Типы проводов | Линии и сети. Расчет проводов
Для электрических сетей применяют неизолированные алюминиевые, сталеалюминиевые, медные и стальные провода, а для внутренних проводок — изолированные алюминиевые и медные провода.
Медь — хороший проводниковый материал (удельная проводимость γ = 53 м/Ом • мм2), устойчивый против коррозии, но дорогой и дефицитный. Поэтому для линий неизолированные медные провода применяют весьма редко.
Алюминий как проводниковый материал хуже меди (γ = 32… 34 м/Ом • мм2). На открытом воздухе хорошо противостоит коррозии. Алюминиевые провода всегда выполняют многопроволочными, так как однопроволочные не обеспечивают достаточной механической прочности.
В настоящее время заводами кабельной промышленности освоен массовый выпуск неизолированного провода марки АН35, изготавливаемого из алюминиевого сплава АВ-Е. Он рекомендуется к применению вместо провода А35 при проектировании линий 6. ..10 кВ в I…IV районах по ветру и I и II районах по гололеду.
Сталь (железо) обладает удельной проводимостью, в 7,5 раза меньшей, чем медь, и в 4,5 раза меньшей, чем алюминий: у = 7 м/Ом•мм2. Сталь находит применение в сетях с малой плотностью нагрузки. Для защиты от быстрого разрушения стальные провода изготавливают оцинкованными (гальваническое покрытие тонким слоем цинка).
В сталеалюминиевых проводах сердечник набран из оцин- кованных стальных проволок, увеличивающих общую механическую прочность, вокруг которых навиты алюминиевые провода. В биметаллических проводах стальная проволока покрыта слоем алюминия или меди (прокатыванием).
Провода обозначают следующими буквами: М — медные, А — алюминиевые, ПС — стальные многопроволочные, ПСО — стальные, однопроволочные, АС — сталеалюминиевые, АКП — провод марки А, в котором межпроволочное пространство, за исключением наружной поверхности, заполнено нейтральной смазкой повышенной термостойкости; АСКС — провод марки АС, в котором межпроволочное пространство стального сердечника заполнено термостойкой смазкой.
Цифры после букв М, А, ПС, АС — это сечение провода (мм2). В однопроволочных стальных проводах цифра указывает диаметр провода (мм).
Изолированные провода изготавливают из мягкой меди и алюминия. В качестве изоляции используют покрытие из хлопчатобумажной пряжи, пропитанной вулканизированной резиной, поливинилхлоридного пластика и других пластических материалов.
Шнур представляет собой провод, состоящий из двух или более изолированных гибких жил, заключенных в общую оболочку (оплетку или шланг).
Кабель — это одна или несколько скрученных изолированных жил, заключенных в защитную герметическую металлическую (алюминиевую или свинцовую), резиновую или поливинилхлоридную оболочку.
Кабели подразделяют на силовые и контрольные. Силовые кабели, Используемые в силовых установках различных напряжений, изготавливают с изоляцией из пропитанной бумаги (в обозначении марки ка- беля не указывается) или с резиновой изоляцией (буква Р) с медными Шли алюминиевыми (А) жилами. Силовые кабели различают по числу К сечению жил, конструкции, типам защитных покровов и номинальному напряжению. Кабели в свинцовой оболочке в обозначении имеют букву С, в алюминиевой — А, в поливинилхлоридной — В, в негорючей маслостойкой найритовой — Н. Оболочка может быть голая (Г) или бронированная (Б) стальными лентами или проволоками.
Одножильные силовые кабели изготавливают с сечением жилы от 2,5 до 800, двухжильные — от 2,5 до 150, трехжильные — от 2,5 до 250, четырехжильные — от 4 до 185 мм2.
Контрольные кабели (в обозначении первая или вторая буква К) предназначаются для работы в электрических сетях до 500 В переменного или 1000 В постоянного тока. Их различают по числу (до нескольких десятков) и сечению (не более 10 мм2) токопроводящих жил, конструкции и типам защитных покровов (как и силовые кабели). В таблице 15.3 приведены общие технические характеристики проводов и некоторых кабелей и даны рекомендации по их применению.
< Предыдущая | Следующая > |
---|
Свойства алюминия
Характерными свойствами чистого алюминия являются его малый удельный вес, низкая температура плавления, высокая тепловая и электрическая проводимость, высокая пластичность, очень большая скрытая теплота плавления и прочная, хотя и очень тонкая пленка окиси, покрывающая поверхности металла и защищающая его от проникновения кислорода внутрь.
Малая плотность делает алюминий основой легких конструкционных материалов; большая пластичность позволяет применять к алюминию все виды обработки давлением и получать из него листы, прутки, проволоку, трубы, тончайшую фольгу, штампованные детали с глубокой вытяжкой и др. Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, чем у меди, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий, на единицу массы имеет вдвое более высокую проводимость, чем медь. Прочная пленка окиси быстро покрывает свежий разрез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.
Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие пара на алюминий также не-значительно. Алюминий, не содержащий меди, достаточно стоек (в отсутствие электрического тока) в естественной морской воде. В концентрированных азотной и серной кислотах алюминий также практически устойчив. В разбавленных кислотах и растворах едких щелочей алюминий быстро разрушается. Однако в растворах аммиака он достаточно стоек. В контакте с большинством металлов и сплавов, являющихся благородными по электрохимическому ряду потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать. Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия, с другими металлами герметизируется лакировкой или другим путем.
Длительные испытания проводов из алюминия показали, что они в отношении устойчивости против коррозии не уступают медным.
В табл. 8-16 приведены классификация и химический состав алюминия.
Влияние примесей на электрическую проводимость алюминия различно. Примеси, образующие с алюминием твердые растворы, сильно снижают электропроводность; примеси, не входящие в твердые растворы, почти не оказывают влияния на снижение проводимости. На рис. 8-4 показано изменение проводимости алюминия в зависимости от содержания примесей.
Физические свойства алюминия марок А5; А6 и АЕ, предназначенного для изготовления шин и проводов, приведены ниже:
Плотность при 20 °С, кг/м3 …………………….9700
Удельное электрическое сопротивление при 20 °С (не более), мкОм м:
проволока твердая и полутвердая …………. 0,0283
мягкая ……………………………………………….0,0280
шины …………………………………………………0,0290
Температурный коэффициент сопротивления в интервале 0-150 °С,
…… 0,004
Температурный коэффициент линейного расширения (20-100 °С), ……….
Теплопроводность, Вт/(м °С)……………………………………………………………….2,05
Температура плавления, °С …………………………………………………………………..660-647
Теплота плавления, Дж/кг ………………………………………………………………..
Температура отжига, °С ………………………………………………………………………350-400
Средняя теплоемкость (0-100 °С), Дж/(кг °С)…………………………………………….240
В табл. 8-17 приведена ориентировочная зависимость механических свойств алюминия от температуры.
Рис. 8-4
Изменение проводимости алюминия в зависимости от содержания примесей
Таблица 8-16 Химический состав технического алюминия (ГОСТ 11069-64) | ||||||
---|---|---|---|---|---|---|
Марка алюминия | Химический состав, % | |||||
Алюминий (не менее) | Примеси (не более) | |||||
Железо | Кремний | Медь | Цинк | Титан | ||
Особой чистоты | ||||||
А999 | 99,999 | — | — | — | — | — |
Высокой чистоты | ||||||
А995 | 99,995 | 0,0015 | 0,0015 | 0,001 | 0,001 | 0,001 |
А99 | 99,99 | 0,003 | 0,003 | 0,003 | 0,003 | 0,002 |
А97 | 99,97 | 0,015 | 0,015 | 0,005 | 0,004 | 0,002 |
А95 | 99,95 | 0,030 | 0,030 | 0,010 | 0,005 | 0,002 |
Технической чистоты | ||||||
A85 | 99,85 | 0,08 | 0,06 | 0,01 | 0,02 | 0,01 |
A85 | 99,80 | 0,12 | 0,10 | 0,01 | 0,04 | 0,02 |
А7 | 99,70 | 0,16 | 0,16 | 0,01 | 0,05 | 0,02 |
А6 | 99,60 | 0,25 | 0,20 | 0,01 | 0,06 | 0,03 |
А5 | 99,50 | 0,30 | 0,30 | 0,02 | 0,06 | 0,03 |
А0 | 99,00 | 0,50 | 0,50 | 0,02 | 0,08 | 0,03 |
А | 99,00 | 0,80 | 0,50 | 0,03 | 0,08 | 0,03 |
АЕ | 99,50 | 0,35* | 0,12 | 0,02 | 0,05 | 0,01 ** |
Таблица 8-17 Механические свойства проводникового алюминия в зависимости от температуры | ||||||||
---|---|---|---|---|---|---|---|---|
Механические свойства | Температура, °С | |||||||
20 | 100 | 200 | 300 | 20 | 100 | 200 | 300 | |
Твердотянутый | Отожженный (300°С, 2 ч в масле) | |||||||
Предел прочности при растяжении, МПа Истинный предел прочности при растяжении, МПа Относительное удлинение, % Сужение площади поперечного сечения, % Предел текучести, МПа Предел вибрационной усталости, МПа | 145 390 14 77,5 130 74 | 130 300 9,5 74,3 118 65 | 81 155 12,2 81,7 64 28 | 28 — 46 95,7 17 — | 88 330 33,1 84,4 44 26,5 | 76 270 32,8 78,2 41 25 | 49 170 35,1 82,8 30 19 | 38 185 33,3 83,7 24,5 15 |
Все страницы раздела на websor
| |||||||||||||||||||
| |||||||||||||||||||
МЕДНЫЕ ПРОВОДНИКИ В ОТНОШЕНИИ АЛЮМИНИЕВЫХ ПРОВОДНИКОВ Хотя серебро является лучшим проводником, его стоимость ограничивает его использование в специальных цепях. Двумя наиболее часто используемыми проводниками являются медь и алюминий. Каждый имеет положительные и негативные характеристики, влияющие на его использование в различных обстоятельствах. Сравнение некоторых характеристик меди и алюминия приведено в таблице 1-4. Таблица 1-4. — Сравнительные характеристики меди и алюминия
Медь имеет более высокую проводимость, чем алюминий. Он более пластичен (можно вытягивать). Медь имеет относительно высокую прочность на растяжение (наибольшая нагрузка, которую может выдержать вещество). по всей длине без отрыва). Его также можно легко припаять. Однако медь дороже и тяжелее алюминия. Хотя алюминий имеет только около 60 процентов проводимости меди, его легкость делает возможными длинные пролеты. Его относительно большой диаметр для данного проводимость уменьшает корону. Корона – это разряд электричества из провода, когда он имеет высокий потенциал. Q.14 Назовите два преимущества использования алюминиевого провода для передачи электричества на большие расстояния.
расстояния. ТЕМПЕРАТУРНЫЙ КОЭФФИЦИЕНТ Сопротивление чистых металлов, таких как серебро, медь и алюминий, увеличивается по мере увеличения температура повышается. Однако стойкость некоторых сплавов, таких как константан и манганин, очень мало меняется при изменении температуры. Измерительные приборы используют эти сплавов, потому что сопротивление цепей должно оставаться постоянным, чтобы получить точные измерения. В таблице 1-1 сопротивление круглого мил-фута провода (удельное сопротивление) дается при определенной температуре, в данном случае 20°С. Отрезок медной проволоки сопротивлением 50 Ом при начальной температуре 0C будет иметь увеличение сопротивления 50 X 0,00427, или 0,214 Ом. Это относится к на всю длину провода и на каждый градус повышения температуры выше 0С. 20С увеличение сопротивления составляет примерно 20 X 0,214, или 4,28 Ом. Общее сопротивление при 20C равно 50 + 4,28 или 54,28 Ом. Q.16 Определите температурный коэффициент сопротивления. |
Сравнение теплопроводности меди, алюминия и латуни — Сборник экспериментов
Номер эксперимента: 1769
Цель эксперимента
Целью этого эксперимента является использование термочувствительных пленок для визуализации различной динамики тепла проводимость в трех различных металлах.
Теория
См. теорию в уже описанном эксперименте: Теплопроводность пластика и металла I., Теория.
Инструменты
Термочувствительная пленка с температурным диапазоном от 25°C до 30°C, три разные металлические пластины одинакового размера, емкость для горячей воды, чайник.
В пробном эксперименте используются медные, алюминиевые и латунные пластины одинаковых размеров; толщина пластин 0,3 мм. (Аналогичные металлические пластины можно приобрести в магазине дизайнерских инструментов). Таблица с теплопроводностями (при 25 °C) используемых металлов приведена ниже:
металл λ / Вт·м −1 ·K −1 медь 386 алюминий 237 латунь 120 Термочувствительную пленку можно найти в Интернете под названием двусторонняя температурная этикетка . На рисунке 1 показан инструмент, изготовленный специально для этого эксперимента для изучения различной теплопроводности металла — три разные металлические пластины частично покрыты термочувствительной пленкой, что свидетельствует о повышении температуры.
Процедура
Закрепите медный, алюминиевый и латунный лист параллельно друг другу (см., например, рис. 1) с помощью лабораторного стенда так, чтобы концы листов находились на несколько сантиметров выше стола (рис. 2). ). Подставьте под эти концы емкость и налейте в нее горячую воду так, чтобы она покрыла концы листов.
Наблюдайте, как термочувствительные пленки меняют цвет. Температура, представленная цветом, зависит от типа пленки. Пленка, использованная в этом эксперименте, имеет черный цвет при температуре ниже 25 °C. При повышении температуры в интервале от 25°С до 30°С пленка постепенно меняет свой цвет с коричневого, зеленого и синего на темно-синий и, наконец, после превышения 30°С цвет снова меняется на черный.
Целью такого изменения цвета этих пленок является не попытка точного измерения температуры в конкретной точке, а скорее указание и демонстрация распределения температуры поверхности.
Пример результата
Успешно проведенный эксперимент показан на видео ниже. Видео ускорено в 8 раз.
Очевидно, что медный лист нагревается быстрее всего, за ним следуют алюминий и латунь.
Технические примечания
Не наливать в емкость кипяток, использовать воду температурой 60 °C. При более высоких температурах образуется большое количество горячего пара, который течет вверх, что влияет на измерение с помощью термочувствительных пленок и делает его ненадежным.
Указанный выше эффект можно устранить, загнув нижние концы листов под прямым углом. Таким образом, более длинная часть измеряемых металлов может оставаться в горизонтальном положении.
Если вы проводите этот эксперимент летом, рекомендуется убедиться, что температура в классе ниже минимальной температуры, измеренной пленкой (здесь 25 °C). Если температура в классе выше, пленка меняет цвет на соответствующую температуру, делая результат менее заметным.
Нет необходимости использовать горячую воду для нагрева простыней. Однако всегда нужно следить за тем, чтобы простыни прогревались равномерно.
Педагогические заметки
Описание развития этого эксперимента приводит учащихся к выводу, что «медь нагревается быстрее, чем алюминий» и т. д. Более подготовленные ученики могут догадаться, что мы уже обсуждали «готовность ” материи изменить температуру в разрезе удельная теплоемкость c вещества . Эта мысль верна и ее следует принять во внимание – готовность материи изменять свою температуру зависит как от удельной теплоемкости, так и от теплопроводности материи.
Аргумент о том, что быстрый нагрев медного листа вызван его низкой теплоемкостью, можно легко опровергнуть с помощью приведенной ниже таблицы:
металл λ / Вт·м −1 ·K −1 с / Дж·кг −1 ·K −1 медь 386 383 алюминий 237 896 латунь 120 384 Следовательно, если бы решающим фактором была удельная теплоемкость металла, то поведение меди и латуни было бы почти одинаковым (они имеют близкие значения c ), но это явно противоречит эксперименту.
Если в классе есть действительно одаренные физики, они могут возразить, что этот аргумент не совсем удовлетворителен — листы имеют разную плотность, а значит, и масса, влияющая на величину теплоты, необходимой для нагрева, тоже разная. К счастью, плотности меди и латуни достаточно близки, так что различное поведение этих двух веществ нельзя объяснить иначе, как на основании разной теплопроводности.
Эффект различной теплопроводности можно продемонстрировать не только при нагреве металлов, но и при их охлаждении. Дайте всем трем металлам прогреться, например, на радиаторе, пока термочувствительные пленки не станут темно-синими. Затем погрузите концы металлических листов в смесь воды и льда. Медь остывает быстрее всех, за ней следуют алюминий и латунь.
При интерпретации продолжения эксперимента следует быть осторожным, чтобы не сложилось впечатление, что щиты «высасывают» холод изо льда – всегда нужно интерпретировать понижение температуры как отвод тепла.