Site Loader

Содержание

Простейший расчет силового трансформатора

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

Расчет трансформатора

Трансформаторы используются в блоках питания различной аппаратуры для преобразования переменного напряжения. Блоки питания, собранные по трансформаторной схеме, постепенно снижают распространенность благодаря тому, что современная схемотехника позволяет понизить напряжение без самого громоздкого и тяжелого элемента системы питания. Трансформаторы для блока питания актуальны в тех случаях, когда габариты и масса не критичны, а требования к безопасности велики. Обмотки (кроме автотрансформатора) осуществляют гальваническое разделение и изоляцию цепей первичного (или сетевого) и вторичного (выходного) напряжений.

Трансформатор

Принцип действия и разновидности трансформаторов

Работа устройства основана на всем известном явлении электромагнитной индукции. Переменный ток, проходящий через провод первичной обмотки, наводит переменный магнитный поток в стальном сердечнике, а он, в свою очередь, вызывает появление напряжения индукции в проводе вторичных обмоток.

Совершенствование трансформатора с момента его изобретения сводится к выбору материала и конструкции сердечника (магнитопровода).

Типы сердечников

Металл для магнитопровода должен иметь определенные технические характеристики, поэтому были разработаны специальные сплавы на основе железа и особая технология производства.

Для изготовления трансформаторов наибольшее распространение получили следующие типы магнитопроводов:

  • броневые;
  • стержневые;
  • кольцевые.

Силовой трансформатор низкой частоты, как понижающий, так и повышающий, имеет сердечник из отдельных пластин трансформаторного железа. Такая конструкция выбрана из соображения минимизации потерь из-за образования вихревых токов в сердечнике, которые нагревают его и снижают КПД трансформатора.

Броневые сердечники наиболее часто выполняются из Ш-образных пластин. Стержневые магнитопроводы могут изготавливаться из П-образных, Г-образных или прямых пластин.

Кольцевые магнитопроводы выполняются из тонкой ленты трансформаторной стали,  намотанной на оправку и скрепленной клеящим составом.

Из ленты также могут выполняться броневые и стержневые сердечники, причем такая технология наиболее часто встречается у маломощных устройств.

Виды магнитопроводов

Ниже приведена методика расчета трансформатора, где показано:

  • как рассчитать мощность трансформатора;
  • как выбрать сердечник;
  • как определить количество витков и сечение (диаметр) проводов обмоток;
  • как собрать и проверить готовую конструкцию.

Исходные данные, необходимые для расчета

Расчет сетевого трансформатора начинается с определения его полной мощности. Поэтому, перед тем, как рассчитать трансформатор, нужно определиться с мощностью потребления всех, без исключения, вторичных обмоток. Согласно мощности выбирается сечение сердечника. Опять же, от мощности определенным образом зависит и КПД. Чем больше полная мощность, тем выше КПД. Принято в расчетах ориентироваться на такие значения:

  • до 50 Вт – КПД 0.6;
  • от 50 Вт до 100 Вт – КПД 0.7;
  • от 100 Вт до 150 Вт – КПД 0.8;
  • выше 150 Вт – КПД 0.85.

Количество витков сетевой и вторичной обмоток рассчитывается уже после выбора магнитопровода. Диаметр или поперечное сечение проводов каждой обмотки определяется на основании протекающих через них токов.

Выбор магнитопровода сердечника

Минимальное сечение сердечника в см2 определяется из габаритной мощности. Габаритная мощность трансформатора – это суммарная полная мощность всех вторичных обмоток с учетом КПД.

Итак, мощность трансформатора можно определить, это полная суммарная мощность всех вторичных обмоток:

Умножая полученное значение на КПД, завершаем расчет габаритной мощности.

Определение площади стержня сердечника производится после того, как произведен расчет габаритной мощности трансформатора из такого выражения:

S=√P.

Зная площадь сечения центрального стержня магнитопровода, можно подбирать нужный из готовых вариантов.

Важно! Сердечник, на котором будут располагаться обмотки, должен иметь, по возможности, сечение, как можно более близкое к квадрату. Площадь сечения должна быть равной или несколько больше расчетного значения.

Качество работы и технологичность сборки также зависит от формы магнитопровода. Наилучшим качеством обладают конструкции, выполненные на кольцевом магнитопроводе (тороидальные). Их отличает максимальный КПД для заданной мощности, наименьший ток холостого хода и минимальный вес. Основная сложность заключается в выполнении обмоток, которые в домашних условиях приходится мотать исключительно вручную при помощи челнока.

Проще всего делать трансформаторы на разрезных ленточных магнитопроводах типа ШЛ (Ш-образный) или ПЛ (П-образный). Как пример, можно привести мощный трансформатор блока питания старого цветного телевизора.

Трансформатор телевизора УЛПЦТИ

Трансформаторы старого времени выпуска или современные дешевые выполнены с использованием отдельных Ш,- или П-образных пластин. Технологичность выполнения обмоток у них такая же, как у ленточных разрезных, но трудность состоит в сборке магнитопровода. Такие устройства практически всегда будут иметь повышенный ток холостого хода, особенно, если используемое железо низкого качества.

Расчет количества витков и диаметра проводов

Расчет трансформатора начинается с определения необходимого количества витков обмоток на 1 В напряжения. Найденное значение будет одинаковым для любых обмоток. Для собственных целей можно применить упрощенный метод расчета. Посчитать, сколько надо витков на 1 В можно, подставив площадь сечения стержня магнитопровода в см2 в формулу:

где k – коэффициент, зависящий от формы магнитопровода и его материала.

На практике с достаточной точностью приняты следующие значения коэффициента:

  • 60 – для магнитопровода из Ш,- и П-образных пластин;
  • 50 – для ленточных магнитопроводов;
  • 40 – для тороидальных трансформаторов.

Большие значения связаны с невозможностью плотного заполнения сердечника отдельными металлическими пластинами. Как видно, наименьшее количество витков будет иметь тороидальный трансформатор, отсюда и выигрыш в массе изделия.

Зная, сколько витков нужно на 1 В, можно легко узнать количество витков каждой из обмоток:

где U – значение напряжения холостого хода на обмотке.

У маломощных трансформаторов (до 50 Вт) нужно получившееся количество витков первичной обмотки увеличить на 5%. Таким образом, компенсируется падение напряжения, которое возникает на обмотке под нагрузкой (в понижающих трансформаторах первичная обмотка всегда имеет большее количество витков, чем вторичные).

Диаметр провода рассчитываем с учетом минимизации нагрева вследствие протекания тока. Ориентировочным значением считается плотность тока в обмотках 3-7 А на каждый мм2 провода. На практике расчет диаметра проводов обмоток можно упростить, используя простые формулы, что дает допустимые значения в большинстве случаев:

Меньшее значение применяется для расчета диаметров проводов вторичных обмоток, поскольку у понижающего трансформатора они располагаются ближе к поверхности и имеют лучшее охлаждение.

Зная расчетное значение диаметра обмоточных проводов, нужно выбрать из имеющихся такие, диаметр которых наиболее близок к расчетному, но не менее.

После определения количества витков во всех обмотках, расчет обмоток трансформатора не лишним будет дополнить проверкой, поместятся ли обмотки в окно магнитопровода. Для этого подсчитайте коэффициент заполнения окна:

Для тороидальных сердечников c внутренним диаметром D формула имеет вид:

Для Ш,- и П-образных магнитопроводов коэффициент не должен превышать 0.3. Если это значение больше, то разместить обмотку не получится.

Тороидальный трансформатор

Выходом из ситуации будет выбор сердечника с большим сечением, но это если позволяют габариты конструкции. В крайнем случае, можно уменьшить количество витков одновременно во всех обмотках, но не более чем на 5%. Несколько возрастет ток холостого хода, и не избежать повышенного нагрева обмоток, но в большинстве случаев это не критично. Также можно немного уменьшить провода по сечению, увеличив тем самым плотность тока в обмотках.

Важно! Увлекаться увеличением плотности тока нельзя, поскольку это вызовет сильный рост нагрева и, как следствие, нарушение изоляции и перегорание обмоток.

Изготовление обмоток

Намотка провода обмотки трансформатора производится на каркас, изготовленный из плотного картона или текстолита, за исключением тороидальных сердечников, в которых обмотка ведется непосредственно на магнитопровод, который перед намоткой нужно тщательно заизолировать. Можно использовать готовый пластиковый, который продается вместе с магнитопроводом.

Сборный каркас обмотки

Пластиковый каркас

Между отдельными обмотками нужно прокладывать межобмоточную изоляцию. Важнее всего – хорошо заизолировать вторичную обмотку от первичной. В качестве изоляции можно использовать трансформаторную бумагу, лакоткань, фторопластовую ленту. Ленту из фторопласта нужно использовать с осторожностью. Несмотря на высочайшие электроизоляционные качества, тонкая лента фторопласта под действием натяжения или давления (особенно межу первичной и вторичной обмотками) способна «потечь» и обнажить отдельные витки обмотки. Особенно этим страдает лента для уплотнения сантехнических изделий.

Фторопластовая лента

В отдельных, ответственных случаях, в процессе намотки можно пропитать первичную обмотку (если трансформатор понижающий) изоляционным лаком. Пропитка готового устройства в домашних условиях эффекта почти не даст, поскольку лак не попадет в глубину обмотки. Для этих целей на производствах существует аппаратура вакуумной пропитки.

Выводы обмоток делаются отрезками гибкого изолированного провода для проводов, диаметр которых менее 0.5 мм. Более толстый провод можно выводить напрямую. Места пайки гибкого и обмоточного проводов нужно дополнительно проложить несколькими слоями изоляции.

Обратите внимание! При пайке выводов нельзя оставлять на месте спайки острые концы проводов или застывшего припоя. Такие места нужно аккуратно обрезать бокорезами.

Сборка трансформатора

При сборке нужно учитывать следующие нюансы:

  1. Пакет сердечника должен собираться плотно, без щелей и зазоров;
  2. Отдельные части ленточного магнитопровода подогнаны друг к другу, поэтому менять местами их нельзя. Требуется аккуратность, поскольку при отслоении отдельных лент их невозможно будет установить на место;
  3. Деформированные пластины сборного сердечника нельзя выравнивать молотком – трансформаторная сталь теряет свои свойства при механических нагрузках;
  4. Пакет пластин сборного сердечника должен быть собран максимально плотно, поскольку при работе рыхлого сердечника будет издаваться сильный гул, увеличивающийся при нагрузке;
  5. Весь пакет сердечника любого типа нужно плотно стянуть по той же причине.

Обратите внимание! Качество сборки будет лучше, если торцы ленточного разрезного сердечника перед сборкой покрыть лаком. Также готовый собранный сердечник перед окончательной утяжкой можно покрыть лаком.

При этом можно добиться значительного понижения постороннего звука.

Проверка готового трансформатора заключается в измерении тока холостого хода и напряжения обмоток под номинальной нагрузкой и на нагрев при максимальной нагрузке. Все измерения рассчитанного и собранного трансформатора нужно проводить только после полной сборки, поскольку с незатянутым сердечником ток холостого хода может быть больше обычного в несколько раз.

Ток холостого хода сильно различается в трансформаторах различных типов и составляет от 10 мА для тороидальных трансформаторов, до 200 мА – с Ш-образным сердечником из низкокачественного трансформаторного железа.

Измерение холостого тока

Приведен расчет трансформатора, который при наличии навыков можно произвести за пару десятков минут. Для тех, кто сомневается в своих силах или боится сделать ошибку, расчет силового трансформатора можно выполнить, используя калькулятор для расчета, который может работать как в off-line, так и в on-line режимах. Согласно данной методике возможна перемотка перегоревшего трансформатора. Для неисправного трансформатора расчет также ведется от имеющегося сердечника и значения напряжения вторичных обмоток.

Видео

Оцените статью:

Выбор и расчёт сердечника трансформатора


Площадь сечения

сердечника трансформатора -очень важный параметр. На величину магнитного потока, создаваемого в сердечнике трансформатора, кроме числа витков первичной обмотки и величины протекающего в ней тока, оказывает влияние и размер самого сердечника. Если трансформатор имеет сердечник малого размера, то создать в таком сердечнике магнитный поток большой величины нельзя и на выходе такого трансформатора получить большую мощность не удастся. Это объясняется тем, что материал, из которого изготовлен сердечник, имеет способность насыщаться. Явление насыщения трансформатора состоит в том, что, несмотря на увеличение тока в обмотке, магнитный поток в сердечнике, достигнув некоторой максимальной величины, далее практически не изменяется.

Предположим, что имеется катушка с железным сердечником, по которой протекает постоянный ток. При увеличении тока магнитный поток будет также увеличиваться. При малых величинах тока возрастание потока окажется пропорциональным увеличению тока. Затем поток будет нарастать всё медленнее и наконец при некоторой величине тока перестанет увеличиваться совсем. Наступит насыщение стали (насыщение сердечника).

В трансформаторе режим насыщения приводит к тому, что передача энергии из первичной обмотки во вторичную частично прекращается. Нормальная работа трансформатора возможна лишь тогда, когда магнитный поток в его сердечнике изменяется пропорционально изменению тока в первичной обмотке. Для выполнения этого условия необходимо, чтобы сердечник не был в состоянии насыщения, а это возможно лишь тогда, когда его объём и сечение не меньше вполне определённой величины. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

Расчёт мощности трансформатора. Формула.

На практике часто приходится рассчитывать сечение сердечника по заданной мощности трансформатора:

Sсерд = 1.2√P, см2

Если известно сечение сердечника, то можно ориентировочно рассчитать мощность трансформатора по формуле:

P = S2серд / 1.44, вт.


Как узнать мощность трансформатора?

Определение мощности силового трансформатора

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.

Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как

мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (

Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.

P=Uн * Iн

,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия

(КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула.

,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

многократно проверенный расчет сетевого трансформатора

2. Расчет сетевого (силового) трансформатора.

Классический расчет трансформатора достаточно сложен и требует знания почти всех характеристик, которые мы не можем знать, т.к. для использования мы берем всегда случайно попавший к нам сердечник. Поэтому, здесь для расчета трансфор-матора предлагается эмпирический метод, многократно проверенный радиолюби-телями и основанный на практическом применении.
Рис.1. Трансформатор. Общий вид и условное обозначение.

Чтобы не загружать данную страницу, вы можете почитать о принципе действия трансформатора, о параметрах и характеристиках отдельно.
Для расчета сетевого трансформатора необходимо знать исходные данные, а именно напряжения и токи каждой обмотки. Первым шагом является определение суммарной мощности, которая вычисляется как сумма мощностей, потребляемой каждой об-моткой (мощность — это произведение тока на напряжение), поэтому:
,где U1I1, U2I2 и т.д. — произведения напряжений и то-ков вторичных обмоток (здесь ток — это максимальный ток нагрузки). Теперь определяем габаритную мощность, которая получается при делении на КПД:

КПД заранее знать нельзя, но ее можно определить по таблице 1:

Наиболее распространенные две формы сердечника:

Рис. 2. Формы сердечника трансформатора и расположение катушек на сердечнике

Зная габаритную мощность трансформатора, находим сечение рабочего керна его сердечника, на котором находится катушка:

S — получается в квадратных сантиметрах.
Теперь находим ширину рабочего керна сердечника по формуле:

По полученному значению а (см.) выбираем из имеющихся в наличии сердечников данное значение (можно больше), и находим толщину пакета с (см.):

Теперь определяем количество витков, приходящихся на 1 вольт напряжения:

Коэффициент К обычно лежит в пределах от 35 до 60. В первую очередь он зави-сит от свойств пластин стали сердечника. Для стали толщиной 0,35 мм, для сер-дечников С-образной формы, витых из тонкой стали, К=35. Для сердечников О-образной формы, собранный из П- или Г-образных пластин без отверстий по уг-лам, берем К=40. Если применяются пластины типа Ш без отверстий, то К=45, с отверстиями К=50. Для пластин Ш-образной формы с отверстиями, толщиной 0,35 мм, К=60. Т.е. значением К можно варьировать, но учитывать, что уменьшение К облегчает намотку, но ужесточает работу трансформатора. При применении плас-тин из высококачественной стали этот коэффициент можно немного уменьшить, а при низком качестве нужно увеличить.
Теперь можно найти количество витков первичной обмотки:

Для определения количества витков вторичной обмотки, необходимо вводить до-полнительный коэффициент m, учитывающий падение напряжения на ней:

Коэффициент m зависит от силы тока, протекающего по данной обмотке, табл.2:

Диаметр проводов вторичных обмоток можно найти:

где d-диаметр провода по меди, мм; I-сила тока в обмотке, А; p-коэффициент, учитывающий допустимый нагрев, зависящий от марки провода, табл. 3:

Силу тока в первичной обмотке можно определить так:

Пример расчета.
Нужно рассчитать трансформатор со следующими данными:
U1=6,3В, I1=1,5А; U2=12В, I2=0,3А; U3=120В, I3=0,059А. Находим суммарную мощность: Рсумм=6,3*1,5+12*0,3+120*0,059=20,13 Вт. С помощью табл.1 определяем габаритную мощ-ность: Рг=20,13/0,85=23,7 Вт. Находим сечение трансформатора:

Находим приближенное значение ширины рабочего керна:

Выбираем пластины трансформатора типа Ш-19, для которых а=1,9 см, и находим толщину пакета:
с=S/a=5,84/1,9=3,1 см.
Фактически полученное сечение рабочего керна сердечника:
S=ac=1,9*3,1=5,89 см2.
Определяем коэффициент К. Допустим, что используются пластины трансформа-торной стали типа Ш-19 без отверстий по углам. Тогда К=45.
Находим количество витков на 1 В:
n=K/S=45/5,89=7,64.
Определяем количество витков первичной обмотки при питании от сети напряжением 220 В:
WI=UI*n=220*7,64=1680 витков.
Находим из табл. 3 коэффициент m для каждой из вторичных обмоток:
при I1=1,5A, m1=1,04;
при I2=0,3A, m2=1,02;
при I3=0,059A, m3=1,00.
Определяем количество витков каждой из вторичных обмоток с округлением до ближайшего целого числа:
W1=m1U1n=1,04*6,3*7,64=50 витков;
W2=m2U2n=1,02*12*7,64=94 витков;
W3=m3U3n=1,00*120*7,64=917 витков;
Находим силу тока в первичной обмотке:
I1=Pг/Uсети=23,7/220=0,108 А.
Находим диаметр провода первичной обмотки:

Находим диаметры проводов вторичных обмоток. Для этого составляем таблицу намоточных данных, где диаметры проводов по меди выбраны из ближайших больших стандартных значений, а диаметры проводов в изоляции взяты на 10% больше, чем диаметры проводов по меди, табл. 4.

Многократно проверенный расчет сетевого трансформатора. Все.

Как узнать мощность трансформатора по габаритам

Габаритную мощность трансформатора можно приблизительно узнать по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.

Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

P = B * S² / 1,69

P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

расчет мощности трансформатора по габаритам

Пример:

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

P = 1,5 * 6,25² / 1,69 = 35 Ватт

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

S = ²√ (P * 1,69 / B)

Пример:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции

Тип магнитопроводаМагнитная индукция мах (Тл) при мощности трансформатора (Вт)
5-1010-5050-150150-300300-1000
Броневой штампованный1,21,31,351,351,3
Броневой витой1,551,651,651,651,6
Кольцевой витой1,71,71,71,651,6

Видео: Как определить мощность трансформатора, несколько способов

Описание нескольких способов определения мощности 50 Гц трансформаторов.

Поделиться ссылкой:

Расчет мощности трансформатора по сечению сердечника

Простейший расчет силовых трансформаторов и автотрансформаторов

Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100—200 Вт проводится следующим образом.

Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

Далее, принимая КПД трансформатора небольшой мощности, равным около 80 %, определяем первичную мощность:

Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

где s — в квадратных сантиметрах, а Р1 — в ваттах.

По значению S определяется число витков w’ на один вольт. При использовании трансформаторной стали

Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w’ на 20—30 %.

Теперь можно рассчитать число витков обмоток

В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5—10 % больше рассчитанного.

Ток первичной обмотки

Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз — диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2—3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

Определяем общую мощность вторичных обмоток:

Мощность первичной цепи

Находим площадь сечения сердечника из трансформаторной стали:

Число витков на один вольт

Ток первичной обмотки

Число витков и диаметр проводов обмоток равны:

• для первичной обмотки

• для повышающей обмотки

• для обмотки накала ламп

Предположим, что окно сердечника имеет площадь сечения 5×3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

• для первичной обмотки

• для повышающей обмотки

• для обмотки накала ламп

Общая площадь сечения обмоток составляет примерно 430 мм2.

Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

Эта мощность определяется по формулам:

— для повышающего автотрансформатора

— для понижающего автотрансформатора, причем

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

Затем определяется расчетная мощность Р, которая может быть принята равной 1,15•Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 — I2, если автотрансформатор повышающий, и I2 — I1 если он понижающий.

Расчет трансформатора

Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц. Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения. Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее. Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2:

. С помощью сечения сердечника необходимо определить количество витков n, соответствующее 1 вольту напряжения: n= 50/Q.

На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xnxU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…

Любая обмотка трансформатора имеет следующий диаметр проводов:
где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1.

Здесь используется общая мощность трансформатора.

Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника. Необходимо воспользоваться формулой: Sм = 4 x (d1 2 n1 + d2 2 n2 +d3 2 n3 + d4 2 n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках. В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.

Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.

Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.

Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.

Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.

Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.

Расчёт трансформатора по сечению сердечника

Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и тороидальными. В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых – магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.

Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.

Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора. КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока. Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.

В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью. Эта взаимная связь отражается и в расчетной формуле: Sо хSс = 100 хРг /(2,22 * Вс х j х f х kох kc). Здесь Sо и Sс являются соответственно площадями окна и поперечного сечения сердечника, Рг – значение габаритной мощности, Вс – показатель магнитной индукции в сердечнике, j – плотность тока в проводниках обмоток, f – частота переменного тока, kо и kc – коэффициенты заполнения окна и сердечника.

Как определить число витков обмотки трансформатора не разматывая катушку

При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.

Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.

Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.

Простейший расчет силового трансформатора

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

Как узнать мощность трансформатора?

Определение мощности силового трансформатора

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.

Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.

,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см 2 . Далее нам понадобиться следующая формула.

,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см 2 , которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора

7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

Расчет трансформатора на стержневом сердечнике в онлайн

Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого?

Необходимые сведения

Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания. Следует грамотно подойти к процессу расчета, учесть такие показатели, как магнитную индуктивность, КПД и плотность тока. Иначе изделие получится ненадежным и скоро выйдет из строя. К основным характеристикам следует отнести:

  • Входное напряжение сети. Оно зависит от источника, к которому будет подключен трансформатор. Стандартными являются: 110 В, 220 В, 380 В, 660 В. На практике оно может быть любым, что зависит от характеристик промежуточных цепей.
  • Выходное напряжение трансформатора — величина, требуемая для обеспечения стабильной работы потребителя. Часто требуется изготовить изделие с несколькими номиналами или с регулируемым напряжением. Тогда необходимо учитывать максимальную его величину.
  • Ток в нагрузке. При фиксированном значении рассчитываются жесткие характеристики устройства, но часто требуется обеспечить регулируемую величину, тогда потребуется учесть максимальную его величину.
  • Частота сети. У нас применяется европейский стандарт, то есть 50 Гц.
  • Мощность нагрузки. Это не основной параметр, потому что ее можно определить по напряжению и току.
  • Количество выходных обмоток. В некоторых электронных приборах используются блоки питания с несколькими выходными напряжениями. Для изготовления силовой электроники используется в основном один номинал, например, для сварочных трансформаторов.

Также потребуется учесть тип сердечника, потому что от его конструкции напрямую зависит принцип расчета показателей изделия. Существует много разновидностей как конструкций, так и материалов. Если учитывать последние нет смысла из-за незначительных погрешностей, то форма и размеры имеют большое значение. Поэтому необходимы разные алгоритмы расчета, что зависит от этого критерия. Начнем с самого простого и распространенного.

Не всегда требуется расчет вести с требуемых данных. Нередко в наличии есть какое-то железо, тогда потребуется определить мощность трансформатора по сечению магнитопровода. Программы онлайн, имеющиеся в интернете, позволяют определять параметры любым порядком.

Расчет броневого трансформатора

Распространен вид трансформаторов, используемый практически во всех устройствах от зарядных аппаратов для шуруповертов, заканчивая боками питания магнитофонов. В процессе эксплуатации всех этих устройств часто возникают поломки в питателе, связанные со сгоревшим намоточным изделием. Тогда для его восстановления потребуется перемотка, но это проблемы не решает.

Часто требуется увеличить мощность источника, тогда как рассчитать трансформатор, чтобы его железо не перегревалось? Потребуется выбрать железо больших размеров и использовать более толстый провод. Такой ход поможет сохранить работоспособность устройства и даже улучшить характеристики, сделав его стабильнее и устойчивее при скачках напряжений в сети.

К сожалению, не все производители учитывают этот фактор, а ведь наша сеть неустойчива и регулярно в ней наблюдаются помехи в виде высоковольтных игольчатых импульсов. Также возникают ситуации, когда наблюдается просадка сети до 170 В, что характерно в зимний период. Тогда необходимо предусмотреть запас по напряжению как минимум на 40−45%, увеличив мощность и компенсационного стабилизатора. Часто такие ситуации наблюдаются в частном секторе.

Вернемся к расчету Ш-образного трансформатора на ШП-сердечнике. Принцип будет одинаков и с сердечником типа ПЛ при условии размещения обмотки на средней части. Для чего потребуется выполнить следующие шаги:

  • Определить площадь поперечного сечения средней части сердечника. Она выражается буквой S сеч. и находится из произведения ее сторон. Взяв линейку, измеряем параметры сечения, перемножаем и получаем значение в квадратных сантиметрах.
  • На следующем этапе решается вопрос, как рассчитать мощность трансформатора. Это расчетная величина, которую можно определить, возведя S сеч. в квадрат. Значение будет измеряться в Вт и обозначаться буквой «P».
  • При расчете мощности сердечника необходимо учитывать тип использованных пластин. Например, если были применены для набора Ш-20, то общая толщина сердечника должна быть 30 мм при мощности в 36 Вт. Если для трансформатора были использованы пластины Ш-30, то толщина набора будет достаточно в 20 мм, а при использовании Ш-24 — 25 мм. Существуют справочные таблицы, в которых можно найти мощность трансформатора по сечению магнитопровода для конкретной ситуации. Для обеспечения наилучшей стабильности работы источников питания следует использовать железо с избытком мощности как минимум на 25%. То есть, если ранее была расчетная мощность равна 6 Вт, то для надежности работы и исключения насыщения сердечника следует брать в расчет как минимум 8 Вт. Это обязательное условие. Если использовать магнитопровод с меньшей площадью сечения сердечника, то трансформатор быстро выйдет из строя, потому что железо окажется в насыщении, что приведет к увеличению токов в обмотках.
  • На следующем этапе необходимо определиться с количеством обмоток. Для современных транзисторных устройств достаточно будет всего одной или сдвоенной со средней точкой. Поэтому рассмотрим пример расчета именно такого трансформатора. Для этого потребуется воспользоваться понятием «вольт на виток». Значение определяется следующим образом: W /В=(50÷70) / S сеч. Формула справедлива только для сердечников типа ШП и П. Л. При расчете первичной и вторичной обмоток потребуется взять произведение полученного отношения и входного напряжения: W1 = W / B∙U1, W2 = 1,2 ∙ W /B∙U2.
  • Выполняется расчет и выбор диаметра провода. Он выбирается исходя из хорошего теплоотвода и изоляции, для чего рекомендуется применять ПЭЛ или ПЭВ, покрытые лаком. Определить его размер можно по формуле: d =0,7∙√ I. Величина выражается в мм. Провод выбирается с небольшим запасом до 4−6%.

Все программы расчета трансформаторов позволяют находить параметры изделий в любом порядке. Они используют стандартные алгоритмы, по которым выводятся значения. При необходимости можно создать собственный калькулятор с помощью таблиц Excel. Подобным образом работает и калькулятор расчета трансформатора на стержневом сердечнике.

Программы для расчета

Известно много программ, которые предлагают онлайн расчет параметров любого трансформатора на броневом или стержневом сердечнике. Одной из таких может стать сервис на сайте «skrutka». Для определения характеристик потребуется указать ряд следующих данных:

  • входное напряжение — U1;
  • выходное напряжение — U2;
  • ширину пластины — а;
  • толщину стопки — b ;
  • частоту сети — Гц;
  • габаритная мощность — В*А;
  • КПД;
  • магнитную индуктивность магнитопровода — Тл;
  • плотность тока в обмотках — А/мм кв.

Последние 4 величины являются табличными, поэтому потребуется воспользоваться справочником.

Необходимо грамотно и ответственно отнестись к расчету параметров трансформатора, потому что от качества выполненной работы будет зависеть и качество функционирования вашего блока питания. Не всегда стоит надеяться на программы, в них могут быть ошибки. Выберите один или несколько параметров и пересчитайте их вручную по ранее приведенным формулам. Если получится примерно равное значение, то результат можно считать правильным.

Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ваттыКоэффициент полезного действия ŋ
15÷500,50÷0,80
50÷1500,80÷0,90
150÷3000,90÷0,93
300÷10000,93÷0,95
>10000.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик Виктора Егель. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.

Расчет силовых трансформаторов сетевой частоты

Расчет силовых трансформаторов сетевой частоты

Введение

На этой странице простая методика расчета частоты сети с закрытым сердечником. силовые трансформаторы. Он предназначен для домашнего пивоварения, ремонта и модификации трансформаторов. Обратите внимание, что даже если этот метод и некоторые уравнения могут быть Обобщенно, только классические сердечники, составленные из стальных листов, принимаются учетная запись.


Размер ядра

При проектировании трансформатора питания с замкнутым сердечником первым шагом является чтобы выбрать подходящий сердечник по мощности, устройство должно справиться.Обычно для большой мощности требуются большие жилы. На самом деле, нет никаких теоретических или физических причин, препятствующих маленькому ядру. от обработки большой мощности, но по практическим соображениям на малом ядре, не хватает места для всех обмоток: большой сердечник — единственный выбор. Для того, чтобы с самого начала выбрать достаточно хорошее ядро, следующие эмпирическая формула (для рабочей частоты 50 Гц) может помочь:

Это уравнение связывает (полную) мощность P с поперечным сечением жилы. поверхность А с учетом КПД сердечника η (греч. «эта»).При измерении поперечного сечения жилы следует удалить около 5%, чтобы учесть толщину лака на ферромагнитных пластинах составляя ядро. Сечение A — это минимальное сечение магнитного цепь, обычно измеряемая там, где расположены обмотки, как показано на рисунок ниже:

На приведенной выше диаграмме показан сердечник с двойной петлей, который на сегодняшний день является наиболее распространенным. тип сердечника из-за его низкого потока утечки и небольших размеров.Это называется «двойной петлей», потому что магнитное поле, создаваемое катушки в середине сердечника петляют половину на левой части сердечника и половина в правой части. В этом случае важно измерить поперечное сечение жилы внутри обмотки (как показано), где поток не делится пополам. Если ваш трансформатор имеет одну магнитную петлю, например тороидальный трансформатор, чем поперечное сечение одинаковое по всему сердечнику и не имеет значения, где вы это измеряете.

Эффективность зависит от материала, из которого изготовлен сердечник; если неизвестно, таблица ниже даст общее представление:

Материал основной пластины Плотность магнитного потока φ
[Вт / м 2 ]
Эффективность сердечника η
[1/1]
Текстурированная кремнистая сталь (C-образная), M5 1.3 0,88
Текстурированная кремнистая сталь (пластины 0,35 мм), M6 1,2 0,84
Неориентированная кремнистая сталь средней плотности (пластины 0,5 мм), M7 1,1 0,82
Стандартная кремниевая сталь без ориентированной зернистости (или для тяжелых условий эксплуатации) 1,0 0,80
Низкоуглеродистая сталь 0,8 0,70

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

В этом калькуляторе уже учтено уменьшение ядра на 5%. поперечное сечение.


Плотность потока в активной зоне

Затем необходимо определить плотность потока сердечника φ (греч. «фи»). Опять же, это зависит от материала, и, если он не известен, та же таблица будет помощь. Если трансформатор должен работать непрерывно или в плохо вентилируемом помещении. окружающей среде, небольшое уменьшение плотности потока (например, на 10%) приведет к уменьшите потери и сохраните трансформатор в холодном состоянии за счет большего количества железа и больше меди. Обратное можно рассматривать для снижения стоимости материалов в трансформаторах. используется только в течение коротких периодов времени или не предназначен для работы на полной мощности непрерывно.

После определения плотности потока можно рассчитать трансформатор постоянная γ , выражающая количество витков на вольт всех обмотки по следующей формуле:

Фактор 10 6 учитывает, что поперечное сечение жилы равно выражено в мм 2 . Об этой формуле следует отметить еще несколько моментов: например, низкий частоты требуют больше витков, и вы могли заметить, что 60 Гц трансформаторы, которые обычно немного меньше, чем эквивалентные 50 Гц единицы.Более того, низкая магнитная индукция также требует большего количества витков, а это означает, что для уменьшения потока в сердечнике (и уменьшения потерь) приходится наматывать больше витков, даже если это кажется нелогичным. Последнее замечание: для больших сердечников требуется несколько оборотов: если вы когда-нибудь смотрели внутри огромных высоковольтных трансформаторов, используемых энергетическими компаниями для своих высоковольтные линии электропередач, у них всего несколько сотен витков для многих киловольт, в то время как небольшой трансформатор 230 В внутри вашего будильника имеет тысячи поворотов.


Расчет обмоток

Теперь, когда мы знаем постоянную трансформатора γ , легко рассчитать количество витков N для каждой обмотки по формуле:

Обратите внимание, что все напряжения и токи являются среднеквадратичными значениями, а плотность потока выражается его пиковым значением, чтобы избежать насыщения: это объясняет член √2 в уравнении постоянной трансформатора.

Для вторичных обмоток рекомендуется немного увеличить количество витков, скажем, на 5% или около того, чтобы компенсировать потери в трансформаторе.

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

Этот калькулятор уже учитывает фактор 5% для вторичного повороты.

Вы могли заметить, что количество витков зависит от размера сердечника и магнитного потока. плотность, но не по мощности. Итак, если вашему трансформатору требуется более одной вторичной обмотки, просто повторите расчет обмоток для каждой вторичной обмотки.Но в этом случае выбирайте сердечник достаточно большой, чтобы вместить все обмотки или, в Другими словами, выберите размер сердечника в соответствии с общей мощностью всех вторичные обмотки. Также используйте первичный провод с поперечным сечением, достаточно большим, чтобы выдержать общую мощность.


Выбор правильного провода

Последний шаг — рассчитать диаметр провода для каждой обмотки. Для этого необходимо выбрать плотность тока проводника c . Хороший компромисс — 2,5 А / мм 2 .Более низкое значение потребует больше меди, но приведет к меньшим потерям: это подходит для тяжелых трансформаторов. Более высокое значение потребует меньше меди и сделает трансформатор более дешевым, но из-за повышенного нагрева это будет приемлемо только при кратковременном использовании. время работы на полной мощности или может потребоваться охлаждение. Стандартные значения составляют от 2 до 3 А / мм 2 . После определения плотности тока можно рассчитать диаметр проволоки. используя следующее уравнение:

Или для c = 2.5 А / мм 2 :

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:


Практически

Теперь, когда вычисления завершены, начинается самое сложное: будет ли рассчитанные обмотки подходят на выбранный сердечник? Что ж, ответ непростой и зависит от большого количества факторов: сечение и форма провода, радиус изгиба провода, качество намотки, наличие изолирующей фольги между слоями обмотки и т. д.С другой стороны, некоторый опыт будет полезнее, чем много уравнения.

Купить пустой сердечник трансформатора сложно, и обычно начинаются домашние проекты. от старого трансформатора, чтобы раскрутить и восстановить. Не все трансформаторы можно разобрать: некоторые склеены смола, которая слишком сильна, чтобы удалить ее без изгиба основных пластин. К счастью, многие трансформаторы можно разобрать, сняв крышку. который удерживает все пластины вместе или шлифованием двух сварных швов поперек все тарелки.Затем каждую пластину необходимо осторожно снять, чтобы получить доступ к обмотки. Гнутые или поцарапанные пластины следует выбросить.

Если повезет, можно повторно использовать первичную обмотку и восстановить только вторичный, если первичный не наматывается на вторичный или не имеет неподходящее количество оборотов. Решая, следует ли оставить обмотку как есть или нет, полезно определить его количество витков, но подсчитать их без разматывая катушку.К счастью, есть способ определить количество витков: до разбирая сердечник, просто намотайте несколько витков (скажем, 5 или около того) изолированного провода вокруг обмоток и измерьте напряжение, наведенное в этом самодельном вторичный при нормальном питании трансформатора. По этой величине легко рассчитать количество витков на вольт трансформатора. и подсчитайте количество витков каждой обмотки без фактического подсчета их.

После того, как новые обмотки намотаны, самое время восстановить сердечник, ставим все пластины на место.Без силового пресса их все вернуть будет сложно, но если на в конце остается одна-две пластины, трансформатор все равно будет работать нормально. Но по этой причине при выполнении работ следует немного завышать размер трансформатора. расчеты, выбрав меньшее поперечное сечение жилы. Когда трансформатор запитан, сила на пластинах сердечника значительна. и важно их крепко держать или склеивать; в противном случае ядро будет вибрировать и будет очень шумно.

Многие трансформаторы имеют пластины сердечника E-I, как показано на рисунке выше.При восстановлении сердечника пластины должны быть скрещены: E-I для одной слой и I-E для следующего, и так далее. Это минимизирует воздушный зазор и помогает поддерживать высокий коэффициент связи.

Всегда используйте эмалированный медный провод для всех обмоток. Изолированный провод из ПВХ (обычный электрический провод) — очень плохая идея, потому что слой изоляции очень толстый, занимает много места в сердечнике и является очень плохой проводник тепла: ваш трансформатор очень быстро перегреется.

Всегда кладите слой изолирующей фольги между первичной и вторичной обмотками. если они расположены близко друг к другу, чтобы предотвратить опасность поражения электрическим током в случае нарушение изоляции провода.Используйте что-нибудь тонкое, не горит, и это хороший изолятор. Я использую каптоновую ленту, но может подойти и обычная изолента.

Изоляция эмалированного медного провода обычно составляет до 1000 В (пиковое напряжение). стоимость). Если возможно, ознакомьтесь со спецификациями проводов, предоставленными его производитель. Если напряжение на крыле превышает это значение, лучше разделить намотка на два или более слоев, разделенных изолирующей фольгой между ними.


Заключение

Представлен простой метод расчета сетевых силовых трансформаторов. и я надеюсь, что это поможет домашним пивоварам в разработке собственных трансформаторов. в соответствии с их конкретными потребностями.Намотка собственных трансформаторов часто является единственным доступным выбором, когда требуются необычные напряжения. Но разобрав трансформатор, сделайте новые обмотки и верните обратно вместе — это много работы, поэтому лучше провести некоторые расчеты, прежде чем получится сразу с первой попытки.


Используемые символы

Символ Описание Установка
А Сечение жилы мм 2
d Диаметр проволоки мм
f Рабочая частота Гц
I Среднеквадратичный ток обмотки А
N Количество витков 1/1
п. Полная мощность трансформатора ВА
U Действующее значение напряжения обмотки В
γ Число витков на V витков / В
η Эффективность сердечника 1/1
φ Плотность магнитного потока сердечника Вт / м 2

Примечание: 1 Вт / м 2 = 1 T = 10’000 Гаусс


Библиография

  • Nuova Elettronica, Vol.6, p134
  • Nuova Elettronica, Riv 179, p66


Таблица для расчета потерь трансформатора

Потери трансформатора

Трансформаторы имеют два основных компонента, которые определяют потери: сердечник и катушки . Типичный сердечник представляет собой сборку из многослойной стали, и потери в сердечнике в основном связаны с намагничиванием (возбуждением) сердечника.

Таблица для расчета потерь трансформатора

Эти потери, также известные как потери холостого хода , присутствуют все время, когда трансформатор включен, независимо от того, есть ли нагрузка или нет.

Потери в сердечнике примерно постоянны от холостого хода до полной нагрузки при подаче линейных нагрузок. Они представляют собой непрерывную стоимость, 24 часа в сутки, в течение 25 или более лет службы трансформатора.


Формулы в электронной таблице

  • ВН Ток полной нагрузки = ВА / (1,732 · Вольт)
  • Низковольтный ток полной нагрузки = ВА / (1,732 · Вольт)
  • ВН Сторона I 2 R потери = I²R · 1,5
  • Низковольтные боковые потери I²R = I²R · 0.5 · 3
  • Общие потери I² R при атмосфер. temp = Потери Hv + Потери Lv
  • Суммарные потери при рассеивании при атмосфер. temp = Измеренные потери — Потери I²R
  • Потери I²R при температуре 75 ° C = ((225 + 75) · потери) / (225 + Температура окружающей среды).
  • Паразитные потери при температуре 75 ° C = ((225 + Окружающая температура) (Паразитные потери при Окружающей температуре)) / 300
  • Общие потери при полной нагрузке при 75 ° C = Потери I²R при 75 ° C + Параллельные потери при 75 ° C
  • Полное сопротивление при атмосфер.темп = (Имп. напряжение · 1,732) / Ток полной нагрузки
  • Общее сопротивление при атмосфер. температура = потери I²R / I²
  • Полное реактивное сопротивление (X) = SQRT (Импеданс² — Сопротивление²)
  • Сопротивление при 75 ° C = (300 · сопротивление при температуре окружающей среды) / (225 + температура окружающей среды)
  • Импеданс при 75 ° C = SQRT (R² при 75 ° C + X²)
  • Полное сопротивление в процентах = (Z при 75 ° C · I · 100) / V1
  • Сопротивление в процентах = (R 75 ° C · I · 100) / V1
  • Реактивное сопротивление в процентах = (X · I · 100) / V
  • Регулирование в Unity P.F. = (% R cosø +% Xsinø)
  • Регулировка при 0,8 P.F. = (% R cosø +% Xsinø) + 1/200 (% R sinø -% Xcosø) 2
КПД при Unity PF
  • При 125% нагрузки трансформатора = (кВА · 1,25 · 100 ) / ((кВА · 1,25) + (потери I²R · 1,25²) + (потери без нагрузки))
КПД при коэффициенте мощности 0,8
  • При 125% нагрузки трансформатора = (кВА · 1,25 · PF · 100 ) / ((кВА · PF · 1,25) + (I²R потери · 1.25²) + (потери без нагрузки))

Вклад в потери трансформатора

Уровень нагрузки варьируется в широких пределах, при этом некоторые установки работают очень сильно, а другие менее нагружены.

Эта разница существенно влияет на фактические понесенные убытки. К сожалению, имеется небольшой объем полевых данных, что обусловлено такими факторами, как недостаточная осведомленность о стоимости потерь и стоимость сбора подробных данных от разумного количества отдельных трансформаторов.

Несколько переменных влияют на потери в трансформаторе, наиболее важные из которых включают уровень нагрузки , профиль нагрузки и конструкцию сердечника и катушки .

Поскольку на рынке представлено большое количество трансформаторов, предназначенных для различных целей и поставляемых разными производителями, фактические потери, понесенные в полевых условиях, будут существенно различаться от установки к установке.

Таблица для расчета потерь трансформатора

Соответствующее содержание EEP с рекламными ссылками

Конструкция трансформатора с магнитными ферритовыми сердечниками

Magnetics предлагает два метода выбора ферритового сердечника для силового применения: выбор сердечника по допустимой мощности и выбор сердечника по продукту WaAc.

Выбор сердечника по мощности передачи

Диаграмма мощности характеризует допустимую мощность каждого ферритового сердечника на основе рабочей частоты, топологии схемы, выбранного уровня магнитного потока и количества энергии, требуемой схемой. Если эти четыре особенности известны, ядро ​​можно выбрать из типовой диаграммы допустимой мощности.

Выбор сердечника компанией WaAc Продукт

Допустимая мощность сердечника трансформатора также может быть определена с помощью его продукта WaAc, где Wa — доступная площадь окна сердечника, а Ac — эффективная площадь поперечного сечения сердечника.Используя приведенное ниже уравнение, рассчитайте продукт WaAc, а затем используйте диаграмму распределения продукта по площади (WaAc), чтобы выбрать соответствующее ядро.

WaAc = произведение площади окна и площади сердечника (см 4 )

P o = Выходная мощность (Вт)

D cma = Плотность тока (мил. Мил / А) Плотность тока можно выбрать в зависимости от допустимого нагрева. 750 окр. mils / amp является консервативным; 500 цир.милс агрессивен.

B max = Плотность потока (гаусс) выбирается в зависимости от частоты работы. Выше 20 кГц потери в сердечнике увеличиваются. Для работы ферритовых сердечников на более высоких частотах необходимо, чтобы уровни магнитного потока сердечника были ниже ± 2 кг. График зависимости плотности потока от частоты показывает снижение уровней магнитного потока, необходимое для поддержания потерь в сердечнике 100 мВт / см³ на различных частотах с максимальным повышением температуры на 25 ° C. для типичного силового материала материал Magnetics ’P.

WaAc = произведение площади окна и площади сердечника (см 4 )

Ac = Площадь сердечника в см 2

ƒ = частота (герцы)

K t = Топологическая постоянная (для коэффициента заполнения 0,4).

Константы топологии K t

Прямой конвертер = 0,0005
Толкай-тяни = 0,001
Полумост = 0,0014
Полный мост = 0.0014
Обратный ход = 0,00033 (одна обмотка)
Обратный ход = 0,00025 (многообмотка)

Формула WaAc была получена из главы 7 книги А.И. Прессмана «Проектирование импульсного источника питания». Выбор B max на различных частотах, D cma и альтернативные расчеты повышения температуры трансформатора также обсуждаются в главе 7 документа. Книга Pressman.

ПЛОТНОСТЬ ПОТОКА VS. ЧАСТОТА PERM

После выбора сердечника можно легко произвести расчет первичных и вторичных витков и сечения проводов.

Посмотреть типичную схему управления мощностью

Диаграмма распределения продукции в области просмотра (WaAc)

Скачать в формате PDFContact Magnetics

Как рассчитать реактивную мощность трансформатора? — нарушение напряжения

Реактивная мощность трансформатора

Силовые трансформаторы во время работы «потребляют» индуктивные ВАРС.Это связано с потребностью в реактивной мощности двух отдельных ветвей трансформатора, а именно:

  1. Шунтирующее намагничивающее сопротивление
  2. Серия Реактивное сопротивление утечки

Реактивная мощность, потребляемая силовым трансформатором, может достигать 5% от номинальной мощности трансформатора при подаче тока полной нагрузки. Коэффициент мощности на первичной обмотке трансформатора обычно ниже, чем тот, который измеряется на вторичной обмотке, из-за требований к реактивной мощности трансформатора.Если измерение производится при среднем напряжении, то также будет измеряться дополнительная реактивная мощность, потребляемая трансформатором. В подобных случаях важно знать, сколько реактивной мощности потребляет трансформатор, чтобы ее можно было вычесть из требуемой реактивной мощности нагрузки. Обычно это происходит, когда счетчик электроэнергии находится на первичной обмотке, а трансформатор также принадлежит коммунальному предприятию. Нет смысла выставлять счет за реактивную мощность, потребляемую трансформатором, принадлежащим коммунальному предприятию, поскольку они могли бы очень хорошо установить счетчик на стороне низкого напряжения, и клиенту не придется платить за это, если это так.Когда заказчик владеет трансформатором, реактивная мощность, потребляемая силовым трансформатором, будет измеряться коммунальным предприятием.

Калькулятор ниже можно использовать для расчета потребляемой реактивной мощности трансформатора при полной нагрузке и номинальном напряжении . Чтобы рассчитать реактивную мощность, обусловленную только сопротивлением намагничивания шунта, используйте% нагрузки как «без нагрузки».

Конденсаторные батареи обычно меньше рассчитанного значения, поскольку существует риск перекомпенсации в условиях малой нагрузки.Может быть установлен автоматический ступенчатый конденсатор коэффициента мощности, который переключал бы только необходимые ступени конденсатора, чтобы довести коэффициент мощности до желаемого уровня. Однако для этого необходимо будет проводить измерение коэффициента мощности на первичной обмотке трансформатора, что может быть нецелесообразно постоянно. Чаще всего реактивная мощность, потребляемая силовым трансформатором, составляет лишь небольшой процент от потребляемой объектами реактивной мощности, и точная компенсация может не потребоваться.

1. Реактивное намагничивание шунта

Реактивное сопротивление намагничивания шунта отвечает за создание магнитного потока в сердечнике трансформатора.Ток, необходимый для создания этого потока в сердечнике, называется током возбуждения и относительно не зависит от тока нагрузки трансформатора. Ток возбуждения обычно составляет около 0,25–2% от тока полной нагрузки трансформатора. Фактическое значение тока возбуждения можно получить из протокола заводских испытаний или измерить в полевых условиях.

Для расчета потребляемой реактивной мощности сначала рассчитайте приблизительное намагничивающее сопротивление шунта на основе заданного тока возбуждения. Ток возбуждения обычно указывается в процентах от тока полной нагрузки трансформатора.

2. Реактивное сопротивление утечки серии

Импеданс утечки серии

косвенно относится к величине магнитного потока, который не связан между первичной и вторичной обмотками. Последовательное реактивное сопротивление утечки (также известное как% импеданса) является важным параметром трансформатора, который определяет вклад короткого замыкания, регулирование напряжения и т. Д.

Требуемая реактивная мощность из-за последовательного реактивного сопротивления утечки изменяется пропорционально квадрату тока нагрузки. Полная индуктивная потребляемая мощность силового трансформатора — это арифметическая сумма требований, связанных с обеими вышеупомянутыми ветвями. Калькулятор в этой статье рассчитает это за вас.

Компенсация реактивной энергии, потребляемой трансформатором

Реактивная мощность, потребляемая трансформатором, может быть компенсирована добавлением параллельно подключенных конденсаторных батарей. Как можно увидеть из вычислителя, когда трансформатор нагружен, полная реактивная мощность Qt состоит из двух компонентов: реактивной мощности Q0 во время работы в режиме холостого хода (состояние без нагрузки) и реактивной мощности, вызванной реактивным сопротивлением утечки.Общая реактивная мощность, потребляемая трансформатором, описывается следующим уравнением:

Где,

Q t = Общая реактивная мощность, потребляемая трансформатором

Q 0 = Реактивная мощность, потребляемая шунтирующим реактивным сопротивлением намагничивания трансформатора (без нагрузки)

% z = сопротивление короткого замыкания трансформатора в процентах

кВА T = номинальная мощность трансформатора

кВА

кВА L = нагрузка кВА

Если для компенсации потребляемой трансформатором реактивной мощности требуется емкостная компенсация, следует проявлять осторожность, чтобы избежать чрезмерной компенсации в условиях малой нагрузки.В условиях малой нагрузки или отсутствия нагрузки реактивное сопротивление утечки не будет потреблять никакой реактивной мощности, и реактивную мощность потребляет только шунтирующее сопротивление намагничивания. При чрезмерной компенсации это может вызвать повышение напряжения на клеммах вторичной обмотки. Многие коммунальные предприятия предоставляют документы, в которых перечислены максимальные емкостные компенсации, которые могут быть установлены на вторичной обмотке служебного трансформатора. Если вам нужна эта информация, обратитесь в местную электрическую сеть.

Чаще всего реактивная мощность, потребляемая трансформатором, очень мала по сравнению с общей реактивной мощностью, потребляемой нагрузкой объекта.В этих случаях предприятие может принять решение об установке конденсаторной батареи большей емкости на вторичной обмотке трансформатора. В этом случае необходимо обратить внимание на возможность гармонического резонанса между реактивным сопротивлением трансформатора и конденсатором.

Как измерить реактивную мощность?

Калькулятор коэффициента мощности

Вычисление потерь в трехфазном силовом трансформаторе

Трехфазные силовые трансформаторы используются в электрических сетях по всему миру для эффективной передачи электроэнергии.Хотя они предлагают значительные преимущества перед однофазными трансформаторами с точки зрения мощности, баланса нагрузки и эффективности, расчет потерь не так прост. Используя программное обеспечение COMSOL Multiphysics®, мы можем надежно вычислить потери в сердечнике, катушках и столярных изделиях, а также важные сосредоточенные параметры, такие как первичная и вторичная индуктивность. Безопасность и надежность трансформаторов во многом зависят от того, насколько хорошо конструкция может рассеивать свои потери. Халатность в этом отношении повлечет за собой штрафные санкции и может привести к большим несчастным случаям.

Силовые трансформаторы: введение

Эффективность передачи электроэнергии от источника (например, электростанции) до пункта назначения (например, потребителя) рассчитывается путем сравнения произведенной и полученной мощности. Для достижения максимальной эффективности передачи необходимо минимизировать потери энергии при передаче. При передаче мощности на большие расстояния это достигается за счет уменьшения токов, протекающих по сети передачи, путем увеличения напряжения перед передачей и уменьшения его на приемном конце, как правило, на подстанции.


Электростанция с трехфазными трансформаторами в Брухзале, Германия. Изображение предоставлено Ikar.us — Карлсруэ: Datei: Kändelweg NE.jpg, собственная работа. Под лицензией CC BY 3.0 DE, через Wikimedia Commons.

Для питания переменного тока это «повышение» и «понижение» может быть выполнено на основе удивительно простого принципа (благодаря Фарадею) с использованием трансформатора, краткого термина для устройства, состоящего из двух катушек и куска ферромагнитного материала в его простейшая форма. В таком трансформаторе используется один переменный ток и одно переменное напряжение, и он называется однофазным трансформатором.Распространенным типом однофазного трансформатора является трансформатор с электронным сердечником.

Как работают трехфазные трансформаторы?

Трехфазные трансформаторы могут быть сконструированы путем наматывания трех пар катушек на один ферромагнитный сердечник в различных конфигурациях. Встроенная функция Coils в COMSOL Multiphysics позволяет гибко изменять конфигурации катушек.


Трехфазный сигнал. Изображение в общественном достоянии через Wikimedia Commons.

Трехфазные системы имеют большую пропускную способность и поэтому более эффективны, чем однофазные системы. Кроме того, разность фаз между проводниками приводит к тому, что напряжение в каждом из них достигает пика на одной трети цикла после одного из других проводников и на одной трети цикла до оставшегося проводника, что обеспечивает сбалансированные нагрузки.


Конфигурация трансформатора треугольник-звезда. Изображение Gargoyle888 — Собственная работа. Лицензия CC BY-SA 3.0 через Wikimedia Commons.

Однако для крупных распределительных сетей трансформаторы необходимо оптимизировать, чтобы максимизировать эффективность и, таким образом, избежать возможных отказов, которые часто являются результатом высоких температур из-за потерь. Принимая во внимание это, оптимизация конструкции таким образом, чтобы она могла справляться с потерями, является одним из наиболее важных шагов для создания эффективного и надежного трансформатора. При разных условиях работы потери могут происходить в любой из разных частей.Используя мультифизическое моделирование, мы можем отдельно вычислить потери в катушках, сердечнике и столярных изделиях трансформатора, тем самым используя эти выводы для улучшения конструкции и сведения потерь к минимуму.

Как и почему силовой трансформатор несет потери?

В трехфазном трансформаторе мы можем классифицировать потери в различных частях следующим образом:

  • Потери в сердечнике возникают в ферромагнитном сердечнике трансформатора.
    • Потери в сердечнике обычно называют потерями в стали, в отличие от потерь в меди, потерь в обмотках катушки.
    • В большинстве случаев потери в сердечнике определяются гистерезисом; то есть отставание намагниченности от приложенного магнитного поля. Гистерезисные потери присущи любому магнитному железу и могут быть интерпретированы микроскопически как трение магнитного домена: из этого следует, что чем выше магнитное поле, тем выше гистерезисные потери, и что эти потери довольно линейно масштабируются с частотой. В состоянии холостого хода эти потери максимальны, так как в сердечнике индуцируются максимальные магнитные поля.
    • Иногда в сердечнике также могут возникать потери из-за вихревых токов. Как правило, они меньше гистерезиса благодаря использованию ламинированного железа, которое минимизирует вихревые токи. Тем не менее, потери на вихревые токи в сердечнике могут возникать на внешних поверхностях, острых углах или в некоторых открытых частях, таких как зажимные пластины. В основном это происходит при коротких замыканиях или в результате быстрых импульсов. Расчет потерь на вихревые токи сердечника часто можно выполнить, обработав эту часть сердечника так же, как это делается при столярных работах.
  • Потери в катушке, также называемые потерями в меди или потерями I2R, возникают из-за джоулева нагрева в катушке из-за электрического сопротивления проводника.
    • В случае постоянного тока эти потери можно просто рассчитать по закону Ома. Однако, когда задействована мощность переменного тока, потери резко возрастают из-за скин-эффекта и эффекта близости .
  • Плотницкие потери — это потери в металлических конструкциях, поддерживающих трансформатор.
    • Это происходит из-за паразитных токов (вихревых токов), которые наведены в столярных изделиях.

Давайте посмотрим, как мы можем визуализировать эти компоненты и математически вычислить эти потери с помощью моделирования. Мы будем моделировать два наиболее интересных сценария, каждый из которых часто является ограничивающим фактором для прогнозирования убытков. Для этого расчета мы будем использовать двухмерные осесимметричные и трехмерные модели в COMSOL Multiphysics. Мы проведем испытание на обрыв цепи, оставив высоковольтную обмотку разомкнутой и подав низкое напряжение на низковольтный конец.Мы также смоделируем испытание на короткое замыкание, закоротив обмотку низкого напряжения и приложив напряжение к концу высокого напряжения, чтобы обеспечить номинальный ток, протекающий по цепи.

Моделирование трехфазного трансформатора в COMSOL Multiphysics®

Геометрия, материалы и исследования

Для нашего трехмерного анализа мы моделируем всю геометрию трансформатора, включая весь сердечник и столярные изделия, с использованием гомогенизированных катушек. С другой стороны, двухмерный осесимметричный эквивалент иллюстрирует одну фазу с явным моделированием каждого витка катушки.

Три катушки можно легко смоделировать с помощью встроенной функции Coil и настроить в соответствии с конкретным дизайном.

Геометрия 3D модели со столярными изделиями и без них.

В качестве материала сердечника выбрано нелатистое железо (с проводимостью 0,1) и медь для катушек. Столярные изделия моделируются с использованием конструкционной стали с граничным условием Импеданс . В двухмерной осесимметричной модели мы включаем отдельные области проводников, чтобы понять плотность тока проводников.

Испытание разомкнутой цепи выполняется только в 3D, так как разомкнутая цепь в основном связана с восстановлением поля в сердечнике, в то время как тест на короткое замыкание выполняется как в двухмерной осесимметрии, так и в 3D, чтобы проанализировать большое количество имеющихся катушек и для улавливания механических эффектов, которые не проявляются в двухмерных вычислениях, соответственно.

3D Модель

Для испытания на обрыв цепи номинальное фазное напряжение вводится в первичную обмотку, в то время как вторичная обмотка остается разомкнутой (I = 0).Основные потери рассчитываются следующим образом:

Частота (Гц) Основные потери (кВт) Основные потери (мур ») (кВт) Потери в сердечнике, уравнение Штейнмеца (кВт)
50.00 1,5971 1,4918 1,5663

Как видно из таблицы, смоделированные значения сопоставимы со значениями, вычисленными с использованием математических формул, таких как уравнение Штейнмеца.

Ниже приведены плотность магнитного потока и намагниченность (насыщение) сердечника.Как обсуждалось выше, оба эти явления влияют на потери в активной зоне.


Насыщение (левая половина) и плотность магнитного потока (правая половина) сердечника.

Чтобы выполнить тест на короткое замыкание в 3D-модели, необходимо изменить питание 12 катушек; т.е. значения возбуждения катушки необходимо переключать между первичной и вторичной катушками. Чтобы обеспечить быстрое переключение между этими конфигурациями, мы используем функциональные возможности методов в COMSOL Multiphysics для автоматизации этого процесса.Используя испытание на короткое замыкание в 3D, мы получаем понесенные столярные потери. При 50 Гц потери в столярных изделиях составляют 120 Вт.

2D осесимметричная модель

Мы реализуем короткое замыкание на первичной и вторичной обмотках в двух отдельных исследованиях, чтобы оценить потери в меди, а также вторичную индуктивность. Чтобы обеспечить эффективное переключение питания катушки при проведении каждого из исследований, мы используем функциональность метода, который изменяет возбуждение катушки одним щелчком мыши. Исследования проводятся в частотной области.

Результаты

Мы можем визуализировать результаты на графиках ниже:


Расчетные потери в меди при 50 Гц составляют 5,5 кВт.

Диаграмма плотности тока. Мы видим, что в проводниках развивается скин-эффект, указывающий на большие различия в плотности тока.


Трехфазный трансформатор, смоделированный в COMSOL Multiphysics.

Используя мультифизическое моделирование, мы можем вычислить потери в отдельных компонентах трехфазного силового трансформатора с хорошей точностью.Это особенно полезно на этапе тестирования НИОКР. Основываясь на результатах моделирования, мы можем экспериментировать с геометрическими параметрами, а также с другими переменными, такими как толщина катушки и слои сердечника, а также проектировать трансформаторы с оптимальными характеристиками и минимальными потерями.

Оптимизация реальных конструкций трансформаторов с помощью мультифизического моделирования

Для производителей трансформаторов переменного тока НИОКР по усовершенствованию конструкции включают в себя учет ряда различных физических явлений и взаимодействий между ними.В этом смысле создание высокоэффективных трансформаторов — настоящая мультифизическая проблема.

Одним из основных мультифизических аспектов, влияющих на конструкцию трансформатора, является его тепловыделение. Оценка трансформаторов с точки зрения тепловых характеристик способствует разработке эффективных систем охлаждения. Другие факторы, которые необходимо проанализировать, связаны с механической целостностью и деформацией материала как при статическом, так и при динамическом возбуждении. Многие ресурсы по этому поводу можно найти на нашем веб-сайте и в литературе.

Примером специфического структурного явления, вызванного периодическим возбуждением, является шум, создаваемый трансформатором, также известный как шум трансформатора . Этот звук является результатом вибрации от различных источников внутри трансформатора, таких как сердечник трансформатора, вспомогательные вентиляторы и насосы, используемые в системе охлаждения. Наиболее важными из этих источников являются магнитострикция сердечника и вызванная силой Лоренца вибрация катушек. Оба эти эффекта можно легко включить в модель трансформатора в программном обеспечении COMSOL®.

Работая над этой проблемой, исследователи из Корпоративного исследовательского центра ABB в Вестерасе, Швеция, создали серию имитационных и вычислительных приложений для расчета ряда параметров в различных компонентах трансформатора.

Следующий шаг

Загрузите файлы модели с помощью кнопки ниже и опробуйте модель самостоятельно:

Оценка повышения температуры трансформаторов

Трансформаторы для силовых установок часто ограничены в размерах из-за допустимого повышения температуры.Допустимое повышение температуры трансформатора обычно зависит от ограничений материалов, используемых в трансформаторе, правил безопасности или проблем надежности при высоких температурах, связанных с другими компонентами, расположенными рядом с трансформатором. Повышение температуры трансформатора происходит из-за потерь мощности, рассеиваемых трансформатором в виде тепла. Потери мощности трансформатора состоят из потерь в сердечнике и катушке обмотки и могут быть точно предсказаны.

Основные потери

Потери в сердечнике значительно способствуют повышению температуры трансформатора.Потери на гистерезис, потери на вихревые токи и остаточные потери вносят вклад в общие потери в сердечнике. При высоких плотностях потока и относительно низких частотах обычно преобладают гистерезисные потери.

Потери на гистерезис — это величина, на которую намагничивание ферритового материала отстает от силы намагничивания из-за молекулярного трения. Потери энергии, вызванные гистерезисными потерями, пропорциональны площади статической или низкочастотной петли B-H. На высоких частотах обычно преобладают потери на вихревые токи.Потери на вихревые токи возникают из-за переменной индукции, которая создает электродвижущие силы, которые вызывают циркуляцию тока в магнитном материале.

Эти вихревые токи приводят к потере энергии. Понимание поведения суммарных общих потерь в сердечнике в зависимости от плотности потока и частоты является наиболее важным. На рис. 1 показана зависимость потерь в сердечнике от частоты для энергетических ферритовых материалов. На рис. 2 показана зависимость потерь в сердечнике от плотности магнитного потока для энергетических ферритовых материалов.Производители обычно объединяют и расширяют информацию на рис. 1 и 2 , опубликовав потери в сердечнике как функцию плотности потока на различных частотах и ​​в логарифмических масштабах, как показано на рис. 3 .

Обратите внимание, что зависимости между потерями в сердечнике и частотой, а также потерями в сердечнике и плотностью потока являются экспоненциальными. Симметричные синусоидальные, прямоугольные и однонаправленные возбуждения напряжения в виде прямоугольных импульсов приводят к примерно одинаковым потерям в сердечнике, при условии, что частота и общее отклонение плотности потока остаются неизменными.Производители обычно публикуют данные об измеренных потерях в сердечнике с использованием возбуждения симметричным синусоидальным напряжением.

Для упомянутых типов возбуждения потери в сердечнике могут быть получены прямым способом из опубликованных производителями графиков или рассчитаны по формулам потерь в сердечнике. Возбуждения непрямоугольной формы импульса напряжения ( Рис. 4 ) следует рассматривать по-другому.

Для возбуждения формы волны импульсного напряжения более точно рассчитать «кажущуюся частоту», взяв обратное значение периода времени для завершения одного цикла качания магнитного потока.В результате получается кажущаяся частота, превышающая частоту переключения. Используйте эту кажущуюся частоту для поиска потерь в сердечнике по опубликованным производителями графиков или для расчета потерь в сердечнике по формулам. Однако вы должны умножить этот результат на рабочий цикл, чтобы получить точную оценку потерь в сердечнике.

Для определенного сорта материала потери мощности при данной температуре можно выразить одной формулой:

P C = K f x B y

Где:

P C = потери в сердечнике в мВт / см 3

K = постоянная для определенной марки материала (0.08 для материала ТСФ-50АЛЛ)

f = частота в кГц

B = плотность потока в килогауссах

x = показатель степени частоты (1,39 для TSF-50ALL)

y = показатель степени плотности потока (2,91 для TSF-50ALL)

Производители феррита установили эти зависимости потерь в сердечнике эмпирически на основе данных измерений. Показатели степени и константа определяются с использованием следующих формул.

При некоторой фиксированной плотности потока x = ln (P C @ 1 st f / P C @ 2 nd f) / ln (1 st f / 2 nd f)

На некоторой фиксированной частоте

y = ln (P C @ 1 st B / P C @ 2 nd B) / ln (1 st B / 2ndB)

k = P C @ B & f / (B y * f x )

Фиг.5 показывает потери в сердечнике как функцию температуры для нескольких марок материалов, включая новый материал (TSF-50ALL Flat Line). Мягкие ферритовые материалы были впервые разработаны в конце 1940-х годов для сигнальных приложений, и они имели минимальную плотность потерь в области комнатной температуры. Таким образом, в нормальных условиях работы потери увеличиваются с повышением температуры.

В 1970-х производители феррита обнаружили, что потери в феррите минимальны при температуре компенсации анизотропии.Благодаря этому открытию производители научились изменять состав материала, чтобы изготавливать материалы с минимальными потерями в сердечнике, близкими к ожидаемой рабочей температуре.

В настоящее время существует множество марок материалов, оптимизированных для определенной идеальной рабочей температуры. Настоящее время приносит дополнительные открытия, которые позволяют производителям ферритов разрабатывать новые марки материалов, которые демонстрируют такие же низкие потери в сердечнике в более широком диапазоне рабочих температур (50 мВт / см 3 при 100 кГц, 1000 Гс от комнатной температуры до более 100 ° C. ).Этот новый сорт материала будет способствовать созданию более энергоэффективных продуктов, поскольку потери в сердечнике будут оптимизированы во всем диапазоне рабочих температур. Изделия из этих материалов будут более безопасными, потому что вероятность теплового разгона будет меньше. Эти новые сорта материалов также позволят свести к минимуму требуемые запасы сердечника, поскольку один сорт материала будет оптимальным для всех энергетических приложений, независимо от рабочей температуры.

Свойства ферритового материала

Хотя свойства материала, отличные от потерь в сердечнике, не важны при определении превышения температуры или размера сердечника трансформатора, другие свойства представляют интерес, если рассматриваются интегрированные магнитные элементы (трансформаторы и катушки индуктивности, намотанные на общий магнитный сердечник).

Величина и стабильность начальной проницаемости TSF-50ALL Flat Line в широком диапазоне рабочих температур могут быть полезными для некоторых приложений с низкой плотностью потока.

Для трансформаторов

требуется достаточная проницаемость, чтобы обеспечить хороший путь потока, чтобы поток оставался на заданном пути и не выходил из сердечника. Для индукторов выходной мощности обычно требуется сердечник с зазором. Размер зазора становится доминирующим фактором, в то время как определение индуктивности компонента и проницаемости материала относительно неважно.

Размер сердечника трансформатора часто ограничивается потерями в материале сердечника. Однако размер сердечника силового индуктора часто ограничивается свойствами насыщения материала сердечника при рабочих температурах.

Потери в обмотке

Потери в катушке обмотки вносят вклад в общие потери трансформатора. Потери в меди (потери I 2 R) легко понять. Потери в обмотке из-за скин-эффекта, эффекта близости, влияния вихревых токов в обмотках, эффектов от граничного потока, пересекающего обмотки вблизи зазора сердечника, краевых эффектов и влияния посторонних проводников могут быть значительными, и их следует учитывать.Для простоты мы проигнорируем эти дополнительные потери в обмотке и рассмотрим только потери в меди I 2 R.

Сопротивление каждой обмотки можно рассчитать, умножив среднюю длину витка обмотки на сопротивление меди для соответствующего сечения провода и на общее количество витков.

R P или R S = MLT * R CU * N

Где:

R P = сопротивление первичной обмотки в Ом

R S = сопротивление вторичной обмотки в Ом

MLT = средняя длина поворота в см

R CU = сопротивление меди в мкОм / см

N = количество оборотов

Потери в меди для каждой обмотки рассчитываются по следующей формуле

P CU = I 2 R

Где:

P CU = потери в меди в ваттах

I = ток в амперах

R = сопротивление, Ом

Суммируйте первичные и все вторичные потери обмотки, чтобы получить общие потери в обмотке, а затем суммируйте общие потери в обмотке с потерями в сердечнике, чтобы получить общие потери трансформатора (PΣ).

Повышение температуры

Выходная мощность трансформатора меньше его входной мощности. Разница заключается в количестве энергии, преобразованной в тепло за счет потерь в сердечнике и обмотке. Комбинация излучения и конвекции рассеивает это тепло с открытых поверхностей трансформатора. Таким образом, рассеивание тепла зависит от общей площади открытой поверхности сердечника и общей площади открытой поверхности обмоток.

Повышение температуры трансформатора трудно предсказать с точностью.Один из подходов состоит в том, чтобы объединить потери в обмотке с потерями в сердечнике и предположить, что тепловая энергия равномерно рассеивается по всей площади поверхности сердечника и узла обмотки при всех температурах окружающей среды. Это неплохое предположение, потому что большая часть площади поверхности трансформатора — это область ферритового сердечника, а не область обмотки, а теплопроводность феррита (~ 40 мВт / см / ° C) низкая при любой температуре. Исходя из этих предположений, превышение температуры трансформатора можно оценить по следующей формуле:

ΔT = (PΣ / A T ) 0.833

Где:

ΔT = повышение температуры в ° C

PΣ = общие потери в трансформаторе (мощность, теряемая и рассеиваемая в виде тепла) в мВт; A T = площадь поверхности трансформатора в см 2 .

Показатель степени (0,833), используемый в приведенной выше формуле для оценки повышения температуры, был получен из эмпирических данных с использованием следующей формулы:

x = ln (PΣ при 1-м ΔT / PΣ при 2-м ΔT) / ln (1 ΔT / 2 ΔT)

На рис. 6 показано повышение температуры в зависимости от потерь мощности для нескольких трансформаторов с сердечником E различных типоразмеров.

Повышение температуры трансформатора частично вызвано потерями в сердечнике и частично потерями в катушке обмотки. Потери в сердечнике и обмотках, а также повышение температуры можно оценить с помощью расчетов, сделав несколько предположений. Из-за сделанных предположений может потребоваться эмпирическое подтверждение повышения температуры путем измерения трансформатора с использованием термопар. Новые ферритовые материалы, которые демонстрируют постоянные потери в сердечнике в широком диапазоне рабочих температур, упростят выбор ферритового материала и окажутся ценными для трансформаторной промышленности.

Список литературы

  1. Снеллинг, E.C. «Свойства мягких ферритов и их применение, второе издание», Баттерворт, 1988 г. .

  2. McLyman, C.Wm. T. «Выбор магнитного сердечника для трансформаторов и индукторов», Marcel Dekker Inc., 1982 .

  3. McLyman, C.Wm. T. «Справочник по проектированию трансформаторов и индукторов», Marcel Dekker Inc., 1978, .

  4. Джеймерсон, Клиффорд.«Расчет потерь в сердечнике магнитного переключателя нацеливания», Технология силовой электроники, февраль 2002 г., Vol. 28, № 2 .

  5. Карстен, Брюс. «Высокочастотные потери в проводниках в магнитных импульсах», PCIM, ноябрь 1986 г. .

  6. «Мягкие ферриты: руководство пользователя», Ассоциация производителей магнитных материалов, MMPA SFG-98, 1998 .

Для получения дополнительной информации об этой статье, CIRCLE 330 на сервисной карте считывателя

Как спроектировать и рассчитать высокочастотный трансформатор?

Введение

Трансформатор — это пассивное электрическое устройство, которое передает электрическую энергию от одной электрической цепи к другой или нескольким схемам.Его ток передачи — переменный ток. Трансформатор обычно используется для увеличения или уменьшения подачи. В качестве одного из типов высокочастотные трансформаторы используют частоты от 20 кГц до более 1 МГц. В этой статье рассказывается о процессе проектирования высокочастотных трансформаторов (HFT), то есть как рассчитать высокочастотный трансформатор?

Как сделать высокочастотный трансформатор?

Каталог


Ⅰ Сердечник трансформатора

В реальных трансформаторах две катушки намотаны на один и тот же железный сердечник.Сердечник трансформатора обеспечивает магнитный путь для направления потока. Использование высокопроницаемого материала (который описывает способность материала переносить флюс), а также более совершенные методы изготовления сердечника помогают обеспечить желаемый путь потока с низким сопротивлением и ограничить линии потока к сердечнику. Ниже представлены некоторые важные аспекты сердечника трансформатора.

1.1 Материал магнитного сердечника

Какой материал лучше всего подходит для сердечника высокочастотного трансформатора? Мягкий феррит широко используется в импульсных источниках питания благодаря своим характеристикам.Его преимуществами являются высокое сопротивление, низкие потери на вихревые токи переменного тока, низкая цена и простота обработки в различных формах. Он также имеет недостатки, в том числе низкую рабочую плотность магнитного потока, низкую проницаемость, большую магнитострикцию и относительно чувствительность к изменениям температуры. Выбор подходящих материалов может полностью удовлетворить требования к конструкции высокочастотных трансформаторов, и они имеют идеальные характеристики и ценовое преимущество.

1.2 Структура сердечника

Сердечник трансформатора в качестве основной части, факторы, которые следует учитывать при выборе структуры магнитного сердечника, включают: уменьшение магнитной утечки и индуктивности рассеяния, увеличение расстояния отвода тепла катушки, что способствует экранированию, простота обмотка катушки, удобная сборка и разводка.Магнитная утечка и индуктивность рассеяния напрямую связаны со структурой сердечника. Если магнитный сердечник не требует воздушного зазора, лучше использовать замкнутый магнитопровод кольцевой или квадратной формы.

1.3 Параметры сердечника

При разработке параметров магнитного сердечника особое внимание следует уделять плотности магнитного потока при работе, ограниченной не только кривой намагничивания, но также потерями и рабочим режимом передачи энергии. Когда магнитный поток изменяется в одном направлении: ΔB = Bs-Br, что ограничивается не только плотностью магнитного потока насыщения, но также, главным образом, потерями (потеря вызывает повышение температуры, влияющее на плотность магнитного потока).Рабочая плотность магнитного потока Bm = 0,6 ~ 0,7ΔB.
Открытие воздушного зазора может уменьшить Br, чтобы увеличить значение изменения плотности магнитного потока ΔB. После этого ток возбуждения увеличивается, но объем магнитопровода можно уменьшить. Для работы магнитного потока в двух направлениях: ΔB = 2Bm. В этом случае также необходимо обратить внимание на то, что вольт-секундная область положительных и отрицательных изменений возбуждения не равна по разным причинам, и возникает проблема смещения постоянного тока. Поэтому к магнитному сердечнику можно добавить небольшой воздушный зазор или в конструкцию схемы можно добавить блокирующий конденсатор постоянного тока.

1.4 Параметры катушки

Параметры катушки включают количество витков, сечение (диаметр) провода, форму провода, расположение обмоток и расположение изоляции.
Диаметр проволоки определяется плотностью тока обмотки. Обычно J составляет 2,5 4 А / мм2. При выборе диаметра проволоки следует учитывать скин-эффект. При необходимости внесите корректировки после проверки превышения температуры трансформатора.

1,5 витка катушки

Обычно используемое расположение обмоток: первичная обмотка расположена близко к магнитному сердечнику, а обмотка обратной связи вторичной обмотки постепенно выходит наружу.Рекомендуются следующие два расположения обмоток:
1) Если напряжение первичной обмотки высокое, а напряжение вторичной обмотки низкое, вторичную обмотку можно использовать близко к магнитному сердечнику, затем следует обмотка обратной связи и Первичная обмотка находится в самом дальнем конце, что выгодно для первичной обмотки по отношению к магнитному сердечнику. Устройство изоляции.
2) Чтобы увеличить связь между первичной и вторичной обмотками, половина первичных обмоток может быть близко к сердечнику, затем обмотка обратной связи и вторичные обмотки, а другая половина первичных обмоток во внешнем слое, что значительно снизит индуктивность рассеяния. .

1.6 Конструкция сборки

Конструкция сборки высокочастотного силового трансформатора делится на два типа: горизонтальная и вертикальная. При использовании плоских магнитных сердечников, чиповых магнитных сердечников и тонкопленочных магнитных сердечников все они имеют горизонтальную структуру сборки.

1.7 Проверка превышения температуры

Проверка превышения температуры может быть проведена путем расчетов и испытаний образцов. Экспериментальное повышение температуры ниже допустимого превышения температуры более чем на 15 градусов, что увеличивает плотность тока и соответственно уменьшает сечение провода.Если она превышает допустимое превышение температуры, соответственно уменьшите плотность тока и увеличьте сечение провода. Например, увеличьте площадь рассеивания тепла магнитопровода и диаметр провода.

Символ трансформатора

Ⅱ Типы высокочастотных трансформаторов

2.1 Классификация трансформаторов

Силовые трансформаторы делятся на три категории в зависимости от топологии:
(1) Обратный трансформатор
(2) Прямой трансформатор
(3) Двухтактный трансформатор (в полном мосту / полумосте)
Подходящая топологическая структура структуры магнитопровода показана в следующей таблице:

Основная структура

Трансформатор Тип цепи

Обратный ход Тип

Тип передачи

Двухтактный Тип

E ядер

+

+

0

Ядра Planar E

+

0

Ядра EFD

+

+

Ядра ETD

0

+

+

Ядра ER

0

+

+

U Ядра

+

0

0

Ядра RM

0

+

0

EP сердечников

+

0

P Ядра

+

0

Кольцевые сердечники

+

+


Примечания: « + » = Соответствующий « 0 » = Нормальный «» = Нет

2.2 Правила проектирования

1) Если индуктор фильтра постоянного тока и сердечник индуктора работают только в одном квадранте, индукторы этого типа включают повышающие индукторы, понижающие индукторы, понижающие / повышающие индукторы, прямолинейные и двухтактные фильтрующие индукторы трансформатора, и несимметричные трансформаторы.
2) Магнитный сердечник переднего трансформатора работает только в одном квадранте, поэтому трансформатор необходимо сбросить с помощью магнитов.
3) Магнитный сердечник двухтактного трансформатора имеет двунаправленное переменное намагничивание.Преобразователи, относящиеся к этой категории, включают двухтактные преобразователи, полумостовые и полномостовые преобразователи, а также катушки индуктивности фильтров переменного тока.

Ⅲ Выбор сердечника трансформатора

1) Мягкий феррит широко используется в импульсных источниках питания из-за его низкой цены, хорошей адаптируемости и высокочастотных характеристик.
2) Мягкие ферриты бывают двух серий: феррит марганец-цинк и феррит никель-цинк. Составляющими марганцево-цинкового феррита являются Fe2O3, MnCO3 и ZnO.Он в основном используется в различных фильтрах ниже 1 МГц, катушках индуктивности, трансформаторах и т. Д. С широким спектром применений. Компонентами никель-цинкового феррита являются Fe2O3, NiO, ZnO и т. Д., Которые в основном используются для различных индукционных обмоток с частотой выше 1 МГц, магнитных шариков для защиты от помех и совместных устройств согласования антенн.
3) Марганцево-цинковые ферритовые сердечники наиболее широко используются в импульсных источниках питания. В зависимости от их использования различается и выбор материалов. Сердечники, используемые в части фильтра входного питания, в основном обладают высокой проницаемостью, а их материалы в основном относятся к классам R4K ~ R10K, то есть ферритовые сердечники с относительной проницаемостью 4000 ~ 10000.Что касается основных трансформаторов и выходных фильтров, большинство из них имеют высокую плотность магнитного потока насыщения, а их B составляет около 0,5 Тл (т. Е. 5000 GS).

Ⅳ Параметры главного трансформатора

a. Топология трансформатора

При более высокой плотности магнитного потока насыщения Bs и более низкой остаточной плотности магнитного потока Br, Bs оказывает определенное влияние на результаты работы трансформатора и обмотки. Теоретически, если Bs высокий, количество витков обмотки будет уменьшаться, и потери в меди также уменьшатся.В практических приложениях существует множество схем импульсных высокочастотных преобразователей питания. Для трансформаторов их рабочие формы можно разделить на две категории:

Схема является полумостовой, полной мостовой, двухтактной и т. Д. Положительные и отрицательные токи возбуждения полупериода в первичной обмотке трансформатора идентичны по величине и противоположны по направлению. Следовательно, изменения магнитного потока в сердечнике трансформатора также перемещаются симметрично вверх и вниз. Максимальный диапазон изменения B составляет △ B = 2Bm, и постоянная составляющая в сердечнике в основном нейтрализуется.

Схема является несимметричной прямой, несимметричной обратной связью и т. Д. Первичная обмотка трансформатора добавляет однонаправленное прямоугольное импульсное напряжение за один цикл (в случае несимметричного обратного хода). Сердечник трансформатора возбуждается однонаправленно, и плотность магнитного потока изменяется от максимального значения Bm до остаточной плотности магнитного потока Br. В это время △ B = Bm - Br. Если Br уменьшается, а плотность магнитного потока Bs насыщения увеличивается, B может увеличиваться. Это может уменьшить количество витков и потери в меди.

г. Низкие потери мощности на высоких частотах
Потери мощности феррита не только влияют на выходную эффективность источника питания, но также вызывают нагрев сердечника, искажение формы сигнала и другие нежелательные последствия.
Проблема нагрева трансформатора очень часто встречается на практике. Это в основном вызвано потерями в меди и потерями в сердечнике. Если Bm выбрано слишком низким при проектировании трансформатора, и большее количество витков обмотки вызовет нагрев обмотки и в то же время передачу тепла магнитному сердечнику.И наоборот, если сердечник является основным нагревательным телом, это также вызовет нагрев обмотки.
При выборе ферритовых материалов потери мощности должны иметь отрицательную зависимость от температурного коэффициента. Если потери в сердечнике являются основным источником тепла, температура трансформатора будет расти, что приведет к дальнейшему увеличению потерь в сердечнике, что в конечном итоге приведет к сгоранию силовой трубки, трансформатора и других компонентов. Поэтому при разработке энергетических ферритов в стране и за рубежом необходимо решить проблему отрицательного температурного коэффициента самого магнитного материала.Это также важная особенность магнитного материала для источника питания.

г. Проницаемость
Какова соответствующая проницаемость? Это следует определять в соответствии с частотой коммутации реальной цепи. Обычно материалы с относительной проницаемостью 2000 имеют применимую частоту ниже 300 кГц, а иногда она может быть выше, ниже 500 кГц. Для материалов с более высоким значением следует выбирать более низкую магнитную проницаемость, обычно около 1300.

г. Более высокая температура Кюри
Температура Кюри — это температура, при которой магнитный материал теряет свои магнитные свойства, обычно выше 200 ℃. Однако фактическая рабочая температура трансформатора не должна превышать 80 ℃. Это связано с тем, что, когда температура выше 100 ℃, его плотность магнитного потока насыщения Bs упала до 70% от значения при комнатной температуре. Следовательно, чрезмерно высокая рабочая температура вызовет более сильное падение плотности потока насыщения магнитопровода.Кроме того, когда он выше 100 ° C, его потребляемая мощность имеет положительный температурный коэффициент, что приведет к порочному кругу. Для материала R2KB2 температура, соответствующая допустимой потребляемой мощности, достигла 110 ° C, а температура Кюри — 240 ° C, что соответствует требованиям для высокотемпературного использования.

Ⅴ Как рассчитать высокочастотный трансформатор?

5.1 Принципы и методы проектирования трансформаторов

Существует два основных метода проектирования трансформаторов: метод произведения площади AP.AP является произведением площади поперечного сечения сердечника Ae и эффективной площади окна Aw катушки.

PT — мощность трансформатора
Ae — эффективная площадь поперечного сечения
Aw — площадь окна сердечника
Ko — коэффициент использования окна сердечника, типичное значение 0,4.
Kf — коэффициент формы, прямоугольная волна — 4, синусоида — 4,44.
Bw — рабочая магнитная напряженность магнитопровода
Fs — рабочая частота переключателя
Kj — коэффициент плотности тока, взять 395A / см2
X — коэффициент структуры ядра

5.2 Анализ метода AP

В соответствии с методом проектирования силового трансформатора, общие шаги проектирования трансформатора с использованием метода AP произведения площади:
1. Выберите материал сердечника и рассчитайте полную мощность трансформатора.
2. Определите размер AP сердечника в поперечном сечении, а затем выберите размер сердечника в соответствии с ним.
3. Рассчитайте индуктивность и количество витков первичной и вторичной сторон.
4. Рассчитайте длину воздушного зазора.
5. Найдите диаметр провода в соответствии с плотностью тока и действующим значением тока первичной и вторичной сторон.
6. Определите, соответствуют ли потери меди и железа требованиям (допустимые потери и превышение температуры).

5.3 Параметры источника питания

Входное напряжение: 175-264 В переменного тока
Выходное напряжение: 21 В
Выходная мощность: 3 А
Частота установлена ​​на 60 кГц, а рабочий цикл изначально установлен на 0,45.
Используя обратную топологию, выберите материал сердечника и определите полную мощность PT трансформатора.
Учтите стоимость, выберите здесь материал PC40:
Проверьте данные PC40 и получите Bs = 0.39Т, Br = 0,06Т

Bm = ΔBmax * 0,6 = 0,198T, округлите до 0,2T
Чтобы предотвратить мгновенное насыщение магнитопровода, зарезервируйте определенный запас и возьмите Bm = ΔBmax * 0,6 = 0,198T, возьмите 0,2T.
Полная мощность трансформатора PT, для обратноходового трансформатора:

Рассчитать AP:

Где:
Дж — плотность тока, обычно принимается 395 А / см2.
Ku — эффективный коэффициент использования медного окна, который определяется в соответствии с требованиями безопасности и количеством выходных каналов, обычно 0.B * Ae)
Np = 1434uH * 1,257A / (0,2 * 84,8) = 106,28T округлить до 106T
2) Число витков вторичной обмотки
Ns = Np / n
Ns = 106T / 7,8 = 13,58T , округлить до Ns = 14T
3) Обороты обратной связи
Nv = (Vcc + Vf) / [(Vo + Vf) / Ns]
Nv = (14,5V + 1V) / [(21V + 1V) / 14T] = 9,87T, круглый это к Nv = 10T

Чтобы избежать насыщения магнитопровода, к магнитной цепи добавляется соответствующий воздушный зазор, и расчет выглядит следующим образом:

Может потребоваться скорректировать количество витков в зависимости от краевого эффекта магнитного потока в воздушном зазоре.n / Vimin
Iprms = 63W / 0,8 / 210V = 0,375A
Диаметр провода (плотность тока J составляет 4A / мм2)

Используйте два провода диаметром 0,18 мм и намотайте их вместе или используйте одножильный провод AWG # 28.
Диаметр вторичной обмотки

Используйте 4 провода диаметром 0,25 мм для параллельной намотки и рассчитайте текущую глубину скин-слоя:

Диаметр многопроволочной проволоки должен быть меньше или равен dwH. Для однопроволочной намотки, если диаметр проволоки превышает dwH, необходимо рассмотреть возможность использования нескольких жил.

Расчет потерь в меди Pcu и потерь в стали Pfe (полные потери в трансформаторе Ploss)
a) Потери в первичной и вторичной обмотках. Среди них MLT — это средняя длина витка магнитопровода.

b) Рассчитайте допустимые общие потери Ploss и потери в стали при КПД η .

c) Найдите фактические потери при эксплуатации в соответствии с кривой потерь в сердечнике.
Потери железа на единицу веса, фактически произошло

Фактические потери в стали должны быть ниже допустимого значения.

d) Рассчитайте потери на единицу площади Φ = Ploss / As. Если повышение температуры, вызванное значением Φ, составляет менее 25 градусов, конструкция в порядке.
Bw Расчет:

Рабочая плотность магнитного потока Bw должна соответствовать требованиям расчетного индекса, Bw , чтобы избежать насыщения магнитопровода.

Часто задаваемые вопросы о конструкции высокочастотного трансформатора

1. Что такое высокочастотный трансформатор?
Основное отличие состоит в том, что, как следует из их названия, они работают на гораздо более высоких частотах — в то время как большинство трансформаторов сетевого напряжения работают на частоте 50 или 60 Гц, высокочастотные трансформаторы используют частоты от 20 кГц до более 1 МГц…. Для любого заданного значения мощности, чем выше частота, тем меньше может быть трансформатор.

2. Каковы особенности конструкции высокочастотного трансформатора?
Проектирование ВЧ трансформаторов. Трансформаторы высокой частоты передают электроэнергию. Физический размер зависит от передаваемой мощности, а также от рабочей частоты. Чем выше частота, тем меньше физический размер.

3. Какая польза от высокочастотного трансформатора?
Эти трансформаторы предназначены для безопасного и точного управления напряжением до 15 000 вольт, преобразуя уровни высокого напряжения и тока между катушками за счет магнитной индукции.Высоковольтные и высокочастотные трансформаторы используются в самых разных областях, от источников питания до лазерного оборудования и ускорителей частиц.

4. В чем разница между высокой и низкой частотой?
Когда мы говорим о звуке, мы говорим о высоких и низкочастотных волнах. … Это измерение количества циклов в секунду выражается в герцах (Гц), причем более высокий Гц соответствует более высокочастотному звуку. Низкочастотные звуки составляют 500 Гц или ниже, а высокочастотные волны — более 2000 Гц.

5. Какая частота трансформатора?
Что такое частота трансформатора. Доступны три распространенные частоты: 50 Гц, 60 Гц и 400 Гц. Мощность в Европе обычно составляет 50 Гц, а в Северной Америке — 60 Гц. Частота 400 Гц зарезервирована для мощных приложений, таких как аэрокосмическая промышленность, а также для некоторых специализированных компьютерных источников питания и ручных станков.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *