Site Loader

Содержание

Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях

Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения. Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями. Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.

Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.

Содержание

Принцип работы солнечной батареи

Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом. Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое. Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.

Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния. Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.

КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Установка солнечных батарей

Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.

Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.

Солнечная батарея своими руками

Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.

Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.

Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.

Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.

Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.

Современные устройства со встроенными солнечными модулями

  • Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
  • Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
  • Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.

Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.

Принцип работы солнечной батареи — как работает солнечная панель?

Если раньше люди были зависимы от централизованного энергоснабжения, то сейчас у всех есть хорошая альтернатива – солнечные батареи. Такое оборудование идеально для установки в частных домах, дачах, на промышленных объектах. Электростанции стали доступнее по цене и разнообразнее по видам и мощности. В этой публикации мы детальнее рассмотрим принцип работы солнечной батареи, ее виды и преимущества использования в быту и на производстве.

Устройство и история появления солнечных батарей

Человечество уже давно задумывалось об использовании неиссякаемой энергии солнца. Первые попытки предпринимались еще в двадцатом веке. Тогда была разработана концепция термальной электростанции. Однако на практике она показывала очень низкую эффективность, ведь концепция подразумевала трансформацию энергии солнца. Проанализировав первую неудачу, ученые пришли к выводу, что необходимо использовать солнечные лучи напрямую. Такой принцип был открыт в 1839 году. Его основал Александр Беккерель. Однако до появления первых полупроводников прошло немало лет. Они были изобретены лишь в 1873 году. Этот год можно назвать началом работы над современными прототипами электростанций.

Если говорить о том, из чего состоит солнечная батарея, то изначально стоит упомянуть фотоэлементы. Их можно назвать маленькими генераторами. Именно они выполняют основную функцию – собирают энергию солнца. Сегодня есть несколько видов солнечных панелей, о которых будет рассказано в следующем разделе. Однако, независимо от вида, современная панель представляет собой основу определенного размера, на которой размещаются вышеупомянутые фотоэлементы. Эти элементы очень хрупкие, поэтому они дополнительно защищаются стеклом и полимерной подложкой.

Однако солнечные панели – это лишь часть всей электростанции. Также в нее входят другие элементы:

  1. Аккумуляторная батарея.
  2. Контролер заряда.
  3. Инвертор.
  4. Стабилизатор.

Каждый из перечисленных устройств выполняет свою функцию. Аккумулятор – накапливает и хранит добытую энергию, контролер – контролирует мощность, подключает и отключает батарею, анализируя уровень заряда. Инвертор называют еще преобразователем. Это оборудование превращает прямой ток в переменный. Благодаря ему электричество можно использовать для бытовых целей. Последней составляющей электростанции является стабилизатор. Он защищает всю систему от скачков напряжения.

Какие виды солнечных батарей существуют?

Есть несколько классификационных признаков, по которым все солнечные панели делятся на разные виды:

  1. Тип устройств.
  2. Материал изготовления фотоэлектрического слоя.

По типу устройства выделяют два вида: гибкие и жесткие. Первый тип отличается своей пластичностью. Такую панель можно легко скрутить в трубочку, ничего не повредив. Твердая панель не меняет своей формы. По материалу изготовления есть три вида: аморфные, поликристаллические, монокристаллические.

Аморфные батареи могут быть гибкими. Они непривередливы к месту установки, но КПД такого устройства очень низкий. Он составляет не более шести процентов. Поликристаллические изделия отличаются низкой ценой. Однако они более эффективны в пасмурную погоду. В очень жаркую погоду их выработка снижается чуть больше чем у монокристаллических модулей.

Если необходим максимальный эффект от электростанции, то следует отдавать предпочтение панелям с монокристаллическими элементами. Уровень их КПД достигает двадцати пяти процентов. Монокристаллические панели являются более дорогими, так как монокристаллический кремний при производстве требует больших энерго и временных затрат.

Сфера применения солнечных батарей

С разработкой новых технологий и развитием концепции питания от солнечной энергии сфера применения панелей стала довольно широкой. Раньше такие устройства обычно устанавливались на небольших частных домах или дачах. Они применялись исключительно в бытовых нуждах, так как потребляемая мощность была минимальная. Сейчас же есть мощнейшие электростанции, показывающие высокую эффективность работы. По этой причине сфера применения панелей стала больше.

Интересный факт! Энергии, которую выделает Солнце за одну секунду, может хватить для обеспечения электричеством всего человечества на пятьсот тысяч лет.

Солнечные батареи стали активно применяться на промышленных и коммерческих объектах, позволяя значительно экономить на их энергоснабжении. Также панели устанавливают на сельскохозяйственных предприятиях, на фермах, военно-космических объектах. Менее мощные панели применяются для изготовления различных приспособлений для быта: фонариков, калькуляторов, зарядных устройств, др. Они служат источником энергии там, где нет возможности подключиться к центральной сети. Такие приспособления пользуются большим спросом у охотников, рыбаков, любителей походов.

Важно! Солнечные электростанции современного образца будут эффективны везде: как в доме, так и на большом промышленном объекте. Однако для этого они должны быть правильно подобраны по необходимой мощности. Расчет данного параметра должен осуществляться специалистом.

Как работает солнечная панель: принцип работы устройства простым языком

Если предстоит покупка солнечных батарей, то нужно обязательно ознакомиться не только с их устройством, но и с принципом работы. Итак, как работает солнечная панель? Несмотря на внешнюю простоту устройства, принцип работы такой электростанции довольно сложный. Он основан на фотоэлектрическом эффекте, который достигается при помощи фотоэлементов.

Солнечные панели собирают лучи. Они попадают на фотоэлектрический слой. Солнечный свет приводит к высвобождению электронов из двух слоев. На освободившиеся место из первого слоя встают электроны второго слоя. Происходит постоянное движение электронов, что приводит к естественному образованию напряжения на внешней цепи. В результате один из фотоэлектрических слоев приобретает отрицательный заряд, а второй – положительный.

Эти действия приводят в работу аккумулятор. Он начинает набирать и хранить заряд. При этом уровень заряда аккумулятора постоянно контролируется. Если он низкий, контролер включает в работу солнечную панель. В случае высокого заряда это же устройство панель отключает. Далее включается в работу инвертор. Он преобразовывает ток из постоянного в переменный. С его помощи на выходе электростанции появляется напряжение в 220 В. Это дает возможность подключать и питать от электростанции бытовые приборы.

Подключение солнечной панели

Эффективность и правильность работы солнечных батарей зависит не только от их вида, мощности, но и от установки и подключения. Должна быть разработана правильная схема подключения всех элементов электростанции и грамотно выбрано место для установки солнечных панелей. Такую работу можно доверять только профессионалам.

Не секрет, что выходное напряжение одной панели относительно невысокое. Обычно используются несколько батарей одновременно. Все панели должны подключаться параллельно-последовательным способом. Такой тип подключения позволяет обеспечивать максимальную эффективность работы оборудования.

Преимущества, недостатки панелей

Солнечные батареи стали дешевле, что сделало их доступнее для более широкого круга потребителей. Однако перед покупкой каждый человек должен детально ознакомиться с преимуществами и недостатками этого источниками энергоснабжения. Среди его неоспоримых достоинств стоит отметить следующие:

  • экологическая безопасность. В наше время экология – это одна из насущных проблем. Солнечные электростанции работают без вреда окружающей среде. Они не выделяют при работе вредных веществ;
  • быстрая окупаемость. Стоимость электричества, как для бытовых пользователей, так и для предприятий, постоянно растет. С установкой панелей удается полностью или частично перейти на альтернативный источник энергии, являющийся абсолютно бесплатным и доступным каждому. Благодаря этому, покупка и установка оборудования окупается за считанные годы работы;
  • легкость использования электростанции. Несмотря на сложное устройство и принцип работы, эксплуатировать станцию довольно просто. Главное – следить за исправностью ее составляющих и не экономить на обслуживании, которое требуется не так часто;
  • быстрая установка. Профессионалы монтируют все элементы станции буквально за несколько часов или дней (в зависимости от количества панелей, мощности, др.). Больше времени занимает подбор составляющих и покупка оборудования.

Недостатки у таких установок тоже имеются. Самый основной заключается в дороговизне оборудования. Однако не стоит забывать, что большой вклад при покупке быстро окупится многолетним бесплатным использованием энергии солнца. Вторым серьёзным недостатком солнечных панелей является их зависимость от внешних факторов. Эффективность их работы зависит от погоды, температурных условий, положения по отношению к Солнцу, от чистоты поверхности.

Как достичь максимальной эффективности работы батарей?

Солнечную электростанцию имеет смысл ставить только в регионах с длительным световым днем. Там, где день короткий, можно применять панели только в качестве дополнительного источника света, но не основного. Как уже было замечено, разные виды солнечных батарей имеют свой КПД. Чтобы добиться максимального эффекта, следует выбирать устройства с максимальной производительностью, несмотря на их дороговизну.

Большую роль будет играть правильность расчета мощности всей установки. Это позволит подобрать необходимый размер и количество панелей, мощность других комплектующих станции. Также залогом эффективной работы панелей является мощный аккумулятор. В системе должно быть два аккумулятора, особенно в зимнее время года. Второй аккумулятор позволит накапливать достаточно энергии для обеспечения электричеством объекта в короткие световые дни.

Нельзя забывать и о других факторах, которые влияют на работу станции. Панели должны быть расположены под правильным углом, их нужно обязательно держать в чистоте. В противном случае, КПД батарей будет значительно снижаться.

Принцип работы солнечной батареи: как устроена панель

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

Содержание статьи:

Солнечные батареи: терминология

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Галерея изображений

Фото из

Установка из солнечных панелей позволяет рационально использовать бесплатную, к тому же неисчерпаемую энергию солнечных лучей

Миниатюрные электростанции, собранные из солнечных батарей, обеспечат энергией неэлектрифицированные объекты и дома, расположенные в регионах с перебоями в поставке электричества

Установки, перерабатывающие УФ излучение в электроэнергию, занимают минимум места. их располагают на крышах домов, хозпостроек, гаражей, беседок, веранд. Реже их располагают на открытых, не занятых постройками и насаждениями площадках

Солнечные батареи — незаменимое оборудование для любителей путешествий. Оно обеспечит энергией вдали от источников электропитания

Использование солнечной энергии предоставит возможность существенно сократить затраты на содержание дач и загородных домов. собрать и установить экономически полезную систему без затруднений можно собственными руками

Расположенные на корме яхты, палубе корабля или носу катера солнечные батареи обеспечат электроэнергией, благодаря которой можно поддерживать стабильную связь с берегом

Портативная солнечная панель с аккумулятором исключит возникновение экстремальных ситуаций вдали от населенных пунктов, гарантирует зарядку мобильных устройств для общения с близкими

Выпускаемые специально для походов легкие компактные зарядные устройства на основе солнечных батарей обеспечат энергией телефоны, рации, планшеты и медиа-технику

Рациональное использование природных ресурсов

Обеспечение энергией неэлектрифицированных объектов

Монтаж солнечных панелей на крыше

Мобильная солнечная батарея в кемпинге

Самостоятельный монтаж на дачном участке

Генератор энергии в морских прогулках

Портативная солнечная панель с аккумулятором

Занимающий минимум места прибор

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для .

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

Галерея изображений

Фото из

Гелио-электростанция на загородном участке

Солнечные монокристаллические батареи

Внешний вид солнечных батарей на монокристаллах

Монокристаллическая единица солнечной батареи

Поставка готовой к монтажу солнечной батареи

Поликристаллический фотоэлемент для солнечной батареи

Гелио-батарея из поликристаллических фотоэлементов

Изготовление солнечной батареи своими руками

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Настоящим прорывов в области использования солнечной энергии стала разработка гибких панелей с аморфным фотоэлектрическим кремнием:

Галерея изображений

Фото из

Гибкий вариант солнечной батареи

Наклейка гибкого фотоэлемента на жалюзи

Зарядка для мобильников на гибкой батарее

Устойчивая к механическим воздействиям панель

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться , который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер.
  3. .
  4. Инвертор (трансформатор).

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен . Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Выводы и полезное видео по теме

Принципы работы и не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи смотрите в следующем видеоролике:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

В ходе изучения материала появились вопросы? Или вы знаете ценную информацию по теме статьи и можете сообщить ее нашим читателям? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Солнечные батареи: как это работает

Солнечные батареи уже сейчас используются для питания самой разнообразной техники: от мобильных гаджетов до электромобилей. Как устроены, какими бывают и на что способны современные солнечные батареи, вы узнаете из этой статьи.

История создания

Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.

Солнечная термальная электростанция в испанском городе Севилья

Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).

Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.

Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.

Беккерель, Столетов и Эйнштейн – именно этому «трио» ученых мы обязаны созданием солнечных батарей

 

Принцип работы

Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.

Схема работы фотоэлемента

Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.

Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.

Селен – исторически первый, а кремний – самый массовый материал в производстве фотоэлементов

Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).

На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.

Мобильный телефон Samsung E1107 оснащен солнечной батареей

 

Существующие разновидности

Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.

Наручные часы Citizen Eco-Drive с солнечной батареей вместо циферблата

Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.

Монтаж солнечных панелей на крыше жилого дома

В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях — и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.

Гоночный электромобиль Honda Dream на солнечных батареях появился еще в 1996 г.

Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).

Портативная солнечная панель Solarland мощностью 130 Вт и стоимостью $860

Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).

Беспилотный самолет, разработанный NASA Ames Research Center, способен на солнечной энергии пролететь от восточного побережья США до западного

На работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.

Солнечную батарею Voltaic можно носить у себя за спиной

А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.

«Солнечное дерево – культурный и одновременно научный символ австрийского городка Глайсдорф

 

Крупнейшие производители

Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.

Гольфкар на солнечных батареях – бесшумное и экологически чистое средство передвижения

Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. Мощнейшая в мире СЭС Агуа-Калиенте, которая находится в штате Аризона, США – дело рук инженеров First Solar.

Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.

Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.

Национальный стадион в Пекине густо усеян солнечными батареями производства Suntech

 

Выводы

Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.

Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».

Принцип работы и устройство солнечной батареи

Одним из источников энергии является солнечная батарея, генерирующая альтернативную энергию Солнца. Она появилась сравнительно недавно, но уже успела обрести популярность в странах Евросоюза, за счет высокой эффективности и приемлемой стоимости.

Солнечная батарея является почти неисчерпаемым источником энергии, способным накапливать и преобразовывать световые лучи в энергию и электричество. В странах СНГ новый источник энергии постепенно только набирает популярность. (Кстати, статью о том, как выбрать солнечную батарею, Вы можете прочитать здесь.)

Компоненты

Само устройство и принцип работы энергоисточника можно называть простым. Оно состоит всего из двух частей:

  • основного корпуса;
  • преобразовательных блоков.

В большинстве случаев корпус делают из пластика. Он похож на обыкновенную плитку, к которой прикреплены преобразовательные блоки.

Преобразовательным блоком является кремниевая пластинка. Она может изготавливаться двумя способами:

  • поликристаллическим;
  • монокристаллическим.

Поликристаллический способ является менее затратным, а монокристаллический считается наиболее эффективным.

Все остальные дополнительные части (например, контроллеры и инверторы), гаджеты и микросхемы присоединяют только для увеличения работоспособности и функционирования источника энергии. Без них солнечная батарея также сможет работать.

Имейте в виду: для того чтобы данный источник начал функционировать нужно правильно и аккуратно подключить все преобразовательные блоки.

С расчётом мощности солнечных батарей может помочь данная статья: https://teplo.guru/eko/solnechnyie-batarei-kpd.html

Существует два вида их подключения:

  • последовательное;
  • параллельное.

Разница лишь в том, что в параллельном соединении происходит увеличение силы тока, а при последовательном увеличивается напряжение.

Если есть необходимость в максимальной работе сразу двух параметров, то используется параллельно-последовательное.

Но стоит учитывать, что высокие нагрузки могут способствовать тому, что некоторые контакты могут перегореть. Для предотвращения этого используют диоды.

Один диод способен защитить одну четвертую часть фотоэлемента. Если их нет в устройстве, то есть большая вероятность, что весь источник энергии прекратит своё функционирование после первого же дождя или урагана.

Важный момент: ни накопление, ни сила тока совершенно не соответствуют возможным параметрам современной бытовой техники, поэтому приходится перераспределять и накапливать электроэнергию.

Для этого рекомендуется дополнительно подключать минимум два аккумулятора. Один будет являться накопительным, а второй запасным или резервным.

Приведем пример работы дополнительных аккумуляторов. Когда на улице хорошая и солнечная погода, то заряд идет быстро и через малое количество времени появляется уже лишняя энергия.

Поэтому весь этот процесс контролирует специальный реостат, который способен в определенный момент перевести всю ненужную электроэнергию в дополнительные резервы.

Познакомиться с отзывами владельцев солнечных батарей можно в данной статье: https://teplo.guru/eko/solnechnyie-batarei-dlya-doma-otzyivy.html

Принцип работы

В чем же заключается принцип работы альтернативного источника энергии?

Во-первых, фотоэлементы являются кремниевыми пластинами. В свою очередь, кремний по своему химическому составу имеет максимальную схожесть с чистым силицием. Именно этот нюанс дал возможность понизить стоимость солнечной батареи и запустить ее уже на конвейер.

Кремний в обязательном порядке кристаллизуют, так как сам по себе он является полупроводником. Монокристаллы изготавливаются намного проще, но при этом не имеют много граней, за счет чего электроны имеют возможность двигаться прямолинейно.

Важно знать, что добавлением фосфора или мышьяка повышается электропроводность. Также, одним из важных свойств силиция является невидимость для инфракрасного излучения.

Благодаря этому элементу, преобразовательные блоки поглощают только полезные части солнечного спектра.

Последовательность действий солнечной батареи:

  1. Принцип работы солнечной батареи. (Для увеличения нажмите)

    Энергия солнца попадает на пластины.

  2. Пластины нагреваются и освобождают электроны.
  3. Электроны активно двигаются по проводникам.
  4. Проводники дают заряд аккумуляторам.

Вот мы и выяснили, из чего состоят солнечные батареи и каков их принцип действия.

Подробнее узнать об основных видах солнечных панелей можно здесь: https://teplo.guru/eko/vidyi-solnechnyih-paneley.html

В заключение хотелось бы добавить, что такую альтернативу можно сделать дома самостоятельно, при наличии всех необходимых частей.

Смотрите видео, в котором в легкой и познавательной форме объясняется принцип работы солнечных батарей:

Оцените статью: Поделитесь с друзьями!

Принцип работы солнечной батареи

Солнечные батареи, как источник альтернативной энергии, сегодня уже не относят к инновационным технологиям науки. Впервые, использованные уже более сорока лет назад для электропитания станций в открытом космосе, они с успехом применяются, в качестве независимого источника экологически чистой электроэнергии.

Элементы солнечных батарей изготавливают из материалов, преобразующих солнечный свет в электричество. Фотоэлектрическая батарея конструктивно состоит из нескольких модулей, электрически и механически соединенных между собой. Каждый солнечный модуль – это устройство, объединяющее несколько фотоэлектрических элементов и выходные клеммы для подключения электроприемников. Фотоэлектрический элемент состоит из 2-х пластин полупроводникового материала. Основную часть, выпускающихся промышленностью элементов батарей, изготавливают из чистого кремния. На одну пластину, с целью придания ей свойств проводника отрицательных зарядов (n-область), наносят бор. Вторую же, с целью создания проводника положительных зарядов, покрывают фосфором (р – область).

Под воздействием солнечных лучей в зоне соприкосновения двух пластин возникает электродвижущая сила, которая способна создавать электрический ток во внешнем контуре, электрически соединенном с р- и n-областями. Для того, чтобы снять ток с батарей их пропаивают тонкими полосами меди. Спаянные друг с другом пластины спаивают, ламинируют, а затем закрепляют на стекле. Для придания конструкции прочностных свойств соединенные пластины размещают в алюминиевую раму.

Явление, в основе которого лежит принцип работы солнечных батарей, имеет название «внешний фотоэффект». Мощность, вырабатываемая батареей, напрямую зависит от площади ее поверхности. На эффективность работы солнечных батарей оказывает влияние также положение относительно Солнца модулей и интенсивность излучения. Таким образом, КПД батарей зависит от времени года, места установки, погоды.

Энергия, генерируемая фотоэлектрической установкой, не предназначена для непосредственного подключения потребителей. Между электрогенерирующей установкой и потребляющей сетью необходимо подключать инвертор, с целью трансформирования напряжения в стандартные величины одно или трехфазного номинала (220 или 380В).

Солнечные фотоэлектрические модули способны вырабатывать электроэнергию в течение 25 и больше лет. Технический износ в большинстве случаев возникает вследствие влияния окружающей среды, поскольку в таких установках отсутствуют подвижные механизмы, а также нет никаких термодинамических процессов. Грамотно смонтированная солнечная батарея станет экологически безопасным, бесшумным и надежным источником электроэнергии на долгие годы.

Принцип работы солнечных панелей

Применение солнечных батарей

Использование солнечной энергии для создания солнечных электростанций является очень выгодным и не таким уж дорогим источником электроэнергии. Широкое применение солнечных батарей нашли не только в промышленности и других отраслях, но и для индивидуальных нужд.

Со временем солнечные батареи становятся дешевле и все большее число людей приобретают их и используют в качестве источника альтернативной энергии. На солнечных панелях работают калькуляторы, радиоприемники, фонари на аккумуляторах с подзарядкой от солнечной панели.

Есть даже корейский мобильный телефон, который может заряжаться от солнечных панелей. Появились небольшие переносные электростанции на солнечных панелях, которыми пользуются туристы, рыбаки, охотники. Сейчас никого не удивишь автомобилем с солнечной панелью на крыше.

Как работают солнечные батареи

Солнечная панель состоит из множества фотоэлементов, которые при освещении солнечными лучами создают разность потенциалов.  Теперь, соединяя эти фотоэлементы последовательно, мы увеличим величину постоянного напряжения, а соединяя параллельно, увеличим силу тока.

Устройство солнечных батарей

Т. е., соединяя фотоэлементы последовательно – параллельно мы можем достичь большой мощности солнечной панели. Также батареи можно собирать параллельно и последовательно в модуле и добиться значительного увеличения напряжения, тока и мощности такого модуля.

Принцип работы солнечной панели

Кроме солнечных батарей схема имеет еще такие устройства как контроллер, необходимый для контроля заряда аккумулятора, инвертор имеет функцию преобразования постоянного напряжения в стабильное переменное, для потребителей электроэнергии. Аккумуляторы предназначены для накопления электроэнергии.

Как работают фотоэлементы солнечной батареи

Еще Беккерель доказал, что энергию солнца можно преобразовать в электричество, освещая специальные полупроводники. Позднее эти полупроводники стали называть фотоэлементами. Фотоэлемент представляет собой два слоя полупроводника имеющих разную проводимость. С обеих сторон к этим полупроводникам припаиваются контакты для подключения в цепь. Слой полупроводника с n проводимостью является катодом, а слой с p проводником анодом.

Проводимость n называют электронной проводимостью, а слой p дырочной проводимостью. За счет передвижения «дырок» в p слое во время освещения, создается ток. Состояние атома потерявшего электрон называется «дырка». Таким образом, электрон перемещается по «дыркам» и создается иллюзия движения «дырок».

Принцип работы фотоэлемента

В действительности «дырки» не передвигаются. Граница соприкосновения проводников с разной проводимостью называется p-n переходом.  Создается аналог диода, который выдает разность потенциалов при его освещении. Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода.

Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток. Величина разности потенциала зависит от размеров фотоэлемента, силы света, температуры. Основной первого фотоэлемента стал кремний. Однако высокую чистоту кремния получить трудно, стоит это недешево.

Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода. Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток

Поэтому сейчас ищут замену кремнию. В новых разработках кремний заменен на многослойный полимер с высоким КПД до 30%. Но такие солнечные панели дорогие, и пока отсутствуют на рынке. КПД солнечных батарей можно повысить, если устанавливать их на южной стороне и под углом не меньше 30 градусов.

Рекомендуется, солнечные батареи устанавливать на устройство слежения за движением солнца. Это устройство передвигает панели таким образом, чтобы они получали максимально возможное освещение лучами солнца от восхода до заката. При этом КПД солнечных панелей возрастает достаточно сильно.

Как работают солнечные панели? | Фотоэлементы

На протяжении десятилетий рекламируемые как многообещающий альтернативный источник энергии, солнечные батареи венчают крыши домов и придорожные знаки, а также помогают поддерживать питание космических аппаратов. Но как работают солнечные панели?

Проще говоря, солнечная панель работает, позволяя фотонам или частицам света выбивать электроны из атомов, создавая поток электричества. Солнечные панели на самом деле состоят из множества небольших блоков, называемых фотоэлектрическими элементами. (Фотоэлектрические просто означают, что они преобразуют солнечный свет в электричество.) Многие элементы, соединенные вместе, составляют солнечную панель.

Каждый фотоэлектрический элемент представляет собой сэндвич, состоящий из двух пластин полупроводящего материала, обычно кремния — того же материала, что и в микроэлектронике.

Связанный: Как работают атомные часы?

Для работы фотоэлектрическим элементам необходимо создать электрическое поле. Подобно магнитному полю, которое возникает из-за противоположных полюсов, электрическое поле возникает, когда противоположные заряды разделены.Чтобы получить это поле, производители «смешивают» кремний с другими материалами, придавая каждому кусочку сэндвича положительный или отрицательный электрический заряд.

В частности, они вводят фосфор в верхний слой кремния, который добавляет к этому слою дополнительные электроны с отрицательным зарядом. Между тем, нижний слой получает дозу бора, что приводит к меньшему количеству электронов или положительному заряду. Все это складывается в электрическое поле на стыке между слоями кремния. Затем, когда фотон солнечного света выбивает электрон, электрическое поле выталкивает этот электрон из кремниевого перехода.

Пара других компонентов ячейки превращает эти электроны в полезную энергию. Металлические проводящие пластины по бокам ячейки собирают электроны и переносят их на провода. В этот момент электроны могут течь, как любой другой источник электричества.

Недавно исследователи создали ультратонкие гибкие солнечные элементы толщиной всего 1,3 микрона — примерно 1/100 ширины человеческого волоса — и в 20 раз легче листа офисной бумаги. Фактически, элементы настолько легкие, что могут находиться на вершине мыльного пузыря, и при этом они производят энергию с такой же эффективностью, как и солнечные элементы на основе стекла, сообщили ученые в исследовании, опубликованном в 2016 году в журнале Organic Electronics.Такие более легкие и гибкие солнечные элементы могут быть интегрированы в архитектуру, аэрокосмические технологии или даже в носимую электронику.

Существуют и другие типы технологий солнечной энергии, в том числе солнечная тепловая энергия и концентрированная солнечная энергия (CSP), которые работают иначе, чем фотоэлектрические солнечные панели, но все они используют энергию солнечного света для производства электричества или нагрева воды или воздуха. .

Примечание редактора : эта статья была первоначально опубликована 7 декабря.16 декабря 2013 г., и 6 декабря 2017 г. он был обновлен, чтобы включить последние достижения в области солнечных технологий.

Первоначально опубликовано на Live Science .

Как работают солнечные панели? Science of Solar Generation

Время чтения: 5 минут

Поскольку стоимость солнечной энергии резко упала в последние годы наряду с значительным повышением технической эффективности и качества производства, многие домовладельцы в США начинают рассматривать солнечную энергию как жизнеспособное альтернативное энергетическое решение.И когда солнечная энергия выходит на основные энергетические рынки, большой вопрос : «Как работают солнечные панели?» В этой статье мы подробно разберем, как солнечные панели производят энергию для вашего дома и насколько прагматично переходить на солнечную энергию.


Ключевые выводы: как работают солнечные панели?


  • Солнечные элементы обычно изготавливаются из кремния, который является полупроводником и может генерировать электричество.
  • Этот процесс известен как «фотоэлектрический эффект».
  • Посмотрите, как солнечные панели могут работать на вас, с индивидуальными ценами на EnergySage Marketplace

Как работают солнечные панели? Пошаговый обзор процесса генерации солнечной энергии

Вкратце, солнечная панель работает и генерирует электричество, когда частицы солнечного света выбивают электроны из атомов, приводя в движение поток электронов. Этот поток электронов представляет собой электричество, и солнечные панели предназначены для улавливания этого потока, что делает его пригодным для использования электрическим током.

Производство солнечной энергии начинается, когда солнечные панели поглощают солнечный свет с помощью фотоэлектрических элементов, генерируя эту энергию постоянного тока (DC), а затем преобразуя ее в полезную энергию переменного тока (AC) с помощью инверторной технологии. Затем энергия переменного тока проходит через электрическую панель дома и распределяется соответствующим образом. Основные этапы работы солнечных панелей в вашем доме:

  1. Фотоэлектрические элементы поглощают солнечную энергию и преобразуют ее в электричество постоянного тока
  2. Солнечный инвертор преобразует электричество постоянного тока от ваших солнечных модулей в электричество переменного тока, которое используется в большинстве домов. приборы
  3. Электроэнергия течет через ваш дом, питая электронные устройства
  4. Избыточное электричество, произведенное солнечными панелями, подается в электрическую сеть

Как солнечные панели вырабатывают электричество?

Стандартная солнечная панель (также известная как солнечный модуль) состоит из слоя кремниевых элементов, металлического каркаса, стеклянного кожуха и различных проводов, позволяющих току течь от кремниевых элементов.Кремний (атомный номер 14 в таблице Менделеева) — неметалл с проводящими свойствами, которые позволяют ему поглощать и преобразовывать солнечный свет в электричество. Когда свет взаимодействует с кремниевой ячейкой, он приводит в движение электроны, в результате чего возникает электрический ток. Это известно как «фотоэлектрический эффект » и описывает общие функциональные возможности технологии солнечных панелей.

Наука о производстве электричества с помощью солнечных батарей сводится к фотоэлектрическому эффекту.Впервые обнаруженный в 1839 году Эдмоном Беккерелем, фотоэлектрический эффект можно в целом рассматривать как характеристику определенных материалов (известных как полупроводники ), которая позволяет им генерировать электрический ток при воздействии солнечного света.

Фотогальванический процесс состоит из следующих упрощенных этапов:

  1. Кремниевый фотоэлектрический солнечный элемент поглощает солнечное излучение
  2. Когда солнечные лучи взаимодействуют с кремниевым элементом, электроны начинают двигаться, создавая поток электрического тока
  3. Захват проводов и подать это электричество постоянного тока (DC) в солнечный инвертор, чтобы преобразовать его в электричество переменного тока (AC)

Наука о солнечных панелях, в глубине

Кремниевые солнечные элементы, благодаря фотоэлектрическому эффекту, поглощают солнечный свет и генерируют поток электричество.Этот процесс варьируется в зависимости от типа солнечной технологии, но есть несколько шагов, общих для всех солнечных фотоэлектрических элементов.

Сначала свет падает на фотоэлемент и поглощается полупроводниковым материалом, из которого он сделан (обычно кремнием). Эта входящая световая энергия заставляет электроны в кремнии высвобождаться, что в конечном итоге становится солнечным электричеством, которое вы можете использовать в своем доме.

В фотоэлементах используются два слоя кремния, каждый из которых специально обрабатывается или «легируется» для создания электрического поля, что означает, что одна сторона имеет чистый положительный заряд, а другая — отрицательный.Это электрическое поле заставляет свободные электроны течь в одном направлении через солнечный элемент, генерируя электрический ток. Элементы фосфор и бор обычно используются для создания этих положительных и отрицательных сторон фотоэлектрического элемента.

Когда электрический ток генерируется свободными электронами, металлические пластины по бокам каждого солнечного элемента собирают эти электроны и переносят их на провода. На этом этапе электроны могут течь в виде электричества через проводку к солнечному инвертору, а затем по всему дому.

А как насчет солнечных технологий, альтернативных фотовольтаике?

В этой статье мы говорили о фотоэлектрических солнечных батареях , или PV, потому что это наиболее распространенный вид солнечной энергии, особенно для домов и предприятий. Но есть еще кое-что, и они работают иначе, чем традиционные фотоэлектрические солнечные панели. Двумя наиболее распространенными альтернативными солнечными батареями, которые работают не так, как фотоэлектрические панели, являются солнечная энергия для горячего водоснабжения и концентрированная солнечная энергия .

Солнечная система горячего водоснабжения

Солнечная система горячего водоснабжения улавливает тепловую энергию солнца и использует ее для нагрева воды в вашем доме. Эти системы состоят из нескольких основных компонентов: коллекторов, накопительного бака, теплообменника, системы управления и резервного нагревателя.

В солнечной системе горячего водоснабжения электроны не движутся. Вместо этого панели преобразуют солнечный свет в тепло. Панели солнечной тепловой системы известны как «коллекторы» и обычно устанавливаются на крыше.Они собирают энергию совсем иначе, чем традиционные фотоэлектрические панели — вместо выработки электричества они вырабатывают тепло. Солнечный свет проходит через стеклянное покрытие коллектора и попадает на компонент, называемый пластиной-поглотителем, которая имеет покрытие, предназначенное для улавливания солнечной энергии и преобразования ее в тепло. Вырабатываемое тепло передается «теплоносителю» (антифризу или питьевой воде), содержащемуся в небольших трубках в пластине.

Концентрированная солнечная энергия

Концентрированная солнечная энергия (также известная как концентрация солнечной энергии или концентрирование солнечно-тепловой энергии) работает аналогично солнечной горячей воде, поскольку она преобразует солнечный свет в тепло.Технология CSP производит электричество, концентрируя солнечную тепловую энергию с помощью зеркал. При установке CSP зеркала отражают солнце в точку фокусировки. В этой фокусной точке находится поглотитель или приемник , который собирает и накапливает тепловую энергию.

CSP чаще всего используется в установках коммунального масштаба, чтобы обеспечить подачу электроэнергии в электросеть.

Как работает подключение к сети с солнечными батареями?

Хотя выработка электроэнергии с помощью солнечных панелей может иметь смысл для большинства людей, все еще существует большая путаница в отношении того, как сеть влияет на домашние солнечные процессы.В любом доме, подключенном к электросети, будет что-то, что называется счетчиком коммунальных услуг, который ваш поставщик энергии использует для измерения и подачи электроэнергии в ваш дом. Когда вы устанавливаете солнечные панели на крыше или на наземном креплении на своей территории, они в конечном итоге подключаются к счетчику коммунальных услуг в вашем доме. С помощью этого измерителя можно получить доступ и измерить производство вашей солнечной системы.

Большинство домовладельцев в США имеют доступ к сетевым счетчикам, что является основным стимулом для солнечной энергии, который значительно улучшает экономику солнечной энергии.Если у вас есть нетто-счетчики, вы можете отправлять электроэнергию в сеть, когда ваша солнечная система перегружена (например, днем ​​в солнечные летние месяцы) в обмен на кредиты на счет за электричество. Затем, в часы низкого производства электроэнергии (например, в ночное время или в пасмурные дни), вы можете использовать свои кредиты для получения дополнительной энергии из сети и удовлетворения ваших потребностей в электроэнергии. В некотором смысле, нетто-учет предлагает бесплатное решение для хранения для владельцев недвижимости, которые используют солнечную энергию, что делает солнечную энергию универсальным энергетическим решением.

Дополнительные важные детали к солнечным панелям

Помимо кремниевых солнечных элементов, типичный солнечный модуль включает в себя стеклянный кожух, который обеспечивает долговечность и защиту кремниевых фотоэлементов. Под стеклянной внешней стороной панели есть слой для изоляции и защитный задний лист, который защищает от рассеивания тепла и влажности внутри панели. Эта изоляция важна, потому что повышение температуры приведет к снижению эффективности, что приведет к снижению производительности солнечных панелей.

Солнечные панели имеют антибликовое покрытие, которое увеличивает поглощение солнечного света и позволяет кремниевым элементам получать максимальное воздействие солнечного света. Кремниевые солнечные элементы обычно производятся в двух формах ячеек: монокристаллических или поликристаллических. Монокристаллические ячейки состоят из одного кристалла кремния, тогда как поликристаллические ячейки состоят из фрагментов или осколков кремния. Моно форматы предоставляют больше места для движения электронов и, таким образом, предлагают более эффективную солнечную технологию, чем поликристаллические, хотя обычно они более дорогие.

Гарантия значительной экономии с помощью солнечных батарей

Если вы хотите начать экономить деньги на электричестве, первое, с чего следует начать, — это сравнить расценки на системы солнечных панелей. В этом вам может помочь EnergySage: когда вы регистрируете бесплатную учетную запись на EnergySage Marketplace, мы предоставляем вам индивидуальные расценки от установщиков в вашем регионе. Так чего же вы ждете — начните свое собственное путешествие по чистой энергии с EnergySage уже сегодня!

низкое содержание cvr

содержание солнечной энергии в ядре


Как работают солнечные панели? Объяснение науки о Солнце.

Все мы знаем, что солнечные фотоэлектрические (PV) панели преобразуют солнечный свет в полезное электричество, но мало кто знает настоящую науку, лежащую в основе этого процесса. На этой неделе в блоге мы поговорим о мельчайших подробностях науки о солнечной энергии. Это может показаться сложным, но все сводится к фотоэлектрическому эффекту; способность материи испускать электроны, когда купается в свете.

Прежде чем мы перейдем к молекулярному уровню, давайте кратко рассмотрим базовый процесс производства электроэнергии:

Основные этапы производства и передачи солнечной энергии

  1. Солнечный свет попадает на солнечные панели и создает электрическое поле.
  2. Произведенное электричество течет к краю панели и попадает в проводящий провод.
  3. Проводящий провод подводит электричество к инвертору, где оно преобразуется из электричества постоянного тока в переменный ток, который используется для питания зданий.
  4. Другой провод передает электроэнергию переменного тока от инвертора к электрической панели на участке (также называемой коробкой выключателя), которая распределяет электричество по всему зданию по мере необходимости.
  5. Любая электроэнергия, которая не требуется при генерации, проходит через счетчик в коммунальную электрическую сеть.Когда электричество проходит через счетчик, он заставляет счетчик работать в обратном направлении, кредитуя вашу собственность за избыточную выработку.

Теперь, когда у нас есть базовое представление о генерации и потоке солнечной электроэнергии, давайте глубже погрузимся в науку, лежащую в основе солнечных фотоэлектрических панелей.

Наука о солнечных фотоэлементах

Солнечные фотоэлектрические панели состоят из множества небольших фотоэлектрических элементов — это означает, что они могут преобразовывать солнечный свет в электричество. Эти элементы сделаны из полупроводниковых материалов, чаще всего из кремния, материала, который может проводить электричество, сохраняя при этом электрический дисбаланс, необходимый для создания электрического поля.

Когда солнечный свет попадает на полупроводник в фотоэлементе (шаг 1 в нашем высокоуровневом обзоре), энергия света в форме фотонов поглощается, выбивая ряд электронов, которые затем свободно дрейфуют в элементе. Солнечный элемент специально разработан с положительно и отрицательно заряженными полупроводниками, зажатыми вместе, чтобы создать электрическое поле (см. Изображение слева для визуализации). Это электрическое поле заставляет дрейфующие электроны течь в определенном направлении — к проводящим металлическим пластинам, выстилающим ячейку.Этот поток известен как энергетический ток, и сила тока определяет, сколько электроэнергии может произвести каждая ячейка. Как только незакрепленные электроны попадают в металлические пластины, ток направляется в провода, позволяя электронам течь, как в любом другом источнике генерации электричества (шаг 2 в нашем процессе).

Поскольку солнечная панель генерирует электрический ток, энергия течет по проводам к инвертору (см. Шаг 3 выше). В то время как солнечные панели вырабатывают электричество постоянного тока (DC), большинству потребителей электроэнергии требуется электричество переменного тока (AC) для питания своих зданий.Функция инвертора состоит в том, чтобы переключать электричество с постоянного тока на переменный, делая его доступным для повседневного использования.

После преобразования электричества в состояние, пригодное для использования (мощность переменного тока), оно отправляется от инвертора на электрическую панель (также называемую коробкой выключателя) [шаг 4] и распределяется по всему зданию по мере необходимости. Электричество теперь доступно для питания фонарей, приборов и других электрических устройств с помощью солнечной энергии.

Любая электроэнергия, которая не потребляется через блок выключателя, направляется в энергосистему через счетчик коммунальных услуг (наш последний шаг, как описано выше).Счетчик коммунальных услуг измеряет поток электроэнергии из сети в вашу собственность и наоборот. Когда ваша солнечная энергетическая система производит больше электроэнергии, чем вы используете на месте, этот счетчик фактически работает в обратном направлении, и вам засчитывают избыточную электроэнергию, произведенную в процессе чистого измерения. Когда вы используете больше электроэнергии, чем вырабатывает ваша солнечная батарея, вы получаете дополнительную электроэнергию из сети через этот счетчик, заставляя ее работать нормально. Если вы полностью не отключились от сети через решение для хранения, вам нужно будет вытащить часть энергии из сети, особенно ночью, когда ваша солнечная батарея не производит.Однако большая часть этой сетевой энергии будет компенсирована избыточной солнечной энергией, которую вы производите в течение дня и в периоды меньшего использования.

Хотя детали, лежащие в основе солнечной энергии, носят в высшей степени научный характер, не требуется ученый, чтобы рассказать о преимуществах, которые солнечная установка может принести бизнесу или владельцу недвижимости. Опытный разработчик солнечной энергии расскажет вам об этих преимуществах и поможет понять, подходит ли солнечное решение для вашего бизнеса.

Солнечная Энергетическая Система — Как это работает?

Излишне говорить, что Солнце — самый большой источник возобновляемой энергии для Земли.Дело в том, что, хотя Земля получает только часть энергии, генерируемой Солнцем (то есть солнечной энергии), эта часть солнечной энергии также чрезвычайно велика. Земля получает солнечную энергию в виде света и тепла. Но в современном мире слова «мощность» и «энергия» больше склоняются к «электричеству». В этой статье объясняется, как электричество извлекается из солнечной энергии и как оно используется.

Как работает солнечная энергия?

Электроэнергия может быть получена из солнечной энергии с помощью фотоэлектрических или концентрированных систем солнечной энергии.

Фотогальваника (PV)

Фотогальваника напрямую преобразует солнечной энергии в электричество . Они работают по принципу фотоэлектрического эффекта. Когда некоторые материалы подвергаются воздействию света, они поглощают фотоны и выделяют свободные электроны. Это явление называется фотоэлектрическим эффектом. Фотоэлектрический эффект — это метод производства электричества постоянного тока, основанный на принципе фотоэлектрического эффекта. На основе принципа фотоэлектрического эффекта изготавливаются солнечные элементы или фотоэлектрические элементы.Они преобразуют солнечный свет в электричество постоянного тока. Но один фотоэлектрический элемент не производит достаточного количества электроэнергии. Следовательно, несколько фотоэлектрических элементов установлены на опорной раме и электрически соединены друг с другом, образуя фотоэлектрический модуль или солнечную панель . Обычно доступные солнечные панели варьируются от нескольких сотен ватт (скажем, 100 ватт) до нескольких киловатт (слышали когда-нибудь о солнечной панели мощностью 5 кВт?). Они доступны в разных размерах и в разных ценовых диапазонах.Солнечные панели или модули предназначены для подачи электроэнергии при определенном напряжении (скажем, 12 В), но вырабатываемый ими ток напрямую зависит от падающего света. На данный момент ясно, что фотоэлектрические модули вырабатывают электричество постоянного тока. Но в большинстве случаев нам требуется питание переменного тока, и, следовательно, солнечная энергетическая система также состоит из инвертора.
Фотоэлектрическая солнечная энергетическая установка

В соответствии с требованиями к мощности несколько фотоэлектрических модулей электрически соединяются вместе, чтобы сформировать фотоэлектрическую матрицу и достичь большей мощности.Существуют разные типы фотоэлектрических систем в зависимости от их реализации.

  • Фотоэлектрические системы прямого действия: Эти системы питают нагрузку только тогда, когда светит солнце. Нет накопления генерируемой энергии и, следовательно, отсутствуют батареи. Инвертор может использоваться или не использоваться в зависимости от типа нагрузки.
  • Автономные системы: этот тип системы обычно используется в местах, где питание от сети недоступно или ненадежно. Внесетевые солнечные энергосистемы не подключены ни к какой электросети.Он состоит из солнечных панелей, аккумуляторных батарей и инверторных схем.
  • Системы, подключенные к сети: Эти солнечные энергетические системы связаны с сетями, так что избыточная требуемая мощность может быть получена из сети. Они могут питаться или не питаться батареями.

Концентрированная солнечная энергия

Как следует из названия, в этом типе солнечной энергетической системы солнечные лучи концентрируются (фокусируются) на небольшой площади путем размещения зеркал или линз на большой площади. Из-за этого в фокусируемой области выделяется огромное количество тепла.Это тепло можно использовать для нагрева рабочей жидкости, которая может дополнительно приводить в действие паровую турбину. Существуют различные типы технологий, которые основаны на концентрированной солнечной энергии для производства электроэнергии. Некоторые из них — параболический желоб, тарелка Стирлинга, солнечная энергетическая башня и т. Д. На следующей схеме показано, как работает солнечная энергетическая башня.

Принцип солнечной батареи | О солнечной энергии | Наш дух солнечной энергии | Солнечная энергия | Продукция

Преобразование солнечного света в электричество

Солнечная батарея
(кремний мультикристаллический)
Фотоэлектрические модули, обычно называемые солнечными модулями, являются ключевыми компонентами, используемыми для преобразования солнечного света в электричество.Солнечные модули сделаны из полупроводников, которые очень похожи на те, которые используются для создания интегральных схем для электронного оборудования. Наиболее распространенный тип полупроводников, используемых в настоящее время, состоит из кристаллов кремния. Кристаллы кремния разделены на слои n-типа и p-типа, уложенные друг на друга. Свет, падающий на кристаллы, вызывает «фотоэлектрический эффект», который генерирует электричество. Произведенное электричество называется постоянным током (DC), и его можно использовать немедленно или хранить в батарее.Для систем, установленных в домах, обслуживаемых коммунальной сетью, устройство, называемое инвертором, преобразует электричество в переменный ток (AC), стандартную мощность, используемую в жилых домах.

Производство электроэнергии с использованием шлюза P-N
Кристаллы кремния высокой чистоты используются для производства солнечных элементов. Кристаллы перерабатываются в солнечные элементы методом плавления и литья.Отливку кубической формы затем разрезают на слитки, а затем нарезают на очень тонкие пластины.

Обработка пластин
Атомы кремния имеют четыре «руки». В стабильных условиях они становятся идеальными изоляторами. Комбинируя небольшое количество пятиконечных атомов (с избыточным электроном), возникает отрицательный заряд, когда солнечный свет (фотоны) попадает в избыточный электрон. Затем электрон разряжается из плеча, чтобы свободно перемещаться. Кремний с такими характеристиками проводит электричество.Это называется полупроводником n-типа (отрицательным) и обычно возникает из-за того, что кремний «легирован» фосфорной пленкой.

Напротив, объединение трехрукавных атомов, у которых отсутствует один электрон, приводит к образованию дырки с отсутствующим электроном. Тогда полупроводник будет нести положительный заряд. Это называется полупроводником p-типа (положительным), и его обычно получают, когда бор вводится в кремний.


p-n-переход формируется путем размещения полупроводников p-типа и n-типа рядом друг с другом.P-тип с одним электроном меньше, притягивает излишки электронов n-типа, чтобы стабилизироваться. Таким образом, электричество перемещается и генерирует поток электронов, также известный как электричество.

Когда солнечный свет попадает на полупроводник, возникает электрон, который притягивается к полупроводнику n-типа. Это вызывает больше негативов в полупроводниках n-типа и больше плюсов в p-типе, тем самым генерируя больший поток электричества. Это фотоэлектрический эффект.




Региональные сайты

Связанная информация

Солнечный элемент: принцип работы и конструкция (диаграммы в комплекте)

Что такое солнечный элемент?

Солнечный элемент (также известный как фотоэлектрический элемент или фотоэлектрический элемент) определяется как электрическое устройство, которое преобразует световую энергию в электрическую посредством фотоэлектрического эффекта.Солнечный элемент — это в основном диод с p-n переходом. Солнечные элементы — это форма фотоэлементов, определяемых как устройство, электрические характеристики которого, такие как ток, напряжение или сопротивление, изменяются под воздействием света.

Отдельные солнечные элементы могут быть объединены в модули, обычно известные как солнечные панели. Обычный кремниевый солнечный элемент с одним переходом может производить максимальное напряжение холостого хода приблизительно от 0,5 до 0,6 вольт. Само по себе это немного, но помните, что эти солнечные элементы крошечные.При объединении в большую солнечную панель можно вырабатывать значительное количество возобновляемой энергии.

Конструкция солнечного элемента

Солнечный элемент — это в основном диод с переходом, хотя по своей конструкции он немного отличается от обычных диодов с p-n переходом. Очень тонкий слой полупроводника p-типа выращивается на относительно более толстом полупроводнике n-типа. Затем мы накладываем несколько более тонких электродов на верхнюю часть полупроводникового слоя p-типа.

Эти электроды не препятствуют проникновению света в тонкий слой p-типа.Чуть ниже слоя p-типа находится p-n переход. Мы также предоставляем токосъемный электрод внизу слоя n-типа. Мы герметизируем всю сборку тонким стеклом, чтобы защитить солнечную батарею от любых механических ударов.

Принцип работы солнечного элемента

Когда свет достигает p-n перехода, световые фотоны могут легко попасть в переход через очень тонкий слой p-типа. Световая энергия в виде фотонов поставляет в переход достаточно энергии для создания ряда электронно-дырочных пар.Падающий свет нарушает условие теплового равновесия перехода. Свободные электроны в обедненной области могут быстро перейти на сторону n-типа перехода.

Точно так же отверстия в истощении могут быстро попасть на сторону p-типа перехода. После того, как вновь созданные свободные электроны попадают на сторону n-типа, они не могут дальше пересекать переход из-за барьерного потенциала перехода.

Точно так же вновь созданные дыры, когда-то выходящие на сторону p-типа, не могут далее пересекать переход, стали с тем же барьерным потенциалом, что и переход.Когда концентрация электронов становится выше на одной стороне, то есть на стороне n-типа перехода, а концентрация дырок увеличивается на другой стороне, то есть на стороне p-типа перехода, p-n переход будет вести себя как маленький аккумуляторный элемент. Устанавливается напряжение, известное как фото-напряжение. Если мы подключим небольшую нагрузку через соединение, через него будет протекать крошечный ток.

Характеристики V-I фотоэлектрического элемента

Материалы, используемые в солнечном элементе

Материалы, которые используются для этой цели, должны иметь ширину запрещенной зоны, близкую к 1.5ев. Обычно используемые материалы — кремний

  1. .
  2. GaAs.
  3. CdTe.
  4. CuInSe 2

Критерии для материалов, которые будут использоваться в солнечной батарее

  1. Должна иметь ширину запрещенной зоны от 1 Ev до 1,8 Ev.
  2. Он должен иметь высокое оптическое поглощение.
  3. Должен иметь высокую электропроводность.
  4. Сырье должно быть доступно в изобилии, а стоимость материала должна быть низкой.

Преимущества солнечной батареи

  1. Отсутствие загрязнения окружающей среды.
  2. Он должен прослужить долго.
  3. Нет затрат на обслуживание.

Недостатки солнечной батареи

  1. Имеет высокую стоимость установки.
  2. Имеет низкий КПД.
  3. В пасмурный день энергия не может производиться, а также ночью мы не получаем солнечную энергию.

Использование систем солнечной генерации

  1. Может использоваться для зарядки аккумуляторов.
  2. Используется в люксметрах.
  3. Применяется для питания калькуляторов и наручных часов.
  4. Может использоваться в космических кораблях для выработки электроэнергии.

Заключение: Хотя солнечный элемент имеет некоторый связанный с ним недостаток, но ожидается, что недостатки будут преодолены по мере развития технологии, поскольку технология развивается, стоимость солнечных батарей, а также стоимость установки снизятся. так что каждый может приложить усилия для установки системы. Кроме того, правительство уделяет большое внимание солнечной энергии, поэтому через несколько лет мы можем ожидать, что каждое домашнее хозяйство, а также каждая электрическая система питаются от солнечной или возобновляемой энергии.

Что такое солнечная энергия и как работают солнечные панели?

Перейти к разделу «Как работают солнечные панели»

Что такое солнечная энергия?

Проще говоря, солнечная энергия — это самый распространенный источник энергии на Земле. Около 173 000 тераватт солнечной энергии поражает Землю в любой момент времени, что более чем в 10 000 раз превышает общие потребности мира в энергии.

Улавливая солнечную энергию и превращая ее в электричество для вашего дома или бизнеса, солнечная энергия является ключевым решением в борьбе с текущим климатическим кризисом и сокращении нашей зависимости от ископаемого топлива.

Как работает солнечная энергия?

Наше солнце — это естественный ядерный реактор. Он испускает крошечные пакеты энергии, называемые фотонами, которые преодолевают расстояние в 93 миллиона миль от Солнца до Земли примерно за 8,5 минут. Каждый час на нашу планету воздействует достаточно фотонов, чтобы произвести достаточно солнечной энергии, чтобы теоретически удовлетворить глобальные потребности в энергии на целый год.

В настоящее время фотоэлектрическая энергия составляет лишь пять десятых процента энергии, потребляемой в Соединенных Штатах.Но солнечные технологии улучшаются, и стоимость перехода на солнечную энергию быстро падает, поэтому наша способность использовать изобилие солнечной энергии растет.

В 2017 году Международное энергетическое агентство показало, что солнечная энергия стала самым быстрорастущим источником энергии в мире — это первый раз, когда рост солнечной энергии превысил рост всех других видов топлива. С тех пор солнечная энергия продолжает расти и бить рекорды по всему миру.

Как погода влияет на солнечную энергию?

Погодные условия могут влиять на количество электроэнергии, производимой солнечной системой, но не совсем так, как вы думаете.

Идеальные условия для производства солнечной энергии включают, конечно же, ясный солнечный день. Но, как и большая часть электроники, солнечные батареи на самом деле более эффективны в холодную погоду, чем в теплую погоду. Это позволяет панели производить больше электроэнергии за то же время. При повышении температуры панель вырабатывает меньше напряжения и вырабатывает меньше электроэнергии.

Но даже несмотря на то, что солнечные батареи более эффективны в холодную погоду, они не обязательно производят больше электроэнергии зимой, чем летом.Более солнечная погода часто бывает в более теплые летние месяцы. В дополнение к меньшему количеству облаков солнце обычно не светит большую часть дня. Таким образом, даже если ваши панели могут быть менее эффективными в теплую погоду, они все равно, вероятно, будут производить больше электроэнергии летом, чем зимой.

Получают ли одни государства больше солнечной энергии, чем другие?

Очевидно, что в одних штатах солнца больше, чем в других. Итак, реальный вопрос: если погода может повлиять на производство солнечной энергии, являются ли одни штаты лучшими кандидатами на использование солнечной энергии, чем другие? Короткий ответ — да, но не обязательно из-за погоды.

Возьмем, к примеру, облака. Любой, кто получил солнечный ожог в пасмурный день, знает, что солнечное излучение проникает сквозь облака. По той же причине солнечные панели все еще могут производить электричество в пасмурные дни. Но в зависимости от облачности и качества солнечных панелей эффективность производства электроэнергии солнечными панелями обычно снижается с 10 до 25 процентов или более по сравнению с солнечным днем.

Другими словами, солнечная энергия может работать в обычно облачных и холодных местах.Нью-Йорк, Сан-Франциско, Милуоки, Бостон, Сиэтл — во всех этих городах ненастная погода, от дождя и тумана до метелей, но это также города, где люди получают огромную экономию за счет солнечной энергии.

Независимо от того, где вы живете, солнечная энергия может быть отличным вложением средств и отличным способом помочь в борьбе с изменением климата. Сколько вы сэкономите — и как быстро вы увидите окупаемость своих инвестиций в конкретном штате — зависит от многих факторов, таких как стоимость электроэнергии, доступные солнечные льготы, чистые измерения и качество ваших солнечных панелей.

Как работают солнечные панели?

Когда фотоны попадают в солнечный элемент, они выбивают электроны из их атомов. Если проводники присоединены к положительной и отрицательной сторонам ячейки, она образует электрическую цепь. Когда электроны проходят через такую ​​цепь, они вырабатывают электричество. Несколько ячеек составляют солнечную панель, а несколько панелей (модулей) могут быть соединены вместе, чтобы сформировать солнечную батарею. Чем больше панелей вы можете развернуть, тем больше энергии вы можете ожидать.

Из чего сделаны солнечные панели?

Фотоэлектрические (PV) солнечные панели состоят из множества солнечных элементов. Солнечные элементы сделаны из кремния, как и полупроводники. Они состоят из положительного и отрицательного слоев, которые вместе создают электрическое поле, как в батарее.

Как солнечные панели вырабатывают электричество?

PV солнечные панели вырабатывают электроэнергию постоянного тока (DC). При использовании электричества постоянного тока электроны движутся по цепи в одном направлении.В этом примере показана батарея, питающая лампочку. Электроны движутся с отрицательной стороны батареи через лампу и возвращаются к положительной стороне батареи.

При использовании электричества переменного тока (переменного тока) электроны толкаются и притягиваются, периодически меняя направление, подобно цилиндру двигателя автомобиля. Генераторы создают электричество переменного тока, когда катушка проволоки вращается рядом с магнитом. Многие различные источники энергии могут «повернуть ручку» этого генератора, например, газ или дизельное топливо, гидроэлектроэнергия, атомная энергия, уголь, ветер или солнце.

Электроэнергия переменного тока

была выбрана для электросети США, прежде всего потому, что ее дешевле передавать на большие расстояния. Однако солнечные панели создают электричество постоянного тока. Как получить электроэнергию постоянного тока в сеть переменного тока? Используем инвертор.

Для чего нужен солнечный инвертор?

Солнечный инвертор получает электричество постоянного тока от солнечной батареи и использует его для создания электричества переменного тока. Инверторы подобны мозгу системы. Наряду с преобразованием постоянного тока в переменный, они также обеспечивают защиту от замыканий на землю и статистику системы, включая напряжение и ток в цепях переменного и постоянного тока, выработку энергии и отслеживание точки максимальной мощности.

Центральные инверторы доминируют в солнечной промышленности с самого начала. Внедрение микроинверторов — один из самых больших технологических сдвигов в фотоэлектрической индустрии. Микроинверторы оптимизируются для каждой отдельной солнечной панели, а не для всей солнечной системы, как это делают центральные инверторы.

Это позволяет каждой солнечной панели работать с максимальным потенциалом. Когда используется центральный инвертор, проблема с одной солнечной панелью (возможно, она находится в тени или испачкана) может снизить производительность всей солнечной батареи.Микроинверторы, такие как те, что используются в домашней солнечной системе Equinox компании SunPower, делают это несложным. Если одна солнечная панель неисправна, остальная часть солнечной батареи по-прежнему работает эффективно.

Как работает система солнечных батарей?

Вот пример того, как работает домашняя солнечная энергетическая установка. Сначала солнечный свет попадает на солнечную батарею на крыше. Панели преобразуют энергию в постоянный ток, который течет к инвертору. Инвертор преобразует электричество из постоянного тока в переменный, который затем можно использовать для питания вашего дома.Это красиво, просто и чисто, и со временем становится все более эффективным и доступным.

Однако что произойдет, если вы не дома, чтобы использовать электроэнергию, которую вырабатывают солнечные батареи каждый солнечный день? А что происходит ночью, когда ваша солнечная система не вырабатывает электроэнергию в реальном времени? Не волнуйтесь, вы все равно можете получить выгоду от системы, называемой «нетто-счетчик».

Типичная фотоэлектрическая система, подключенная к сети, в часы пик в дневное время часто вырабатывает больше энергии, чем нужно одному потребителю, так что избыточная энергия возвращается в сеть для использования в другом месте.Потребитель, имеющий право на чистое измерение, может получать кредиты за произведенную избыточную энергию и может использовать эти кредиты для получения электроэнергии из сети в ночное время или в пасмурные дни. Счетчик нетто регистрирует отправленную энергию по сравнению с энергией, полученной из сети. Прочтите нашу статью о чистых счетчиках и о том, как это работает.

Добавление накопителей в солнечную систему еще больше усиливает эти преимущества. С помощью системы хранения солнечной энергии клиенты могут хранить свою собственную энергию на месте, что еще больше снижает их зависимость от электросети и сохраняет способность обеспечивать электроэнергией свой дом в случае отключения электроэнергии.Если система хранения включает программный мониторинг, это программное обеспечение контролирует производство солнечной энергии, потребление энергии в доме и тарифы на коммунальные услуги, чтобы определить, какой источник энергии использовать в течение дня — максимизируя использование солнечной энергии, предоставляя заказчику возможность снизить пиковую плату и возможность сохранять электроэнергию для последующего использования во время отключения электроэнергии.

Если вы хотите узнать, сколько может сэкономить ваш дом или бизнес, запланируйте время, чтобы мы разработали индивидуальный дизайн и расценки на потенциальную экономию.

Похожие сообщения

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.