В основе электрического пробоя находится ударная ионизация электронами
В основе электрического пробоя находится ударная ионизация электронами материала диэлектрика, в результате чего 47
увеличивается количество носителей заряда. Происходит пробой, который может сжечь диэлектрик или прожечь в его объеме канал.
Электрический разряд по поверхности диэлектрика может быть в воздухе над ним или по самой поверхности диэлектрика с образованием дорожек.
Тепловой пробой происходит в результате нарушения теплового равновесия в диэлектрике, когда нагрев диэлектрика при электрической нагрузке превышает отвод тепла. Происходит уменьшение электрического сопротивления и электрической прочности диэлектрика, что приводит к электрическому пробою. Повреждение имеет вид проводящего канала. Обычно пробой происходит в результате ряда факторов: электрической нагрузки, механической нагрузки, влажности, высокой внешней температуры. Пробой выражается в виде проводящего канала от одной до другой обкладки.
В процессе хранения и работы конденсатора могут происходить обратимые и необратимые изменения его параметров.
Вышедшие из строя конденсаторы иногда можно определить по внешнему виду, например, у электролитических конденсаторов может быть вздутие корпуса, у малогабаритных — следы сгорания. Проверяется также прочность крепления выводов. Тем же проверкам подвергаются и новые конденсаторы, предназначенные для замены. При этом проверяется соответствие их параметров, указанных на корпусе, электрической схеме. У конденсаторов переменной емкости проверяют плавность вращения ротора, отсутствие заеданий и люфтов.
Окончательные сведения о состоянии конденсатора может дать его электрическая проверка с помощью приборов, которая заключается в следующем:
проверка на короткое замыкание и пробой;
измерение сопротивления изоляции, у электролитических
конденсаторов — тока утечки; измерение емкости; проверка целости выводов.
Проверка неэлектролитических конденсаторов заключается в следующем.
Конденсаторы на короткое замыкание проверяют омметром на максимальных пределах измерения, измеряя сопротивление между выводами и между выводами и корпусом, если корпус металлический. Если емкость конденсатора больше 1 мкФ, и он исправен, то после присоединения омметра конденсатор заряжается и стрелка прибора отклоняется в сторону 0, причем отклонение зависит от емкости конденсатора, 48
типа прибора и напряжения источника питания, потом стрелка медленно возвращается к положению около оо.
При наличии утечки омметр, показывает малое сопротивление — сотни и тысячи Ом, величина которого зависит от емкости и типа конденсатора. При проверке исправных конденсаторов емкостью меньше 1 мкФ стрелка прибора не отклоняется, потому что малы ток заряда конденсатора и время заряда. При пробое конденсатора его сопротивление около 0.
При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении.
В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора.
Конденсаторы переменной емкости проверяют на пробой при плавном повороте ротора.
Проверить конденсатор на пробой можно на специальной испытательной установке, прикладывая между выводами и каждым выводом и корпусом повышенное напряжение, превышающее номинальное в 1,5…3 раза в течение 10…60 с, в зависимости от типа конденсатора.
Сопротивление изоляции конденсатора между выводами и каждым выводом и корпусом проверяют ламповым мегаомметром. При этом сопротивление изоляции бумажных конденсаторов сотни и тысячи мегом, остальных — десятки и сотни тысяч мегом.
Проверка электролитических конденсаторов заключается в наблюдении заряда конденсатора от источника питания тестера. При этом от конденсатора отпаивают детали, если он в схеме, и разряжают его, подготавливают прибор для измерения больших сопротивлений, гнездо общее прибора должно быть соединено с положительным выводом конденсатора, а гнездо сопротивлений — с корпусом конденсатора.
Если конденсатор исправен, то стрелка прибора быстро движется к нулю, а затем устанавливается около знака ос. Если конденсатор потерял емкость, то стрелка прибора почти не отклоняется, а если имеет значительную утечку, то стрелка отклоняется почти до нуля и устанавливается далеко от знака 00,
Клиновые конденсаторы не имеют выводов и впаиваются в вырезы печатных плат. При этом в корпусе конденсатора могут образоваться трещины, нарушающие работу конденсатора или создающие помехи. Поэтому при проверке таких конденсаторов нужно обращать внимание на их целость.
При выборе конденсатора для замены нужно ориентиро-
ваться на заменяемый конденсатор, если на его корпусе есть данные о его параметрах.
Если данных нет, то нужно пользоваться схемой этого или сходного устройства, а если ее нет, то приходится ставить конденсатор, похожий по внешнему виду. При этом нужно учитывать условия эксплуатации и руководствоваться следующим.
Номинальное напряжение конденсатора определяют с учетом постоянной и переменной составляющих напряжения в месте установки конденсатора. Сумма постоянной и амплитуды переменной составляющих не должна превышать номинального напряжения, а для электролитических конденсаторов амплитуда переменной составляющей не должна превышать величины постоянной составляющей. Рабочее напряжение электролитических конденсаторов должно быть ниже номинального на 10…20%, так как пробивное напряжение для них близко к номинальному.
В цепях с высокой стабильностью параметров, например, в колебательных контурах, применяют керамические и воздушные конденсаторы с высоким классом точности.
В цепях, к которым не предъявляются высокие требования по стабильности параметров, например, в фильтрах развязки, применяют бумажные конденсаторы.
В некоторых цепях существуют высокие требования к сопротивлению изоляции, например, к конденсаторам связи между соседними каскадами. В этом случае применяют слюдяные конденсаторы.
В цепях высокой частоты применяют конденсаторы с высокой предельной частотой.
Бумажные конденсаторы не применяют в цепях с частотой, превышающей единицы мегагерц.
В цепях высокой частоты применяют керамические и вакуумные конденсаторы.
Электролитические и бумажные конденсаторы применяют в цепях сглаживающих фильтров выпрямителей, фильтров развязки и блокировки. При этом требуются конденсаторы большой емкости.
В этих цепях применяются также сегнетоэлектрические конденсаторы.
В цепях при напряжении менее 10 В не рекомендуется применять конденсаторы с вкладными выводами, так как в них может нарушиться контакт с фольгой.
Герметизированные конденсаторы в металлическом корпусе имеют большую емкость на корпус. Если при монтаже ни один вывод конденсатора не соединяется с шасси устройства, 50
то конденсатор необходимо изолировать от шасси на опорах толщиной 0,5… 1 см.
Для малогабаритной аппаратуры необходимо выбирать малогабаритные конденсаторы.
Конденсаторы могут применяться в цепях постоянного и переменного напряжения. Для цепей постоянного тока применяются в основном электролитические конденсаторы, у которых с одного конца корпуса выходит один или несколько изолированных выводов. При монтаже конденсатора эти выводы присоединяются к положительному полюсу цепи с учетом соответствия напряжений участков цепи и выводов конденсатора, а корпус конденсатора присоединяется к металлическому корпусу устройства. Если у электролитического конденсатора другая конструкция, то полярность его выводов обозначается знаками «+» и «—». Следует учесть, что могут быть и неполярные электролитические конденсаторы.
Если полярный конденсатор включить в сеть переменного напряжения, то через его диэлектрик пойдет переменный .ток, нагревая конденсатор, и он может выйти из строя. В крайнем случае, при отсутствии нужного конденсатора на переменное напряжение вместо него можно применить полярный конденсатор при условии, что его напряжение много больше напряжения сети. Например, полярный конденсатор с напряжением 250 В может работать в сети переменного напряжения 50 В при частоте 50 Гц. Внешними признаками выхода из строя бумажных и электролитических конденсаторов являются вздутие корпуса, отрыв торцевых изолирующих частей у выводов, отрыв выводов.
Керамические конденсаторы могут обугливаться или разрушаться. Признаки внутренних неисправностей могут быть выявлены только при измерениях, о чем говорилось выше.
При любой неисправности конденсатор должен быть заменен.
Прибор для проверки электролитических конденсаторов схема
Автор admin На чтение 12 мин Просмотров 2 Опубликовано Обновлено
Содержание
- Эмкость и конденсаторы
- Γотовые и самодельные приборы для проверки конденсаторов
- Что такое конденсатор
- Цепь переменного тока
- Цепь постоянного тока
- Виды конденсаторов
- Определение параметров
- Проверка емкости
- Определение полярности
- Проверка мультиметром
- Проверка исправности конденсаторов
- Мультиметр
- Тестер
- Проверка без выпаивания
- Первый способ
- Второй способ
- Третий способ
- Прибор своими руками
- Основные неисправности конденсаторов
- Полезные советы
- Видео по теме
Эмкость и конденсаторы
Схема самодельной приставки к стрелочному тестеру, которая позволит измерять ESR у электролитических конденсаторов.
Эквивалентное сопротивление (ESR) — очень важный параметр электролитического конденсатора. Фактически, это сопротивление его выводов и обкладок. В идеале, оно должно быть очень небольшим, — доли Ома. В реальности в общем-то вполне исправный конденсатор, без потери емкости, может иметь, например .
Схема самодельного индикатора, который предназначен для тестирования электролитических конденсаторов на пригодность. Если у конденсатора высокое внутреннее сопротивление, он не пригоден в большинстве случаев, даже если его емкость не понижена. Рис. 1. Принципиальная схема очень простого индикатора ESR конденсаторов, собран .
В статье приводятся варианты схемы простого прибора, позволяющего находить неисправные электролитические конденсаторы, не выпаивая их из схемы. Кроме того, данным прибором можно «прозванивать» электрические цепи, проверять прохождение сигнала в устройствах ВЧ и НЧ, оценивать моточные .
Этот измеритель является простым устройством, служащим для измерения емкости электролитических конденсаторов от 1 мФ до 4700 мФ. Его точность — около 5% — в большей мере зависит от точности исполнения и градуировки. Принцип действия устройства следующий: измеряемый конденсатор Сх заряжается током.
Схема простого самодельного измерителя емкости на логических микросхемах. Измеритель емкости состоит из генератора импульсов (D1.1—D1.3), делителя частоты-(02—D4), электронного ключа (V1) и измерительной цепи (V2, R7 и Р1). Принцип действия прибора основан на измерении среднего тока разряда измеряемого конденсатора, заряженного от источника .
Принципиальная схема самодельного измерителя емкости конденсаторов. выполнена на операционном усилителе К153УД1. Принцип действия измерителя емкости конденсаторов от нескольких пикофарад до 5 мкФ основан на измерении переменного тока, протекающего через исследуемый конденсатор .
Схема измерителя емкости электролитических конденсаторов, которые в процессе эксплуатации и хранения изменяют свою емкость, поэтому иногда возникает необходимость измерения их емкости. Принцип действия измерителя емкости конденсаторов от 3000 пФ — 300 мкгФ основан на измерении пульсирующего тока, протекающего .
Для измерения емкости конденсаторов можно воспользоваться схемой, рис., и любым частотомером. Схема представляет из себя приставку к частотомеру, по показаниям которого при помощи пересчета можно определить емкость. Измеряемый конденсатор подключается к клеммам Х1 — Х2, и его.
С помощью такого прибора можно проверить, нет ли внутри конденсаторов обрыва или короткого замыкания, значительной утечки. Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах .
Источник
Γотовые и самодельные приборы для проверки конденсаторов
Одной из причин выхода из строя различного рода электронной аппаратуры, является пробой конденсатора. В статье будет описано: что такое конденсатор, основные типы, принцип работы конденсатора. Также будет предоставлена информация о том, как проверить элемент на работоспособность с выпаиванием и непосредственно на плате самостоятельно.
Что такое конденсатор
Конденсатором является электрическим элементом, который способен накапливать определенный электрический заряд. Главным параметром элемента считается емкость, которая рассчитывается в фарадах. 1 фарад это довольно большая величина. Современные конденсаторы имеют следующие обозначения емкости:
- пикофарад обозначается pF или пФ;
- нанофарад обозначается nF или нФ;
- микрофарад обозначается mF или мФ.
Принцип работы устройства достаточно прост. Работа и выдача импульса отличается только от тока в цепи, к которой он подключен.
Цепь переменного тока
В цепи переменного тока конденсатор является сопротивлением. Он быстро накапливает определенный заряд и постепенно его отдает. Накопление и полная отдача происходит во время смены электрической волны.
Цепь постоянного тока
В цепи постоянного тока заряд накапливается на пластинах, увеличивая величину разницы потенциалов на обкладках. Разница потенциалов увеличивается до величины напряжения. Как только она становится равна напряжению, общая цепь разрывается.
Виды конденсаторов
Существует несколько видов и типов конденсаторов. Они разделяются между собой по следующему принципу:
- Изменение емкости. Это изменение классифицирует электронные элементы на постоянные, переменные и подстрочные.
- Материал диэлектрика может быть воздухом, слюдой, тефлоном, поликарбонатом, электролитом.
- Монтаж. По способу монтажа, эти радиодетали делятся на навесные и печатные.
Существуют несколько типов емкостных устройств, делящихся по принципу построения и работоспособности:
- Керамические. Эти элементы выполнены из диска, с обеих сторон имеющего проводник. Подобные печатные детали имеют малое рабочее напряжение, но большую емкость.
- Пленочные. Подобные конденсаторы имеют внутри корпуса скрученную в рулон пленку. Большой заряд и высокое рабочее напряжение удается разместить по всем слоям. Слои выполнены из фольги с диэлектриком на одной стороне.
- Электролитические. Эти устройства схожи по структуре с пленочными. Отличием является материал диэлектрика. Для этих печатных элементов диэлектриком является бумага, пропитанная электролитом.
- Переменные. Это устройства точной настройки приборов. Изменение емкости производится механическим способом.
- Подстрочные. Это элементы одноразовой настройки параметров в приборах. Подобная настройка выполняется только на заводах изготовителях.
- Пусковые. Это конденсаторы служат для запуска электрических двигателей. Они работают в цепи переменного тока в 220 вольт.
Определение параметров
Самостоятельно проверить элемент на работоспособность очень просто. Современные мультиметры и тестеры имеют для этого соответствующую функцию. Главным параметром при проверке будет соответствие заявленной и фактической емкости, а также пропускная способность радиодетали. Проводить проверку можно как на самой плате, так и произведя демонтаж детали с печатной платы.
Проверка емкости
Часто конденсаторы, — особенно старые — имеют нечеткое обозначение емкости на своем корпусе. Для того чтобы узнать емкость рабочего устройства, необходимо воспользоваться мультиметром, который имеет функцию замера емкости. Современные мультиметры имеют измерительный диапазон от 20 nF до 200 mF. Чтобы определить емкость не маркированного конденсатора, придется тестировать его в 5 режимах: 20 nF, 200 nF, 2 mF, 20 mF, 200 mF. Также придется учесть полярность, если элемент является полярным. Перед измерением необходимо выпаять конденсатор с цепи.
- Прибор переключается в режим проверки емкости. Обязательно переключение щупов в гнездо cX.
- Испытуемый элемент перед проверкой нужно разрядить. Это делается путем замыкания обоих концов.
- Оба щупа присоединяются к выводам.
Полученное значение является номиналом емкости.
Определение полярности
Для определения полярности можно провести визуальный осмотр корпуса. Определение «+»:
- Советские конденсаторы имели на корпусе знак «+» со стороны одной из ножек.
- Современные радиодетали также имеют обозначение на корпусе знаком «+».
- SMD конденсаторы имеют на одной из сторон знак «+» или маркируются цветной полосой.
Минус определяется также визуально:
Современные конденсаторы имеют различный цвет корпуса. На корпусах черного или синего цвета минус обозначается как полоса серебряного цвета или синяя стрелочка. SMD элементы имеют обозначение синей или черной полосой. Часто на них «+» сторона имеет выпуклость, а минус просто ровный на конце. Новые конденсаторы, еще до своего монтажа, имеют плюсовую ножку, которая гораздо длиннее минусовой.
Проверка мультиметром
Для определения полярности с помощью мультиметра, необходимо:
- Полностью разрядить деталь, закоротив ее выводы.
- Резистор присоединить к клемме «+» мультиметра.
- Второй конец резистора присоединить к выводу блока питания на 12 вольт.
- Резистор присоединить к выводу конденсатора.
- Минусовую жилу блока питания соединить со 2 выводом конденсатора.
Если мультиметр не покажет наличие тока в цепи, значит полярность элемента правильная. «+» жила блока питания была верно соединена с «+» конденсатора. Если мультиметр показал наличие тока, значит в цепи не была соблюдена полярность.
Проверка исправности конденсаторов
Современные мультиметры способны измерять и проверять работоспособность любых радиодеталей. Но не всегда этот прибор есть под рукой. Проверить конденсатор можно с помощью тестера.
Мультиметр
Если мультиметр имеет специальную функцию измерения емкости, значит с его помощью можно проверить любой тип устройства. Керамические, электролитические, пусковые радиодетали имеют одинаковый принцип работы, а значит и проверка исправности может проводиться одинаково.
- Выпаять испытуемую деталь с платы и разрядить ее, замкнув контакты.
- Установить мультиметр в режим определения емкости «cX».
- Переключить прибор на определение максимального диапазона емкости.
- Щупы присоединить к ножкам или выводам конденсатора.
- Мультиметр покажет значение емкости. Если перед значением высвечивается один или несколько «0», то прибор переключается на более низкий параметр.
Полярные конденсаторы (если правильно соблюдена полярность) показывают постепенно повышающиеся значения от «0» до «1». Если дисплей показывает «1» без изменений, значит конденсатор нерабочий. Если показания равны «0», значит элемент замкнут внутри.
Неполярные конденсаторы проверяют, выставив мультиметр на значение 2 Мом. Если показания выше этого значения, значит устройство исправно. Значения менее 2 МОм говорят о неисправности.
Тестер
Провести проверку конденсатора при помощи тестера можно только для определения общей исправности. Определить потерю емкости или разброс напряжения невозможно.
- Для проверки необходимо установить тестер в режим сопротивления.
- Выпаять и разрядить проверяемый элемент.
- Если радиодеталь является полярной, нужно подключить клеммы тестера к выводам согласно полярности.
- Полярные конденсаторы (имея большую емкость) несколько секунд будут заряжаться, неполярные покажут свое значение сразу.
Полярные конденсаторы должны показать медленно нарастающее значение более 100 кОм. Если это значение ниже, конденсатор является неисправным.
Неполярные покажут значение в 1 Ом. Если значение равное «1» достигнуто мгновенно, значит конденсатор неисправен. Значение в «0» говорит о внутреннем замыкании.
Проверка без выпаивания
Проверить конденсатор непосредственно на печатной плате очень проблематично. Во-первых, неисправный электрический прибор должен быть полностью обесточен. Также необходимо добиться разряда всех емкостных элементов в цепи. Проверка без выпаивания может показать значения сопротивления элементов, впаянных рядом. Но проверку все же можно провести при помощи индикатора-пинцета.
Первый способ
Первый способ наиболее простой. Испытуемый проверяется тестером и прозванивается мультиметром. Прибор ставится в режим проверки сопротивления. Также стоит учитывать полярность. Щупы мультиметра соединяются с выводами конденсатора и замеряется сопротивление. Стоит учитывать, что полученное значение не имеет никакой практической пользы, так как может являться показанием другого элемента. Таким способом можно проверить емкостную деталь на короткое замыкание. Если значения на дисплее начали расти постепенно, то печатная деталь заряжается от тестера и является исправной.
Второй способ
Второй способ требует припаять конденсатор с такими же значениями в схему рядом с испытуемым элементом. Впайку нужно провести параллельно. Оба элемента замеряются на обесточенной плате.
Важно! Без выпаивания можно проводить проверку только деталей, являющихся частью низковольтных цепей. Для высоковольтных цепей проводить такую проверку запрещено.
Третий способ
Часто возникает ситуация, когда на плате несколько конденсаторов, и определить какой из них неисправен очень сложно. Выпаивать каждый довольно трудоемко, часто они выходят из строя при нагревании. Для того чтобы проверить не выпаивая, необходимо провести замер выходящего напряжения. Он должен быть таким же, как указано на корпусе элемента. Если напряжения нет, то деталь пробита или замкнута. Если напряжение меньше оптимального значения, элемент потерял часть емкости.
Не выпаивая можно определить неисправный элемент визуально. Конденсатор может просто лопнуть, иметь на корпусе повреждения, нагар или вздутие.
Прибор своими руками
Для проверки конденсаторов можно собрать собственный прибор. Он будет определять емкость не хуже профессиональной аппаратуры. Собрать подобное устройство своими руками достаточно просто. С помощью этого прибора можно проверить работоспособность любых емкостных элементов и даже SMD.
Для прибора понадобятся следующие детали:
- Микросхема из серии 555, например, NE555 или отечественный аналог КР1006ВИ1. Данная микросхема является таймером времени, но в приборе будет играть роль генератора.
- Резисторы: R1 и R5 на 6.8 К. R12 на 12 К. R10 на 100 К. R2 и R6 на 51 К. R13 и R11 на 100 К. R3 и R7 на 68 К. R14 на 120 К. R4 и R8 на 510 К. R15 на 13 К.
- Конденсаторы: С1 емкостью 47nf, С2 на 470pf, С3 на 0ю47 mkF.
- VD1 подходит любой диод малой мощности, например, SOD 232.
- SA1 является любым переключателем на 5 положений.
- Мультиметр Х1.
- Батарея или блок питания до 12 вольт.
Принцип работы прибора заключается в следующем:
- Резисторы R1 и R8, вместе с конденсаторами С1 и С2, создают прямоугольные импульсы, которые регулируются при помощи переключателя SA1. Прибор работает в диапазоне частот от 25 и 2.5 kHz и 25–250 Hz.
- Заряд для испытуемого элемента подается через диод VD1.
- Разрядниками заряда являются резисторы R10, 12, 15.
- Образовавшийся разрядный импульс рассчитывается микросхемой 555. Длительность импульса приравнивается к емкости испытуемого элемента.
- Резистор R13 и конденсатор С3, стоящие на выходе, преобразуют импульс в электрический ток. Напряжение равно емкости испытуемой радиодетали.
- Напряжение на выходе поступает на мультиметр Х1, который показывает количество вольт, а значит общую емкость детали.
При помощи данного прибора можно проводить проверку конденсаторов емкостью от 20 pF до 200 mkF. Собирается схема на печатной плате, которая должна быть очищена от всех старых дорожек и вытравлена. Если сборка схемы проводится при помощи пайки проводами, нужно учитывать, что длина провода сильно влияет на длину импульса.
Принципиальная схема на печатной плате:
Основные неисправности конденсаторов
Емкостные элементы играют большую роль в принципиальной схеме любого устройства. Основная их функция — заряд определенным количеством тока и импульсный разряд в цепь. К основным неисправностям конденсаторов относятся:
- Обычный пробой. Пробой может быть вызван увеличением рабочего напряжения. Для ремонта требуется не только замена элемента, но и определение причины возникновения высокого напряжения.
- Внутренний обрыв. При обрыве радиодеталь теряет свою емкость, так как оба ее вывода становятся изолированными. Обрыв может возникнуть при падении прибора или некачественной сборки самого элемента.
- Утечка. Эта проблема связана с потерей части емкости. Чем меньше допустимая и оптимальная емкость, тем меньше размер заряда.
Полезные советы
Проверка конденсатора, особенно высоковольтного и пускового, связана с определенным риском.
Перед проверкой стоит учитывать:
- Если электрический прибор находится под напряжением или был отключен непродолжительное время, нельзя трогать печатную плату в районе конденсаторов. Устройство разрядится от прикосновения и последует удар током.
- Высоковольтные конденсаторы нельзя разряжать металлическим инструментом. Может возникнуть искра, а неизолированная часть предмета ударит током.
- Максимальная величина проверки для современных мультиметров, составляет 200 мкФ. Проверить большую величину не получится.
- Элементы емкостью менее 0. 25 мкФ можно проверить только на замыкание.
- При проверке полярных устройств важно определить полюса элемента. Подключение тестера с изменением полюсов может привести к выходу из строя самого конденсатора.
Во время ремонта электроприборов любой мощности, следует четко соблюдать меры безопасности. Проверку любых радиодеталей можно производить только при обесточенном устройстве.
Видео по теме
Источник
Тестирование электролитического конденсатора с использованием системы ICT i3070
ПоискСовпадающие продукты не найдены — системное исключение
—> {{#ifEquals DOC_TYPE ‘продукт’}}
{{еще}}
{{/ifEquals}}
{{productTitle}} {{#if itemStatus}} [{{состояние элемента}}] {{/если}}
{{#ifEquals DOC_TYPE ‘продукт’}}
- {{#if preVersionLink}}
- Предыдущая версия {{/если}} {{#если путь к продукту}}
- Как купить {{/если}} {{#if optionAndUpgrade}}
- Опции и обновления {{/если}} {{#if техническая поддержкаСсылка}}
- Техническая поддержка
{{/ifEquals}} {{#ifEquals DOC_TYPE ‘подкатегория’}}
- {{#if preVersionLink}}
- Предыдущая версия {{/если}} {{#если путь к продукту}}
- {{titleLabel}} {{/если}} {{#если как купить}}
- Опции и обновления {{/если}} {{#if техническая поддержкаСсылка}}
- Техническая поддержка {{/если}}
{{/ifEquals}} {{#ifEquals DOC_TYPE ‘категория’}}
- {{#if preVersionLink}}
- Предыдущая версия {{/если}} {{#если путь к продукту}}
- {{titleLabel}} {{/если}} {{#если как купить}}
- Как купить {{/если}} {{#if optionAndUpgrade}}
- Техническая поддержка {{/если}}
{{/ifEquals}}
Электролитические конденсаторы | Hioki
Как измеряются электролитические конденсаторы?Условия измерения, используемые для определения емкости электролитического конденсатора, изложены в стандартах IEC, а номинальные значения, указанные производителями конденсаторов, являются измеренными значениями, полученными в соответствии с этими стандартами. Однако, поскольку значения емкости электролитических конденсаторов сильно различаются в зависимости от частоты измерения, значения емкости следует проверять на той частоте, на которой фактически будет использоваться рассматриваемая схема.
Измерьте эквивалентное последовательное сопротивление (ESR), которое включает такие факторы, как сопротивление внутренних электродов электролитического конденсатора и сопротивление электролита, а также тангенс D (tanδ) угла потерь при тех же условиях, что и емкость.
Пример настройки условий измерения *В противном случае используются настройки по умолчанию.
*Вышеуказанные настройки относятся к примерному измерению. Поскольку оптимальные условия варьируются в зависимости от цели измерения, конкретные настройки должны определяться оператором прибора.
Конденсаторы постоянной емкости для использования в электронном оборудовании Часть 4: Спецификация в разрезе
Алюминиевые электролитические конденсаторы с твердым (MnO2) и нетвердым электролитом (JIS C5101-4)
*1 Напряжение измерения (т. е. напряжение, прикладываемое к образцу ) представляет собой напряжение, полученное путем деления напряжения на открытой клемме на выходное сопротивление и образец.
*1 Измеряемое напряжение (т. е. напряжение, подаваемое на образец) можно рассчитать на основе напряжения разомкнутой клеммы, выходного сопротивления и импеданса образца.
*2 Смещение постоянного тока не требуется.
При измерении конденсатора с высокой емкостью, превышающей 100 мкФ (и, следовательно, с низким импедансом), высокоточный режим с низким импедансом обеспечивает более стабильное измерение. На приведенном ниже графике сравнивается повторяемость при использовании IM3570 для выполнения измерений с включенным и выключенным режимом высокой точности с низким импедансом (100 кГц, диапазон 1 Ом, 1 В).
* Условия, при которых может быть включен высокоточный режим с низким импедансом, зависят от модели прибора. Пожалуйста, обратитесь к инструкции по эксплуатации используемого вами прибора.
Используемые продукты
Массовое производство
Исследования и разработки
*Дополнительную информацию см. в каталоге продукции.
Эквивалентное последовательное сопротивление (ESR) и коэффициент потерь D (tanδ)
На рисунке ниже показана стандартная эквивалентная схема для электролитического конденсатора.
На низких частотах (от 50 Гц до 1 кГц) реактивное сопротивление (XL), являющееся результатом эквивалентной последовательной индуктивности L, чрезвычайно мало и может считаться равным нулю. Составляющие сопротивления и реактивного сопротивления каждого элемента в это время характеризуются векторной зависимостью, показанной на рисунке на комплексной плоскости.
Идеальный конденсатор должен иметь R = 0 и коэффициент потерь D = 0, но, поскольку реальные конденсаторы имеют различные компоненты сопротивления, включая сопротивление электродной фольги, сопротивление электролита и контактное сопротивление выводов и других частей, эквивалентное последовательное сопротивление ESR и потери коэффициент D (tanδ) служат полезными индикаторами для оценки качества электролитических конденсаторов.
Поскольку IM3533 и IM3536 могут одновременно измерять и отображать четыре параметра, их можно использовать для одновременной проверки реактивного сопротивления X, емкости C, эквивалентного последовательного сопротивления Rs и коэффициента потерь D в качестве индикаторов для использования при оценке электролитических конденсаторов, как показано на примеры скриншотов ниже.
Поскольку IM3533 и IM3536 имеют встроенную функцию смещения напряжения постоянного тока, они могут подавать смещение постоянного тока на конденсаторы, устраняя необходимость во внешнем источнике питания постоянного тока.
Вообще говоря, серия эквивалентных цепей используется при измерении элементов с низким эмппиасом (приблизительно 100 Ом), как и высокие капоки, как высокие капоки, как капоки, так как высокие капоты, так как высокие капоты, как высокие капоки, так как высокие капоты, так как высокие капоты, так как высокие капоты, такие , а режим параллельной эквивалентной схемы используется при измерении элементов с высоким импедансом (примерно 10 кОм или выше), таких как конденсаторы с малой емкостью.