120
1,64 В R1 = 220, R2 = 68
1,65 В R1 = 470, R2 = 150
1,66 В R1 = 370, R2 = 120
1,68 В R1 = 240, R2 = 82
1,71 В R1 = 330, R2 = 120
1,71 В R1 = 270, R2 = 100
1,72 В R1 = 220, R2 = 82
1.72 В R1 = 180, R2 = 68
1,73 В R1 = 470, R2 = 180
1,73 В R1 = 390, R2 = 150
1,76 В R1 = 370, R2 = 150
1,77 В R1 = 240, R2 = 100
1,81 В R1 = 270, R2 = 120
1,82 В R1 = 150, R2 = 68
1,82 В R1 = 330, R2 = 150
1,82 В R1 = 180, R2 = 82
1,83 В R1 = 390, R2 = 180
1,84 В R1 = 470, R2 = 220
1,86 В R1 = 370, R2 = 180
1.88 В R1 = 240, R2 = 120
1,89 В R1 = 470, R2 = 240
1,93 В R1 = 330, R2 = 180
1,93 В R1 = 150, R2 = 82
1,94 В R1 = 270, R2 = 150
1,96 В R1 = 390, R2 = 220
1,97 В R1 = 470, R2 = 270
1,99 В R1 = 370, R2 = 220
2,02 В R1 = 390, R2 = 240
2.03V R1 = 240, R2 = 150
2.06V R1 = 370, R2 = 240
2.08V R1 = 330, R2 = 220
2.10 В R1 = 220, R2 = 150
2,12 В R1 = 390, R2 = 270
2,13 В R1 = 470, R2 = 330
2,16 В R1 = 330, R2 = 240
2,16 В R1 = 370, R2 = 270
2,19 В R1 = 240, R2 = 180
2,23 В R1 = 470, R2 = 370
2,25 В R1 = 150, R2 = 120
2,27 В R1 = 270, R2 = 220
2,27 В R1 = 330, R2 = 270
2,29 В R1 = 470, R2 = 390
2,29 В R1 = 180, R2 = 150
2.31 В R1 = 390, R2 = 330
2,36 В R1 = 270, R2 = 240
2,37 В R1 = 370, R2 = 330
2,40 В R1 = 240, R2 = 220
2,44 В R1 = 390, R2 = 370
2,50 В R1 = 470, R2 = 470
2,57 В R1 = 370, R2 = 390
2,61 В R1 = 220, R2 = 240
2,65 В R1 = 330, R2 = 370
2,66 В R1 = 240, R2 = 270
2,73 В R1 = 330, R2 = 390
2,74 В R1 = 470, R2 = 560
2.75 В R1 = 150, R2 = 180
2,76 В R1 = 390, R2 = 470
2,78 В R1 = 270, R2 = 330
2,78 В R1 = 220, R2 = 270
2,84 В R1 = 370, R2 = 470
2,92 В R1 = 180, R2 = 240
2,96 В R1 = 270, R2 = 370
2,97 В R1 = 240, R2 = 330
3,03 В R1 = 330, R2 = 470
3,05 В R1 = 390, R2 = 560
3,06 В R1 = 270, R2 = 390
3,06 В R1 = 470, R2 = 680
3.08 В R1 = 150, R2 = 220
3,13 В R1 = 220, R2 = 330
3,14 В R1 = 370, R2 = 560
3,18 В R1 = 240, R2 = 370
3,25 В R1 = 150, R2 = 240
3,28 В R1 = 240, R2 = 390
3,35 В R1 = 220, R2 = 370
3,37 В R1 = 330, R2 = 560
3,43 В R1 = 270, R2 = 470
3,43 В R1 = 390, R2 = 680
3,43 В R1 = 470, R2 = 820
3,47 В R1 = 220, R2 = 390
3.50 В R1 = 150, R2 = 270
3,54 В R1 = 180, R2 = 330
3,55 В R1 = 370, R2 = 680
3,70 В R1 = 240, R2 = 470
3,82 В R1 = 180, R2 = 370
3,83 В R1 = 330, R2 = 680
3,84 В R1 = 270, R2 = 560
3,88 В R1 = 390, R2 = 820
3,91 В R1 = 470, R2 = 1000
3,92 В R1 = 220, R2 = 470
3,96 В R1 = 180, R2 = 390
4,00 В R1 = 150, R2 = 330
4.02 В R1 = 370, R2 = 820
4,17 В R1 = 240, R2 = 560
4,33 В R1 = 150, R2 = 370
4,36 В R1 = 330, R2 = 820
4,40 В R1 = 270, R2 = 680
4,43 В R1 = 220, R2 = 560
4,44 В R1 = 470, R2 = 1200
4,46 В R1 = 390, R2 = 1000
4,50 В R1 = 150, R2 = 390
4,51 В R1 = 180, R2 = 470
4,63 В R1 = 370, R2 = 1000
4.79 В R1 = 240, R2 = 680
5,04 В R1 = 330, R2 = 1000
5,05 В R1 = 270, R2 = 820
5,10 В R1 = 390, R2 = 1200
5,11 В R1 = 220, R2 = 680
5,14 В R1 = 180, R2 = 560
5,17 В R1 = 150, R2 = 470
5,24 В R1 = 470, R2 = 1500
5,30 В R1 = 370, R2 = 1200
5,52 В R1 = 240, R2 = 820
5,80 В R1 = 330, R2 = 1200
5,88 В R1 = 270, R2 = 1000
5.91 В R1 = 220, R2 = 820
5,92 В R1 = 150, R2 = 560
5,97 В R1 = 180, R2 = 680
6,04 В R1 = 470, R2 = 1800
6,06 В R1 = 390, R2 = 1500
6,32 В R1 = 370, R2 = 1500
6,46 В R1 = 240, R2 = 1000
6,81 В R1 = 270, R2 = 1200
6,92 В R1 = 150, R2 = 680
6,93 В R1 = 330, R2 = 1500
6,94 В R1 = 180, R2 = 820
7.02 В R1 = 390, R2 = 1800
7,10 В R1 = 470, R2 = 2200
7,33 В R1 = 370, R2 = 1800
7,50 В R1 = 240, R2 = 1200
8,07 В R1 = 330, R2 = 1800
8,08 В R1 = 150, R2 = 820
8,19 В R1 = 270, R2 = 1500
8,30 В R1 = 390, R2 = 2200
8,43 В R1 = 470, R2 = 2700
8,68 В R1 = 370, R2 = 2200
9,06 В R1 = 240, R2 = 1500
9.58 В R1 = 330, R2 = 2200
9,77 В R1 = 220, R2 = 1500
9,90 В R1 = 390, R2 = 2700
10,03 В R1 = 470, R2 = 3300
10,37 В R1 = 370, R2 = 2700
10,63 В R1 = 240, R2 = 1800
11,25 В R1 = 150, R2 = 1200
11,44 В R1 = 270, R2 = 2200
11,48 В R1 = 330, R2 = 2700
11,67 В R1 = 180, R2 = 1500
11,83 В R1 = 390, R2 = 3300
12.40 В R1 = 370, R2 = 3300
12,71 В R1 = 240, R2 = 2200
13,75 В R1 = 330, R2 = 3300
15,31 В R1 = 240, R2 = 2700
16,25 В R1 = 150, R2 = 1800
16,53 В R1 = 270, R2 = 3300
16,59 В R1 = 220, R2 = 2700
18,44 В R1 = 240, R2 = 3300
19,58 В R1 = 150, R2 = 2200
20,00 В R1 = 220, R2 = 3300
23,75 В R1 = 150, R2 = 2700
24.17 В R1 = 180, R2 = 3300
28,75 В R1 = 150, R2 = 3300

Расчет регулятора напряжения

Перед тем, как вы сможете спроектировать регулируемый стабилизатор напряжения для своей схемы или провести перепроектирование, вам необходимо рассчитать значения для двух резисторов. Само по себе это несложно, но на самом деле поиск подходящих резисторов может вызвать проблемы. К счастью, есть уловка, чтобы все это было намного проще. Для большинства регулируемых регуляторов напряжения, таких как LM317 и LM337, входное напряжение должно быть 1.От 2 до 1,25 В выше желаемого выходного напряжения. Это связано с тем, что напряжение на входе ADJ (Adjust) внутренне сравнивается с опорным напряжением с этим значением. Опорное напряжение всегда присутствует на R1.

Прежде чем вы сможете спроектировать регулируемый стабилизатор напряжения для своей схемы или провести перепроектирование, вам необходимо рассчитать значения для двух резисторов. Само по себе это несложно, но на самом деле поиск подходящих резисторов может вызвать проблемы. К счастью, есть уловка, чтобы все это было намного проще.Для большинства регулируемых регуляторов напряжения, таких как LM317 и LM337, входное напряжение должно быть на 1,2–1,25 В выше желаемого выходного напряжения. Это связано с тем, что напряжение на входе ADJ (Adjust) внутренне сравнивается с опорным напряжением с этим значением. Опорное напряжение всегда присутствует на R1.

Схема:

Вместе с предустановкой R2 он определяет ток, протекающий через вывод ADJ, следующим образом: Vout = VREF [1+ (R2 / R1)] + I ADJ R2 Если для удобства мы игнорируем I ADJ, введите опорное напряжение ( 1.2 В), а для R1 выберите значение, в тысячу раз превышающее это напряжение (т. Е. 1,2 кОм), тогда уравнение упрощается до: R2 = 1000 (Vout — 1,2). На практике просто определите падение напряжения на R2 (выходное напряжение минус опорное напряжение), и вы получите значение сопротивления непосредственно в килоомах. Например, для 5 В R2 становится 5–1,2 = 3,8 кОм? что проще всего сделать, подключив последовательно резисторы 3,3 кОм и 470R. В случае относительно низких напряжений рекомендуется использовать резисторы меньшего номинала. Это связано с тем, что для того, чтобы стабилизатор напряжения мог выполнять свою работу, должен протекать достаточный ток.Простое решение — выбрать, скажем, 120? для R1. R2 становится: R2 = 100 (Vout — 1,2)

LM317 / LM338 / LM350 Калькулятор регулятора напряжения и схемы


Регуляторы напряжения LM317 / LM338 / LM350

Семейство регулируемых 3-контактных регуляторов положительного напряжения LM317 / LM338 / LM350 может принимать входное напряжение от 3 до 40 В постоянного тока и обеспечивать регулируемое напряжение в диапазоне выходного напряжения от 1,2 В до 37 В. Стабилизаторы напряжения LM317 могут обеспечивать выходной ток до 1,5 А (А).Там, где требуется больший выходной ток, регуляторы серии LM350 подходят до 3 А, а регуляторы напряжения серии LM338 — до 5 А.

Стабилизаторы напряжения LM317 / LM338 / LM350 исключительно просты в использовании, им требуется всего два внешних резистора для установки регулируемого выходного напряжения. При использовании регулируемых регуляторов напряжения LM317 / LM338 / LM350 вы можете рассчитывать на производительность как линейного регулирования, так и регулирования нагрузки по сравнению со стандартным фиксированным стабилизатором напряжения. Стабилизаторы напряжения LM317 / LM338 / LM350 обеспечивают полную защиту от перегрузки.Обычно конденсаторы не требуются, если только устройство не расположено на расстоянии более 150 мм (6 дюймов) от конденсаторов входного фильтра, и в этом случае требуется входной байпасный конденсатор. Для улучшения переходной характеристики можно добавить дополнительный выходной конденсатор. Клемма регулировки регулятора может быть отключена для достижения очень высокого подавления пульсаций. Дополнительные сведения о регулируемых регуляторах напряжения LM317 / LM338 / LM350 см. В таблицах данных регулируемых регуляторов ниже.

Фотография 1: Регулятор напряжения LM317 (пластиковый корпус TO-220)


Калькулятор регулятора напряжения LM317 / LM338 / LM350

Вы можете использовать этот калькулятор регуляторов напряжения для изменения значения программного резистора (R 1 ) и выходного заданного резистора (R 2 ) и расчета выходного напряжения для семейства LM317 / LM338 / LM350, состоящего из трех клеммных регулируемых регуляторов напряжения. .Этот калькулятор регуляторов напряжения будет работать со всеми регуляторами напряжения с опорным напряжением (V REF ) 1,25. Обычно программный резистор (R 1 ) устанавливается на 240 Ом для регуляторов LM117, LM317, LM138 и LM150. Для регуляторов LM338 и LM350 обычно используется 120 Ом для программного резистора R 1 . Однако другие значения, такие как 150 или 220 Ом, также могут использоваться для R 1 . Стабилизаторы напряжения серии LM317 / LM338 / LM350 также могут быть настроены для регулирования тока в цепи.Для получения информации о регулировании тока с помощью этих регуляторов на интегральных схемах (IC) см. Калькулятор регулятора тока LM317 / LM338 / LM350.

Рисунок 1: Схема калькулятора регулятора напряжения LM317 / LM338 / LM350

Калькулятор регулятора напряжения LM317 / LM338 / LM350

Чтобы определить выходное напряжение, введите значения для программы (R 1 ) и установите (R 2 ) резисторы и нажмите кнопку «Рассчитать».

ПРИМЕЧАНИЕ: для этого онлайн-калькулятора регулятора напряжения требуется, чтобы в вашем браузере был включен JavaScript.

Калькулятор регулятора напряжения LM317 / LM338 / LM350

ОБНОВЛЕНИЕ — калькулятор регулятора тока LM317 / LM338 / LM350 перенесен на свою страницу, калькулятор регулятора тока LM317 / LM338 / LM350. Пожалуйста, обновите свои закладки.


Листы данных — 3-контактный регулируемый регулятор LM317 / LM338 / LM350


Цепи регулятора напряжения LM317 / LM338 / LM350

На следующих схемах показаны типовые схемы применения регуляторов напряжения LM317 / LM338 / LM350. Примечание : Падение напряжения регулятора IC составляет от 1,5 до 2,5 В в зависимости от выходного тока (I OUT ). Следовательно, входное напряжение регулятора LM317 / LM338 / LM350 должно быть как минимум на 1,5–2,5 В выше желаемого выходного напряжения. Планируйте, что желаемое выходное напряжение будет примерно на 3 В. Вы не хотите использовать слишком высокое входное напряжение, так как избыток необходимо будет отводить в виде тепла через регулятор. Подробные сведения о падении напряжения и требованиях к радиатору см. В таблицах данных регуляторов напряжения выше.

Рисунок 2: Схема регулируемого стабилизатора напряжения от 1,2 до 25 В для LM317 / LM338 / LM350

Когда внешние конденсаторы используются с регулятором напряжения, может потребоваться использование защитных диодов, чтобы предотвратить разряд конденсаторов через точки с низким током в регулятор напряжения. Даже небольшие конденсаторы могут иметь достаточно низкое внутреннее последовательное сопротивление, чтобы обеспечивать выбросы 20 А при коротком замыкании. Хотя всплеск очень непродолжительный, энергии достаточно, чтобы повредить части регулятора IC.Для выходных напряжений менее 25 В или более 10 мкФ защитные диоды не требуются. На рисунке 3 показан LM317 / LM338 / LM350 с включенными защитными диодами для использования с выходным напряжением более 25 В и высокими значениями выходной емкости.

Рисунок 3: Схема регулятора напряжения LM317 / LM338 / LM350 с защитными диодами

На выходе напряжения можно использовать твердотельные танталовые конденсаторы, чтобы улучшить подавление пульсаций регулятора напряжения.

Рисунок 4: Схема регулируемого регулятора напряжения LM317 / LM338 / LM350 с улучшенным подавлением пульсаций

Рисунок 5: Схема зарядного устройства 12 В аккумулятора с регулятором LM317


Видеоурок — Регулируемый регулятор напряжения LM317

Учебное пособие по регулируемому регулятору напряжения LM317 — загружено Afrotechmods 17 апреля 2011 г. (YouTube) — 4 минуты 8 секунд.

LM317 Регулируемый регулятор напряжения Учебное пособие


Тяги регулятора напряжения и тока

LM317 — Калькулятор

Регулируемый регулятор напряжения LM317 может поставить 1.5 А при выходном напряжении 1,2 В … 37 В.
В отличие от стабилизаторов постоянного напряжения семейства 78xx, где эталонный напряжение U r связано с землей, U r на LM317 до выходного напряжения U , на выходе . Это дает возможность с всего три разъема и установите выходное напряжение с помощью двух резисторов (см. схему ниже).
Поскольку U r для LM317 всегда 1,25 В, применяется к выходному напряжению. U выход = 1,25 * (1 + R2 / R1)
R1 должен иметь значение 240 Ом. Маркированный диод 1N4001 защищает регулятор, если в Выходное напряжение должно быть выше входного (например, при переключении выключен, когда Выходная сторона «толстых» конусов в схеме).DIode также можно не указывать.

Регулятор напряжения

Для регулировки выходного напряжения требуются только два внешних резистора. Пожалуйста, выберите, хотите ли вы рассчитать U OUT или резистор Р2 .

В качестве альтернативы, опорный вывод нормально-заземленного стабилизатора постоянного напряжения также может быть переключаемый делитель напряжения «поднят» и, таким образом, также с фиксированным регулятором напряжения отличается от напряжения, чем печатные генерируются.Чтобы избежать колебаний, конденсатор можно подключить параллельно R2. (также с LM317). Также примите во внимание возникающую потерю мощности (охлаждение). регулятора напряжения.

Калькулятор делителя напряжения

— Инструменты для электротехники и электроники

Как найти выходное напряжение схемы делителя

Двухрезисторный делитель напряжения — одна из наиболее распространенных и полезных схем, используемых инженерами.Основная цель этой схемы — уменьшить входное напряжение до более низкого значения в зависимости от соотношения двух резисторов. Этот калькулятор помогает определить выходное напряжение схемы делителя с учетом входного (или исходного) напряжения и значений резистора. Обратите внимание, что выходное напряжение в реальных схемах может отличаться, так как допуск резистора и сопротивление нагрузки (где подключено выходное напряжение) становятся факторами.

Уравнение

$$ V_ {out} = V_ {in} * \ frac {R_ {2}} {R_ {1} + R_ {2}} $$

Где:

$$ V_ {out} $$ = Выходное напряжение.Это уменьшенное напряжение.

$$ V_ {in} $$ = Входное напряжение.

$$ R_ {1} $$ и $$ R_ {2} $$ = номиналы резисторов. Соотношение $$ \ frac {R_ {2}} {R_ {1} + R_ {2}} $$ определяет коэффициент масштабирования.

Приложения

Поскольку делители напряжения довольно распространены, их можно найти во многих приложениях. Ниже приведены лишь некоторые из мест, где встречается эта схема.

Потенциометры

Пожалуй, наиболее распространенная схема делителя напряжения — это схема с потенциометром, который представляет собой переменный резистор.Принципиальная схема потенциометра показана ниже:

«Горшок» обычно имеет три внешних контакта: два — это концы резистора, а один подключен к рычагу стеклоочистителя. Стеклоочиститель разрезает резистор пополам и перемещает его, регулируя соотношение между верхней и нижней половинами резистора. Подключите два внешних контакта к источнику напряжения (вход) и опору (заземлению) со средней частью (контакт стеклоочистителя) в качестве выходного контакта, и вы получите делитель напряжения.

Уровнемеры

Еще одна область, где полезны делители напряжения, — это когда необходимо выровнять напряжение.Наиболее распространенный сценарий — это передача сигналов между датчиком и микроконтроллером с двумя разными уровнями напряжения. Большинство микроконтроллеров работают при 5 В, в то время как некоторые датчики могут принимать только максимальное напряжение 3,3 В. Естественно, вы хотите выровнять напряжение с микроконтроллера, чтобы избежать повреждения датчика. Пример схемы показан ниже:

Схема выше показывает схему делителя напряжения с резисторами 2 кОм и 1 кОм. Если напряжение с микроконтроллера составляет 5 В, то пониженное напряжение на датчике рассчитывается как:

$$ V_ {out} = 5 * \ frac {2k \ Omega} {2k \ Omega + 1k \ Omega} = 3.33 В $$

Этот уровень напряжения теперь безопасен для датчика. Обратите внимание, что эта схема работает только для понижения напряжения, а не для повышения.

Ниже приведены некоторые другие комбинации резисторов, используемые для понижения часто встречающихся напряжений:

Комбинация резисторов Применение
4,7 кОм и 6,8 кОм от 12 В до 5 В
4,7 кОм и 3,9 кОм от 9 В до 5 В
3.6 кОм и 9,1 кОм от 12 В до 3,3 В
3,3 кОм и 5,7 кОм от 9 В до 3,3 В
Показания резистивного датчика

Многие датчики являются резистивными устройствами, и большинство микроконтроллеров считывают напряжение, а не сопротивление. Таким образом, резистивный датчик обычно подключается к схеме делителя напряжения с резистором для взаимодействия с микроконтроллером. Пример настройки показан ниже:

Термистор — это датчик, сопротивление которого изменяется пропорционально температуре.Допустим, термистор имеет сопротивление при комнатной температуре 350 Ом. Сопротивление пары также выбрано равным 350 Ом.

Когда термистор находится при комнатной температуре, выходное напряжение:

$$ V_ {out} = 5 * \ frac {350 \ Omega} {350 \ Omega + 350 \ Omega} = 2,5V $$

При повышении температуры сопротивление термистора изменяется до 350,03 Ом, выходной сигнал изменяется на:

$$ V_ {out} = 5 * \ frac {350.03 \ Omega} {350 \ Omega + 350.03 \ Omega} = 2.636V $$

Такое небольшое изменение напряжения обнаруживает микроконтроллер.Если передаточная функция термистора известна, теперь можно рассчитать эквивалентную температуру.

Дополнительная литература

Техническая статья — Делители напряжения и тока: что они собой представляют и что они делают

Учебник — Глава 6 — Делительные цепи и законы Кирхгофа

Учебное пособие — Потенциометр как делитель напряжения

Рабочий лист — Схема делителя напряжения

Стабилизация напряжения — нарушение напряжения

Для инженеров «регулирование» означает изменение выходной скорости или напряжения при увеличении нагрузки на это устройство от нуля до номинальной полной нагрузки устройства.Для трансформаторов регулирование напряжения можно определить как отношение

, , разность во вторичном напряжении от холостого хода до полной нагрузки до напряжения полной нагрузки .

Другими словами, уравнение регулирования напряжения:

[Предполагается, что первичное напряжение постоянное]

V_nl = Вторичное напряжение холостого хода

V_load = Вторичное напряжение для нагруженного состояния

Когда говорят о трансформаторе, который, скажем, имеет регулировку 5%, это означает, что изменение напряжения между холостым ходом и полной нагрузкой составляет 5% при условии постоянного первичного напряжения.Кроме того, регулирование не нужно рассчитывать при полной нагрузке. Нормально рассчитывать регулирование при нагрузке 50%, нагрузке 80% и т. Д. Однако наихудшим случаем обычно является полная нагрузка.

Обратите внимание, что учитываются только значения напряжения. Фазовый угол напряжения не является фактором в уравнении регулирования. Вот простой калькулятор регулирования напряжения:

В условиях холостого хода вторичное напряжение трансформатора будет близко к номинальному значению. Когда нагрузка увеличивается от холостого хода до номинальной, на внутреннем сопротивлении и реактивном сопротивлении трансформатора возникает дополнительное падение напряжения.Следовательно, чистое выходное напряжение, которое может обеспечить трансформатор, уменьшается на величину, равную внутреннему падению напряжения. Трансформаторы с большим внутренним импедансом будут иметь немного худшее регулирование по сравнению с трансформаторами с нормальным внутренним импедансом (обычно от 3% до 6% для трансформаторов низкого напряжения).

Плохое регулирование напряжения — что я могу сделать?
  • Проверьте размер трансформатора и кабелей, чтобы убедиться, что они соответствуют нагрузке.

  • Если возможно, выберите трансформатор с низким сопротивлением. Если это нецелесообразно, рассмотрите следующее.
  • Рассмотрите возможность замены ответвлений на трансформаторе для получения более высокого вторичного напряжения в условиях пиковой нагрузки. Следует соблюдать осторожность, так как это не должно приводить к чрезмерно высокому напряжению в условиях низкой нагрузки.
  • Рассмотрите возможность замены трансформатора на трансформатор с функцией переключения ответвлений под нагрузкой (LTC).Трансформаторы с LTC автоматически переключают отводы обмотки для обеспечения желаемого выходного напряжения. Обычно они будут намного дороже по сравнению с обычными трансформаторами, которые обычно используются в критических установках.

  • Проверьте коэффициент мощности нагрузки и постарайтесь сделать его как можно ближе к единице. Как опережающий, так и чрезмерно запаздывающий коэффициент мощности приводят к плохому регулированию. Отстающий коэффициент мощности можно скорректировать, добавив конденсаторы для коэффициента мощности. Опережающий коэффициент мощности можно скорректировать с помощью активных фильтров, вводящих индуктивные переменные в систему, или несколькими другими методами.
  • Помимо импеданса трансформатора, полное сопротивление источника электроэнергии также способствует плохому регулированию. Рассмотрите возможность перехода на «более жесткий» источник, такой как более крупный генератор или сетевой источник с более высоким рейтингом MVA.

Регулирование отрицательного напряжения — возможно ли это?

Интересно отметить, что отрицательное регулирование напряжения возможно . Это означает, что вторичное напряжение может увеличиваться при нагрузке трансформатора !!.Обычно это происходит, когда на вторичной обмотке трансформатора установлены конденсаторы для коррекции коэффициента мощности (избыточная компенсация) или если нагрузка имеет опережающий коэффициент мощности.

Регулирование нулевого напряжения — возможно ли?

Да, регулирование нуля возможно для ситуации с опережающим коэффициентом мощности

, немного . При большом опережающем коэффициенте мощности регулирование будет отрицательным.

Следующий калькулятор можно использовать для расчета регулирования напряжения с учетом коэффициента мощности нагрузки.С калькулятором можно использовать только запаздывающий коэффициент мощности, который является наиболее распространенным сценарием.

Опции для регулирования напряжения на уровне нагрузки — какие они?

Часто бывает трудно заменить трансформатор в помещении, и другие методы уменьшения плохого регулирования рабочего напряжения могут оказаться слишком дорогими. Если затронуто лишь небольшое количество оборудования на объекте, можно попытаться локализовать коррекцию напряжения. Вот некоторые из методов регулирования напряжения на уровне оборудования или нагрузки:

  • Использование трансформаторов постоянного напряжения, также называемых феррорезонансными трансформаторами.

  • Электронные автоматические регуляторы напряжения

Чтение: Стандарт допуска напряжения .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *