Site Loader

Содержание

Расчет тока вторичной обмотки трансформатора

Каждый электроприбор характерен номинальной электрической мощностью. Она обеспечивается источником питания. Он может располагаться либо внутри электроприбора, либо снаружи как внешнее устройство. Наглядный пример — ноутбук, телефон и многие другие приборы. В них содержится батарея, от которой питается устройство в автономном режиме. Но ее ресурс ограничен, и когда он исчерпывается, прибор подключается через адаптер к электросети 220 В.

Некоторые батареи обеспечивают напряжение всего лишь в 3–5 вольт. Поэтому адаптер служит для того, чтобы напряжение уменьшилось и стало равным батарейным параметрам. Основную функцию в изменении величины напряжения выполняют трансформаторы. Эта статья будет полезна тем читателям, у которых появится желание своими руками изготовить источник питания с трансформатором для тех или иных целей.

Немного теории

Напомним вкратце о том, как трансформатор устроен и что в нем происходит. Довольно давно, если судить по меркам человеческой жизни, было открыто явление электромагнитной индукции. Оно основано на принципиальном отличии электрических свойств прямого проводника от витка, если по ним пропускать один и тот же переменный ток. Так появился параметр индуктивности. С каждым новым витком индуктивность увеличивается. Дополнительное ее увеличение достигается заполнением внутреннего пространства витков материалом с магнитными свойствами (сердечником).

Однако влияние сердечника на силу тока ограничено. Как только он полностью намагничивается, эффект от его использования исчезает.

  • Граничное состояние сердечника, соответствующее полному его намагничиванию, называется насыщением.

Витки, расположенные поверх сердечника, называются обмоткой. Если на нем расположены две одинаковые обмотки, но переменное напряжение подается только на одну из них (первичную), на выводах другой обмотки (вторичной) будет напряжение по частоте и величине такое же, как и на первой обмотке. В этом проявляется трансформация электроэнергии, а само устройство называется трансформатором. Если между обмотками существует электрический контакт, устройство называется автотрансформатором.

  • Основа свойств трансформатора — это его сердечник (магнитопровод). Поэтому расчет трансформатора всегда выполняется в связи с материалом и формой магнитопровода.

Выбор материала определяют вихревые токи и потери, связанные с ними. Они увеличиваются с частотой напряжения на выводах первичной обмотки. На низких частотах (50–100 Гц) применяются пластины из трансформаторной стали. На более высоких частотах (единицы килогерц) — пластины из специального сплава, например, пермаллоя. Десятки и сотни килогерц — это область применения ферритовых сердечников. Виды (форма и размеры, особенно сечение по витку) магнитопровода определяют величину мощности, которую можно получить во вторичной обмотке.

Выбор магнитопровода

Геометрические пропорции промышленно выпускаемых сердечников стандартны. Поэтому их выбирают по размерам сечения внутри витка. Еще один параметр, который влияет на выбор магнитопровода — это индуктивность рассеяния. Она меньше у броневых и тороидальных конструкций. Что-либо вычислять не стоит — в многочисленных справочниках приводятся таблицы, а в интернете на тематических сайтах их аналоги.

Например, необходимо присоединить к сети нагрузку мощностью 100 Вт 12 В. По базовой таблице, показанной далее, выбирается типоразмер магнитопровода. Но учитываем то, что мощность ВТ меньше, чем ВА плюс неполная нагрузка для надежности. Поэтому используем коэффициент 1,43. Искомая мощность и типоразмер получатся как произведение, т.е. 143 ВА. По таблице выбираем ближайшее большее значение габаритной мощности и магнитопровод:

Пример расчета

Выбираем 150 ВА и ШЛ25х32. В таблице также приведено рекомендованное число витков на 1 вольт — W0: 3,9. Следовательно, число витков W1 первичной обмотки будет равно произведению напряжения сети на W0:

Раз число витков на 1 вольт известно, легко рассчитать и вторичную обмотку. В рассматриваемом случае три витка мало, а четыре много. Чтобы не ошибиться, наматываем три витка и оставляем запас провода для добавления после испытания трансформатора под нагрузкой. Для провода сетевой обмотки диаметр рассчитываем, используя силу тока. Ее определяем на основе мощности в первичной обмотке и сетевого напряжения. В сетевой обмотке расчетная сила тока составит:

Во вторичной обмотке сила тока составит:

Затем по таблице выбираем диаметр провода при плотности тока 2,5 А/мм кв:

Для первичной обмотки диаметр провода получается 0,59 мм, для вторичной — 2,0 мм. После этого надо выяснить, помещаются ли обмотки в окна магнитопровода. Это несложно определить на основе числа витков и диаметров проводов с учетом толщины каркасов катушек и слоев дополнительной изоляции. Рекомендуется сделать эскиз для наглядного расчета.

Если вторичных обмоток несколько, должны быть известны мощности для каждой из них. Они суммируются для получения параметров первичной обмотки. Затем расчет выполняется аналогично рассмотренному выше примеру. Но определение токов делается по мощности каждой вторичной обмотки.

Расчетные данные в виде таблиц приведены в справочниках для всех типов сердечников, но при определенных частотах напряжений первичной обмотки:

Для рассматриваемой нагрузки 100 Вт выбираем ПЛ20х40-50

Если требуемые параметры не совпадают с табличными значениями, придется использовать формулы:

S0 – площадь окна в магнитопроводе,

Sc – сечение материала магнитопровода по витку,

Рг – габаритная мощность,

kф – коэффициент формы напряжения на первичной обмотке,

f – частота напряжения на первичной обмотке,

j – плотность тока в проводе обмотки,

Bm – индукция насыщения магнитопровода,

k0 – коэффициент заполнения окна магнитопровода,

kс – коэффициент заполнения стали.

Упрощенные формулы справедливы только для тех случаев, которые эти упрощения определяют. Поэтому они не могут охватить все возможные ситуации и не будут обеспечивать приемлемую точность в большинстве из них.

Занимаясь расчетами мощного источника питания, я столкнулся с проблемой – мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы – где найти такой расчет.
Прочитал статью «Семисторный регулятор с защитой от перегузки» в журнале «Радио» №8 за 2003 г. автора Лаврова Б. Зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. рис. 2) для согласования на выходе вторичной обмотки трансформатора (он и не был рассчитан) по току. Вторичная цепь трансформатора тока рассчитана как обычно у трансформатора напряжения (задался нужным напряжением на вторичной обмотке и произвел расчет).

Итак, прежде всего немного теории.
Трансформатор тока работает как источник тока с заданным первичным током, представляющим ток защищаемого участка цепи. Величина этого тока практически не зависит от нагрузки вторичной цепи трансформатора тока, поскольку его сопротивление с нагрузкой, приведенное к числу витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической схемы. Это обстоятельство делает работу трансформатора тока отличной от работы силовых трансформаторов и трансформаторов напряжения.
На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, навитых на магнитопровод в одном и том же направлении (I1 – ток первичной обмотки, I2 -ток вторичной). Ток I2 пренебрегая малым током намагничивания, всегда направлен так, чтобы размагничивать магнитопровод.
Стрелками показано направление токов. Поэтому если принять верхний конец первичной обмотки за начало «Н», то началом вторичной обмотки «н» также является ее верхний конец. Принятому правилу маркировки соответствует такое же направление токов, учитывая знак. И самое главное правило: условие равенства магнитных потоков.
На рис.2 показана схема трансформатора тока.
Алгебраическая сумма произведений I1·W1 – I2·W2 = 0 (пренебрегая малым током намагничивания), где W1 – количество витков первичной обмотки трансформатора тока, W 2 – количество витков вторички трансформатора.
Пример. Пусть вы, задавшись током первичной обмотки в 16А, произвели расчет и получилось 5 витков. Вы задаетесь током вторичной обмотки, например 0,1А, и согласно вышеупомянутой формулы I1·W1 = I2·W2 рассчитаем в ней количество витков:
W2 = I1·W1 / I2 = 16·5/0,1 = 800.
Далее произведя вычисления L2 – индуктивности вторичной обмотки, ее реактивного сопротивления XL1 , мы вычислим U2 и потом сопротивление нагрузки Rc. Но это чуть позже. То есть вы видите, что задавшись током во вторичной обмотке трансформатора I2 , вы только тогда вычисляете количество витков. Ток I2 трансформатора тока можно задать любой – отсюда будет вычисляться Rc. И еще – I2 должен быть больше тех нагрузок, которые вы будете подключать. Трансформатор тока должен работать только на согласованную по току нагрузку (речь идет о Rc).
Если пользователю требуется трансформатор тока для применения в схемах защиты, то такими тонкостями как направление намоток, как точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большой погрешностью. И эту погрешность можно будет устранить, только создав нагрузку на устройстве (я и имею в виду источник питания, где пользователь собирается ставить защиту, применяя трансформатор тока), и схемой защиты установить порог ее срабатывания по току. Если пользователю требуется схема измерения тока, то как раз эти тонкости должны быть обязательно соблюдены.
На рис. 2 (точки – начало намоток) показан резистор Rc, который является неотъемлимой частью трансформатора тока для согласования токов первичной и вторичной обмоток. То есть Rc задает ток во вторичной обмотке. В качестве Rc не обязательно применять резистор, можно поставить амперметр, реле, но при этом должно соблюдаться обязательное условие – внутреннее сопротивление нагрузки должно быть равным рассчитанному Rc.
Если нагрузка не согласованная по току – это будет генератор повышенного напряжения. Поясню, почему так.
Как уже было ранее сказано, ток I2 трансформатора направлен в противоположную сторону от направления тока первичной обмотки. И вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласованная по току или будет отсутствовать, первичная обмотка будет работать как намагничивающая. Индукция резко возрастает, вызывая сильный нагрев магнитопровода за счет повышенных потерь в стали. Индуктируемая в обмотке ЭДС будет определяться скоростью изменениями потока во времени, имеющей наибольшее значение при прохождении трапецеидального (за счет насыщения магнитопровода) потока через нулевые значения. Индуктивность обмоток резко уменьшается, что вызывает еще больший нагрев трансформатора и в конечном итоге – выход его из строя.

Типы магнитных сердечников приведены на рис.3.
Витой или ленточный магнитопровод – одно и то же понятие, также как и выражение кольцевой или тороидальный магнитопровод: в литературе встречаются и то, и другое.
Это может быть ферритовый сердечник или Ш-образное трансформаторное железо, или ленточные сердечники.
Ферритовые сердечники обычно применяется при повышенных частотах – 400 Гц и выше из-за того, что они работают в слабых и средних магнитных полях (Вm = 0,3 Тл максимум). И так как у ферритов, как правило, высокое значение магнитной проницаемости µ и узкая петля гистерезиса, то они быстро заходят в область насыщения. Выходное напряжение, при f = 50 Гц, на вторичной обмотке составляет единицы вольт либо меньше. На ферритовых сердечниках наносится, как правило, маркировка об их магнитных свойствах (пример М2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц).
На ленточных магнитопроводах или из Ш-образных пластин такой маркировки нет, и поэтому приходится определять их магнитные свойства экспериментально, и они работают в средних и сильных магнитных полях (в зависимости от применяемой марки электротехнической стали – 1,5. 2 Тл и более) и применяются на частотах 50 Гц. 400 Гц.
Кольцевые или тороидальные витые (ленточные) магнитопроводы работают и на частоте 5 кГц (а из пермаллоя даже до 25 кГц). При расчете S – площади сечения ленточного тороидального магнитопровода, рекомендуется результат умножить на коэффициент к = 0,7. 0,75 для большей точности. Это объясняется конструктивной особенностью ленточных магнитопроводов.
Что такое ленточный разрезной магнитопровод (рис. 3)?
Стальную лента, толщиной 0,08 мм или толще, наматывают на оправку, а затем отжигают на воздухе при температуре 400. 500 °С для улучшения их магнитных свойств. Потом эти формы разрезаются, шлифуются края, и собирается магнитопровод. Кольцевые (неразрезные) витые магнитопроводы из тонких ленточных материалов (пермаллоев толщиной 0,01.. .0,05 мм) во время навивки покрывают электроизолирующим материалом, а затем отжигают в вакууме при 1000. 1100 °С.
Для определения магнитных свойств таких магнитопроводов надо намотать 20. 30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой намотки (мкГн). Вычислить S – площадь сечения сердечника трансформатора (мм2), lm-среднюю длину магнитной силовой линии (мм).
И по формуле рассчитать µ – относительную магнитную проницаемость сердечника :
(1) µ = (800·L·lm) / (N²·S) – для ленточного и Ш-образного сердечника.
(2) µ = 2500·L(D + d) / W²·C(D – d) – для кольцевого (тороидильного) сердечника.
При расчете трансформатора на более высокие токи применяется провод большого диаметра в первичной обмотке, и здесь вам понадобится витой стержневой магнитопровод (П-образный), витой кольцевой сердечник или ферритовый тороид.
Если кто держал в руках трансформатор тока промышленного изготовления на большие токи, то видел, что первичной обмотки, навитой на магнитопровод, нет, а имеется широкая алюминиевая шина, проходящая сквозь магнитопровод.
Я напомнил об этом затем, что расчет трансформатора тока можно производить, либо задавшись Вm – магнитной индукцией в сердечнике, при этом первичная обмотка будет состоять из нескольких витков и придется мучиться, наматывая эти витки на сердечник трансформатора. Либо надо рассчитать магнитную индукцию Вm поля, создаваемую проводником с током, в сердечнике.

А теперь приступим к расчету трансформатора тока, применяя законы.
Вы задаетесь током первичной обмотки трансформатора тока, то есть тем током, который вы будете контролировать в цепи.
Пусть будет I1 = 20А, а частота, на которой будет работать трансформатор тока, f = 50 Гц.
Возьмем ленточный кольцевой сердечник OЛ25/40-10 или (40x25x10 мм), схематично представленный на рис.4.
Размеры: D = 40мм, d = 25мм, С = 10мм.
Для проверки относительной магнитной проницаемости я намотал 20 витков провода на кольцевой сердечник и измерил прибором Е7-11 индуктивность обмотки.Прибор показал индуктивность 262 мкГн. Далее по формуле (2) рассчитал µ.
В формуле (2) D, d, С – размеры кольцевого сердечника в мм; L – индуктивность в мкГн; W – количество витков (рис.4).
µ = (2500·262(40 + 25))/(20²·10(40 – 25)) = 710.
Рассчитаем Dср = (D + d)/2 – средний диаметр кольца:
Dср = (40 + 25)/2 = 32,5 мм = 32,5·10ˉ³ м.
Средняя длина магнитной силовой линии Im = π·Dср:
Im = 3,14·32,5 = 102,1мм = 102,1·10ˉ³ м.
Площадь сечения сердечника S = [(D – d)/2]·С:
S = [(40 – 25)/2]·10 = 75 мм² = 75·10 -6 м²
Поправка с учетом вышесказанного S = 75·0,7 = 52,5·10 -6 м².

Произведем расчет по первому случаю с намоткой первичной катушки на сердечнике.
Зададим Вm – магнитную индукцию в сердечнике, так как этот метод более удобен для частот 400 Гц и ниже. Для ленточных кольцевых магнитопроводов максимальная индукция Вm – 1,5. 2 Тл. Выберем 1 Тл.
(З) Напряженность поля, необходимая для создания магнитной индукции Вm = 1 Тл:
Н = Вm/µ·µо = 1/4π·10 -7 ·710 = 1120,8 А/м,
где µо – магнитная проницаемость в вакууме – 4π·10 -7 .
(4) Рассчитаем ток Аw, приходящий на Im магнитную силовую линию:
Aw = Н·Im = 1120,8·102,1·10ˉ³ = 114,4 А.
(5) Число витков W1 трансформатора тока: W1 = АwI1=114,4/20 = 5,72 витка. Возьмем W1 = 6 витков.
(6) Индуктивность L1 первичной обмотки:
L1 = µ·µо·W1²·S/Im = 4π·10 -7 ·710·6·52,5·10· -6 / 102,1·10 -3 = 16,52·10 -6 Гн.
(7) Индуктивное сопротивление ХL1 первичной обмотки на частоте сети f = 50 Гц:
ХL1 = 2π· f·L1 = 2·3,14·50·16,52·10 -6 = 5,186·10 -3 .
(8) Падение напряжения U1 на W1:
U1 = I1·ХL1 = 20·5,186·10 -3 = 0,104 В.
(8а) Мощность Р1 в первичной обмотке:
Р1 = U1·I1 = 0,104·20 = 2,08 Вт.
А теперь вспомним самую первую формулу: I1·W1 – I2·W2 = 0 и вычислим количество витков W2 трансформатора тока, задавшись током I2. Еще раз повторюсь: ток I2 трансформатора вы задаете сами исходя из соображений достаточности дальнейшей нагрузки, создаваемой схемами ограничения или схемами измерения. Пусть это будет ток I2 = 0,1 А.
(9) W2 = I1·W1/I2 = 20·6/0,1 =1200 витков.
(10) n = W2 / W1 = 1200/6 = 200 – коэффициент трансформации.
(11) Тогда U2 = U1·n.
U2 = 0,104·200 = 20,8 В.
Напряжение на вторичной обмотке трансформатора тока U2 вы можете рассчитать другим способом: сначала по формуле (2) рассчитать L2 – индуктивность вторичной обмотки трансформатора, ХL2 как в (7) и потом U2 как в (8). Значение должно быть одинаковым. Теперь, зная U2 и I2, рассчитаем Rс.
(12) Rс = U2/I2 = 20,8/0,1 = 208 Ом.
(13) Рассчитаем мощность на резисторе:
Р2 = U2·I2 = 20,8·0,1 = 2,08 Вт.
Возьмем резистор мощностью 2 Вт.
Обратите внимание на (8а) и сравните с (13). Мощность во вторичной обмотке не должна превышать мощность первичной. Как видите, напряжение на вторичной обмотке трансформатора получилось 20,8 В.
Рассчитав ток I2 и напряжение U2, вы можете подключить сюда вольтметр с полным током рамки не бопее 100 мА, шкалой в 25 В и косвенно измерять ток от 0. 20 А.
Но если вам этого напряжения недостаточно, то надо задать Вm не 1 Тл, а 1,2 и далее произвести расчет с (3) вновь, не боясь, что магнитопровод войдет в область насыщения сердечника, так как Вm может достигать и 2 Тл. Но можно задать I2 меньше и пересчитать, начиная с (9).

Произведем расчет по второму случаю с проводником через тороидальный сердчник.
Рассчитаем магнитную индукцию Вm поля, создаваемую проводником с током, в сердечнике по формуле:
(14) Вm = (µ·µо)(I1/2πRср).
Магнитопровод тот же: 40х25х10 мм.
Dср = (40 + 25)/2 = 32,5 мм = 32,5·10 -3 м.
Площадь сечения сердечника S = [(40 – 25)/2]·10 = 75 мм 2 = 75·10 -6 м 2 .
Поправка с учетом вышесказанного:
S = 75·10 -6 ·0,7 = 52,5·10 -6 м 2 .
Средняя длина магнитной силовой линии Im = 102,1 мм = 102,1·10 -3 м.
Rср=Dср/2.
Rср = 32,5/2 = 16,25·10 -6 м.
С – толщинa сердечника (рис.4).
На рис.5 показан разрез тoроидального сердечника по толщине ((это уточнение чертежа рис.4 (правый рисунок)). Rcp — средний радиус сердечника в мм; С – толщина сердечника в мм.
Линией АБ показан проводник с током, проходящий сквозь тороидальный сердечник. Линия АБ также является геометрическим центром тора. Стрелками внутри тора указано направление Вm.
Вычислим Вm по формуле (14).
(14′) Вm = 12,57·10 -7 ·710·20/6,28·16,25·10 -3 = 0,175 Тл.
Вычислим индуктивность этого провода:
(6′) L1 = (4π·10 -7 ·710)(0,9 2 /102,1·10 -3 ·52,5·10 -6 = 3,72·10 -7 Гн.
Индуктивнoе сопротивление ХL= 2π·f·L = 6,28·50·3,72·10 -7 = 1,17·10 -4 Ом.
Падение напряжения на первичной обмотке
U1 = I1·ХL = 20·1,17·10 -4 =2,33·10 -3 В.
Мощность в первичной обмотке
Р1 = U1·I1= 2.33·10 -3 ·20 =46,7·10 -3 Вт.
Возьмем I2 = 15·10 -3 А.
Тогда как в (9) W2 = I1·W1/I2
W2 = 20·0,9/15·10 -3 = 1200.
n=W2/W1=1200/0,9=1333.
U2= U1·n = 2,33·10 -3 ·1333 = 3,12 В.
Вы помните формулу для определения количества витков:
W = Е·10 4 /(4,44·f·В·S·kм)?
С учетом того, что S вычисляется в см 2 , я перепишу в м 2 , то есть уберется множитель 10 4 .
Е = 4,44·f·W·В·S·kм,
где kм – коэффициент заполнения медью.
Е = 4,44·50·1200·0,175·52,5·10 -6 ·0,7 = 3,675 В.
Как видите, почти совпало.
Кроме коэффициента kм должны применяться: kф – коэффициент формы; kс – коэффициент стали.
Я думаю, дальше пояснять нет надобности. В итоге Е будет иметь меньшее значение напряжения.
В формуле (6) W – количество витков – я поставил 0,9 витка первичной обмотки. Это объясняется сложностью магнитного поля, создаваемого проводником с током, проходящим через тор.
Все изложенное в этой статье вы можете проверить практически. Произведя расчет, я собрал этот тор и убедился на стенде, что теория права.

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

1, 4 – броневые,
2, 5 – стержневые,
6, 7 – кольцевые.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Трансформаторы с витыми кольцевыми магнитопроводами.

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.
Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

Где:
P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

Сначала определяем сечение, для чего перемножаем размеры А и Б.

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции.

КАК РАССЧИТАТЬ ПОНИЖАЮЩИЙ ТРАНСФОРМАТОР.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.

В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт .
Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт .

В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт . Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.

Если вы найдете лампочку другой мощности, например на 40 ватт , нет ничего страшного — подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.

Мощность во вторичной цепи: Р2 = U2 • I2 = 60 ватт

Где:
Р2 – мощность на выходе трансформатора, нами задана 60 ватт ;
U2 — напряжение на выходе трансформатора, нами задано 36 вольт ;
I2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1 , мощности потребляемой от сети 220 вольт , зависит площадь поперечного сечения магнитопровода S .

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

Где:
S — площадь в квадратных сантиметрах,
P1 — мощность первичной сети в ваттах.

По значению S определяется число витков w на один вольт по формуле:

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв .

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

Число витков во вторичной обмотке на 36 вольт:

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков .

Величина тока в первичной обмотке трансформатора:

Ток во вторичной обмотке трансформатора:

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:

Для первичной обмотки диаметр провода будет:

Диаметр провода для вторичной обмотки:

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА , то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

где: d — диаметр провода.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм .

Площадь поперечного сечения провода диаметром 1,1 мм равна:

Округлим до 1,0 мм² .

Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм² .

Например, это два провода диаметром по 0,8 мм . и площадью по 0,5 мм² .

Или два провода:

— первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,
— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм² .

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.

Как рассчитать количество витков первичной обмотки трансформатора

Да сих пор мы исходили из посыла, что первичная обмотка цела. А что делать, если она оказалась оборванной или сгоревшей дотла?

Оборванную обмотку можно размотать, восстановить обрыв и намотать заново. А вот сгоревшую обмотку придётся перемотать новым проводом. Конечно, самый простой способ, это при удалении первичной обмотки посчитать количество витков.

Если нет счётчика, а Вы, как и я, используете приспособление на основе ручной дрели, то можно вычислить величину редукции дрели и посчитать количество полных оборотов ручки дрели. До тех пот, пока мне не подвернулся на базаре счётчик оборотов, я так и делал.

Но, если обмотка сильно повреждена или её вообще нет, то рассчитать количество витков первичной обмотки трансформатора можно по приведённой формуле. Эта формула подходит для частоты сети равной 50 Герц.

ω = 44 / T * S

  • ω – число витков на один вольт,
  • 44 – постоянный коэффициент,
  • T – величина индукции в Тесла,
  • S – сечение магнитопровода в квадратных сантиметрах.

 

Пример.

Сечение моего магнитопровода – 6,25см².

Магнитопровод витой, броневой, поэтому я выбираю индукцию 1,5 Т.

44 / 1,5 * 6,25 = 4,693 вит./вольт

Определяем количество витков первичной обмотки с учётом максимального напряжения сети:

4,693 * 220 * 1,05 = 1084 вит.

Допустимые отклонение напряжения сети принятые в большинстве стран: -10… +5%. Отсюда и коэффициент 1,05.

Величину индукции можно определить по таблице

Тип магнитопроводаМагнитная индукция max (Тл) при мощности трансформатора (Вт)
5-1515-5050-150150-300300-1000
Броневой штампованный1,1-1,31,31,3-1,351,351,35-1,2
Броневой витой1,551,651,651,651,65
Тороидальный витой1,71,71,71,651,6

Не стоит использовать максимальное значение индукции, так как оно может сильно отличаться для магнитопроводов различного качества.

Видео: Расчет трансформатора питания. Простая электроника

Поделиться ссылкой:

формулы, фото и видео как рассчитать потери трансформатора

Автор Aluarius На чтение 6 мин. Просмотров 4.4k. Опубликовано

29.10.2015

В основе сборки лежит расчет трансформатора, он же блок питания. Поэтому стоит поговорить именно о проводимых расчетах, то есть, разобраться с формулами и указать на нюансы.

Но проще и дешевле собрать его своими руками. К тому же сам процесс сборки достаточно интересный. Но как показывает практика, в основе сборки лежит расчет трансформатора, он же блок питания. Поэтому стоит поговорить именно о проводимых расчетах, то есть, разобраться с формулами и указать на нюансы.

Конструкция трансформатора.

Конструкция трансформатора

Если посмотреть на трансформатор с внешней стороны, то это Ш-образное устройство, состоящее из металлического сердечника, картонного или пластикового каркаса и обмотки из медной проволоки. Обмоток две.

Сердечник – это несколько стальных пластин, которые обработаны специальным лаком и соединены между собой. Лак наносится специально, чтобы между пластинами не проходило напряжение. Таким способом борются с так называемыми вихревыми токами (токами Фуко). Все дело в том, что токи Фуко просто будут нагревать сам сердечник. А это потери.

Именно с потерями связан и состав пластин сердечника. Трансформаторное железо (так чаще всего называют сталь для сердечника специалисты), если посмотреть ее в разрезе, состоит из больших кристаллов, которые, в свою очередь, изолированы друг от друга окисной пленкой.

Назначение и функциональность

Итак, какие функции выполняет трансформатор?

  1. Это снижение напряжения до необходимых параметров.
  2. С его помощью снижается гальваническая развязка сети.

Что касается второй функции, то необходимо дать пояснения. Обе обмотки (первичная и вторичная) трансформатора тока между собой напрямую не соединены. Значит, сопротивление прибора, по сути, должно быть бесконечным. Правда, это идеальный вариант. Соединение же обмоток происходит через магнитное поле, создаваемой первичной обмоткой. Вот такой непростой функционал.

Расчет

Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.

Трансформатор позволяет понизить напряжение до необходимых параметров.

Формула закона трансформации

Итак, закон трансформации определяется нижеследующей формулой:

U1/U2=n1/n2, где:

  • U1 – напряжение на первичной обмотке,
  • U2 – на вторичной,
  • n1 – количество витков на первичной обмотке,
  • n2 – на вторичной.

Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.

Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.

А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.


Внимание! Если в собираемом вами трансформаторе не одна вторичная обмотка, то мощность первичной состоит из суммы мощностей вторичных.

Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.

И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.

Площадь сердечника

Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:

S=1,15 * √P

В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.

Обратите внимание! Все полученные расчетным путем параметры имеют неокругленную цифру, поэтому округлять надо обязательно и всегда только в большую сторону. К примеру, расчетная мощность получилась 35,8 Вт, значит, округляем до 40 Вт.

Разновидности сердечников для трансформатора.

Количество витков в первичной обмотке

Здесь используется следующая формула:

n=50*U1/S, понятно, что U1 равно 220 В.

Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче. Здесь важно, чтобы количество обмоток уместилось.

Сечение провода

И последняя четвертая формула касается сечения используемого медного провода в обмотках.

d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.

Расчетный диаметр необходимо также округлить до стандартной величины.

Итак, вот четыре формулы, по которым проводится подбор трансформатора тока. Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц.

Обозначение трансформатора на схеме.

Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.

Заключение по теме

В этой статье мы постарались ответить на вопрос, как рассчитать трансформатор сетевого типа? Данный принцип подбора является упрощенным. Но для практических целей он даже очень достаточный. Так что новичкам лучше использовать именно его, и не лезть в дебри математических выкладок с большим количеством составляющих. Конечно, в нем не учитываются все потери, но округления показателей компенсируют их.

Как рассчитать количество витков вторичной обмотки трансформатора

Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100—200 Вт проводится следующим образом.

Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

Далее, принимая КПД трансформатора небольшой мощности, равным около 80 %, определяем первичную мощность:

Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

где s — в квадратных сантиметрах, а Р1 — в ваттах.

По значению S определяется число витков w’ на один вольт. При использовании трансформаторной стали

Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w’ на 20—30 %.

Теперь можно рассчитать число витков обмоток

В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5—10 % больше рассчитанного.

Ток первичной обмотки

Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз — диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2—3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

Определяем общую мощность вторичных обмоток:

Мощность первичной цепи

Находим площадь сечения сердечника из трансформаторной стали:

Число витков на один вольт

Ток первичной обмотки

Число витков и диаметр проводов обмоток равны:

• для первичной обмотки

• для повышающей обмотки

• для обмотки накала ламп

Предположим, что окно сердечника имеет площадь сечения 5×3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

• для первичной обмотки

• для повышающей обмотки

• для обмотки накала ламп

Общая площадь сечения обмоток составляет примерно 430 мм2.

Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

Эта мощность определяется по формулам:

— для повышающего автотрансформатора

— для понижающего автотрансформатора, причем

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

Затем определяется расчетная мощность Р, которая может быть принята равной 1,15•Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 — I2, если автотрансформатор повышающий, и I2 — I1 если он понижающий.

В раздел : Советы → Расcчитать силовой трансформатор

Как рассчитать силовой трансформатор и намотать самому.
Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?
Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.
Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника — сможете ли разместить обмотку.
Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток — амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.

Формула для расчета витков трансформатора

Сопутствующие формулы: P=U2*I2 Sсерд(см2)= √ P(ва) N=50/S I1(a)=P/220 W1=220*N W2=U*N D1=0,02*√i1(ma) D2=0,02*√i2(ma) K=Sокна/(W1*s1+W2*s2)

50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода.
Если вы планируете намотать трансформатор с достаточно «жёсткой» характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора. Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.
Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений.

Вариант 2 расчета трансформатора.
Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности:

1. Определяют значение тока, протекающего через вторичную обмотку трансформатора:
I2 = 1,5 Iн ,
где: I2 — ток через обмотку II трансформатора, А;
Iн — максимальный ток нагрузки, А.
2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:
P2 = U2 * I2 ,
где: P2 — максимальная мощность, потребляемая от вторичной обмотки, Вт;
U2 — напряжение на вторичной обмотке, В;
I2 — максимальный ток через вторичную обмотку трансформатора, А.
3. Подсчитываем мощность трансформатора:
Pтр = 1,25 P2 ,
где: Pтр — мощность трансформатора, Вт;
P2 — максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.
Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.
4. Определяют значение тока, текущего в первичной обмотке:
I1 = Pтр / U1 ,
где: I1 — ток через обмотку I, А;
Ртр — подсчитанная мощность трансформатора, Вт;
U1 — напряжение на первичной обмотке трансформатора (сетевое напряжение).
5. Рассчитываем необходимую площадь сечения сердечника магнитопровода:
S = 1,3 Pтр ,
где: S — сечение сердечника магнитопровода, см2;
Ртр — мощность трансформатора, Вт.
6. Определяем число витков первичной (сетевой) обмотки:
w1 = 50 U1 / S ,
где: w1 — число витков обмотки;
U1 — напряжение на первичной обмотке, В;
S — сечение сердечника магнитопровода, см2.
7. Подсчитывают число витков вторичной обмотки:
w2 = 55 U2 / S ,
где: w2 — число витков вторичной обмотки;
U2 — напряжение на вторичной обмотке, В;
S-сечение сердечника магнитопровода, см2.
8. Высчитываем диаметр проводов обмоток трансформатора:
d = 0,02 I ,
где: d-диаметр провода, мм;
I-ток через обмотку, мА.

Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1.

Таблица 1
Iобм, maЕще один способ расчета мощности трансформатора по габаритам.
Ориентировочно посчитать мощность трансформатора можно используя формулу:
P=0.022*S*С*H*Bm*F*J*Кcu*КПД;
P — мощность трансформатора, В*А;
S — сечение сердечника, см²
L, W — размеры окна сердечника, см;
Bm — максимальная магнитная индукция в сердечнике, Тл;
F — частота, Гц;
Кcu — коэффициент заполнения окна сердечника медью;
КПД — коэффициент полезного действия трансформатора;
Имея в виду что для железа максимальная индукция составляет 1 Тл.
Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 — магнитная индукция [T], j =2.5 — плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 — 0,33.

Если вы располагаете достаточно распространенным железом — трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?
Расшифровка обозначений ОСМ: О — однофазный, С — сухой, М — многоцелевого назначения.
По техническим характеристикам он не подходит в для включения однофазную сеть 220 вольт т.к. рассчитан на напряжение первичной обмотки 380 вольт.
Что же в этом случае делать?
Имеется два пути решения.
1. Смотать все обмотки и намотать заново.
2. Смотать только вторичные обмотки и оставить первичную обмотку, но так как она рассчитана на 380В, то с нее необходимо смотать только часть обмотки оставив на напряжение 220в.
При сматывании первичной обмотки получается примерно 440 витков (380В) когда сердечник Ш-образной формы, а когда сердечник трансформатора ОСМ намотан на ШЛ данные другие — количество витков меньше.
Данные первичных обмоток на 220в трансформаторов ОСМ Минского электротехнического завода 1980 год.

  • 0,063 — 998 витков, диаметр провода 0,33 мм
  • 0,1 — 616 витков, диаметр провода 0,41 мм
  • 0,16 — 490 витков, диаметр провода 0,59 мм
  • 0,25 — 393 витка, диаметр провода 0,77 мм
  • 0,4 — 316 витков, диаметр провода 1,04 мм
  • 0,63 — 255 витков, диаметр провода 1,56 мм
  • 1,0 — 160 витков, диаметр провода 1,88 мм

ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма

Подключение обмоток трансформаторов ТПП

Рассмотрим на примере ТПП-312-127/220-50 броневой конструкции.

В зависимости от напряжения в сети подавать напряжение на первичную обмотку можно на выводы 2-7, соединив между собой выводы 3-9, если повышенное — то на 1-7 (3-9 соединить) и т.д. На схеме подключение показано случае пониженного напряжение в сети.
Часто возникает необходимость применять унифицированные трансформаторы типа ТАН, ТН, ТА, ТПП на нужное напряжение и для получения необходимой нагрузочной способности, а простым языком нам надо подобрать, к примеру, трансформатор со вторичной обмоткой 36 вольт и чтобы он отдавал 4 ампера под нагрузкой, первичная конечно 220 вольт.
Как подобрать трансформатор?
С начало определяем необходимую мощность трансформатора, нам необходим трансформатор мощностью 150 Вт.
Входное напряжение однофазное 220 вольт, выходное напряжение 36 вольт.
После подбора по техническим данным определяем, что в данном случае нам больше всего подходит трансформатор марки ТПП-312-127/220-50 с габаритной мощностью 160 Вт (ближайшее значение в большую сторону ), трансформаторы марки ТН и ТАН в данном случае не подходят.
Вторичные обмотки ТПП-312 имеют по три раздельные обмотки напряжением 10,1в 20,2в и 5,05в, если соединить их последовательно 10,1+20,2+5,05=35,35 вольт, то получаем напряжение на выходе почти 36 вольт. Ток вторичных обмоток по паспорту составляет 2,29А, если соединить две одинаковые обмотки параллельно, то получим нагрузочную способность 4,58А (2,29+2,29).
После выбора нам только остается правильно соединить выходные обмотки параллельно и последовательно.
Последовательно соединяем обмотки для включения в сеть 220 вольт. Последовательно включаем вторичные обмотки, набирая нужное напряжение по 36В на обеих половинках трансформатора и соединяем их параллельно для получения удвоенного значения нагрузочной способности.
Самое важное, правильно соединить обмотки при параллельном и последовательном включении, как первичной так и вторичной обмоток.

Если неправильно включить обмотки трансформатора, то он будет гудеть и перегреваться, что потом приведет его к преждевременному выходу из строя.

По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины.
Разные вопросы и советы.
1. Проверяем готовый трансформатор, а у него ток первичной обмотки оказывается завышенным, что делать? Чтобы не перематывать и не тратить лишнее время домотайте поверх еще одну обмотку, включив ее последовательно с первичной.
2. При намотке первичной обмотки когда мы делаем большой запас, чтобы уменьшить ток холостого хода, то учитывайте, что соответственно уменьшается и КПД транса.
3. Для качественной намотки, если применен провод диаметром от 0,6 и выше , то его обязательно надо выпрямить, чтоб он не имел малейшего изгиба и плотно ложился при намотке, зажмите один конец провода в тиски и протяните его с усилием через сухую тряпку, далее наматывайте с нужным усилием, постепенно наматывая слой за слоем. Если приходится делать перерыв, то предусмотрите фиксацию катушки и провода, иначе придется делать все заново. Порой подготовительные работы занимают много времени, но это того стоит для получения качественного результата.
4. Для практического определения количества витков на вольт, для попавшегося железа в сарае, можно намотать на сердечник проводом обмотку. Для удобства лучше наматывать кратное 10, т.е. 10 витков, 20 витков или 30 витков, больше наматывать не имеет большого смысла. Далее от ЛАТРа постепенно подаем напряжение его увеличивая от 0 и пока не начнет гудеть испытываемый сердечник, вот это и является пределом. Далее делим полученное напряжение подаваемое от ЛАТРа на количество намотанных витков и получаем число витков на вольт, но это значение немного увеличиваем. На практике лучше домотать дополнительную обмотку с отводами для подбора напряжения и тока холостого хода.
5. При разборке — сборке броневых сердечников обязательно помечайте половинки, как они прилегают друг к другу и собирайте их в обратном порядке, иначе гудение и дребезжание вам обеспечено. Иногда гудения избежать не удается даже при правильной сборке, поэтому рекомендуется собрать сердечник и скрепить чем либо (или собрать на столе, а сверху через кусок доски приложить тяжелый груз), подать напряжение и попробовать найти удачное положение половинок и только потом окончательно закрепить. Помогает и такой совет, поместить готовый собранный трансформатор в лак и потом хорошо просушить при температуре до полного высыхания (иногда используют эпоксидную смолу, склеивая торцы и просушка до полной полимеризации под тяжестью).

Соединение обмоток отдельных трансформаторов

Иногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения?
Для того чтобы получить от двух трансформаторов постоянное напряжение, к примеру 600 вольт постоянного тока, то необходимо иметь два трансформатора которые бы после выпрямителя выдавали бы 300 вольт и после соединив их последовательно два источника постоянного напряжения получим на выходе 600 вольт.

При необходимости самостоятельно изготовить устройство питания электронной аппаратуры вопрос, как самостоятельно рассчитать количество витков трансформатора и как определить данные для проводов первичной и вторичных обмоток, стоит наиболее часто.

Правильный расчет возможен при наличии исходных данных по характеристикам мощности потребителей, напряжений входа и выхода. показатели массы и габаритов устройства, также могут накладывать ограничения.

На что влияет количество витков в трансформаторе

Если говорить о вторичных обмотках трансформатора, то значение числа витков в них в основном влияет на выходное напряжение. Сложнее все обстоит с первичной обмоткой, поскольку напряжение на ней задано питающей сетью. Параметры первичная обмотка оказывают влияние на ток холостого хода, а, следовательно, на коэффициент полезного действия. При изменении параметров первичной обмотки потребуется перерасчет всех вторичных обмоток.

Методика расчета

Полный расчет трансформатора довольно сложен и учитывает такие параметры:

  • напряжение и частоту питающей сети;
  • число вторичных обмоток;
  • ток потребления каждой вторичной обмотки;
  • тип материала сердечника;
  • массогабаритные показатели.

На бытовом уровне для изготовления устройств с питанием от стандартной сети 220В 50Гц, проектирование можно значительно упростить.

Методика не требует особенных знаний сложности, и при наличии опыта занимает немного времени.

Для расчета требуются следующие данные:

  1. Количество выходов.
  2. Напряжение и потребляемый ток каждой обмотки.

В основе конструирования любого трансформатора лежит суммарная мощность всех вторичных нагрузок:

Для учета потерь введено понятие габаритной мощности, для вычисления которой применяется несложная формула:

Зная мощность, можно определить сечение сердечника:

Полученное значение сечения будет выражено в квадратных сантиметрах!

Дальнейшие расчеты зависят от типа и материала выбранного сердечника. Магнитопроводы бывают следующих типов:

Также различаются и способы изготовления магнитопроводов:

  • наборные – из отдельных пластин;
  • витые, разрезные или сплошные.

Разрезными обычно бывают броневые или стержневые магнитопроводы, а О-образные конструктивно выполняются исключительно цельные. В этом отношении они ничем не отличаются от не разрезных стержневых сердечников.

Для определения числа витков используют следующее соотношение, показывающее, сколько необходимо витков на 1 вольт напряжения:

где К – коэффициент, который зависит от материала и типа сердечника.

Для упрощения вычислений приняты следующие значения коэффициента:

  1. Для наборных магнитопроводов из Ш-или П-образных пластин К=60.
  2. Для разрезных магнитопроводов К=50.
  3. Для О-образных сердечников К=40.

Как видно, наименьшая длина обмоточного провода, а следовательно, и наилучшие массогабаритные показатели будут у О-образных сердечников. Кроме этого, конструкции с такими сердечниками имеют малое поле паразитного магнитного рассеивания и максимальный КПД. Их редко применяют только потому, что намотать обмотку на замкнутый сердечник трудно технически.

Зная параметр W, легко определить количество витков для каждой из обмоток:

Для учета падения напряжения на первичной обмотке, намотанной большим количеством тонкого провода, следует увеличить количество витков в ней на 5%. Особенно это касается малогабаритных конструкций малой мощности.

Можно снизить ток холостого хода, увеличив значение W для каждой из обмоток, но следует знать, что чрезмерное увеличение может привести к насыщению магнитопровода, что приведет к резкому увеличению тока холостого хода и снижению напряжения на выходе.

На заключительном этапе определяют диаметр проводников каждой обмотки. Формула расчета имеет следующий вид:

Определение диаметра обмоточного провода выполняют для всех без исключения обмоток.

Полученные значения округляют до ближайшего большего значения из стандартных диаметров проводов.

Альтернативный метод по габаритам

Ориентировочные параметры трансформатора, исходя из имеющегося в наличии сердечника, допускается определить иным путем., а затем сделать выводы о возможности дальнейшего использования.

Зная площадь сечения магнитопровода в квадратных сантиметрах, можно оценить максимальную мощность, которую способен обеспечить данный преобразователь:

Следует иметь в виду, что данная мощность является габаритной, а реальная будет иметь меньшее значение:

Обычно, при условии соответствия расчетной мощности и требуемой, первичную обмотку, подключаемую в сеть 220 В, можно оставить нетронутой, заново рассчитав только параметры на выходах.

Использование мультиметра

Используя мультиметр, можно найти данные для пересчета обмоток имеющегося трансформатора. Для этого необходимо выполнить дополнительную катушку из любого имеющегося в наличии провода. После подключения устройства в сеть необходимо измерить напряжение на дополнительной катушке. Теперь можно легко подсчитать необходимое число витков на вольт и выполнить перерасчет трансформатора под нужные требования.

Таблица количества вольт на виток

Для того, чтобы постоянно не выполнять расчеты, можно воспользоваться таблицей, в которой приведены усредненные данные обмоток в зависимости от мощности:

Мощность, PСечение в см 2 , SКоличество вит. /В, WМощность, PСечение в см 2 , SКоличество вит. /В, W
11.432509.05.0
22.121609.84.6
53.6137010.34.3
104.69.88011.04.1
155.58.49011.73.9
206.27.310012.33.7
256.66.712013.43.4
307.36.215015.03.0
408.35.420017.32.6

Примеры реальных расчетов

В качестве примера рассчитаем трансформатор питания для зарядного устройства. Исходные данные:

  • напряжение сети – 220В;
  • выходное напряжение – 14В;
  • ток вторичной обмотки – 10А;

Используя выходные параметры, определяем мощность вторичной обмотки: P=14∙10=140 Вт

Габаритная мощность: P=1.25∙ 140=175 Вт.

Площадь сечения магнитопровода сердечника составит: S=√175=13.3 см 2

Наилучшими параметрами обладают конструкции, у которых сечение сердечника приближается к квадратному. Таким образом выбираем ленточный бронепровод с размерами сердечника 3.5х4 см. Его площадь равняется 14 см 2 .

Для данного сердечника К=50. Таким образом: W=50/14=3.6 вит/вольт

Для обмоток общее количество витков равняется:

  • первичная обмотка n1=220∙3.6= 792 витка;
  • вторичная обмотка n2=14∙3.6=50 витков.

Поскольку трансформатор мощный, то падение напряжения на первичной обмотке можно не учитывать.

Определяем диаметр обмоточных проводов: d2=0.7√10=2.2 мм.

Ближайшее стандартное значение – 2.4 мм.

Для нахождения диаметра провода первичной обмотки найдем ток через нее: I=P/U=175/220=0.8А.

Данному току соответствует диаметр: d1=0.7√0.8=0.63 мм.

Ближайшее стандартное значение имеет как раз такое значение.

Более углубленный расчет предполагает оценку коэффициента заполнения свободного окна магнитопровода. Большое значение числа вторичных обмоток может не поместиться в свободном окне, тогда необходимо будет выбрать более мощный сердечник. При слишком свободном размещении обмоток ухудшается КПД устройства, увеличивается магнитное поле рассеивания. Однако, как показывает практика, при правильном выборе сечения сердечника подобные расчеты становятся излишними.

Инструкции | Схема и подробное описание самодельного блока питания

Часто требуется в быту подключение того и иного электроустройства посредством блока питания с понижающем трансформатором, но готовый блок не всегда удается найти в магазине, поэтому зачастую приходится думать о самодельной конструкции.
Чтобы облегчить эту задачу, расскажем о простейших расчетах, которые позволят подобрать нужные детали для блока питания в зависимости от предъявляемых к нему требований.

Схема предполагаемого блока питания, обеспечивающего нужное выходное напряжение постоянного тока, приведена на рисунке.
В нем использован трансформатор питания, включаемый первичной обмоткой (I) в электрическую розетку переменного тока 220 Вольт и понижающий напряжение (оно снимается с обмотки II) до заданного значения, двухполупериодный выпрямитель на диодах VD1—VD4 и конденсатор С1, сглаживающий пульсации выпрямленного напряжения.
Полученное в итоге почти постоянное напряжение (пульсации его при подключении нагрузки все же будут) снимают с контактов XS1 и XS2.

схема самодельного блока питания

Расчет выпрямителя

Необходимо правильно выбрать выпрямительные диоды и конденсатор фильтра, а также определить необходимое переменное напряжение, снимаемое для выпрямления со вторичной (II) обмотки сетевого трансформатора.
Исходными данными для расчета выпрямителя служат требуемое напряжение на нагрузке (Uн) и потребляемый ею максимальный ток (Iн)

Порядок расчета

КоэффициентТок нагрузки, А
0,1 0,2 0,4 0,6 0,8 1,0
В 0,8 1,0 1,2 1,4 1,5 1,7
С 2,4 2,2 2,0 1,9 1,8 1,8

Сначала определяют переменное напряжение, которое должно быть на вторичной обмотке трансформатора:

Uн — постоянное напряжение на нагрузке, В; В — коэффициент, зависящий от тока нагрузки, который определяют по таблице

По току нагрузки определяют максимальный ток, протекающий через каждый диод выпрямительного моста:

Iд — ток через диод, А; Iн — максимальный ток нагрузки, А; С — коэффициент, зависящий от тока нагрузки и определяемый по таблице

Далее подсчитываем обратное напряжение, которое будет приложено к каждому диоду выпрямителя:

Uобр — обратное напряжение, В; Uн — напряжение на нагрузке, В.

Выпрямительные диоды нужно выбрать, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

В заключении определяем емкость конденсатора фильтра:

Сф — емкость конденсатора фильтра, мкФ; Iн — максимальный ток нагрузки, A; Uн — напряжение на нагрузке, В; Кп — коэффициент пульсации выпрямленного напряжения (отношение амплитудного значения переменной составляющей частотой 100 Гц на выходе выпрямителя к среднему значению выпрямленного напряжения).

Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определенной «чистоты».

— малогабаритные транзисторные радиоприемники и магнитофоны

— усилители радио и промежуточной частоты

— предварительные каскады усилителей звуковой частоты и микрофонных усилителей

В дальнейшем, когда будете строить подобные выпрямители с последующей стабилизацией выпрямленного напряжения транзисторным стабилизатором, расчетную емкость фильтрующего конденсатора можно уменьшить в 5…10 раз.

Расчет питающего трансформатора

Для него у вас уже есть необходимые данные, напряжение на вторичной обмотке (UII) и максимальный ток нагрузки (Iн)

Сначала определяют максимальное значение тока, протекающего через вторичную обмотку:

III — ток через обмотку II трансформатора, А; Iн — максимальный ток нагрузки, А.

Далее определяют мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:

PII — максимальная мощность, потребляемая от вторичной обмотки, Вт; UII — напряжение на вторичной обмотке, В; III — максимальный ток через вторичную обмотку, А.

Вычисляем мощность питающего трансформатора:

Ртр — мощность трансформатора, Вт; РII — максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.

Если изготавливают трансформатор с несколькими вторичными обмотками, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.

Расчитываем ток, протекающий через первичную обмотку трансформатора:

II — ток через обмотку I, А; Ртр — подсчитанная мощность трансформатора, Вт; UI — напряжение на первичной обмотке трансформатора (сетевое напряжение), В.

Рассчитываем необходимую площадь сечения сердечника магнитопровода:

S — сечение сердечника магнитопровода, кв.см; Ртр — мощность трансформатора, Вт.

Определяем число витков первичной (сетевой) обмотки:

WI — число витков обмотки; UI — напряжение на первичной обмотке, В; S — сечение сердечника магнитопровода, кв.см.

Определяем число витков вторичной обмотки:

WII — число витков вторичной обмотки; UII — напряжение на вторичной обмотке, В; S — сечение магнитопровода, кв.см.

Определяем диаметр провода обмоток:

D — диаметр провода, мм; I — ток через обмотку, мА.

Можно выбрать провод по готовой таблице

Iобм, mA 25 25…60 60…100 100…160 160…250 250…400 400…700 700…1000
D, мм 0,10 0,15 0,20 0,25 0,30 0,40 0,50 0,60

По полученным данным можно подбирать подходящее железо, провод и изготавливать трансформатор. Правда, нелишне сначала прикинуть, разместится ли провод на каркасе будущего трансформатора при данных Ш-образных пластинах — ведь однотипные (по ширине средней части) пластины имеют неодинаковую площадь окна. Достаточно подсчитанную ранее мощность трансформатора умножить на 50 и сравнить полученный результат (это необходимая площадь окна в кв.мм) с измеренной площадью окна имеющихся пластин

При выборе сердечника магнитопровода следует придерживаться и еще одного правила — отношение ширины средней части сердечника к толщине набора (отношение сторон сердечника) должно быть в пределах 1…2

Трансформатор, диоды и конденсатор фильтра, разместите в корпусе подходящих габаритов. На лицевой панели корпуса укрепите выходные контакты, выключатель питания, а на задней стенке разместите держатель предохранителя с предохранителем FU1 (его ток зависит от тока через первичную обмотку трансформатора). Через отверстие в задней стенке выведите шнур питания с сетевой электровилкой.

Расчет трансформатора — правила, формулы и пример

Каждый электроприбор характерен номинальной электрической мощностью. Она обеспечивается источником питания. Он может располагаться либо внутри электроприбора, либо снаружи как внешнее устройство. Наглядный пример — ноутбук, телефон и многие другие приборы. В них содержится батарея, от которой питается устройство в автономном режиме. Но ее ресурс ограничен, и когда он исчерпывается, прибор подключается через адаптер к электросети 220 В.

Некоторые батареи обеспечивают напряжение всего лишь в 3–5 вольт. Поэтому адаптер служит для того, чтобы напряжение уменьшилось и стало равным батарейным параметрам. Основную функцию в изменении величины напряжения выполняют трансформаторы. Эта статья будет полезна тем читателям, у которых появится желание своими руками изготовить источник питания с трансформатором для тех или иных целей.

Немного теории

Напомним вкратце о том, как трансформатор устроен и что в нем происходит. Довольно давно, если судить по меркам человеческой жизни, было открыто явление электромагнитной индукции. Оно основано на принципиальном отличии электрических свойств прямого проводника от витка, если по ним пропускать один и тот же переменный ток. Так появился параметр индуктивности. С каждым новым витком индуктивность увеличивается. Дополнительное ее увеличение достигается заполнением внутреннего пространства витков материалом с магнитными свойствами (сердечником).

Однако влияние сердечника на силу тока ограничено. Как только он полностью намагничивается, эффект от его использования исчезает.

  • Граничное состояние сердечника, соответствующее полному его намагничиванию, называется насыщением.

Витки, расположенные поверх сердечника, называются обмоткой. Если на нем расположены две одинаковые обмотки, но переменное напряжение подается только на одну из них (первичную), на выводах другой обмотки (вторичной) будет напряжение по частоте и величине такое же, как и на первой обмотке. В этом проявляется трансформация электроэнергии, а само устройство называется трансформатором. Если между обмотками существует электрический контакт, устройство называется автотрансформатором.   

  • Основа свойств трансформатора — это его сердечник (магнитопровод). Поэтому расчет трансформатора всегда выполняется в связи с материалом и формой магнитопровода.

Выбор материала определяют вихревые токи и потери, связанные с ними. Они увеличиваются с частотой напряжения на выводах первичной обмотки. На низких частотах (50–100 Гц) применяются пластины из трансформаторной стали. На более высоких частотах (единицы килогерц) — пластины из специального сплава, например, пермаллоя. Десятки и сотни килогерц — это область применения ферритовых сердечников. Виды (форма и размеры, особенно сечение по витку) магнитопровода определяют величину мощности, которую можно получить во вторичной обмотке.

ВИды магнитопроводов у трансформаторов Броневые, тороидальный и стержневой трансформаторы

Выбор магнитопровода

Геометрические пропорции промышленно выпускаемых сердечников стандартны. Поэтому их выбирают по размерам сечения внутри витка. Еще один параметр, который влияет на выбор магнитопровода — это индуктивность рассеяния. Она меньше у броневых и тороидальных конструкций. Что-либо вычислять не стоит — в многочисленных справочниках приводятся таблицы, а в интернете на тематических сайтах их аналоги.

Например, необходимо присоединить к сети нагрузку мощностью 100 Вт 12 В. По базовой таблице, показанной далее, выбирается типоразмер магнитопровода. Но учитываем то, что мощность ВТ меньше, чем ВА плюс неполная нагрузка для надежности. Поэтому используем коэффициент 1,43. Искомая мощность и типоразмер получатся как произведение, т.е. 143 ВА. По таблице выбираем ближайшее большее значение габаритной мощности и магнитопровод:

Расчетные данные ряда трансформаторов броневого типа

Пример расчета

Выбираем 150 ВА и ШЛ25х32. В таблице также приведено рекомендованное число витков на 1 вольт — W0: 3,9. Следовательно, число витков W1 первичной обмотки будет равно произведению напряжения сети на W0:

W1=220*3,9=858.

Раз число витков на 1 вольт известно, легко рассчитать и вторичную обмотку. В рассматриваемом случае три витка мало, а четыре много. Чтобы не ошибиться, наматываем три витка и оставляем запас провода для добавления после испытания трансформатора под нагрузкой. Для провода сетевой обмотки диаметр рассчитываем, используя силу тока. Ее определяем на основе мощности в первичной обмотке и сетевого напряжения. В сетевой обмотке расчетная сила тока составит:

150/220=0,7 А

Во вторичной обмотке сила тока составит:

100/12=8,3 А

Затем по таблице выбираем диаметр провода при плотности тока 2,5 А/мм кв:

Таблица

Для первичной обмотки диаметр провода получается 0,59 мм, для вторичной — 2,0 мм. После этого надо выяснить, помещаются ли обмотки в окна магнитопровода. Это несложно определить на основе числа витков и диаметров проводов с учетом толщины каркасов катушек и слоев дополнительной изоляции. Рекомендуется сделать эскиз для наглядного расчета.

Если вторичных обмоток несколько, должны быть известны мощности для каждой из них. Они суммируются для получения параметров первичной обмотки. Затем расчет выполняется аналогично рассмотренному выше примеру. Но определение токов делается по мощности каждой вторичной обмотки.

Расчетные данные в виде таблиц приведены в справочниках для всех типов сердечников, но при определенных частотах напряжений первичной обмотки:

Расчетные данные ряда трансформаторов стержневого типа

Для рассматриваемой нагрузки 100 Вт выбираем ПЛ20х40-50

Если требуемые параметры не совпадают с табличными значениями, придется использовать формулы:

Формула Формула

 

S0 – площадь окна в магнитопроводе,

Sc – сечение материала магнитопровода по витку,

Рг – габаритная мощность,

kф – коэффициент формы напряжения на первичной обмотке,

f – частота напряжения на первичной обмотке,

j – плотность тока в проводе обмотки,

Bm – индукция насыщения магнитопровода,

k0 – коэффициент заполнения окна магнитопровода,

kс – коэффициент заполнения стали.

Упрощенные формулы справедливы только для тех случаев, которые эти упрощения определяют. Поэтому они не могут охватить все возможные ситуации и не будут обеспечивать приемлемую точность в большинстве из них.

Похожие статьи:

Расчёт вторичной обмотки однофазного трансформатора

Многофункциональные керамикоподобные покрытия на металлы вентильной группы (Al, Mg, Ta, Ti, Zr, Be) методами МДО (микродуговое оксидирование) и ТЭХО (термоэлектрохимическое оксидирование) обеспечивают хорошую электрическую изоляцию проводников для обмоток трансформаторов, дросселей, электрических машин. Термостойкость покрытия до 2000 оС позволяет разрабатывать аппараты с высокими плотностями токов в рабочих обмотках, что обеспечивает возможность длительной работы устройств со значительными перегрузками, стойкости к к.з., в то же время масса изделия оказывается меньше по сравнении с аналогами.

Для моделирования была предложена магнитная система сухого алюминиевого трансформатора с керамической изоляцией обмоточных проводов для контактной сварки. С целью верификации полученных в эксперименте результатов и уточнения предполагаемых параметров при оптимизации трансформатора была произведена серия расчётов в среде моделирования ANSYS.

Основными задачами численного эксперимента были:

  1. Подготовить виртуальную модель трансформатора для проведения виртуальных экспериментов, проверки случая работы трансформатора с измененной топологией вторичной обмотки.
  2. Повторить натурный эксперимент, провести опыт работы трансформатора на минимальную нагрузку для определения максимально-возможного тока вторичной обмотки.
  3. Определить распределение магнитного поля и токов во вторичной обмотке в зависимости от количества параллельных витков при плотностях тока i в первичной обмотке 10, 20, 30 А/мм2 с целью нахождения максимально возможного тока во вторичной обмотке.

Задача осложнялась необходимостью использования специфической шихтовки стального пакет для обеспечения анизотропного поведения магнитного поля в ленточном типе магнитопровода.

Моделирование магнитного поля в ANSYS Maxwell

  1. С целью понижения размерности сеточной модели магнитной системы использовалась ¼ симметричная её часть.
  2. Первичная обмотка моделируется как катушка с сосредоточенными параметрами.
  3. Катушечные группы, объединённые в параллельные ветви, включены посредством редактора схем с измерительным оборудованием для определения тока короткого замыкания и падения напряжения на обмотке.
  4. Нестационарный магнитный расчёт позволил определить значение токов в каждом элементарном проводнике параллельных ветвей вторичной обмотки. На этом этапе было важно учесть эффект вытеснения тока в массивных проводниках и перераспределение тока между параллельными ветвями обмотки из-за существенных полей рассеяния, что значительно сказывается на величине общих потерь.
  5. Для опыта работы трансформатора на минимальную нагрузку определены значения падения напряжения и максимального тока вторичной обмотки.

Магнитная индукция. Насыщение магнитопровода.

Перераспределение плотности тока во вторичной обмотке.

Заключение:

Подготовленная численная модель была проверена путём сравнения результатов моделирования с натурным экспериментом, по электрическим величинам вторичной обмотки различия составили не более 5%. Хорошее согласование результатов указывает на правильность использованных методик моделирования для такого класса задач.

Виртуальная модель в дальнейшем была использована для проверки случая работы трансформатора с измененной топологией вторичной обмотки.

Вторичное напряжение — обзор

6.3.2 Промежуточные трансформаторы напряжения

Точность трансформатора напряжения — не единственный источник ошибок вторичного напряжения. Это также происходит из-за сопротивления проводов (см. Раздел 6.3.4 этой главы). Сумма этих двух ошибок во входящем и текущем питании не будет одинаковой на синхронизирующем оборудовании, особенно если длина соединительных кабелей и, следовательно, сопротивление проводов значительно различаются. Ясно, что для целей синхронизации важно, чтобы ошибки в измеренных напряжениях были как можно меньше.Однако есть еще одна причина, почему это важно, если два источника питания будут электрически соединены. Несмотря на то, что прямое соединение вторичных обмоток ТН не допускается, с профилактическими мерами, предпринимаемыми внутри и снаружи синхронизирующего оборудования, остается небольшой риск того, что это может произойти из-за неисправности или скрытой цепи. В этом случае трансформатор с более высоким из двух вторичных напряжений будет способствовать нагрузке трансформатора с более низким вторичным напряжением так же, как силовые трансформаторы разделяют нагрузку параллельно.Если разница напряжений мала, это состояние, вероятно, останется незамеченным при нормальной работе с предохранителем. Могут возникнуть сложности с защитой, измерением и т. Д., В которых могут быть задействованы и другие схемы.

Чтобы уменьшить погрешность напряжения во входящем и работающем источниках питания, промежуточный трансформатор напряжения (который также обеспечивает гальваническую развязку постоянного тока) устанавливается между вторичной обмоткой ТН и синхронизирующим оборудованием, как показано на рис. 12.22. Предусмотрены ответвления, чтобы облегчить определенную регулировку напряжения на месте.При номинальном системном напряжении каждое промежуточное ответвление ТН выбирается так, чтобы показывать 63,5 В ± 1% на синхронизирующем оборудовании с переключателем как в разомкнутом, так и в замкнутом состоянии. В схеме выбора напряжения это включает в себя каждый альтернативный источник питания.

РИС. 12.22. Упрощенное расположение промежуточных трансформаторов напряжения

Промежуточные трансформаторы напряжения имеют соотношение между первичной и вторичной обмотками 110 / 63,5 В (63,5 / 63,5 В при напряжении передачи) и имеют минимальную номинальную мощность 25 ВА с максимальным пределом 50 ВА, за исключением при напряжении передачи, когда оно снижается до 36 ВА.Однако предпочтительно, чтобы во всей схеме синхронизации использовался единый рейтинг по причинам взаимозаменяемости. Регулировка напряжения осуществляется с шагом 0,5 В в диапазоне от 0 до +5 В выше номинального вторичного напряжения. Отводы могут быть разделены между первичной и вторичной обмотками, если это удобно. Трансформаторы в целом соответствуют BS3941 [2] класс точности 1.0; т. е. процентная погрешность напряжения ± 1%, сдвиг фаз ± 40 минут, при любом напряжении от 80% до 120% номинального напряжения и с нагрузками от 25% до 100% от номинальной нагрузки при коэффициенте мощности 0.8 с запаздыванием, за исключением того, что диапазон погрешности напряжения составляет от 5% до 100% номинальной нагрузки при единице pf. Чтобы исключить насыщение в условиях перенапряжения, точка перегиба трансформатора не должна быть меньше трехкратного номинального напряжения. В качестве дополнительной меры безопасности между первичной и вторичной обмотками устанавливается заземленный электростатический экран.

Обмотка трансформатора — рассчитайте калибр меди и номинальные токи —

Обмотка трансформатора — намотайте свой собственный трансформатор дома, используя простую математику, а также известно, какой размер меди я хочу использовать при намотке трансформатора.

хочу к какой трансформатор?

Трансформатор рабочий

Трансформатор определяется как электрическое устройство, которое работает по принципу электромагнитной силы. Трансформатор содержит медный провод и металлические листы. на рынке доступны трансформаторы другого типа. В основном трансформаторы используются для преобразования высокого напряжения в низкое или для преобразования низкого напряжения в высокое.

Это широко известно как повышающий трансформатор и понижающий трансформатор.Повышающий трансформатор выполняет работу по преобразованию низкого напряжения в высокий уровень напряжения. И понижающий трансформатор, который преобразует высокое напряжение в низкое.

Трансформатор содержит первичную и вторичную обмотки катушки. В понижающем трансформаторе первичная обмотка содержит меньше витков, а вторичная обмотка имеет меньше витков, чем первичная. В повышающем трансформаторе первичная обмотка представляет собой толстый медный провод с меньшим количеством витков.А вторичная обмотка имеет большее количество витков.

Типы трансформаторов, в которых обычно используются электронные устройства

Используются разные типы трансформаторов. Обычно используются трансформаторы

  • Повышающие трансформаторы
  • Понижающие трансформаторы
  • Трансформаторы с воздушным сердечником
  • Трансформаторы с железным сердечником
  • Тороидальные трансформаторы

В этой статье я просто расскажу, как рассчитать обмотку трансформатора и какой размер меди провод нам нужно выбрать при намотке трансформатора.

Расчет витков катушки обмотки трансформатора

Обмотка трансформатора основана на уравнении

NS / NP = VS / VP

NS = Количество витков вторичной обмотки

NP = количество витков в первичной обмотке.

VS = напряжение вторичной обмотки.

VP = напряжение в первичной обмотке.

Специально для демонстрации я собираюсь сконструировать 12-вольтовый трансформатор, работающий от 230 вольт.Теперь нам нужно рассчитать количество витков в первичной и вторичной обмотке лучшего трансформатора.

Я не говорю о размере сердечника, он будет меняться в зависимости от мощности трансформатора. Это уравнение предназначено только для расчета количества витков в обмотке трансформатора.

VS = 230 вольт. ВП = 12 вольт.

NS =? НП = 80 витков.

Как мы хотим рассчитать вторичные витки этого трансформатора.

NS / Np = VS / VP

NS = (VS * NP) / VP

= (230/1500) * 12

= 1533.33 витка

Это 1540 витков , необходимых для выработки 12 вольт на первичной обмотке.

Калибр медных проводов и ампер

Вы не понимаете, когда наматываете трансформатор, какой калибр медного провода я использовал для обмотки трансформатора. И

сколько ампер мы можем получить? Или вы решили сделать трансформатор 5 и не знаете, какую медь я использую?

Вот решение этой путаницы. Выберите размер меди в соответствии с нужным вам ампером.

Номинальный ток по медному манометру

10
Номер датчика (AWG) Ампер
7 44,2 А
8 33,3 А
9 26,5 А 26,5 А
11 16,6 А
12 13,5 А
13 10,5 А
14 8.3 ампер
15 6,6 ампер
16 5,2 ампер
17 4,1 ампер
18 3,2 ампер
19 20 2,0 ампер
21 1,6 ампер
22 1,2 ампер
23 1,0 ампер
24 0.8 ампер
25 0,6 ампер
26 0,5 ампер
27 0,4 ампер
28 0,3 ампер
30 0,22 ампер

Чтобы сделать трансформатор на 5 ампер, используйте медный провод 16 калибра на трансформаторе при намотке.

Также проверьте , цепь включения / выключения реле датчика движения Pir

Автоматическая свинцово-кислотная автоматическая цепь зарядного устройства с печатной платой

Импеданс трансформатора в процентах и ​​его расчет

Что такое импеданс в процентах?

Полное сопротивление трансформатора в процентах указано на большинстве паспортных табличек, но что это такое и что означает значение Z%?

Импеданс трансформатора — это полное сопротивление переменному току.Это можно рассчитать для каждой обмотки.

Однако довольно простой тест обеспечивает практический метод измерения эквивалентного импеданса трансформатора без разделения импеданса обмоток.

Под импедансом трансформатора подразумевается эквивалентное сопротивление .

Определение

Импеданс трансформатора в процентах — это падение напряжения при полной нагрузке из-за сопротивления обмотки и реактивного сопротивления утечки, выраженное в процентах от номинального напряжения.




Это также процент от нормального напряжения на клеммах, необходимого для циркуляции тока полной нагрузки в условиях короткого замыкания.

Другими словами, импеданс трансформатора в процентах — это процент номинального напряжения, приложенного к одной стороне (первичной обмотке) для передачи номинального тока по трансформатору, сохраняя его другую сторону (вторичную обмотку) в условиях короткого замыкания.

Указывается в процентах на паспортной табличке силовых трансформаторов каждой электрической подстанции.

Процентное сопротивление на паспортной табличке трансформатора 11 кВ / 415 В

Объяснение процентного импеданса

Если мы подаем номинальное напряжение на первичную обмотку трансформатора, сохраняя его вторичную обмотку короткозамкнутой , тогда величина ток на обеих обмотках будет чрезвычайно большим по сравнению с номинальным током.

Процентное сопротивление схемы подключения трансформатора

Этот ток называется током короткого замыкания , и его величина очень высока из-за нулевого импеданса нагрузки (вторичная обмотка короткозамкнута).

Теперь, если мы уменьшим приложенное напряжение на первичной обмотке трансформатора, то есть приложим процент от номинального напряжения в первичной обмотке трансформатора, ток на обеих обмотках также уменьшится.

При определенном проценте номинального напряжения номинальный ток будет течь по обмоткам трансформатора. Этот процент номинального напряжения на одной стороне трансформатора, который передает номинальный ток по обмоткам трансформатора, сохраняя при этом короткозамкнутую обмотку другой стороны, называется импедансом процентов трансформатора .

Расчет процентного импеданса

Для определения эквивалентного импеданса одна обмотка трансформатора закорачивается. К другой обмотке приложено напряжение, достаточное для создания тока полной нагрузки, протекающего по короткозамкнутой обмотке.

Это напряжение называется импедансным напряжением.

Импеданс в процентах при испытании трансформатора

Любая обмотка может быть замкнута накоротко для этого испытания, но обычно удобнее закоротить обмотку низкого напряжения.

На паспортной табличке трансформатора указано значение импеданса в процентах. Это означает, что падение напряжения из-за импеданса выражается в процентах от номинального напряжения.

Подробнее здесь: Как проверить процентное сопротивление трансформатора?

Пример расчета

Например, если трансформатор на 2400/240 В имеет измеренное импедансное напряжение 72 В на обмотках высокого напряжения, его полное сопротивление (Z), выраженное в процентах, составляет:

Z% = (Импедансное напряжение / номинальное напряжение) x 100

процентов Z = (72/2400) * 100 = 3 процента

Это означает, что при полной нагрузке на высоковольтной обмотке произойдет падение на 72 В из-за потери в обмотках и сердечнике.Только 1-2% потерь происходят из-за сердечника; около 98% связано с сопротивлением обмотки.

Если бы трансформатор не работал при полной нагрузке, падение напряжения было бы меньше. Если для стороны высокого напряжения требуется фактическое значение импеданса в омах (закон Ома):

Z = V / I

, где V — падение напряжения или, в данном случае, 72 вольта; I — ток полной нагрузки в первичной обмотке.

Если ток полной нагрузки составляет 10 ампер:

Z = 72 В / 10 А = 7.2 Ом

Конечно, нужно помнить, что импеданс — это комбинация резистивной и реактивной составляющих.

Изменение значения импеданса в процентах

Наиболее экономичное расположение сердечника и обмоток приводит к «естественному» значению импеданса, определяемому потоком рассеяния .

Поток рассеяния является функцией ампер-витков обмотки, а также площади и длины пути потока рассеяния.

Их можно изменить на этапе проектирования, изменив вольты на виток и геометрическое соотношение обмоток.

Влияние более высокого и низкого процентных сопротивлений

Процентное сопротивление трансформатора имеет большое влияние на уровней неисправности системы . Он определяет максимальное значение тока, который будет протекать в условиях неисправности.

Легко рассчитать максимальный ток, который трансформатор может выдать в условиях симметричного повреждения.

В качестве примера рассмотрим трансформатор 2 МВА с импедансом 5%. Максимальный уровень короткого замыкания, доступный на вторичной стороне, составляет:

2 МВА x 100/5 = 40 МВА

, и по этой цифре можно рассчитать эквивалентные первичные и вторичные токи короткого замыкания.

Роль процентного сопротивления в расчетах короткого замыкания

Процентное сопротивление трансформатора играет чрезвычайно важную роль в расчетах сети, т.е.

  • Расчет короткого замыкания
  • Расчет падения напряжения.

Как мы обсуждали в предыдущем разделе, когда мы прикладываем номинальное напряжение к первичной обмотке трансформатора, вторичная обмотка которого закорочена, ток короткого замыкания будет течь по обмоткам трансформатора.

Значение тока короткого замыкания составляет,

I sc = I номинальное × 100 / Z%

Значение импеданса в процентах одинаково для обеих обмоток, поскольку оно представляет собой процент от номинального напряжения. . Однако значение номинального тока будет различным для первичной и вторичной обмоток. Соответственно, значение тока короткого замыкания также будет различным для первичной и вторичной обмоток.

Меньшее процентное сопротивление имеет как положительные, так и отрицательные эффекты.

  1. Если Z% трансформатора меньше, ток короткого замыкания будет больше, что вызовет на большее напряжение в изоляции . Это отрицательный фактор .
  2. С другой стороны, это уменьшит падение напряжения в обмотке трансформатора. Это будет способствовать лучшему регулированию напряжения . Это положительный фактор .

Следовательно, процентное сопротивление трансформатора должно быть точно выбрано для поддержания надлежащего баланса между уровнем неисправности и регулированием напряжения.

Роль процентного сопротивления при параллельной работе трансформаторов

Процентное сопротивление играет важную роль при параллельной работе трансформаторов.

Если отношение номинальной мощности кВА к процентному сопротивлению двух параллельно работающих трансформаторов одинаково, они будут иметь одинаковую нагрузку. Однако, если соотношение другое, они будут разделять неравную нагрузку. Это может привести к перегреву одного трансформатора.

Допуск в Z% трансформатора

Полное сопротивление трансформатора в процентах указывается при заказе.Но следует отметить, что IEC 60076 допускает отклонение + 1-10% в процентном импедансе на стороне производителя.

Пример : Если мы заказываем трансформатор с импедансом 8%, его фактический Z% после изготовления может быть любым значением от 7,2% (-10% от 8) до 8,8% (+ 10% от 8), если только это не специально согласовывается с производителем во время заказа.

Допуск импеданса в процентах должен учитываться при расчетах энергосистемы и, соответственно, должны быть окончательно согласованы уровень неисправности системы и регулирование напряжения.

Ссылка: IEEE C57.112.10

Руководство по электрическим принципам: Однофазные трансформаторы




ЦЕЛЕЙ:

• обсудить различные типы трансформаторов.

• рассчитать значения напряжения, тока и оборотов для однофазных трансформаторов. с помощью формул.

• рассчитать значения напряжения, тока и оборотов для однофазных трансформаторов. используя коэффициент трансформации.

• подключите трансформатор и проверьте выходное напряжение различных обмоток.

• Обсудите обозначения полярности на принципиальной схеме.

• проверьте трансформатор, чтобы определить правильную маркировку полярности.

ГЛОССАРИЙ ТЕРМИНОВ ОДНОФАЗНЫХ ТРАНСФОРМАТОРОВ

Автотрансформатор
  • — трансформатор, который использует только одну обмотку для обеих первичный и вторичный
  • Управляющий трансформатор
  • — распространенный тип трансформатора, используемый в управлении двигателем. схемы для снижения номинального сетевого напряжения до величины, необходимой для работы Компоненты управления
  • Распределительный трансформатор
  • — трансформатор, который обычно используется для снизить линейное напряжение электросети до значения, необходимого для дома или промышленные предприятия
  • ток возбуждения — величина тока, протекающего в первичной обмотке. обмотка трансформатора при отсутствии нагрузки на вторичную обмотку
  • утечка потока — количество линий магнитного потока, которые излучают в воздух
  • пусковой ток — величина тока, протекающего при включении питания. сначала применяется к трансформатору
  • Изолирующие трансформаторы
  • — трансформаторы, имеющие первичную и первичную обмотки. вторичные обмотки электрически отделены друг от друга
  • ламинированный — процесс складывания тонких листов металла вместе для формирования материала сердечника трансформатора
  • нейтральный проводник — проводник, как правило, заземлен и является обычным подключение к другим частям цепи
  • первичная обмотка — обмотка трансформатора, к которому подключено питание
  • вторичная обмотка обмотка трансформатора, к которой подключена нагрузка. подключен
  • Понижающий трансформатор
  • — трансформатор, вырабатывающий нижнюю вторичную обмотку. напряжение, чем первичное напряжение
  • Повышающий трансформатор
  • — трансформатор, который производит высшую вторичную обмотку. напряжение, чем первичное напряжение
  • сердечник с ленточной обмоткой — вид сердечника трансформатора, состоящий из намотки длинной сплошной металлический лист круглой или прямоугольной формы с закругленными углами
  • toroid core — сердечник трансформатора, имеющий форму тороида, который обычно круглая с отверстием в центре, как у бублика
  • Трансформатор
  • — электрическая машина для изменения значений напряжения, ток и сопротивление
  • число витков — отношение числа витков провода в первичной обмотке. обмотка по сравнению с числом витков вторичной обмотки
  • Коэффициент передачи
  • вольт на виток — метод определения значений напряжения в трансформатор путем деления количества витков провода в первичной обмотке по приложенному напряжению

Трансформаторы являются одними из самых распространенных устройств в электрических сетях. поле.Их размер варьируется от менее одного кубического дюйма до размера железнодорожные вагоны. Их номинальные значения могут варьироваться от мВА (милливольт-ампер) до GVA (гигавольт-ампер). Крайне важно, чтобы каждый, кто работает в области электричества, понимал типов и подключений трансформаторов. В этом разделе будут представлены трансформаторы. предназначен для использования в однофазных установках. Два основных типа напряжения трансформаторы, разделительные трансформаторы и автотрансформаторы.

ОДНОФАЗНЫЕ ТРАНСФОРМАТОРЫ

Трансформатор — это машина с магнитным приводом, которая может изменять значения напряжения, тока и импеданса без изменения частоты.Трансформеры являются самыми эффективными из известных машин.

Их КПД обычно составляет от 90% до 99% при полной нагрузке. Трансформеры можно разделить на три классификации:

  1. Разделительный трансформатор.
  2. Автотрансформатор.
  3. Трансформатор тока.

Все значения трансформатора пропорциональны его коэффициенту вращения. Этот не означает, что точное количество витков провода на каждой обмотке должно быть известно, чтобы определять различные значения напряжения и тока для трансформатора.Что необходимо знать, так это соотношение витков. Например, предположим, трансформатор имеет две обмотки. Одна обмотка, первичная, имеет 1000 витков провода, и другой, вторичный, имеет 250 витков провода (рис. 1). Соотношение витков этого трансформатора составляет 4 к 1 или 4: 1 (1000/250 = 4), потому что есть четыре витка провода на первичной обмотке на каждый виток провода на вторичной обмотке.

ФОРМУЛ ТРАНСФОРМАТОРА

Для определения значений напряжения и тока можно использовать разные формулы. для трансформатора.Ниже приводится список стандартных формул, где

NP = количество витков в первичной обмотке NS = количество витков во вторичной обмотке EP = напряжение первичной обмотки ES = напряжение вторичной обмотки IP = ток в первичной обмотке IS = ток во вторичной

EP ES

= НП NS EP ES

= IS IP NP NS

= IS IP или EP _ NS = ES _ NP EP _ IP = ES _ IS NP _ IP = NS _ IS

Первичная обмотка трансформатора является обмоткой ввода мощности.Его обмотка, подключенная к входящему источнику питания. Вторичный обмотка — это обмотка нагрузки или выходная обмотка. Это сторона трансформатора который подключен к управляемой нагрузке (фиг. 2).

ПЕРВИЧНАЯ 1000 ОБОРОТОВ; ВТОРИЧНЫЙ 250 ОБОРОТОВ


РИС. 1 Все значения трансформатора пропорциональны его коэффициенту вращения.

НАГРУЗКА ВТОРИЧНАЯ ПЕРВИЧНАЯ


РИС. 2 Разделительный трансформатор имеет первичную и вторичную обмотки. электрически отделены друг от друга.

ИЗОЛЯЦИОННЫЕ ТРАНСФОРМАТОРЫ

Трансформаторы, показанные на рисунках 1 и 2, являются изолирующими трансформаторами. Это означает, что вторичная обмотка физически и электрически изолирована. от первичной обмотки, поэтому нет электрического соединения между первичная и вторичная обмотки. Трансформатор имеет магнитную связь, электрически не связаны. Эта изоляция линии часто очень желательна. характерная черта. Поскольку нет электрического соединения между нагрузкой и источник питания, трансформатор становится фильтром между ними.

Изолирующий трансформатор значительно снижает любые скачки напряжения, которые происходят на стороне питания, прежде чем они будут переданы на сторону нагрузки. Некоторые изолирующие трансформаторы имеют коэффициент трансформации 1: 1. Трансформатор этого типа будет иметь одинаковое входное и выходное напряжение и используется для только изоляция.

Изолирующий трансформатор может значительно снизить любые скачки напряжения перед они достигают вторичной обмотки из-за времени нарастания тока через индуктор.Напомним из раздела 10, что ток в катушке индуктивности увеличивается. с экспоненциальной скоростью (фиг. 3). По мере увеличения значения тока расширяющееся магнитное поле прорезает проводники катушки и индуцирует напряжение, противоположное приложенному напряжению. Количество наведенных напряжение пропорционально скорости изменения тока.

Это просто означает, что чем быстрее ток пытается увеличиться, тем большее сопротивление этому увеличению будет.Пиковые напряжения и токи обычно очень непродолжительны, что означает, что они увеличиваются в значение очень быстро (фиг. 4).

ЭКСПОНЕНЦИАЛЬНАЯ КРИВАЯ ВРЕМЯ ТОК ПИК НАПРЯЖЕНИЯ ДЛИТЕЛЬНОСТЬ НАПРЯЖЕНИЯ СИНУСОВОЙ ВОЛНЫ ВЫСОКОГО НАПРЯЖЕНИЯ


(слева) РИС. 3 Ток через катушку индуктивности нарастает экспоненциально. (Правильно) ИНЖИР. 4 Скачки напряжения обычно очень непродолжительны.

Это быстрое изменение стоимости вызывает усиление противодействия изменению. так же быстро.К тому времени, когда спайк был передан на вторичный обмотка трансформатора устранена или значительно уменьшена ( ИНЖИР. 5).

Основная конструкция изолирующего трансформатора показана на фиг. 6. Металлический сердечник используется для обеспечения хорошей магнитной связи между двумя обмотки. Сердцевина обычно состоит из пластин, уложенных друг на друга. Ламинирование сердечник помогает снизить потери мощности, вызванные индукцией вихревых токов.

ОСНОВНЫЕ ПРИНЦИПЫ РАБОТЫ

На ФИГ.7 подключена одна обмотка изолирующего трансформатора к источнику переменного тока, а другая обмотка подключена к нагрузке. Когда ток увеличивается от нуля до максимальной положительной точки, a магнитное поле расширяется наружу вокруг катушки. Когда ток уменьшается от его максимальной положительной точки к нулю магнитное поле схлопывается. Когда ток увеличивается к своему отрицательному пику, магнитное поле снова расширяется, но с противоположной полярностью.

Поле снова схлопывается, когда ток уменьшается от отрицательного. пик к нулю.

Это постоянно расширяющееся и сжимающееся магнитное поле разрезает обмотки. первичной обмотки и индуцирует в ней напряжение. Это индуцированное напряжение противодействует приложенное напряжение и ограничивает ток первичной обмотки. Когда катушка индуцирует в себе напряжение, это называется самоиндукцией.

ТОК ВОЗБУЖДЕНИЯ

Всегда будет некоторое количество тока в первичной обмотке любого трансформатор напряжения, независимо от типа или размера, даже при отсутствии нагрузки подключен к вторичному.Этот ток называется возбуждением. ток трансформатора.

Ток возбуждения — это величина тока, необходимая для намагничивания. сердечник трансформатора.

Ток возбуждения остается постоянным от холостого хода до полной нагрузки. В качестве по общему правилу ток возбуждения — это такая малая часть полного ток нагрузки, который часто не учитывается при расчетах.

ВЗАИМНАЯ ИНДУКЦИЯ

Так как вторичные обмотки разделительного трансформатора намотаны тот же сердечник, что и первичный, магнитное поле, создаваемое первичным обмотка также разрезает обмотки вторичной обмотки (РИС.8). Это постоянно изменение магнитного поля индуцирует напряжение во вторичной обмотке.

Способность одной катушки индуцировать напряжение в другой катушке называется взаимная индукция. Величина напряжения, индуцированного во вторичной обмотке, определяется отношением количества витков провода во вторичной обмотке к числу витков во вторичной обмотке. Главная.

Например, предположим, что первичная обмотка имеет 240 витков провода и подключена до 120 В переменного тока. Это дает трансформатору отношение вольт на виток, равное 0.5 (120 В / 240 витков = 0,5 вольт на виток). Теперь предположим, что вторичная обмотка содержит 100 витков провода.

Поскольку трансформатор имеет отношение вольт на виток 0,5, вторичная обмотка напряжение будет 50 В (100 _ 0,5 = 50).


РИС. 5 Изолирующий трансформатор значительно снижает скачки напряжения. НАЧАЛЬНЫЙ ВТОРИЧНАЯ НАГРУЗКА


РИС. 6 Базовая конструкция изолирующего трансформатора. ОБМОТКА СЕРДЕЧНИКОВ ОБМОТКА


РИС.7 Магнитное поле, создаваемое переменным током. МАГНИТНОЕ ПОЛЕ


РИС. 8 Магнитное поле первичной обмотки индуцирует напряжение во вторичной обмотке.

РАСЧЕТ ТРАНСФОРМАТОРА

В следующих примерах значения напряжения, тока и оборотов для будут рассчитаны различные трансформаторы.

Предположим, что развязывающий трансформатор, показанный на фиг. 2 имеет 240 витков провод на первичной и 60 витков провода на вторичной.Это соотношение из 4: 1 (240/60 = 4). Теперь предположим, что 120 В подключено к первичной обмотке. обмотка. Какое напряжение на вторичной обмотке?

EP ES

= NP NS 120 ES

= 240 60240 ES = 7200 ES = 30 В

Трансформатор в этом примере известен как понижающий трансформатор, потому что он имеет более низкое вторичное напряжение, чем первичное.

Теперь предположим, что нагрузка, подключенная к вторичной обмотке, имеет сопротивление 5 Ом.Следующая задача — вычислить текущий расход во вторичной обмотке. и первичные обмотки. Текущий поток вторичной обмотки можно вычислить используя закон Ома, так как напряжение и импеданс известны.

I = E Z I = 30 5 I = 6A

Теперь, когда величина тока во вторичной известно, первичный ток можно рассчитать по формуле EP ES

= IS IP 120 30

= 60 IP 120 IP = 180 IP = 1: 5A

Обратите внимание, что первичное напряжение выше чем вторичное напряжение, но первичный ток намного меньше, чем вторичный ток.Хорошее правило для любого типа трансформатора: мощность на входе должна равняться мощности на выходе. Если первичное напряжение и ток умножаются вместе, продукт должен быть равен произведению напряжения и тока. вторичного.

Первичный Вторичный 120 _ 1: 5 = 180 ВА 30 _ 6 = 180 ВА

В этом примере Предположим, что первичная обмотка содержит 240 витков провода, а вторичная содержит 1200 витков провода. Это соотношение витков 1: 5 (1200/240 = 5).Теперь предположим, что к первичной обмотке подключено 120 В. Вычислить напряжение на выходе вторичной обмотки.

EP ES

= NP NS 120 ES

= 240 1200240 ES = 144000 ES = 600 В

Обратите внимание, что вторичное напряжение этого трансформатора выше, чем первичное напряжение. Это известно как повышающий трансформатор.

Теперь предположим, что нагрузка, подключенная к вторичной обмотке, имеет полное сопротивление 2400 О.Найдите величину тока, протекающего в первичной и вторичной обмотках. Ток во вторичной обмотке можно рассчитать по закону Ома.

I = E Z I = 600 2400 I = 0:25 A

Теперь, когда величина текущего тока в вторичный известен, первичный ток может быть вычислен с использованием формула EP ES

= IS IP 120 600 = 0:25 IP 120 IP = 150 IP = 1:25 A

Обратите внимание, что количество потребляемой мощности равно количеству выходной мощности.

Начальное Среднее

120 _ 1:25 = 150 ВА 600 _ 0:25 = 150 ВА

РАСЧЕТ ЗНАЧЕНИЙ ИЗОЛЯЦИОННОГО ТРАНСФОРМАТОРА ПО ОТНОШЕНИЮ ОБОРОТОВ

Как показано в предыдущих примерах, значения трансформатора напряжения, ток, а обороты можно вычислить по формулам. Также возможно вычислить эти значения, используя коэффициент поворотов. Сделать расчеты с использованием коэффициент поворота, устанавливается коэффициент, сравнивающий некоторое число с 1, или 1 к некоторому числу.Например, предположим, что трансформатор имеет номинальную первичную обмотку. при 240 В и вторичной обмотки 96 В (РИС. 9). Соотношение витков может быть вычисляется делением более высокого напряжения на более низкое напряжение.

Коэффициент

= 240 96

Соотношение = 2: 5: 1


РИС. 9 Расчет значений трансформатора с использованием коэффициента трансформации.


РИС. 10 Расчет номиналов трансформатора.

Это соотношение указывает на то, что в первичной обмотке 2,5 витка провода. на каждый 1 виток провода во вторичной обмотке.Сторона трансформатора с самым низким напряжением всегда будет иметь наименьшее число (1) отношения.

Теперь предположим, что к вторичной обмотке подключено сопротивление 24 Ом. Величину вторичного тока можно найти с помощью закона Ома.

IS = 96 24 IS = 4A

Первичный ток можно определить с помощью коэффициента трансформации. Напомним, что вольт-амперы первичной обмотки должны равняться вольт-амперам вторичной обмотки.

Поскольку первичное напряжение больше, первичный ток должен быть меньше вторичного тока.

IP = Передаточное число оборотов IS IP = 4 2: 5 IP = 1: 6A

Чтобы проверить ответ, найдите вольт-амперы первичной и вторичной обмоток.

Первичный Вторичный 240 _ 1: 6 = 384 ВА 96 _ 4 = 384 ВА

Теперь предположим, что вторичная обмотка содержит 150 витков провода. В витки первичной обмотки также можно найти, используя коэффициент трансформации. Поскольку первичный напряжение выше, чем вторичное напряжение, первичное должно иметь больше витки проволоки.

NP = NS _ передаточное число NP = 150 _ 2: 5 NP = 375 витков

В следующем примере предположим, что изолирующий трансформатор имеет первичное напряжение 120 В и вторичное напряжение 500 В.Вторичная обмотка имеет сопротивление нагрузки 1200 Ом. Вторичная обмотка содержит 800 витков провода (РИС. 10).

Соотношение витков можно найти, разделив более высокое напряжение на более низкое. Напряжение.

Соотношение = 500120 Соотношение = 1: 4: 17

Вторичный ток можно найти с помощью Закон Ома.

IS = 500 1200 IS = 0: 417 A

В этом примере первичное напряжение ниже вторичного. Следовательно, первичный ток должен быть выше.

IP = IS _ коэффициент оборотов IP = 0: 417 _ 4:17 IP = 1: 74A

Чтобы проверить этот ответ, вычислите вольт-амперы обеих обмоток.

Начальное Среднее

120_1: 74 = 208: 8 ВА 500_0: 417 = 208: 5 ВА

Небольшая разница в ответах вызвана округлением значений.

Поскольку первичное напряжение меньше вторичного, повороты провода в первичной обмотке также будет меньше.

NP = Передаточное число витков NS NP = 800 4:17 NP = 192 витка РИС.11 показывает трансформатор со всеми завершенными значениями.


РИС. 11 Трансформатор с завершенными значениями.


РИС. 13 Вторичная обмотка трансформатора с несколькими ответвлениями.


РИС. 12 Трансформатор с многоотводной первичной обмоткой.


РИС. 14 Трансформатор с несколькими вторичными обмотками.

МНОЖЕСТВЕННЫЕ ОБМОТКИ

Изолирующие трансформаторы часто имеют обмотки. которые имеют более одного набора выводных проводов, подключенных к первичной или вторичной обмотке.

Это так называемые многоотводные обмотки. Трансформатор, показанный на фиг. 12 содержит вторичную обмотку на 24 В. Первичная обмотка содержит однако несколько нажатий. Один из основных выводных проводов обозначен буквой C и общее для других отведений.

Остальные выводы имеют маркировку 120, 208 и 240. Конструкция этого трансформатора так что его можно подключать к разным первичным напряжениям без изменения значение вторичного напряжения.В этом примере предполагается, что вторичная обмотка имеет всего 120 витков провода. Для поддержания При правильном соотношении витков первичная обмотка будет иметь 600 витков провода между C и 120,1040 оборотов между C и 208 и 1200 оборотов между C и 240.

Разделительный трансформатор, показанный на РИС. 13 содержит одну первичную обмотку. Однако вторичная обмотка была отключена в нескольких точках. Один вторичных выводных проводов обозначен буквой C и является общим для другого вывода. провода.При подаче номинального напряжения на первичную обмотку напряжения 12, 24, и 48 В можно получить на вторичной обмотке. Следует также отметить, что такое расположение отводов позволяет использовать трансформатор в качестве отводов с центральным отводом. трансформатор на два напряжения.

Если нагрузка приложена к выводным проводам, обозначенным C и 24, выводной провод с надписью 12 становится центральным краном. Если нагрузка размещена поперек C и 48 отведений, 24-отводный провод становится центральным отводом.

В этом примере предполагается, что первичная обмотка имеет 300 витков провод. Для получения правильного соотношения витков потребуется 30 витков провода. между C и 12, 60 витков провода между C и 24 и 120 витков провода между C и 48.

Разделительный трансформатор, показанный на РИС. 14 похож на трансформатор на фиг. 13. Показанный на фиг. 14, однако, имеет несколько вторичных обмоток. вместо одной вторичной обмотки с несколькими отводами.Преимущество заключается в том, что вторичные обмотки электрически изолированы друг от друга. Эти вторичные обмотки могут быть повышающими или понижающими в зависимости от применение трансформатора.

РАСЧЕТ ЗНАЧЕНИЙ ДЛЯ ИЗОЛЯЦИОННЫХ ТРАНСФОРМАТОРОВ С НЕСКОЛЬКИМИ ВТОРИЧНЫМИ УСТРОЙСТВАМИ

При вычислении значений изолирующего трансформатора с несколькими вторичными обмоток, каждая вторичная обмотка должна рассматриваться как отдельный трансформатор.

Например, трансформатор на фиг.15 содержит одну первичную обмотку и три вторичные обмотки. Первичный подключен к 120 В переменного тока и имеет 300 витков провода. Одна вторичная обмотка имеет выходное напряжение 560 В и нагрузку сопротивление 1000 Ом. Выходное напряжение второй вторичной обмотки составляет 208 Ом. V и сопротивление нагрузки 400 Ом, а третья вторичная обмотка имеет выход напряжение 24 В и сопротивление нагрузки 6 Ом. Ток, витки провода, и коэффициент для каждой вторичной обмотки, и будет найден ток первичной обмотки.

Первым шагом будет вычисление отношения витков первой вторичной обмотки. Это можно сделать, разделив меньшее напряжение на большее.

Коэффициент

= ES1 Коэффициент EP = 560120 Коэффициент = 1: 4: 67

Ток в первой вторичной обмотке можно вычислить с помощью закона Ома.

IS1 = 560 1000 IS1 = 0:56 A Количество витков провода в первой вторичной обмотке обмотка будет найдена с использованием отношения витков.

Поскольку эта вторичная обмотка имеет более высокое напряжение, чем первичная, она должна иметь больше витков провода.

NS1 = NP / отношение оборотов

NS1 = 300 _ 4:67

NS1 = 1401 виток

Количество первичного тока, необходимого для питания этой вторичной обмотки. можно также найти, используя коэффициент трансформации. Поскольку первичная обмотка имеет меньшее напряжение, для этого потребуется больше тока.

IP (ПЕРВЫЙ ВТОРИЧНЫЙ) = IS1 _ коэффициент оборотов IP (ПЕРВЫЙ ВТОРИЧНЫЙ) = 0:56 _ 4:67 IP (ПЕРВЫЙ ВТОРИЧНЫЙ) = 2:61 A

Передаточное число второй вторичной обмотки обмотка будет найдена путем деления более высокого напряжения на более низкое.

Соотношение

= 208120 Соотношение = 1: 1: 73

Величина текущего потока в этой вторичной обмотке. можно определить с помощью закона Ома.

IS2 = 208400 IS2 = 0:52 A

Поскольку напряжение этой вторичной обмотки больше чем первичный, у него будет больше витков провода, чем у первичного. В витки этой вторичной обмотки будут найдены с использованием отношения витков.

NS2 = NP _ передаточное число витков NS2 = 300 _ 1:73 NS2 = 519 витков


РИС.15 Расчет значений для трансформатора с несколькими вторичными обмотками.

Напряжение первичной обмотки ниже, чем на этой вторичной обмотке. Первичная воля, следовательно, требуется большее количество тока. Количество требуемого тока для работы этой вторичной обмотки будет рассчитываться с использованием коэффициента трансформации.

IP (ВТОРОЙ ВТОРИЧНЫЙ) = IS2 _ коэффициент оборотов IP (ВТОРОЙ ВТОРИЧНЫЙ) = 0:52 _ 1: 732 IP (ВТОРОЙ ВТОРИЧНЫЙ) = 0: 9A

Передаточное число третьей вторичной обмотки обмотка будет рассчитана так же, как и два других.

Большее напряжение будет разделено на меньшее.

Коэффициент = 120 24 Коэффициент = 5: 1 Первичный ток будет найден с помощью Ом закон.

IS3 = 24 6 IS3 = 4A

Выходное напряжение третьей вторичной обмотки меньше чем первичный. Таким образом, количество витков провода будет меньше. чем первичные витки.

NS3 = Передаточное число витков NP NS3 = 300 5 NS3 = 60 витков

Первичная имеет высшую напряжение, чем эта вторичная.Следовательно, первичный ток будет меньше на величину передаточного числа.

IP (ТРЕТИЙ ВТОРИЧНЫЙ) = IS3 / отношение оборотов

IP (ТРЕТИЙ ВТОРИЧНЫЙ) = 4/5

IP (ТРЕТИЙ ВТОРИЧНЫЙ) = 0: 8A

Первичная обмотка должна подавать ток на каждую из трех вторичных обмоток. Следовательно, общая величина первичного тока будет суммой токов требуется для питания каждой вторичной обмотки.

IP (ИТОГО) = IP1) IP2) IP3 IP (ИТОГО) = 2:61) 0: 9) 0: 8 IP (ИТОГО ) = 4:31 А

Преобразователь со всеми вычисленными значениями показан на фиг.16.

CH


РИС. 16 Преобразователь со всеми вычисленными значениями.


РИС. 17 Распределительный трансформатор.


РИС. 18 Напряжение от любой линии к нейтрали составляет 120 В. Напряжение по всей вторичной обмотке 240 В.


РИС. 19 Напряжения на вторичной обмотке синфазны.


РИС. 20 нагрузок 240 В подключаются напрямую через вторичную обмотку.

ТРАНСФОРМАТОРЫ РАСПРЕДЕЛИТЕЛЬНЫЕ

Распространенным типом изолирующего трансформатора является распределительный трансформатор, ИНЖИР.17. Этот трансформатор изменяет высокое напряжение в распределительной сети энергокомпании. линии к общему 240/120 В, который обеспечивает питание большинства домов и многих предприятия. В этом примере предполагается, что первичный подключен на линию 7200 В. Вторичная обмотка — 240 В с центральным отводом. Центр отвод заземляется и становится нейтральным проводом или общим проводом. Если напряжение измеряется на всей вторичной обмотке, напряжение 240 В будет видно. Если напряжение измеряется от любой линии до центрального ответвителя, будет видна половина вторичного напряжения, или 120 В (РИС.18). Этот происходит потому, что заземленный нейтральный проводник становится центральной точкой двух синфазных напряжений. Векторная диаграмма, изображающая это состояние, показывает, что заземленный нулевой провод подключен к центральной точке двух синфазных напряжений (фиг. 19). Нагрузки, предназначенные для работы на 240 В, например, водонагреватели, электрические резистивные нагреватели и центральные кондиционеры подключаются напрямую через линии вторичный (ФИГ.20).

Нагрузки, которые предназначены для работы от напряжения 120 В, подключаются от центрального ответвителя, или нейтральный, к одной из второстепенных линий. Функция нейтрального должен переносить разницу в токе между двумя вторичными линиями и поддерживать сбалансированное напряжение.

На ФИГ. 21 одна из вторичных линий имеет ток 30 А и другой имеет ток 24 А. Нейтраль проводит сумму несбалансированная нагрузка. В этом примере ток нейтрали будет 6 А (30 _ 24 = 6).


РИС. 21 Нейтраль несет сумму неуравновешенной нагрузки.


РИС. 23 Управляющий трансформатор подключен для работы на 240 В.


РИС. 22 Управляющий трансформатор с предохранителем, добавленным к вторичной обмотке. обмотка.


РИС. 24 Управляющий трансформатор подключен для работы на 480 В.

ТРАНСФОРМАТОРЫ УПРАВЛЕНИЯ

Другой распространенный тип изолирующего трансформатора, встречающийся в промышленности — управляющий трансформатор (РИС.22). Трансформатор управления снижает линейное напряжение до значения, необходимого для работы цепей управления. Большинство общий тип управляющего трансформатора содержит две первичные обмотки и одну вторичный. Первичные обмотки обычно рассчитаны на 240 В каждая, и вторичный на 120 В.

Такое расположение обеспечивает соотношение витков 2: 1 между каждой первичной обмоткой. обмотки и вторичные. Например, предположим, что каждый из основных обмотка содержит 200 витков провода.Вторичный будет содержать 100 витков проволоки.

Одна из первичных обмоток на фиг. 23 обозначен как h2 и h3. Другой обозначается h4 и h5.

Вторичная обмотка имеет маркировку X1 и X2. Если первичная обмотка трансформатора должен быть подключен к 240 В, две первичные обмотки будут подключены параллельно, соединив h2 и h4 вместе, а h3 и h5 вместе. Когда первичные обмотки соединены параллельно, приложено одинаковое напряжение через обе обмотки.Эффект такой же, как и при использовании одной первичной обмотки. всего 200 витков провода. Поддерживается передаточное число 2: 1, а вторичное напряжение 120 В.

Если трансформатор должен быть подключен к напряжению 480 В, две первичные обмотки будут соединены последовательно путем соединения h3 и h4 вместе (фиг. 24). Входящая мощность подключена к h2 и h5.

Последовательное соединение первичных обмоток увеличивает количество витков в первичный до 400.Таким образом получается передаточное число 4: 1. При подключении 480 В к первичному, вторичное напряжение остается на уровне 120.

Первичные выводы управляющего трансформатора обычно перекрестно соединены. как показано на фиг. 25, поэтому можно использовать металлические перемычки для подключения первичного для работы на 240 или 480 В. Если первичная обмотка должна быть подключена на 240 В При работе металлические звенья соединяются под винтами, как показано на РИС. 26.

Обратите внимание, что выводы h2 и h4 соединены вместе, а выводы h3 и h5 связаны вместе.

Сравните это соединение с соединением, показанным на РИС. 23.

Если трансформатор должен быть подключен для работы на 480 В, клеммы h3 и h4 соединены, как показано на фиг. 27. Сравните эту связь с соединение, показанное на фиг. 24.


РИС. 25 Перекрещены первичные обмотки управляющего трансформатора.


РИС. 26 Металлические перемычки соединяют трансформатор для работы на 240 В.


РИС. 27 Управляющий трансформатор подключен для работы на 480 В.


РИС. 28 Ядро трехфазного трансформатора
мощностью 600 МВА. В Houston Lighting and Power.


РИС. 29 Трансформатор с сердечником.


РИС. 32 Тороидальный трансформатор.


РИС. 30 Трансформатор корпусного типа.


РИС. 31 Трансформатор с сердечником типа Н.

ТИПЫ СЕРДЕЧНИКОВ ТРАНСФОРМАТОРА

В конструкции используются сердечники нескольких типов. трансформаторов.Большинство сердечников изготовлено из тонких стальных перфорированных пластин. вместе, чтобы сформировать прочную металлическую основу. Ядро на 600 МВА (мега-ампер) трехфазный трансформатор показан на фиг. 28. Ламинированные сердечники предпочтительны. потому что на поверхности каждой пластинки образуется тонкий слой оксида и действует как изолятор, уменьшая образование вихревых токов внутри основной материал. Количество основного материала, необходимого для конкретного трансформатор определяется номинальной мощностью трансформатора, но он должно быть достаточным для предотвращения насыщения при полной нагрузке.

Тип и форма сердечника обычно определяют количество магнитных полей. связь между обмотками и в некоторой степени эффективность трансформатор.

Трансформатор, показанный на фиг. 29 известен как трансформатор с сердечником. Обмотки размещены вокруг каждого конца материала сердечника.

Трансформатор корпусного типа сконструирован аналогично сердечнику. тип, за исключением того, что тип оболочки имеет металлический сердечник через середину окна (РИС.30). Первичная и вторичная обмотки намотаны вокруг центральной части сердечника с ближайшей к ней обмоткой низкого напряжения к металлической сердцевине. Такое расположение позволяет окружать трансформатор. сердечником и обеспечивает отличную магнитную связь. Когда трансформатор находится в рабочем состоянии, весь магнитный поток должен проходить через центральный сердечник кусок. Затем он разделяется на две части внешнего сердечника.

Сердечник типа Н, показанный на фиг. 31 аналогичен сердечнику оболочечного типа в что у него есть железный сердечник через его центр, вокруг которого первичная и вторичные обмотки намотаны.Однако сердечник H окружает обмотки. с четырех сторон вместо двух. Этот дополнительный металл помогает уменьшить случайную утечку поток и повысить эффективность трансформатора.

Сердечник типа H часто используется в высоковольтных распределительных трансформаторах.

Ленточный сердечник или тороидальный сердечник (РИС. 32) сконструирован плотно наматывание одной длинной непрерывной ленты из кремнистой стали в спираль. Кассета могут или не могут быть размещены в пластиковом контейнере, в зависимости от области применения.Этот тип сердечника не требует стальных перфораций, соединенных вместе. Поскольку сердечник представляет собой одну непрерывную металлическую часть, утечка потока сохраняется. до минимума. Рассеивание потока — это линии магнитного потока, которые не следуют металлический сердечник и теряются для окружающего воздуха. Ленточный сердечник является одним из наиболее эффективных доступных дизайнов сердечников.


РИС. 32

ПУСКОВОЙ ТОК ТРАНСФОРМАТОРА

Реактор — это дроссель, используемый для добавления индуктивности в цепь.Несмотря на то что трансформаторы и реакторы являются индуктивными устройствами, есть отличное разница в их эксплуатационных характеристиках. Реакторы часто подключаются последовательно с нагрузкой с низким сопротивлением для предотвращения пускового тока (величина тока, протекающего при первоначальном подаче питания на схему) от становится чрезмерным (РИС. 33). Трансформаторы, однако, могут производить чрезвычайно высокие пусковые токи при первом подаче питания на первичную обмотку. Тип сердечника, используемого при создании катушек индуктивности и трансформаторов, в первую очередь отвечает за эту разницу в характеристиках.


РИС. 33 Реакторы помогают предотвратить чрезмерный пусковой ток при первом включении питания.


РИС. 34 Автотрансформатор имеет только одну обмотку, которая используется для обеих первичный и вторичный.

АВТОТРАНСФОРМАТОРЫ

Автотрансформаторы — это однообмоточные трансформаторы.

Они используют одну и ту же обмотку для первичной и вторичной обмоток. Главная обмотка на фиг. 34 находится между точками B и N и имеет напряжение 120 В. применяется к нему.Между точками B и N 120 витков провода. Теперь Предположим, что селекторный переключатель установлен в положение D. Теперь нагрузка подключена. между точками D и N. Вторичная обмотка этого трансформатора содержит 40 витков проволоки. Если необходимо вычислить величину напряжения, приложенного к нагрузке, можно использовать следующую формулу.

EP ES

= NP NS 120 ES

= 120 40120 ES = 4800 ES = 40 В

Предположим, что нагрузка, подключенная к вторичной обмотке, имеет импеданс 10 Ом.Величину тока во вторичном контуре можно вычислить. по формуле

I = E Z I = 40 10 I = 4A

Первичный ток можно вычислить по той же формуле, которая использовалась для вычисления первичного тока для трансформатора с изоляцией.

EP ES

= IS IP 120 40

= 4 IP 120 IP = 160 IP = 1: 333 A

Количество потребляемой и выходной мощности автотрансформатора должно соответствовать так же, как и в изолирующем трансформаторе.

Начальное Среднее

120 _ 1: 333 = 160 ВА 40 _ 4 = 160 ВА Теперь предположим, что поворотный переключатель подключен к точке А. Теперь нагрузка подключена к 160 виткам провода. Напряжение, приложенное к нагрузке, можно рассчитать с помощью

.

EP ES

= NP NS 120 ES

= 120160120 ES = 19200 ES = 160 В

===

ДЕРЖАТЕЛЬ ЩЕТКИ ВАЛА УГЛЕРОДНАЯ ЩЕТКА POWERKOTE COIL CORE ПОДШИПНИКИ ОСНОВНОГО ВАЛА КОНЦЕВЫЕ ФОРМЫ РАДИАТОРА ПОЗОЛОЧЕННАЯ ПЛАТА КОММУТАТОРА


РИС.35 Powerstat в разрезе.

===

Обратите внимание, что автотрансформатор, как и изолирующий трансформатор, может быть либо повышающий, либо понижающий трансформатор.

Если поворотный переключатель, показанный на РИС. 34 были удалены и заменены скользящий ответвитель, который контактировал непосредственно с обмоткой трансформатора, соотношение оборотов можно регулировать непрерывно.

Этот тип трансформатора обычно называют Variac или Powerstat, в зависимости от производителя.Вид в разрезе переменного автотрансформатора показан на фиг. 35. Обмотки намотаны на ленточный тороид. ядро внутри пластикового корпуса. Вершины обмоток плоско фрезерованы. для обеспечения коммутатора. Угольная щетка контактирует с обмотками.

Автотрансформаторы

часто используются энергетическими компаниями для обеспечения малых увеличивать или уменьшать линейное напряжение. Они помогают регулировать напряжение к большим линиям электропередач. Трехфазный автотрансформатор показан на фиг.36. Этот трансформатор находится в корпусе, заполненном трансформаторным маслом, который действует как охлаждающая жидкость и предотвращает образование влаги в обмотках.

У автотрансформатора есть один недостаток. Поскольку нагрузка подключена с одной стороны линии электропередачи, между входящими мощность и нагрузка. Это может вызвать проблемы с некоторыми типами оборудования. и это необходимо учитывать при проектировании энергосистемы.

ПОЛЯРНОСТИ ТРАНСФОРМАТОРА

Чтобы понять полярность трансформатора, напряжение, создаваемое на обмотке. необходимо учитывать в какой-то момент времени.В цепи переменного тока 60 Гц напряжение меняет полярность 60 раз в секунду. При обсуждении трансформатора полярности, необходимо учитывать взаимосвязь между разными обмотки в один и тот же момент времени. Следовательно, предполагается, что этот момент времени — когда создается пиковое положительное напряжение поперек обмотки.


РИС. 36 Трехфазный автотрансформатор.


РИС. 37 точек полярности трансформатора.


РИС.38 Знаков полярности для нескольких вторичных обмоток.


РИС. 39 Соединение вторичной и первичной обмоток образует автотрансформатор.


РИС. 40 Перерисовка соединения.

МАРКИРОВКА ПОЛЯРНОСТИ ПО СХЕМЕ

Когда трансформатор показан на принципиальной схеме, это обычная практика. чтобы указать полярность обмоток трансформатора, поставив точку рядом с один конец каждой обмотки, как показано на фиг. 37.

Эти точки означают, что в этот момент полярность одинакова. для каждой обмотки.Например, предположим, что напряжение, приложенное к первичной обмотка имеет максимальное положительное значение на клемме, обозначенной значком точка. Напряжение на точечном выводе вторичной обмотки будет на пике. положительное значение одновременно.

Этот же тип обозначения полярности используется для трансформаторов, более одной первичной или вторичной обмотки. Пример трансформатора с мульти-вторичной обмоткой показано на фиг. 38.


РИС. 41 Размещение точек полярности для обозначения аддитивной полярности.


РИС. 43 Стрелки указывают расположение точек полярности.


РИС. 42 точки полярности указывают на вычитающую полярность.


РИС. 44 Значения стрелок складываются, чтобы указать аддитивную полярность (усиление связь).

ДОБАВИТЕЛЬНАЯ И СУБТРАКТИВНАЯ ПОЛЯРНОСТИ

Полярность обмоток трансформатора определяется подключением их в качестве автотрансформатора и тестирования на аддитивную или вычитающую полярность, часто называют повышающим или понижающим соединением.

Это делается путем подключения одного вывода вторичной обмотки к одному выводу первичной обмотки и измерения напряжения на обеих обмотках (фиг. 39). В Трансформатор, показанный в примере, имеет номинальное первичное напряжение 120 В. и номинальное вторичное напряжение 24 В. Эта же схема была перерисована на фиг. 40, чтобы более четко показать связь. Обратите внимание, что вторичный обмотка была подключена последовательно с первичной обмоткой.

Трансформатор теперь содержит только одну обмотку и, следовательно, является автотрансформатором.При подаче 120 В на первичную обмотку вольтметр подключен на вторичной обмотке будет указывать либо сумму двух напряжений, либо разница между двумя напряжениями. Если этот вольтметр показывает 144 V (120) 24 = 144) обмотки подключаются аддитивно (повышают), а полярность точки могут быть размещены, как показано на фиг. 41. Отметим в этой связи, что вторичное напряжение добавляется к первичному напряжению.

Если вольтметр, подключенный к вторичной обмотке, показывает напряжение на 96 В (120 _ 24 = 96) обмотки соединены вычитающим (понижающим), и точки полярности размещены, как показано на фиг.42.

РАСПОЛОЖЕНИЕ ТОЧЕК СТРЕЛКАМИ

Чтобы помочь в понимании аддитивной и вычитающей полярности, стрелки может использоваться для указания направления больше или меньше значений. На фиг. 43, стрелки были добавлены, чтобы указать направление, в котором точка должна быть размещена.

В этом примере трансформатор подключен аддитивно или повышающе, и обе стрелки указывают в одном направлении. Обратите внимание, что стрелка указывает в точку.На фиг. 44 видно, что значения двух стрелок добавляют к производят 144 В.

На ФИГ. 45, стрелки были добавлены к вычитающей или понижающей связи. В этом случае стрелки указывают в противоположных направлениях, а напряжение один пытается отменить напряжение другого. В результате меньшее значение удаляется, а большее значение уменьшается, как показано на ИНЖИР. 46. ​​


РИС. 47 На холостом ходу первичный ток отстает от напряжения на 90 °.


РИС. 46 Стрелки указывают на вычитающую полярность.


РИС. 45 Значения стрелок вычитаются (соединение понижения).


РИС. 48 Вторичное напряжение отстает от первичного тока на 90 °.

ВЗАИМООТНОШЕНИЯ НАПРЯЖЕНИЯ И ТОКА В ТРАНСФОРМАТОРЕ

Когда первичная обмотка трансформатора подключена к источнику питания, но нет нагрузка подключена к вторичной обмотке, ток ограничен индуктивным сопротивлением первичной.В настоящее время трансформатор представляет собой индуктор, и ток возбуждения отстает от приложенного напряжения на 90 ° (ФИГ. 47). Первичный ток вызывает напряжение во вторичной обмотке.

Это индуцированное напряжение пропорционально скорости изменения тока. Вторичное напряжение будет максимальным в периоды, когда первичное ток меняется больше всего (0 °, 180 ° и 360 °), и он будет равен нулю когда первичный ток не меняется (90 ° и 270 °).Сюжет о первичный ток и вторичное напряжение показывает, что вторичное напряжение отстает от первичного тока на 90 ° (РИС. 48). Поскольку вторичное напряжение отстает от первичного тока на 90 °, а приложенное напряжение опережает первичный ток на 90 °, вторичное напряжение на 180 ° не совпадает по фазе с приложенным напряжение и синфазно с наведенным напряжением в первичной обмотке.

ДОБАВЛЕНИЕ НАГРУЗКИ К ВТОРИЧНОМУ

Когда нагрузка подключена к вторичной обмотке, ток начинает течь.Потому что трансформатор является индуктивным устройством, вторичный ток отстает от вторичное напряжение на 90 °. Поскольку вторичное напряжение отстает от первичного ток на 90 °, вторичный ток на 180 ° не совпадает по фазе с первичным ток (РИС. 49).

Ток вторичной обмотки индуцирует противодействующее напряжение во вторичной обмотке. обмотки, противостоящие противодавлению, индуцированному в первичной обмотке.

Противодавление вторичного напряжения ослабляет первичное и позволяет больше первичного тока, чтобы течь.По мере увеличения вторичного тока первичный ток увеличивается пропорционально.

Поскольку вторичный ток вызывает уменьшение производимого противодавления в первичной обмотке ток первичной обмотки меньше ограничивается индуктивным реактивное сопротивление и многое другое за счет сопротивления обмоток при добавлении нагрузки к вторичный. Ваттметр, подключенный к первичной обмотке, покажет, что истинная мощность увеличивается при добавлении нагрузки к вторичной обмотке.

===

ПРИЛОЖЕННОЕ НАПРЯЖЕНИЕ ВТОРИЧНЫЙ ТОК ПЕРВИЧНЫЙ ТОК ВТОРИЧНОЕ НАПРЯЖЕНИЕ


РИС.49 Соотношение напряжения и тока первичной и вторичной обмоток обмотки.

===


РИС. 50 Проверка трансформатора омметром.

===

ИСПЫТАНИЕ ТРАНСФОРМАТОРА

Для определения состояния трансформатора можно провести несколько тестов. Простой тест на заземление, замыкание или обрыв можно выполнить с помощью омметра. (РИС. 50). Омметр A подключается к одному проводу первичной обмотки и к одному свинец вторичного.

Этот тест проверяет наличие короткого замыкания между первичной и вторичной обмотками. Омметр должен показывать бесконечность. Если первичных несколько или вторичной обмотки, все изолированные обмотки должны быть проверены на короткое замыкание. Омметр B показывает проверку обмоток на массу. Один из лидеров омметр подключается к корпусу трансформатора, а другой подключен к обмотке. Все обмотки должны быть проверены на заземление, и омметр должен показывать бесконечность для каждой обмотки.Омметр C показывает проверка обмоток на непрерывность. Сопротивление провода обмотки должен отображаться омметром.

Если трансформатор находится в хорошем состоянии после омметра Затем его следует проверить на наличие короткого замыкания и заземления с помощью мегомметра. MEGGER обнаружит проблемы с пробоем изоляции, которые омметр не буду. Состояние диэлектрического масла в больших маслонаполненных трансформаторах следует проверять через определенные промежутки времени.Это включает в себя выборку масла и проведения испытаний на электрическую прочность и загрязнение.

ПАРАМЕТРЫ ТРАНСФОРМАТОРА

У большинства трансформаторов есть паспортная табличка с информацией о трансформаторе. Приведенная информация обычно определяется размером, типом и производителем. Почти на всех паспортных табличках указаны первичное напряжение, вторичное напряжение и Номинальная мощность в кВА (киловольт-ампер). Трансформаторы рассчитаны на киловольт-амперы и не киловатты, потому что истинная мощность определяется коэффициентом мощности нагрузки.Другая информация, которая может быть указана или не указана, — это частота, превышение температуры в C °, полное сопротивление, тип изоляционного масла, галлоны изоляционного материала масло, серийный номер, номер типа, номер модели, и есть ли у трансформатора однофазный или трехфазный.

ОПРЕДЕЛЕНИЕ МАКСИМАЛЬНОГО ТОКА

На паспортной табличке не указан текущий номинал обмоток. С потребляемая мощность должна быть равна выходной мощности, номинальный ток обмотки можно определить, разделив номинальную мощность в кВА на напряжение обмотки.Для Например, предположим, что трансформатор имеет номинальную мощность 0,5 кВА, первичное напряжение 480 В, а вторичное напряжение 120 В. Для определения максимального тока который может поставляться вторичной обмоткой, разделите рейтинг KVA на вторичный Напряжение.

IS = кВА ES IS = 500120 IS = 4:16 A

Таким же образом можно рассчитать первичный ток.

IP = кВА EP IP = 500 480 IP = 1:04 A

Трансформаторы с несколькими вторичными обмотками обычно имеют ток рейтинг указан вместе с номинальным напряжением.

++++++++++

ПРИМЕР 1

Предположим, что трансформатор, показанный на фиг. 51 — 2400/480 вольт 15 кВА трансформатор. Чтобы определить полное сопротивление трансформатора, сначала вычислите номинальный ток полной нагрузки вторичной обмотки.

I5 ВА E I5 15000 480 I531: 25 А

Далее увеличиваем напряжение источника, подключенного к высоковольтной обмотке. до тех пор, пока в обмотке низкого напряжения не потечет ток 31,25 ампер.Предполагать что значение напряжения составляет 138 вольт. Наконец, определите процент приложенного напряжения по сравнению с номинальным напряжением.

% Напряжение источника Z5 номинальное напряжение 3100

% Z5 138 2400 3100

% Z50: 05753100

% Z55: 75 Полное сопротивление этого трансформатора составляет 5,75%.

Импеданс трансформатора является основным фактором при определении величины напряжения. падение трансформатора в промежутке между холостым ходом и полной нагрузкой, а также при определении количество тока, протекающего при коротком замыкании.Короткое замыкание ток можно рассчитать по формуле (Однофазный) ISC 5 ВА E3% Z Формула определения тока в однофазной цепи — I5 ВА. E Приведенную выше формулу для определения тока короткого замыкания можно изменить. чтобы показать, что ток короткого замыкания можно вычислить, разделив номинальный вторичный ток% Z.

ISC 5 I Оценка% Z

++++++++++

ПРИМЕР 2

Однофазный трансформатор рассчитан на 50 кВА и имеет вторичное напряжение. 240 вольт.Паспортная табличка показывает, что трансформатор имеет внутреннюю импеданс (% ИЗ) 2,5%. Какой ток короткого замыкания у этого трансформатора? I Вторичный 5 50,000 240 I Вторичный 5208: 3 ампера I Короткое замыкание 5 208: 3

% Z I Короткое замыкание 5 208: 3

0: 025 I Короткое замыкание 58,333: 3 ампера Иногда необходимо вычислить величина тока короткого замыкания при определении правильного номинала предохранителя для схемы. Предохранитель должен иметь достаточно высокий рейтинг прерывания. для устранения неисправности в случае короткого замыкания.

++++++++++

===

ИСТОЧНИК ПЕРЕМЕННОГО НАПРЯЖЕНИЯ, ВОЛЬТМЕТР, ВЫСОКОВОЛЬТНАЯ ОБМОТКА, НИЗКОЕ НАПРЯЖЕНИЕ. КОРОТКОЕ ЗАМЫКАНИЕ АММЕТРА


РИС. 51 Определение импеданса трансформатора.

===

ТРАНСФОРМАТОР ИМПЕДАНС

Импеданс трансформатора определяется физической конструкцией трансформатор. Такие факторы, как количество и тип материала сердечника, проволоки размер, используемый для создания обмоток, количество витков и степень магнитного поля. соединение между обмотками сильно влияет на импеданс трансформатора.

Импеданс выражается в процентах (% Z или% IZ) и измеряется путем подключения короткое замыкание низковольтной обмотки трансформатора и затем подключение источника переменного напряжения к высоковольтной обмотке, фиг. 51. Затем переменное напряжение увеличивают до тех пор, пока номинальный ток не течет в обмотка низкого напряжения. Импеданс трансформатора определяется путем расчета процент переменного напряжения по сравнению с номинальным напряжением обмотка высокого напряжения.

РЕЗЮМЕ

• Все значения напряжения, тока и импеданса в трансформаторе пропорциональны. к коэффициенту оборотов.

• Трансформаторы могут изменять значения напряжения, тока и импеданса, но не может изменить частоту.

• Первичная обмотка трансформатора подключена к линии электропередачи.

• Вторичная обмотка подключена к нагрузке.

• Трансформатор, напряжение вторичной обмотки которого ниже, чем напряжение первичной обмотки. понижающий трансформатор.

• Трансформатор, напряжение вторичной обмотки которого выше, чем напряжение первичной обмотки. — повышающий трансформатор.

• Изолирующий трансформатор электрически имеет первичную и вторичную обмотки. и механически отделены друг от друга.

• Когда катушка индуцирует в себе напряжение, это называется самоиндукцией.

• Когда одна катушка наводит напряжение на другую катушку, это называется взаимным индукция.

• Трансформаторы могут иметь очень высокий пусковой ток при первом подключении. к линии электропередачи из-за наличия магнитных доменов в материале сердечника.

• Индукторы создают воздушный зазор в материале сердечника, который вызывает магнитные домены для сброса в нейтральное положение.

• Автотрансформаторы имеют только одну обмотку, которая используется как первичные и вторичный.

• Автотрансформаторы имеют недостаток в том, что они не имеют изоляции линии. между первичной и вторичной обмотками.

• Изолирующие трансформаторы помогают фильтровать скачки напряжения и тока между первичная и вторичная сторона.

• Точки полярности часто добавляются на принципиальные схемы для обозначения трансформатора. полярность.

• Трансформаторы можно подключать с добавлением или вычитанием полярности.

ВИКТОРИНА:

1. Что такое трансформатор?

2. Каков общий КПД трансформаторов?

3. Что такое изолирующий трансформатор?

4. Все значения трансформатора пропорциональны его.

5. Что такое автотрансформатор?

6.В чем недостаток автотрансформатора?

7. Объясните разницу между повышающим и понижающим трансформатором.

8. Трансформатор имеет первичное напряжение 240 В и вторичное напряжение. 48 В. Какое отношение витков у этого трансформатора?

9. Трансформатор имеет мощность 750 ВА. Первичное напряжение 120 В. Что такое первичный ток?

10. Трансформатор имеет коэффициент трансформации 1: 6. Первичный ток 18 А.Что такое вторичный ток?

11. Что означают точки рядом с выводами трансформатора? изобразить на схеме? 12. Трансформатор имеет номинальное напряжение первичной обмотки. 240 В и номинальное вторичное напряжение 80 В. Если обмотки были подключены после вычитания, какое напряжение появится на всем соединении?

12 должны были быть подключены аддитивно, какое напряжение появилось бы на всю обмотку?

13. Если речь идет об обмотках трансформатора

14.Первичные выводы трансформатора обозначены цифрами 1 и 2. Вторичные выводы провода обозначены 3 и 4. Если точки полярности размещены рядом с выводами 1 и 4, какой вторичный провод будет подключен к клемме 2 для подключения добавка?

ПРОБЛЕМЫ ПРАКТИКИ


См. РИС. 52, чтобы ответить на следующие вопросы. Найдите все недостающее ценности.

1.

EP 120 ES 24 IP IS NP 300 NS Соотношение Z = 3 Ом 2.

EP 240 ES 320 IP IS NP NS 280 Коэффициент Z = 500 Ом 3.

EP ES 160 IP IS NP NS 80 Соотношение 1: 2,5 Z = 12 Ом 4.

EP 48 ES 240 IP IS NP 220 NS Соотношение Z = 360 Ом 5.

EP ES IP 16.5 IS 3.25 NP NS 450 Коэффициент Z = 56 Ом 6.

EP 480 ES IP IS NP 275 NS 525 Коэффициент Z = 1,2 кОм.

См. РИС. 53, чтобы ответить на следующие вопросы. Найдите все недостающее ценности.

7.

EP 208 ES1 320 ES2 120 ES3 24 IP IS1 IS2 IS3 NP 800 NS1 NS2 NS3 Соотношение 1: Соотношение 2: Соотношение 3:

R1 12 кОм, R2 6 O R3 8 O 8.

EP 277 ES1 480 ES2 208 ES3 120 IP IS1 IS2 IS3 NP 350 NS1 NS2 NS3 Соотношение 1: Соотношение 2: Соотношение 3:

R1 200 O R2 60 O R3 24 O


РИС. 52 Практические проблемы изолирующего трансформатора.


РИС. 53 Однофазный трансформатор с несколькими вторичными обмотками.

ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ

1. Вы работаете на промышленном предприятии. Необходимо установить однофазный трансформатор. На заводской табличке трансформатора указана следующая информация:

Первичное напряжение — 13,800 Вторичное напряжение — 240 Полное сопротивление — 5% кВА — 150 Вторичный предохранитель рассчитан на перегрузку 800 А и номинал прерывания. 10000 А.Достаточен ли рейтинг прерывания для этой установки?

2. Вы работаете на промышленном предприятии.

Электропитание мостового крана составляет 480 В переменного тока. Электрический тормоз на подъемнике работает от 240 В. Тормоз рассчитан на ток 3,5 А. установите трансформатор, чтобы снизить напряжение с 480 В до 240 В. Номинальная мощность в кВА трансформатор должен быть как минимум на 115% больше ожидаемой нагрузки. Части В номере есть трансформаторы следующих размеров: 0.025 кВА, 0,05 кВА, 0,1 кВА, 0,5 кВА, 1 кВА, 1,25 кВА, 1,5 кВА и 2 кВА. Какие из доступных трансформаторы следует использовать для этой установки?

::: SKM Power * Tools ::: ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ЭЛЕКТРОТЕХНИКИ

3 обмоточных трансформатора

Информация, представленная в этом руководстве по применению, предназначена для просмотра, утверждения, интерпретации и применения только зарегистрированным профессиональным инженером.SKM не несет никакой ответственности, связанной с использованием и интерпретацией этой информации.

Воспроизведение этого материала разрешено при условии надлежащего подтверждения со стороны SKM Systems Analysis Inc.

Введение

В начале проекта у инженеров есть много вариантов выбора при разработке проекта системы распределения электроэнергии. Например, рассмотрим случай новой электростанции, состоящей из 2 генераторов.Для подключения генераторов к энергосистеме обычно рассматриваются три подхода к преобразованию. Самый простой подход — обслуживать оба генератора от одного двухобмоточного трансформатора, рис. 1а. Эта конструкция, как правило, характеризуется наименьшей стоимостью преобразования, но наивысшей доступной аварийной нагрузкой на шину генератора. Второй подход заключается в поставке одного трансформатора на каждый генератор, рис. 1b. Эта конструкция решает проблему тока короткого замыкания, однако затраты на преобразование резко возрастают.Часто, чтобы уравновесить стоимость и проблемы тока короткого замыкания, инженеры выбирают трехобмоточные трансформаторы, рис. 1c.

Термин «трехобмоточный трансформатор» может вводить в заблуждение, поскольку трехобмоточный трансформатор может иметь три или более обмоток внутри бака трансформатора. Фактически термин «3-обмотка» означает трансформатор с 3 наборами вводов, обозначенных H для первичной обмотки, X для вторичной и Y для третичной, см. Рис.2.
Затем указываются импедансы клемм H-X, H-Y и X-Y в процентах на выбранной обмотке (обычно обмотки X), кВА. Инженер-проектировщик отвечает за определение полного сопротивления, необходимого для приложения. Допуск по сопротивлению ANSI для трехобмоточных трансформаторов составляет ± 10%, а не ± 7½% для двухобмоточных трансформаторов.

Конфигурации обмоток трансформатора

В промышленности используется несколько конфигураций обмоток, каждая из которых имеет собственные характеристики импеданса, о которых инженеры должны знать. Конструкция Слабо-связанной многослойной вторичной обмотки (LCSS) показана на рис. 3. Обратите внимание, что в этой конструкции на самом деле имеется четыре обмотки вокруг сердечника. Физически обмотка H разделена на две части, чтобы соответствовать высоте обмоток X и Y. Электрически обмотки h2 и h3 расположены параллельно внутри резервуара.Такой подход к проектированию используется для уравновешивания полей в обмотках H, когда вторичные поля неуравновешены из-за дисбаланса нагрузки или неисправности. Эта конструкция предназначена для равномерного и непрерывного обслуживания нагрузки через вторичные обмотки. Это не лучший выбор конструкции, если вторичные обмотки будут обслуживать несбалансированную нагрузку в течение длительного периода времени, например, один вторичный выключатель разомкнут.

В этом случае при одинаковых мощностях обмоток X и Y и импедансах, выраженных на одной базе, выполняются следующие соотношения.
Другой конфигурацией обмотки является конструкция Tightly-Coupled Stacked Secondary (TCSS), см. Рис. 4. В этом случае вторичная и третичная обмотки попеременно наматываются на сердечник. Полные сопротивления H-X и H-Y определены ранее. Импеданс X-Y имеет следующее соотношение.
Это не лучший выбор для приложений, в которых возникают проблемы с высокими токами замыкания во вторичной и третичной обмотках.Эта конструкция чаще используется в приложениях для тяговых устройств и выпрямителей.
Третий вариант — конструкция «низкий-высокий-низкий» (LHL), показанная на рис. 5. Опять же, импедансы H-X и H-Y такие, как определено ранее. Диапазон импеданса, доступный для обмоток X-Y, будет немного больше, чем у конструкции LCSS.
Пример 1

Рассмотрим новую распределительную систему 480 В, которая включает 3000 кВА нагрузки двигателя и 600 кВА другой немоторной нагрузки.
Предположим, что все двигатели имеют Xd «0,15 Ом о.е. Коммунальные услуги рассчитаны на 13,8 кВ с мощностью короткого замыкания 600 МВА.
Изучите следующие конфигурации конструкции.

• Одинарный двухобмоточный трансформатор
• Два двухобмоточных трансформатора
• 3-обмоточный трансформатор с конструкцией LCSS
• 3-обмоточный трансформатор конструкции TCSS
• 3-обмоточный трансформатор конструкции LHL
В данном случае подходит общая мощность обмотки трансформатора 4000 кВА.Исходя из номинального первичного напряжения 13,8 кВ и стандартного BIL 110 кВ, для данного приложения предполагается типичное полное сопротивление 6%. В таблице 1 приведены номинальные параметры трансформатора, выбранные для каждой конфигурации.
Результаты приведены в таблице 2. Первоначальное обоснование выбора трехобмоточного трансформатора подтверждается. Одиночный корпус с двумя трансформаторами имеет самые высокие нагрузки на отказ при минимальных затратах на трансформацию.Корпус трансформатора с двумя 2 обмотками имеет самую высокую стоимость трансформации. Один трехобмоточный трансформатор уравновешивает как ток короткого замыкания, так и затраты. Однако для поддержания низкого уровня неисправностей следует использовать трансформаторы конструкции LCSS или LHL.
Результаты действительно указывают на своеобразное поведение по отношению к трехобмоточным трансформаторам.Обратите внимание на разницу между случаями 3 и 5. Полное сопротивление между вторичными и третичными цепями возрастает с 12% в случае 3 до 15% в случае 5, но характеристики неисправности отслеживаются наоборот. Чтобы понять эти результаты, необходимо более пристальное рассмотрение модели схемы.
Модель схемы трехобмоточного трансформатора состоит из трех импедансов, соединенных звездой, см. Рис. 6. Уравнения 8, 9 и 10 необходимы для преобразования импедансов Z H-X, Z H-Y и Z X-Y в их эквиваленты Z H, Z X и Z Y.
Эквивалентная схема, показанная на рис.6 точно представляет трансформатор с точки зрения полного сопротивления утечки, взаимных эффектов между обмотками и потерь нагрузки [1]. Возбуждающие токи и потери холостого хода не учитываются. Также обратите внимание, что нередки случаи, когда один из импедансов может быть отрицательным или нулевым!
Пример 2

Рассчитайте полное сопротивление обмотки для случаев 3 и 5, перечисленных в таблице 1, а затем проиллюстрируйте расчет имеющегося тока короткого замыкания на третичной шине, см. Рис.7. Для упрощения расчетов предположим все реактивное сопротивление.

Решение

Во-первых, преобразуйте системные импедансы в базу 2MVA, 480V.

Z s-t ПРЕДЕЛЫ ИМПЕДАНСА

Конструкция TCSS устанавливает нижний предел импеданса вторичной-третичной обмотки, а конструкция LHL устанавливает верхний предел.Теоретический верхний предел может быть рассчитан, если предположить, что в первичной обмотке трансформатора имеется бесконечная шина, при этом закорачивая вторичные и третичные клеммы (12).

Z Thévenin = Z H + Z X II Z Y (12)

Опять же, это предполагает равные мощности на обмотках X и Y со всеми импедансами, выраженными на одной базе. Пределы импеданса приведены в таблице 3.Результаты показывают, что максимальный верхний предел для Z X-Y примерно в 4 раза больше Z H-X. В этот момент импеданс Тевенина на закороченных вторичных и третичных клеммах приближается к нулю.

Обратите внимание, когда Z X-Y > 4 Z H-X , результатом является общий отрицательный импеданс Тевенина, видимый за пределами бака трансформатора. Это невозможно.

Пример 3

Примените результаты, перечисленные в этом руководстве, к случаю трехобмоточного трансформатора из примера 1, но в этом случае предположите, что Z H-Y = Z H-X = 6.50% при одинаковой мощности на обмотках X и Y.

• для Z X-Y = 0,65% (TCSS) соответствует SC кА на клеммах низкого напряжения 57,5 ​​кА
• для Z X-Y = 13,0% (LCSS) соответствует SC кА на клеммах низкого напряжения 47,0 кА
• для Z X-Y = 16,25% (LHL) соответствует SC кА на клеммах низкого напряжения 47,3 кА
• для Z X-Y = 26.0% соответствует КЗ кА на выводах НН 56,2 кОм
Эти результаты показывают, что нет никакого практического преимущества в увеличении импеданса между вторичной обмоткой и третью, более чем в 2 раза превышающего импеданс между первичной обмоткой и вторичной обмоткой. Поскольку более высокие импедансы приведут только к более высоким нагрузкам на неисправности и потерям.
Список литературы
• Справочник по передаче и распределению электроэнергии, ABB Power T&D Company, Роли, Северная Каролина, 1997.
• Харлоу, Дж. Х., Electric Power Transformer Engineering, CRC Press, New York, 2004.
назад к руководствам по приложениям

Какая формула трансформатора? — Mvorganizing.org

Какая формула трансформатора?

Vp = −NpΔΦΔt V p = — N p Δ Φ Δ t.Это известно как уравнение трансформатора, и оно просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества петель в их катушках.

Как рассчитать ток в повышающем трансформаторе?

Используя эту формулу, P = E x I, и ее прямые производные, I = P / E и E = P / I, можно вычислить все атрибуты трансформатора. Например, если номинальная мощность трансформатора составляет 10 кВА и он имеет выходное напряжение 240 вольт, он имеет допустимую нагрузку по току 41.67 ампер (10000 Вт / 240 вольт = 41,67 ампер).

Что такое повышающий трансформатор?

Трансформатор, который увеличивает напряжение от первичной до вторичной (больше витков вторичной обмотки, чем витков первичной обмотки), называется повышающим трансформатором. В качестве понижающего блока этот трансформатор преобразует низковольтную слаботочную мощность в низковольтную сильноточную мощность.

Как сделать повышающий трансформатор?

Создание электрического повышающего трансформатора

  1. Используйте большой стальной болт в качестве магнитопровода трансформатора.
  2. Оберните болт изолентой, чтобы изолировать обмотки от «сердечника».
  3. Оберните два медных провода несколько раз (не менее 12 витков) вокруг концов «сердечника» (стального болта).

Зачем нужны повышающие трансформаторы?

В национальной сети повышающий трансформатор используется для увеличения напряжения и уменьшения тока. Меньший ток означает меньшие потери энергии из-за нагрева провода. Чтобы защитить людей от этих высоковольтных проводов, для поддержки линий электропередачи над землей используются опоры.

Каков принцип работы повышающего трансформатора?

взаимная индуктивность

Какие основные части трансформатора?

Трансформатор состоит из трех основных частей:

  • железный сердечник, служащий магнитопроводом,
  • первичная обмотка или катушка с проволокой и.
  • — вторичная обмотка или катушка с проводом.

Где мы используем повышающий трансформатор?

Повышающие трансформаторы используются на центральных электростанциях.Они позволяют станциям повышать напряжение до необходимого уровня для выработки электроэнергии. Затем электричество передается по линиям электропередач.

Повышающий трансформатор увеличивает ток?

Трансформатор не может создавать мощность, поэтому повышение в некотором смысле увеличивает и уменьшает ток. Когда мы говорим, что повышающий трансформатор снижает ток, мы имеем в виду, что у нас меньше тока во вторичной обмотке, чем в первичной.

Увеличивает ли повышающий трансформатор разность потенциалов?

Трансформатор — это устройство, которое может изменять разность потенциалов или напряжение переменного тока: повышающий трансформатор увеличивает напряжение.

В чем разница между повышающим и понижающим трансформатором?

Основное различие между повышающим и понижающим трансформаторами состоит в том, что повышающий трансформатор увеличивает выходное напряжение, а понижающий трансформатор снижает выходное напряжение.

Может ли трансформатор работать в обоих направлениях?

обычно работают в обоих направлениях. И случайно вы видите необычное приложение. как небольшой управляющий трансформатор, используемый как трансформатор тока для подачи контрольного света или изолированного источника питания.Или управляющий трансформатор, используемый как насыщаемый реактор малой мощности.

Можно ли реверсировать понижающий трансформатор?

Да и нет. Да, вы можете использовать трансформатор наоборот. Никакая часть не имеет отношения к конструкции трансформатора. Вторичная или выходная обмотки имеют низкий импеданс для уменьшения потерь и повышения эффективности.

Имеет ли значение полярность трансформатора?

Полярность трансформатора важна для понимания того, как работают трансформаторы и как они используются. Понимание полярности необходимо для правильного параллельного включения однофазных трансформаторов и подключения измерительных трансформаторов (тока и потенциала) к измерительным приборам и защитным реле.

Почему Трансформеры курят?

Если предохранитель не перегорел, он должен перегореть. Считается, что короткое замыкание между вторичными обмотками трансформатора вызывает дым. Если используется трансформатор сборной шины, трансформатор отключается путем остановки сборной шины.

Можно ли использовать повышающий трансформатор в качестве понижающего трансформатора с тем же источником переменного тока?

Да, вы можете это сделать, но необходимо соблюдать некоторые меры предосторожности: обмотка низкого напряжения, которая была задумана как вторичная обмотка, будет служить первичной, и значение пускового тока намагничивания будет больше, чем ожидалось.

Что произойдет, если мы подадим постоянный ток на трансформатор?

Когда напряжение постоянного тока подается на первичную обмотку трансформатора, из-за низкого сопротивления обмотка действует как короткое замыкание на клеммах источника постоянного тока, что приводит к протеканию сильного тока через обмотку, что приводит к перегреву обмотка.

Когда трансформатор подключен к источнику постоянного тока, что является первичным?

Если первичная обмотка трансформатора подключена к источнику постоянного тока, первичная обмотка будет потреблять постоянный ток и, следовательно, производить постоянный магнитный поток.Следовательно, обратная ЭДС не будет производиться.

Что нельзя в трансформаторе?

а) вихретоковый в) переменный ток. Кроме того, мы не можем использовать постоянный ток, потому что постоянный ток является постоянным током и, следовательно, не будет иметь место взаимная индукция, и трансформатор не будет работать, следовательно, постоянный ток в трансформаторе невозможен.

Почему нет трансформаторов постоянного тока?

Как упоминалось ранее, трансформаторы не пропускают постоянный ток. Это известно как изоляция постоянного тока. Это потому, что изменение тока не может быть произведено постоянным током; Это означает, что нет изменяющегося магнитного поля, индуцирующего напряжение на вторичном компоненте.

Почему в трансформаторах используется переменный ток?

Почему трансформаторы работают только с переменным током Основная катушка подключена к источнику переменного тока. Изменяющийся ток создает изменяющееся магнитное поле. Это создает переменное напряжение в малой катушке. Это создает переменный ток в цепи, связанной с вторичной катушкой.

Можно ли подать постоянный ток на трансформатор?

Трансформатор не может работать от источника постоянного тока или никогда не подключаться к источнику постоянного тока. Если номинальное постоянное напряжение приложено к первичной обмотке трансформатора, магнитный поток, создаваемый в сердечнике трансформатора, не будет изменяться, но останется постоянным по величине.

Что такое трансформатор постоянного тока?

Хотя обычные трансформаторы являются трансформаторами переменного тока, устройство, которое можно назвать трансформатором постоянного тока, было построено с использованием сверхпроводников. Результатом описанной работы является устройство, в котором можно преобразовывать постоянный ток или напряжение и в котором можно извлекать энергию из вторичной цепи.

Как трансформатор изменяет напряжение?

Трансформатор — это электрическое устройство, предназначенное для преобразования переменного тока из одного напряжения в другое.Затем в другой катушке, называемой вторичной или выходной катушкой, индуцируется напряжение. Изменение напряжения (или отношения напряжений) между первичной и вторичной обмотками зависит от соотношения витков двух катушек.

Что такое уравнение закона Фарадея?

Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС). ЭДС = −NΔΦΔt ЭДС = — N Δ Φ Δ t. Эта связь известна как закон индукции Фарадея.Единицы измерения ЭДС, как обычно, — вольты.

Что такое обратная ЭДС в трансформаторе?

А изменение. магнитное поле внутри катушки будет (по закону Ленца) индуцировать в этой катушке ЭДС, которая ПРОТИВ. изменение тока, которое вызвало это изменение поля и, следовательно, (согласно параграфу 1.1) противоположное. направление (противоположный знак) приложенному напряжению. Эта ЭДС называется «обратной ЭДС» или vback.

Какие потери в трансформаторе?

В трансформаторе могут возникать различные виды потерь, например, в железе, меди, гистерезисе, вихревых, паразитных и диэлектрических.Потери в меди в основном возникают из-за сопротивления в обмотке трансформатора, тогда как гистерезисные потери будут возникать из-за изменения намагниченности внутри сердечника.

Сопротивление обмотки трансформатора, эквивалентное


Идеальный трансформатор, который, согласно нашим предположениям, имеет нулевые потери без сопротивления первичной и вторичной обмоток. Но на практике построить такой трансформатор невозможно. В реальном трансформаторе первичная и вторичная обмотки имеют внутреннее сопротивление из-за свойств используемого проводящего материала.Это сопротивление вызывает некоторое падение напряжения, а также потерю мощности в соответствующих обмотках. На рисунке ниже показано внутреннее сопротивление первичной и вторичной обмоток, подключенных снаружи.

Очень важно рассчитать эффективное сопротивление трансформатора, чтобы определить потери и КПД. Чтобы упростить вычисление полного сопротивления трансформатора (т.е. сопротивления как первичной, так и вторичной обмотки), полное сопротивление будет относиться к любой одной стороне трансформатора i.е., первичный или вторичный. Это также помогает в создании эквивалентной схемы трансформатора, называемой первичной или вторичной стороной.

Let,

  • R 1 и R 2 = Сопротивление первичной и вторичной обмоток
  • E 1 и E 2 = ЭДС первичной и вторичной обмоток
  • V 1 и V 2 = Первичное и вторичное напряжение
  • I 1 и I 2 = Первичный и вторичный токи


Теперь напряжение на первичной и вторичной обмотках равно

E 1 = V 1 — I 1 R 1

V 2 = E 2 — I 2 R 2


Здесь I 1 R 1 и I 2 R 2 — это падения первичного и вторичного напряжения соответственно, как показано на приведенной ниже векторной диаграмме.

Эквивалентное сопротивление трансформатора:


Сопротивление первичной обмотки R
1 и сопротивление вторичной обмотки R 2 являются сопротивлениями первичной и вторичной обмоток трансформатора. Которые могут передаваться с одной стороны на другую и наоборот. Преимущество переноса всех сопротивлений в одну сторону заключается в простоте расчетов. Сопротивление с одной стороны на другую может передаваться на основе «равных потерь мощности».

Эквивалентное сопротивление

относительно первичной стороны:


Потери в меди во вторичной обмотке I
2 2 R 2 .Если R 2 ‘является эквивалентным сопротивлением, относящимся к первичной обмотке, это вызвало бы потерю мощности (потери в меди) I 1 2 R 2 ‘. Затем, г.
Поскольку без нагрузки I
o мала, если ею пренебречь. Тогда вторичное сопротивление, относящееся к первичному, будет
Таким образом, полное или эффективное или эквивалентное сопротивление R
01 , относящееся к первичной стороне, равно,

Эквивалентное сопротивление вторичной обмотки:


Аналогично, если сопротивление первичной обмотки R
1 передается на вторичную сторону и представлено как R 1 ‘.Тогда потери мощности (потери в меди) первичной обмотки относительно вторичной стороны будут I 2 2 R 1 ‘.
Таким образом, полное или эффективное или эквивалентное сопротивление R
02 , относящееся к вторичной стороне, равно,
Из двух вышеупомянутых методов можно отметить, что,
  • Когда сопротивление первичной обмотки переключается на вторичное, умножьте его на K 2 .
  • Когда сопротивление вторичной обмотки смещено к первичному, разделите его на K 2 .

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *