Трансформатор. Устройство и принцип действия трансформатора.
Простейший трансформатор представляет собой устройство, состоящее из стального сердечника и двух обмоток (рис. 1). При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки. Отношение первичного напряжения ко вторичному (коэффициент трансформации) приблизительно равно отношению чисел витков первичной и вторичной обмоток.Рис. 1. Принцип устройства однофазного двухобмоточного трансформатора. 1 первичная обмотка, 2 вторичная обмотка, 3 сердечник. U1 первичное напряжение, U2 вторичное напряжение, I1 первичный ток, I2 вторичный ток, Ф магнитный поток
Простейшие условные обозначения трансформаторов изображены на рис. 2; для наглядности разные обмотки трансформатора можно, как и на рисунке, представить разными цветами.
Рис. 2. Условное обозначение трансформатора в подробных (многолинейных) схемах (a) и в схемах электрических сетей (b)
Трансформаторы могут быть одно- или многофазными, а вторичных обмоток может быть больше одной. В электрических сетях обычно используются трехфазные трансформаторы с одной или двумя вторичными обмотками. Если первичное и вторичное напряжения относительно близки друг другу, то могут использоваться и однообмоточные автотрансформаторы, принципиальные схемы которых представлены на рис. 3.
Рис. 3. Принципиальные схемы понижающего (a) и повышающего (b) автотрансформаторов
Важнейшими номинальными показателями трансформатора являются его номинальные первичное и вторичное напряжения, номинальные первичный и вторичный ток, а также номинальная вторичная полная мощность (номинальная мощность). Трансформаторы могут изготовляться как на весьма малую мощность (например, для микроэлектронных цепей), так и на очень большую (например, для мощных энергосистем), охватывая диапазон мощностей от 0,1 mVA до 1000 MVA.
Потери энергии в трансформаторе – обусловленные активным сопротивлением обмоток потери в меди и вызванные вихревыми токами и гистерезисом в сердечнике потери в стали – обычно настолько малы, что кпд трансформатора, как правило, выше 99 %. Несмотря на это, тепловыделение в мощных трансформаторах может оказаться настолько сильным, что необходимо прибегать к эффективным способам теплоотвода. Чаще всего активная часть трансформатора размещается в баке, заполненном минеральным (трасформаторным) маслом, который, при необходимости снабжается принудительным воздушным или водяным охлаждением. При мощности до 10 MVA (иногда и выше) могут применяться и сухие трансформаторы, обмотки которых обычно залиты с эпоксидной смолой. Основные преимущества сухих трансформаторов заключаются в более высокой огнебезопасности и в исключении течи трансформаторного масла, благодаря чему они могут без препятствий устанавливаться в любых частях зданий, в том числе на любом этаже. Для измерения переменных тока или напряжения (особенно в случае больших токов и высоких напряжений) часто используются измерительные трансформаторы.
Устройство трансформатора напряжения по своему принципу не отличается от силовых трансформаторов, но работает он в режиме, близком к холостому ходу; коэффициент трансформации в таком случае достаточно постоянен. Номинальное вторичное напряжение таких трансформаторов обычно равно 100 V. Вторичная обмотка трансформатора тока в идеальном случае короткозамкнута и вторичный ток в таком случае пропорционален первичному. Номинальный вторичный ток обычно составляет 5 A, но иногда может быть и меньше (например, 1 A). Примеры условных обозначений трансформаторов тока приведены на рис. 4.
Рис. 4. Условное обозначение трансформатора тока в развернутых схемах (a) и в однолинейных схемах (b)
Первым трансформатором может считаться изготовленное Майклом Фарадеем (Michael Faraday) индукционное кольцо (англ. induction ring), состоящее из кольцевого стального сердечника и двух обмоток, при помощи которого он 29 августа 1831 года открыл явление электромагнитной индукции (рис. 5). Во время быстрого переходного процесса, возникающего при включении или отключении первичной обмотки, соединенной с источником постоянного тока, во вторичной обмотке индуцируется импульсная ЭДС. Такое устройство может поэтому называться импульсным или транзиентным трансформатором.
Рис. 5. Принцип устройства транзиентного трансформатора Майкла Фарадея. i1 первичный ток, i2 вторичный ток, t время
Исходя из открытия Фарадея, учитель физики колледжа города Маргнута (Margnooth) около Дублина (Dublin, Ирландия) Николас Келлан (Nicholas Callan, 1799–1864) построил в 1836 году индукционную катушку (искровой индуктор), состоящий из прерывателя и трансформатора; это устройство позволяло преобразовать постоянный ток в переменный ток высокого напряжения и вызывать длинные искровые разряды. Индукционные катушки стали быстро усовершенствоваться и в 19-м веке широко применялись при исследовании электрических разрядов. К ним могут быть отнесены и катушки зажигания современных автомобилей. Первый трансформатор переменного тока запатентовал в 1876 году живший в Париже русский электротехник Павел Яблочков, использовав его в цепях питания своих дуговых ламп. Сердечник трансформатора Яблочкова представлял собой прямой пучок стальных проволок, вследствие чего магнитная цепь была не замкнутой, как у Фарадея, а открытой, и в других установках такой трансформатор применять не стали. В 1885 году инженеры-электрики Будапештского завода Ганц и Компания (Ganz & Co.) Макс Дери (Max Deri, 172 1854–1938), Отто Титуш Блати (Otto Titus Blathy, 1860–1939) и Кароль Зиперновски (Karoly Zipernovsky, 1853–1942) изготовили трансформатор с тороидальным проволочным сердечником и заодно разработали систему распределения электроэнергии на переменном токе, основанную на применении этих трансформаторов. Трансформатор с еще лучшими свойствами, сердечник которого собирался из Е- и I-образных стальных листов, создал в том же году американский электротехник Уильям Стенли (William Stanley, 1858–1916), после чего началось быстрое развитие систем переменного тока как в Европе, так и в Америке. Первый трехфазный трансформатор построил в 1889 году Михаил Доливо-Добровольский.
Принцип действия и устройство трансформатора
Трансформатор – это электротехническое устройство, преобразователь электрической энергии одного напряжения в другое.
Принцип действия трансформатора
Принцип его действия основан на взаимной индукции. Обычно устройство состоит из магнитного сердечника и двух обмоток – первичной и вторичной. Первичная обмотка подключается к сети переменного тока, который, протекая по ней, создает в сердечника магнитный поток (обмотка закручивается вокруг сердечника, образуя витки). Магнитный поток, проходя через все витки, создает ЭДС, что приводит к уменьшению или повышению напряжения и преобразованию тока. После того, как к вторичной обмотке будет подключен приемник, то по ней начнет протекать электрический ток с выходным напряжением. Выходное напряжение всегда будет больше или меньше входного, а точная разница зависит от коэффициента трансформации.
Параллельно в первичной обмотке образуется нагрузочный ток, который суммируется с входным и формирует ток первичной обмотки. Важно, чтобы трансформатор передавал с первичной обмотки на вторичную ток, величина которого совпадает с требованиями приемного устройства.
Устройство трансформаторов
Магнитный сердечник используется для повышения магнитной связи между обмотками двух типов. Обмотки изолируют и друг от друга, и от сердечника. Обмотки бывают высшего и низшего напряжения, но какая будет какой зависит от типа трансформатора. В понижающих трансформаторах первичная обмотка имеет высшее напряжение, а в повышающих – низшее.
Разница между обмотками следующая:
- Первичная обмотка всегда подключается к источнику питания.
- Вторичная обмотка – к приемнику, потребляющему электроэнергию.
Трансформаторы ТМГ 12 и других типов могут использоваться и как понижающие, и как повышающие устройства. Понижающие трансформаторы необходимы для преобразования электрической энергии, поступающей с линий высоковольтных передач или с промышленной сети питания до приемлемых значений, требуемых при эксплуатации оборудования, а повышающие – для передачи электроэнергии на большие расстояния.
Также существуют трансформаторы с тремя обмотками. В таком случае к магнитопроводу крепятся все три обмотки, которые изолированы друг от друга. Одна обмотка подключается к источнику питания, а две другие используются для получения электрического тока разного напряжения, необходимого для питания разных приборов. Самым простым примером такой конструкции можно назвать зарядное устройство, работающее от автомобильного прикуривателя, с двумя портами. Один порт можно выдавать ток 2А, а другой – 5А.
Базовые принципы действия трансформатора — Трансформаторы
Работа трансформатора основана на двух базовых принципах:
- Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
- Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.
В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.
Схематическое устройство трансформатора. 1 — первичная обмотка, 2 — вторичная
Режим холостого хода
Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток через первичную обмотку невелик. Для трансформатора с сердечником из магнитомягкого материала (например, ферромагнитного материала, например, из трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике на вихревые токи и на гистерезис. Мощность потерь можно вычислить умножив ток холостого хода на напряжение, подаваемое на трансформатор.
Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.
Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея.
Режим короткого замыканияВ режиме короткого замыкания, на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такой, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить умножив напряжение короткого замыкания на ток короткого замыкания.
Режим с нагрузкой
При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.
Схематично, процесс преобразования можно изобразить следующим образом:
Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.Уравнения идеального трансформатора
Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии:
Где
- P1 — мгновенное значение поступающей на трансформатор мощности, поступающей из первичной цепи,
- P2 — мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.
Соединив это уравнение с отношением напряжений на концах обмоток, получим уравнение идеального трансформатора:
Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки U2, уменьшается ток вторичной цепи I2.
Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения. Например, сопротивление Z2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет . Данное правило справедливо также и для вторичной цепи: .
трансформатор, режим кз, холостой ход
Всего комментариев: 0
Назначение и принцип действия трансформатора напряжения | ТТ и ТН
Трансформаторы напряжения двух- или трехобмоточные предназначены как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализации и релейной защиты линий электропередач от замыкания на землю. Трансформаторы напряжения имеют два назначения: изолировать вторичную обмотку НН и, тем самым, обезопасить обслуживающий персонал; понизить измеряемое напряжение до стандартного значения 100; 100ν3; 100/3 В.
Трансформаторы напряжения различают: по числу фаз — однофазные и трехфазные; по числу обмоток — двухобмоточные и трехобмоточные; по классу точности — 0,2; 0,5; 1,0; 3; по способу охлаждения — с масляным охлаждением, с воздушным охлаждением; по способу установки — для внутренней установки, для наружной установки и для КРУ.
На рис. 1 представлена схема включения трансформаторов напряжения с обозначениями первичной и вторичной обмоток. Однофазный двухобмоточный трансформатор напряжения применяется в установках как однофазного, так и трехфазного тока. В последнем случае он включается на линейное напряжение. Один из выводов вторичной обмотки для обеспечения безопасности при обслуживании заземляется.
Основными параметрами трансформаторов напряжения являются:
номинальные напряжения обмоток, т.е. напряжения первичной и вторичной обмоток, указанные на щитке;
номинальный коэффициент трансформации, т. е. отношение номинального первичного напряжения к номинальному вторичному
погрешность по напряжению %
угловая погрешность, т. е. угол между вектором первичного напряжения и повернутым на 180° вектором вторичного напряжения, выраженный в угловых градусах (минутах).
Рис. 1. Однофазный двухобмоточный трансформатор напряжения: а — присоединение трансформатора напряжения к трехфазной сети без нулевого провода; б — расположение выводов (Л-X — выводы ВН; а-х — выводы НН)
На рис. 2 приведен пример изменения погрешности трансформатора напряжения при изменении мощности Бг вторичной нагрузки. Коррекцией напряжения называется преднамеренное изменение коэффициента трансформации в сторону повышения вторичного напряжения, выраженное в процентах. Это достигается уменьшением числа витков первичной обмотки.
Рис. 2. Погрешность по напряжению и угловая погрешность однофазного трансформатора напряжения (сплошные линии с коррекцией числа витков, штриховые линии — без коррекции)
Особо следует сказать о трансформаторах напряжения высокого и сверхвысокого напряжения. Как было отмечено, трансформаторы напряжения передают очень малую мощность, поэтому практически в таких трансформаторах напряжения определяющим является вопрос обеспечения изоляции между первичной и вторичной цепями. Поэтому при напряжениях выше 500 кВ используются так называемые емкостные трансформаторы напряжения, состоящие из емкостного делителя напряжения (двух последовательно соединенных конденсаторов С1 и С2) и понижающего трансформатора, показанных на рис. 3. В современных РУ устанавливаются колонны конденсаторов высокочастотной связи для цепей автоматики и сигнализации. Поэтому, если использовать эту колонку связи CJ и добавить некоторый конденсатор отбора мощности С2, получим емкостной делитель. К конденсатору подключается трансформатор напряжения обычно на 12-15 кВ первичного напряжения. Для устойчивой работы в первичную цепь включается дополнительный реактор LR и высокочастотный заградитель 3. Таким образом, это устройство имеет существенно меньшую стоимость, чем трансформатор напряжения на полное первичное напряжение.
Рис. 3. Практическая схема емкостного трансформатора напряжения
Простой принцип работы трансформатора | matematicus.ru
Трансформатор – электромагнитное устройство (имеет от двух и более обмоток), предназначенное для повышения, понижения переменного напряжения (практически без потери энергии), силы тока за счёт электромагнитной индукции при этом частота остаётся постоянной. Первый трансформатор изобрел русский электротехник, инженер Яблочков П.Н. в 1876 году для питания свечей. Независимо от Яблочкова П.Н. в 1882 году также изобрел трансформатор русский физик Усагин И.Ф.
Принцип работы трансформатора
Принцип работы трансформатора основан на явлении электромагнитной индукции. От внешнего источника питания на первую обмотку трансформатора подаётся напряжение, протекающей по ней переменный ток создаёт переменный магнитный поток в сердечнике. За счет этого магнитный поток создается ЭДС индукции во второй обмотке трансформатора, подключенной к нагрузке. В целях снижения потерь энергии, затрачиваемые на нагревание токами Фуко (вихревыми токами) сердечника трансформатора, их производят из специальных изолированных друг от друга тонких пластин стали.
Схема Обозначения трансформатора со стальным сердечником в электрических схемах. Слева 1 — входные характеристики напряжения первичной обмотки, справа 2,3- выходные характеристики вторичных обмоток
Общая принципиальная схема трансформатора с двумя обмотками
Формула коэффициента трансформации трансформатора:
U1 – напряжение на первичной обмотке трансформатора, B;
U2 – напряжение на вторичной обмотке трансформатора, B;
I1 – сила тока на первичной обмотке трансформатора, А;
I2 – сила тока на вторичной обмотке трансформатора, А;
N1 – число витков на первичной обмотке;
N2 – число витков на вторичной обмотке.
при k<1 (N2>N1), U1<U2 – повышающий трансформатор;
при k>1 (N2<N1), U1>U2 – понижающий трансформатор.
Схема повышающего трансформатора
Схема понижающего трансформатора
КПД больших трансформаторов составляет 0,98 и более, мелких — от 0,95 и более.
Для охлаждения мощных трансформаторов применяют минеральное масло.
Трансформаторы делятся на высокочастотные (частота более 100 кГц) без сердечника или с сердечником из высокочастотного феррита и трансформаторы низкочастотные с ферромагнитным сердечником (частота менее 100 кГц). Применяются в электросвязи, радиосвязи, усилителях, телефонной связи и т.д.
Трансформатор широко применяется в электролиниях для передачи энергии на расстояния. Путем повышения напряжения при котором передается ток — уменьшается потеря энергии. При увеличении напряжения в 10 раз, потери уменьшатся в 100 раз.{2} А* 5 Ом=0,5кВт$
В первом случае потери составляют 50%, а во втором 0,05%
Устройство и принципы действия трансформаторов: назначение, виды, критерии подбора
Трансформаторные установки — преобразователи электрической энергии. Они применяются в большинстве электрических приборов, в электросетях, устройствах автоматики, бытовых приборах и коммуникационных аппаратах. Принцип действия трансформаторов опирается на закон электромагнитной индукции Фарадея.
Устройство трансформатора
Конструктивно трансформатор состоит из одной или нескольких изолированных обмоток, которые намотаны на ферромагнитный сердечник. В простейшей схеме это первичная и вторичная обмотки. На первичную подаётся напряжение, со вторичной снимается. Под воздействием переменного тока, который подаётся на первичную обмотку, в магнитопроводе образуется синусоидальный магнитный поток Ф. Пронизывая обмотки, он индуцирует в первичной обмотке электродвижущую силу самоиндукции (ЭДС), а во вторичной — ЭДС индукции.
Обе эти электродвижущие силы индуцируются магнитным потоком Ф, следовательно, ЭДС (E) одинакова в каждом витке. Витки соединены последовательно, поэтому ЭДС первичной обмотки будет E1 = E · w1. Для вторичной это соотношение: E2 = E · w2, где w1, w2 — число витков.
При разомкнутой вторичной обмотке ток в ней не течёт, и напряжение на концах равно ЭДС, U2 = E2. При небольшом токе в первичной обмотке потери будут незначительны и U1 ≈ E1. Заменим E1 и E2, и тогда отношение напряжений выразится некоторой постоянной K, называемой коэффициентом трансформации, U1/U2 = E1/E2 = w1/w2 = K.
Виды преобразователей
Назначение и принцип действия трансформатора заключаются в возможности повышать и понижать напряжение, изменять число фаз, преобразовывать частоту. В зависимости от выполняемых функций трансформаторы подразделяются на следующие виды:
- Силовые трансформаторные установки. Генераторы на электростанциях вырабатывают энергию высокого напряжения 6—24 кВ. Чтобы избежать больших потерь в линиях электропередач, требуется повышать напряжение до 750 кВ. Для распределения энергии между конечными потребителями приходится понижать напряжение до 380 В. Силовые трансформаторы выполняют эти задачи преобразования напряжений.
- Трансформаторные установки тока. Применяются для измерений в электрических цепях. Первичную обмотку подключают в цепь, ток в которой требуется измерить, а вторичная служит для подключения измерительных приборов. Во вторичной обмотке течёт ток, пропорциональный току первичной.
- Трансформаторные установки напряжения. Преобразуют высокое напряжение в низкое.
Сварочные трансформаторные установки. Применяются в сварочных агрегатах. Преобразовывают высокое напряжение в низкое, при этом ток повышается до тысяч ампер.
- Автотрансформаторы. Обе обмотки соединены, имеется и магнитная, и электрическая связь.
- Импульсные трансформаторные установки. Служат для преобразования импульсных сигналов.
По количеству обмоток различают:
- Двухобмоточные установки.
- Трехобмоточные установки.
- Многофазные трансформаторные установки.
По конструкции трансформаторы бывают сухие и масляные. При работе трансформаторных установок возникают тепловые потери. Для маломощных агрегатов они невелики, там применяется воздушное охлаждение. Это сухие трансформаторы. Масляные трансформаторы более мощные и нуждаются в охлаждении жидкостью. Для этого их помещают в баки с трансформаторным маслом, что способствует более полному охлаждению и улучшает изоляцию. Масляные агрегаты предназначаются для работы при напряжениях выше 6 тыс. В.
Режимы работы трансформаторных устройств
Все устройства могут работать в режимах холостого хода, под нагрузкой и короткого замыкания. Холостой ход — это условия работы, при которых отсутствует нагрузка, вторичная обмотка разомкнута. При этом режиме рассчитываются:
- Коэффициенты трансформации.
- Сопротивление ветви намагничивания. Для этого во вторичную обмотку включается вольтметр. Сопротивление должно быть таким, чтобы величина тока была минимальна.
- Коэффициент мощности.
- Короткое замыкание — условия работы, при которых концы вторичной обмотки соединяются. При работе агрегата короткое замыкание — это аварийный режим. Первичный и вторичный токи возрастают в десятки раз. Для предотвращения аварии включаются механизмы защиты.
В условиях испытаний определяется напряжение короткого замыкания. Это паспортная характеристика агрегата. Для определения характеристики соединяют концы вторичной обмотки, а напряжение на первичной понижается до такого, при котором ток не превышает номинальных значений.
При таких испытаниях вместе с испытаниями на холостом ходу определяется коэффициент полезного действия установок.
Критерии выбора оборудования
При приобретении трансформаторного оборудования необходимо рассматривать его основные параметры:
- Напряжение.
- Коэффициент трансформации.
- Угловая погрешность для трансформаторов тока.
Учитываются также условия эксплуатации. Очень важны для выбора область применения, нагрузки и напряжения короткого замыкания. Особенно нужно правильно эксплуатировать установки. Существуют нормативы по пуску, наладке и использованию агрегатов. Главным моментом является обслуживание установок, при котором следует проверять сопротивление на обмотках и ток.
Периодически следует проверять уровень масла и чистоту изоляции. При выполнении всех требований регламента по установке и обслуживанию агрегатов будет обеспечена безопасность эксплуатации и гарантийный срок службы устройств.
Трансформаторы, устройство и принцип действия, назначение различных типов
Трансформатор это электротехническое устройство, предназначенное для преобразования напряжения электрической энергии переменного тока. Основной принцип работы трансформатора состоит в использовании явления электромагнитной индукции.
К основным частям, из которых состоит трансформатор, относятся магнитный сердечник (магнитопровод) и намотанные на нём обмотки.
Принцип действия трансформатора напряжения заключается в следующем. Одна из обмоток подключается к источнику электрического напряжения. Эту обмотку называют первичной, она служит источником энергии, трансформируемой устройством.
Ток переменного направления, протекающий по первичной обмотке, создаёт знакопеременный магнитный поток в трансформаторном магнитопроводе.
Под воздействием магнитного потока сердечника во вторичных обмотках (их может быть несколько) наводится электродвижущая сила (ЭДС) индукции. Наведённая ЭДС индукции вызывает во вторичных обмотках появление некоторого напряжения, а при подключении к ним нагрузки — вторичного тока.
Форма магнитного трансформаторного сердечника может быть различной, главное условие — магнитный поток должен образовывать замкнутые контуры (один или несколько).
Наибольшее распространение получили следующие формы трансформаторных магнитопроводов:
- Ш – образные;
- П – образные;
- тороидальные (по аналогии с предыдущими типами сердечников их можно назвать О – образными).
В процессе трансформации электрической энергии, часть её теряется вследствие наличия потерь. Трансформаторные потери подразделяются на две категории — потери в меди и в стали. Данные определения требуют разъяснения.
Потери в меди.
Под этим термином подразумеваются омические потери при протекании токов в обмотках трансформаторов. Теряемая в обмотках энергия уходит на их нагрев.
Интересный факт. Нередко встречаются трансформаторы, обмотки которых выполнены из алюминиевых проводников. Теряемую в таких обмотках мощность логично было бы назвать «потери в алюминии», однако такой термин не употребляется. Словосочетание «потери в меди» вероятно можно отнести к профессиональному жаргону.
Потери в стали.
Данный вид теряемой мощности состоит из двух компонентов:
- потери, возникающие вследствие образования в сердечнике вихревых токов;
- мощность, затрачиваемая на перемагничивание.
Вихревые токи (токи Фуко) возникают в любом электропроводящем материале под воздействием переменного магнитного поля. Трансформаторный сердечник, являющийся проводником, не является исключением.
Для уменьшения влияния вихревых токов, магнитопроводы трансформаторов обычно изготавливают не цельными изделиями, а набираются из тонких пластин специальной электротехнической стали. Каждая пластина перед сборкой покрывается электроизоляционным лаком.
Такая технология позволяет избежать возникновения глобальных вихревых токов по всей толщине сердечника, что значительно снижает потери энергии и соответственно, нагрев магнитопровода.
ПРИМЕР ИСПОЛЬЗОВАНИЯ ТОКОВ ФУКО
Для того чтобы оценить масштабы энергии, которая может выделяться при протекании вихревых токов, полезно вспомнить принцип работы индукционных плавильных печей. В ёмкость печи, выполненную из огнеупорной керамики, помещают лом стали, чугуна или железную руду.
Плавильная ёмкость окружена мощной спиральной обмоткой, по которой пропускается ток высокой частоты. Содержимое ёмкости в данном случае играет роль магнитного сердечника.
Под воздействием возникающих вихревых токов происходит интенсивный разогрев и расплавление загруженного железосодержащего материала. Электроплавильное производство относится к одному из самых энергоёмких.
Потери на перемагничивание обусловлены следующими факторами:
1. Макроструктура магнитных материалов имеет зернистый характер. Образование структурных зёрен происходит на стадии застывания расплавленного металлического сплава вследствие возникновения множества очагов кристаллизации.
2. В результате образуются зёрна структуры, которые представляют собой монокристаллические образования — домены. Каждый домен магнитного материала имеет некоторое результирующее направление вектора магнитной индукции.
При отсутствии внешнего магнитного поля векторы индукции доменов направлены хаотически. Но если поместить такой материал в магнитное поле, векторы доменов становятся однонаправленными.
Применительно к процессу трансформации происходит следующее. Ток первичной обмотки создаёт в сердечнике магнитное поле, направление индукции которого меняется с частотой 50 герц (при подключении к обычной электросети).
С такой же частотой происходит переориентация векторов магнитной индукции доменов магнитопровода. Энергия, затрачиваемая на циклическое перемагничивание, выделяется в виде тепла, нагреваемого сердечник.
Энергию, затраченную на перемагничивание сердечника, называют также потерями на гистерезис. Величина этих потерь зависит от свойств материала трансформаторного сердечника, а если более конкретно, от вида их кривой намагничивания — петли гистерезиса.
Наименьшими потерями характеризуются магнитомягкие материалы — электротехническая сталь и пермаллой, которые и используются при изготовлении трансформаторных магнитопроводов.
ВИДЫ ТРАНСФОРМАТОРОВ И ИХ НАЗНАЧЕНИЕ
В зависимости от специфических функций, выполняемых трансформаторами, они подразделяются на несколько основных типов:
- силовые, предназначенные для трансформации мощности;
- измерительные, к которым относятся трансформаторы тока и напряжения;
- разделительные, служащие для разделения электрических цепей.
Силовые трансформаторы используются на электрических станциях, в распределительных сетях и в точках потребления электроэнергии. Основная их функция — трансформирование передаваемой электрической энергии с одной ступени напряжения в другую.
Смысл смены ступеней напряжения заключается в том, что выработка, транспортировка и потребление электрической энергии происходит на разных уровнях напряжения.
Мощные турбогенераторы электрических станций вырабатывают электроэнергию напряжением 20 кВ. Передача энергии на большие расстояния осуществляется по воздушным линиям (ЛЭП), имеющим напряжение сотни киловольт — 110, 220, 500 кВ.
Более высокое напряжение (750 и 1150 кВ) применяется реже ввиду дороговизны оборудования и ряда технических сложностей. Повышение напряжения транспортировки электроэнергии позволяет снизить её потери.
Потребляется же большая часть электричества с напряжением 0,4 кВ. Максимальное напряжение конечных электрических устройств составляет не более нескольких киловольт. К таким устройствам относятся высоковольтные приводные двигатели мощных производственных механизмов, тяговые двигатели электровозов, питающихся от контактных электрических сетей.
Таким образом, электрическая энергия на своём пути от её производства до поступления к конечному потребителю несколько раз изменяет уровень напряжения. Эту работу выполняют силовые трансформаторы, установленные на электрических станциях и подстанциях распределительных сетей.
Измерительные трансформаторы используются в цепях измерения, защиты и контроля. Устройства этого типа осуществляют преобразование первичных значений тока и напряжения в пропорциональные им вторичные величины, необходимые для работы измерительных приборов, устройств защиты и автоматики.
Преобразование токовых величин осуществляется трансформаторами тока, для контроля уровня напряжения служат трансформаторы напряжения. Измерительные трансформаторы относятся к средствам измерений и подлежат периодической метрологической поверке, так же как все измерительные приборы.
Разделительные трансформаторы используются в тех случаях, когда необходимо обеспечить гальваническую развязку между отдельными участками электросетей.
Необходимость такого разделения может диктоваться требованиями электробезопасности. Например, таким способом осуществляется питание некоторых видов медицинского оборудования. В данном случае используется одно из основных свойств, присущих трансформатору — отсутствие гальванической связи между его обмотками.
* * *
© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.
, конструкция, типы, применение
Большинство электронных схем, используемых на Circuitstoday.com, имеют различные применения трансформатора. Поэтому важно знать принцип работы, конструкцию и типы трансформаторов, используемых в различных аналоговых схемах.
Что такое трансформатор?
Трансформатор можно определить как статическое устройство, которое помогает в преобразовании электроэнергии в одной цепи в электроэнергию той же частоты в другой цепи.Напряжение в цепи можно повышать или понижать, но с пропорциональным увеличением или уменьшением номинального тока. В этой статье мы узнаем об основах и принципе работы Transformer
. Трансформатор — принцип работыОсновным принципом работы трансформатора является взаимная индуктивность двух цепей, связанных общим магнитным потоком. Базовый трансформатор состоит из двух катушек, которые электрически разделены и индуктивны, но связаны магнитным полем через сопротивление.Принцип работы трансформатора можно понять из рисунка ниже.
Трансформатор рабочийКак показано выше, электрический трансформатор имеет первичную и вторичную обмотки. Пластины сердечника соединены в виде полос, между которыми вы можете видеть, что есть узкие зазоры прямо через поперечное сечение сердечника. Эти смещенные суставы называются «черепичными». Обе катушки имеют высокую взаимную индуктивность. Взаимная электродвижущая сила индуцируется в трансформаторе из-за переменного потока, который создается в многослойном сердечнике, из-за катушки, которая подключена к источнику переменного напряжения.Большая часть переменного потока, создаваемого этой катушкой, связана с другой катушкой и, таким образом, создает взаимно индуцированную электродвижущую силу. Произведенная таким образом электродвижущая сила может быть объяснена с помощью законов электромагнитной индукции Фарадея как
e = M * dI / dt
Если цепь второй катушки замкнута, в ней протекает ток и, таким образом, электрическая энергия передается магнитным путем от первой ко второй катушке.
Подача переменного тока подается на первую катушку, поэтому ее можно назвать первичной обмоткой.Энергия отбирается из второй катушки и, таким образом, может называться вторичной обмоткой.
Вкратце, трансформатор выполняет следующие операции:
- Передача электроэнергии из одной цепи в другую.
- Передача электроэнергии без изменения частоты.
- Передача с принципом электромагнитной индукции.
- Две электрические цепи связаны взаимной индукцией.
Для простой конструкции трансформатора вам потребуются две катушки с взаимной индуктивностью и многослойный стальной сердечник.Обе катушки изолированы друг от друга и от стального сердечника. Устройству также потребуется подходящий контейнер для собранного сердечника и обмоток, среда, с помощью которой можно изолировать сердечник и его обмотки от его контейнера.
Для изоляции и вывода выводов обмотки из резервуара необходимо использовать подходящие вводы, изготовленные из фарфора или конденсаторного типа.
Во всех трансформаторах, которые используются в коммерческих целях, сердечник сделан из листовой стали трансформатора, собранной для обеспечения непрерывного магнитного пути с минимальным воздушным зазором.Сталь должна иметь высокую проницаемость и низкие потери на гистерезис. Для этого сталь должна быть изготовлена с высоким содержанием кремния и подвергаться термообработке. Эффективное ламинирование сердечника позволяет снизить вихретоковые потери. Ламинирование может быть выполнено с помощью тонкого слоя лака для стержневых плит или наложения оксидного слоя на поверхность. Для частоты 50 Гц толщина ламинации варьируется от 0,35 мм до 0,5 мм для частоты 25 Гц.
Типы трансформаторовТипы по дизайну
Типы трансформаторов различаются по способу размещения первичной и вторичной обмоток вокруг многослойного стального сердечника.По конструкции трансформаторы можно разделить на два:
. 1. Трансформатор с сердечникомВ трансформаторе с сердечником обмотки подводятся к значительной части сердечника. Катушки, используемые в этом трансформаторе, имеют цилиндрическую намотку и имеют фасонную намотку. Такой тип трансформатора может быть применим как для малогабаритных, так и для крупногабаритных трансформаторов. В малоразмерном типе сердечник будет прямоугольной формы, а используемые катушки — цилиндрическими.На рисунке ниже показан шрифт большого размера. Вы можете видеть, что круглые или цилиндрические катушки намотаны таким образом, чтобы соответствовать крестообразной части сердечника. В случае круглых цилиндрических катушек они имеют значительное преимущество в виде хорошей механической прочности. Цилиндрические катушки будут иметь разные слои, и каждый слой будет изолирован от другого с помощью таких материалов, как бумага, ткань, микарта-картон и так далее. Общее расположение трансформатора с сердечником относительно сердечника показано ниже.Показаны обмотки как низкого (LV), так и высокого (HV) напряжения.
Трансформатор с сердечником Крестообразное сечение Трансформаторы с сердечникомОбмотки низкого напряжения располагаются ближе к сердечнику, так как их легче всего изолировать. Эффективная площадь сердечника трансформатора может быть уменьшена за счет использования пластин и изоляции.
2. Корпусный трансформаторВ трансформаторах оболочечного типа сердечник окружает значительную часть обмоток. Сравнение показано на рисунке ниже.
Обмотка трансформатора с сердечником и оболочкойКатушки имеют формную намотку, но представляют собой многослойные диски, обычно намотанные в виде блинов. Бумага используется для изоляции различных слоев многослойных дисков. Вся обмотка состоит из дисков, уложенных друг на друга с изоляционными промежутками между катушками. Эти изоляционные пространства образуют горизонтальные охлаждающие и изолирующие каналы. Такой трансформатор может иметь форму простого прямоугольника или также может иметь распределенную форму. Обе конструкции показаны на рисунке ниже:
Трансформаторы корпусного типа прямоугольной формы Трансформаторы корпусного типа распределенного типаСердечники и катушки трансформаторов должны быть усилены жесткими механическими связями.Это поможет свести к минимуму перемещение устройства, а также предотвратит повреждение изоляции устройства. Трансформатор с хорошей фиксацией не будет издавать гудящего шума во время работы, а также снизит вибрацию.
Для трансформаторов должна быть предусмотрена специальная площадка для размещения. Обычно устройство помещается в плотно пригнанные емкости из листового металла, заполненные специальным изоляционным маслом. Это масло необходимо для циркуляции через устройство и охлаждения змеевиков. Он также обеспечивает дополнительную изоляцию устройства, когда оно находится в воздухе.
Возможны случаи, когда гладкая поверхность бака не сможет обеспечить необходимую площадь охлаждения. В таких случаях борта бака гофрированы или собраны с радиаторами по бокам устройства. Масло, используемое для охлаждения, должно быть абсолютно свободным от щелочей, серы и, самое главное, влаги. Даже небольшое количество влаги в масле приведет к значительному изменению изоляционных свойств устройства, поскольку это в значительной степени снижает диэлектрическую прочность масла.
С математической точки зрения, присутствие примерно 8 частей воды на 1 миллион снижает изоляционные качества масла до значения, которое не считается стандартным для использования. Таким образом, резервуары защищены герметичным уплотнением в меньших единицах. При использовании больших трансформаторов герметичный метод реализовать практически невозможно. В таких случаях предусмотрены камеры для масла, чтобы расширяться и сжиматься при повышении и понижении его температуры.
Эти сапуны образуют барьер и препятствуют контакту атмосферной влаги с маслом.Также следует проявлять особую осторожность, чтобы не кататься на санках. Сливание происходит, когда масло разлагается из-за чрезмерного воздействия кислорода во время нагрева. Это приводит к образованию больших отложений темного и тяжелого вещества, которые забивают охлаждающие каналы в трансформаторе.
Качество, долговечность и обращение с этими изоляционными материалами определяют срок службы трансформатора. Все выводы трансформатора выведены из корпусов через подходящие вводы. Существует множество их конструкций, их размер и конструкция в зависимости от напряжения на выводах.Фарфоровые вводы можно использовать для изоляции выводов трансформаторов, которые используются при умеренном напряжении. В трансформаторах высокого напряжения используются маслонаполненные вводы или вводы емкостного типа.
Выбор между типом сердечника и оболочки производится путем сравнения стоимости, поскольку аналогичные характеристики могут быть получены от обоих типов. Большинство производителей предпочитают использовать трансформаторы кожухового типа для высоковольтных систем или для многообмоточных конструкций. По сравнению с сердечником, оболочка имеет большую среднюю длину витка катушки.Другими параметрами, которые сравниваются при выборе типа трансформатора, являются номинальное напряжение, номинальная сила тока в киловольтах, вес, напряжение изоляции, распределение тепла и т. Д.
Трансформаторытакже можно классифицировать по типу используемого охлаждения. Различные типы в соответствии с этой классификацией:
Типы трансформаторов по методу охлаждения
1. Самоохлаждающийся с масляным наполнениемВ маслонаполненном типе с самоохлаждением используются распределительные трансформаторы малых и средних размеров.Собранные обмотки и сердечник таких трансформаторов устанавливаются в сварные маслонепроницаемые стальные резервуары, снабженные стальной крышкой. Резервуар заполняется очищенным высококачественным изоляционным маслом, как только сердечник возвращается на свое место. Масло помогает передавать тепло от сердечника и обмоток к корпусу, откуда оно излучается в окружающую среду.
Для трансформаторов меньшего размера резервуары обычно имеют гладкую поверхность, но для трансформаторов больших размеров требуется большая площадь теплового излучения, и это тоже без нарушения кубической емкости резервуара.Это достигается частым рифлением корпусов. Еще более крупные размеры снабжены радиацией или трубами.
2. Тип с масляным водяным охлаждениемЭтот тип используется для гораздо более экономичного строительства больших трансформаторов, так как описанный выше метод с самоохлаждением очень дорог. Здесь используется тот же метод — обмотки и сердечник погружаются в масло. Единственное отличие состоит в том, что рядом с поверхностью масла установлен охлаждающий змеевик, через который холодная вода продолжает циркулировать.Эта вода уносит тепло от устройства. Эта конструкция обычно реализуется на трансформаторах, которые используются в высоковольтных линиях электропередачи. Самым большим преимуществом такой конструкции является то, что для таких трансформаторов не требуется другого корпуса, кроме собственного. Это значительно снижает затраты. Еще одним преимуществом является то, что техническое обслуживание и осмотр этого типа требуется только один или два раза в год.
3. Тип воздушной струиЭтот тип используется для трансформаторов с напряжением ниже 25 000 вольт.Трансформатор помещен в коробку из тонкого листового металла, открытую с обоих концов, через которую воздух продувается снизу вверх.
E.M.F Уравнение трансформатора Трансформатор ЭДС EquationLet,
N A = Число витков первичной обмотки
N B = Количество витков вторичной обмотки
Ø макс. = максимальный поток в сердечнике в перепонках = B макс. X A
f = Частота переменного тока на входе в герцах (H Z )
Как показано на рисунке выше, магнитный поток в сердечнике увеличивается от нулевого значения до максимального значения Ø max за одну четверть цикла, то есть за частоты секунды.
Следовательно, средняя скорость изменения потока = Ø макс. / ¼ f = 4f Ø макс. Вт / с
Скорость изменения магнитного потока на виток означает наведенную электродвижущую силу в вольтах.
Следовательно, средняя индуцированная электродвижущая сила / оборот = 4f Ø макс. вольт
Если поток Ø изменяется синусоидально, то среднеквадратичное значение наведенной ЭДС получается путем умножения среднего значения на коэффициент формы.
Форм-фактор= среднеквадратичное значение. значение / среднее значение = 1.11
Следовательно, среднеквадратичное значение ЭДС / оборот = 1,11 X 4f Ø макс. = 4,44f Ø макс.
Теперь, среднеквадратичное значение наведенной ЭДС во всей первичной обмотке
= (наведенная ЭДС / оборот) X Количество витков первичной обмотки
Следовательно,
E A = 4,44f N A Ø макс. = 4,44fN A B м A
Аналогично, среднеквадратичное значение наведенной ЭДС во вторичной обмотке равно
.E B = 4.44f N B Ø макс = 4,44fN B B м A
В идеальном трансформаторе без нагрузки,
В A = E A и V B = E B , где V B — напряжение на клеммах
Коэффициент трансформации напряжения (K)Из приведенных выше уравнений получаем
E B / E A = V B / V A = N B / N A = K
Эта постоянная K известна как коэффициент трансформации напряжения.
(1) Если N B > N A , то есть K> 1, то трансформатор называется повышающим трансформатором.
(2) Если N B <1, то есть K <1, то трансформатор называется понижающим трансформатором.
И снова идеальный трансформатор,
Вход В A = выход В A
В A I A = V B I B
Или, I B / I A = V A / V B = 1 / K
Следовательно, токи обратно пропорциональны коэффициенту трансформации (напряжения).
Применение трансформатора
Трансформаторы используются в большинстве электронных схем. У трансформатора всего 3 применения;
- Для увеличения напряжения и тока.
- Для понижения напряжения и тока
- Для предотвращения постоянного тока — трансформаторы могут пропускать только переменный ток, поэтому они полностью предотвращают прохождение постоянного тока в следующую цепь.
Но применение этих трех приложений безгранично, поэтому они используются во многих схемах.
Трансформаторы— Принцип работы
Трансформатор — это устройство, которое соединяет две электрические цепи через общее магнитное поле. Трансформаторы используются для преобразования импеданса, преобразования уровня напряжения, изоляции цепей, преобразования между режимами несимметричного и дифференциального сигналов и других приложений. В основе электромагнитного принципа лежит закон Фарадея (раздел 8.3) — в частности, ЭДС трансформатора.
Основные характеристики трансформатора могут быть получены из простого эксперимента, показанного на рисунках 8.5.1 и 8.5.2. В этом эксперименте две катушки расположены вдоль общей оси. Шаг намотки небольшой, так что все силовые линии магнитного поля проходят по длине катушки, и никакие линии не проходят между обмотками. Чтобы дополнительно сдерживать магнитное поле, мы предполагаем, что обе катушки намотаны на один и тот же сердечник, состоящий из некоторого материала, обладающего высокой проницаемостью. Верхняя катушка имеет
витка, а нижняя —
витка.
В части I этого эксперимента (рис. 8.5.1), верхняя катушка подключена к источнику синусоидально изменяющегося напряжения
, в котором нижний индекс относится к катушке, а верхний индекс относится к «части I» этого эксперимента. Источник напряжения создает в катушке ток, который, в свою очередь, создает изменяющееся во времени магнитное поле
в сердечнике.
Рисунок 8.5.1: Часть I эксперимента, демонстрирующего соединение электрических цепей с помощью трансформатора.
Нижняя катушка имеет
витков, намотанных на в противоположном направлении и разомкнутого.Учитывая близкорасположенные обмотки и использование сердечника с высокой магнитной проницаемостью, мы предполагаем, что магнитное поле в нижней катушке равно
, создаваемому в верхней катушке. Потенциал, наведенный в нижней катушке, составляет
с эталонной полярностью, указанной на рисунке. Из закона Фарадея имеем
(8.5.1), где
— поток через один виток нижней катушки. Таким образом:
(8.5.2)Обратите внимание, что направление
определяется полярностью, которую мы выбрали для
.
Во второй части эксперимента (рисунок 8.5.2) мы вносим следующие изменения. Подаем напряжение
на нижнюю катушку и размыкаем верхнюю катушку. Далее, мы настраиваем
так, чтобы плотность индуцированного магнитного потока снова была
, то есть равной полю в Части I эксперимента.
Рисунок 8.5.2: Часть II эксперимента, демонстрирующего соединение электрических цепей с помощью трансформатора
(8.5.3) (8.5.4)По причинам, которые станут очевидными через мгновение, давайте сместим ведущую знак минус в интеграл.Тогда у нас будет
. Сравнивая это с уравнениями 8.5.1 и 8.5.2, мы видим, что можем переписать это в терминах потока в нижней катушке в Части I эксперимента:
Фактически, мы можем выразить это в виде с точки зрения потенциала в Части I эксперимента:
(8.5.7)Мы обнаружили, что потенциал в верхней катушке в Части II связан простым образом с потенциалом в нижней катушке в Части I эксперимента. эксперимент. Если бы мы сначала выполнили Часть II, мы получили бы тот же результат, но с поменкой местами надстрочных индексов.Следовательно, в целом должно быть верно — независимо от расположения выводов — что
(8.5.8)Это выражение должно быть знакомо из теории элементарных цепей — за исключением, возможно, знака минус. Знак минус — следствие того, что катушки намотаны в разные стороны. Мы можем сделать приведенное выше выражение немного более общим:
(8.5.9), где
определяется как
, когда катушки намотаны в одном направлении, и
, когда катушки намотаны в противоположных направлениях.(Это отличное упражнение, чтобы подтвердить, что это правда, повторяя приведенный выше анализ с изменением направления обмотки для верхней или нижней катушки, для которого
тогда окажется
.) Это «закон трансформатора». теории основных электрических цепей, из которой могут быть получены все другие характеристики трансформаторов как устройств с двухпортовой схемой (см. раздел 8.6).
Подводя итог:
Отношение напряжений катушек в идеальном трансформаторе равно отношению витков со знаком, определяемым относительным направлением обмоток, согласно уравнению 8.5.9.
Более знакомая конструкция трансформатора показана на рисунке 8.5.3 — катушки, намотанные на тороидальный сердечник, а не на цилиндрический сердечник. Зачем это делать? Такое расположение ограничивает магнитное поле, связывающее две катушки с сердечником, в отличие от того, чтобы силовые линии выходили за пределы устройства. Это ограничение важно для предотвращения того, чтобы поля, возникающие вне трансформатора, мешали магнитному полю, соединяющему катушки, что могло бы привести к электромагнитным помехам (EMI) и проблемам электромагнитной совместимости (EMC).Принцип действия во всем остальном тот же.
Рисунок 8.5.3: Трансформатор выполнен в виде катушек с общим тороидальным сердечником. Здесь
. Изображение используется с разрешения (CC BY SA 3.0; BillC).
Сноски
Дополнительная литература
Используйте клавиши со стрелками влево и вправо для переключения страниц. Проведите пальцем влево и вправо для переключения страниц.Принцип работы трансформатора — коэффициент поворота и трансформации
Основным принципом работы трансформатора является Закон электромагнитного поля Фарадея Индукция или взаимная индукция между двумя катушками.Работа трансформатора объясняется ниже. Трансформатор состоит из двух отдельных обмоток, размещенных на сердечнике из многослойной кремнистой стали.
Обмотка, к которой подключен источник переменного тока, называется первичной обмоткой, а нагрузка — вторичной обмоткой, как показано на рисунке ниже. Он работает только на переменном токе , потому что переменный поток требуется для взаимной индукции между двумя обмотками.
Состав:
Когда питание переменного тока подается на первичную обмотку с напряжением V 1 , переменный поток ϕ устанавливается в сердечнике трансформатора, который соединяется со вторичной обмоткой, и в результате этого возникает ЭДС. в нем называется взаимно индуцированная ЭДС .Направление этой наведенной ЭДС противоположно приложенному напряжению V 1 , это из-за закона Ленца, показанного на рисунке ниже:
Физически между двумя обмотками нет электрического соединения, но они связаны магнитным полем. Следовательно, электрическая мощность передается из первичной цепи во вторичную через взаимную индуктивность.
Индуцированная ЭДС в первичной и вторичной обмотках зависит от скорости изменения магнитной индукции, которая составляет (N dϕ / dt).
dϕ / dt — это изменение магнитного потока, одинаковое как для первичной, так и для вторичной обмоток. Индуцированная ЭДС E 1 в первичной обмотке пропорциональна количеству витков N 1 первичных обмоток (E 1 ∞ N 1 ). Подобным образом наведенная ЭДС во вторичной обмотке пропорциональна количеству витков на вторичной стороне. (E 2 ∞ N 2 ).
Трансформатор на питании постоянного тока
Как уже говорилось выше, трансформатор работает от источника переменного тока и не может работать без источника постоянного тока.Если номинальное напряжение постоянного тока приложено к первичной обмотке, в сердечнике трансформатора установится магнитный поток постоянной величины, и, следовательно, не будет самоиндуцированной генерации ЭДС, поскольку для связи магнитного потока со вторичной обмоткой должна быть должен быть переменный поток, а не постоянный поток.
По закону Ома
Сопротивление первичной обмотки очень низкое, а первичный ток высокий. Таким образом, этот ток намного превышает номинальный ток первичной обмотки при полной нагрузке.Следовательно, в результате количество выделяемого тепла будет больше, и, следовательно, потери на вихревые токи (I 2 R) будут больше.
Из-за этого произойдет возгорание изоляции первичных обмоток и повреждение трансформатора.
Передаточное число
Определяется как отношение количества витков первичной обмотки к вторичной.
Если N 2 > N 1 трансформатор называется Повышающий трансформатор
Если N 2
Коэффициент трансформации
Коэффициент трансформации определяется как отношение вторичного напряжения к первичному напряжению.Обозначается К.
As (E 2 ∞ N 2 и E 1 ∞ N 1 )
Это все о работе трансформатора.
Электрический трансформатор — Основная конструкция, работа и типы
Электрический трансформатор — это статическая электрическая машина, которая преобразует электрическую мощность из одной цепи в другую без изменения частоты. Трансформатор может увеличивать или уменьшать напряжение с соответствующим уменьшением или увеличением тока.Принцип работы трансформатора
Основной принцип работы трансформатора — это явление взаимной индукции между двумя обмотками, связанными общим магнитным потоком. На рисунке справа показана простейшая форма трансформатора. В основном трансформатор состоит из двух индуктивных катушек; первичная обмотка и вторичная обмотка. Катушки электрически разделены, но магнитно связаны друг с другом. Когда первичная обмотка подключена к источнику переменного напряжения, вокруг обмотки создается переменный магнитный поток.Сердечник обеспечивает магнитный путь для потока, чтобы соединиться с вторичной обмоткой. Большая часть потока связана с вторичной обмоткой, которая называется «полезным потоком» или основным «потоком», а поток, который не связан с вторичной обмоткой, называется «потоком рассеяния». Поскольку создаваемый поток является переменным (его направление постоянно меняется), ЭДС индуцируется во вторичной обмотке в соответствии с законом электромагнитной индукции Фарадея. Эта ЭДС называется «взаимно индуцированной ЭДС», и частота взаимно индуцированной ЭДС такая же, как и частота подаваемой ЭДС.Если вторичная обмотка является замкнутой цепью, то через нее протекает взаимно индуцированный ток, и, следовательно, электрическая энергия передается от одной цепи (первичной) к другой цепи (вторичной).Базовая конструкция трансформатора
В основном трансформатор состоит из двух индуктивных обмоток и многослойного стального сердечника. Катушки изолированы друг от друга, а также от стального сердечника. Трансформатор также может состоять из контейнера для сборки обмотки и сердечника (называемого баком), подходящих вводов для подключения терминалов, маслорасширителя для подачи масла в бак трансформатора для охлаждения и т. Д.На рисунке слева показана основная конструкция трансформатора.Во всех типах трансформаторов сердечник изготавливается путем сборки (штабелирования) ламинированных листов стали с минимальным воздушным зазором между ними (для обеспечения непрерывного магнитного пути). Используемая сталь имеет высокое содержание кремния и иногда подвергается термообработке для обеспечения высокой проницаемости и низких потерь на гистерезис. Ламинированные стальные листы используются для уменьшения потерь на вихревые токи. Листы нарезаются в форме E, I и L. Чтобы избежать высокого сопротивления в стыках, листы укладываются друг на друга, чередуя стороны стыка.То есть, если стыки первой сборки листа находятся на передней грани, стыки следующей сборки остаются на задней стороне.
Типы трансформаторов
Трансформаторы можно классифицировать по разным признакам, например по типам конструкции, типам охлаждения и т. Д. (A) По конструкции трансформаторы можно разделить на два типа: (i) трансформатор с сердечником и (ii) трансформатор с корпусом, которые описаны ниже.
(i) Трансформатор с сердечником
В трансформаторе с сердечником обмотки представляют собой цилиндрическую намотку, установленную на плечах сердечника, как показано на рисунке выше.Цилиндрические катушки имеют разные слои, и каждый слой изолирован друг от друга. Для изоляции можно использовать такие материалы, как бумага, ткань или слюда. Обмотки низкого напряжения располагаются ближе к сердечнику, так как их легче изолировать.
(ii) Трансформатор оболочечного типа
Катушки предварительно намотаны и смонтированы слоями с изоляцией между ними. Трансформатор оболочечного типа может иметь простую прямоугольную форму (как показано на рис. Выше) или распределенную форму. (B) В зависимости от их назначения
- Повышающий трансформатор: Напряжение увеличивается (с последующим уменьшением тока) на вторичной обмотке.
- Понижающий трансформатор: Напряжение уменьшается (с последующим увеличением тока) на вторичной обмотке.
- Однофазный трансформатор
- Трехфазный трансформатор
- Силовой трансформатор: Используется в сети передачи, высокий рейтинг
- Распределительный трансформатор: Используется в распределительной сети, сравнительно более низкий номинал, чем у силовых трансформаторов.
- Измерительный трансформатор: используется для реле и защиты в различных приборах в промышленности
- Трансформатор тока (ТТ)
- Трансформатор потенциала (ПТ)
- Маслонаполненный самоохлаждаемый тип
- Масляные с водяным охлаждением типа
- Воздуховоздушного типа (с воздушным охлаждением)
: основы и принципы работы | Основная теория переменного тока (AC)
Трансформатор — один из самых важных компонентов во всех схемах переменного тока.В основном используемые для «переключения» между различными значениями переменного напряжения и тока в энергосистемах, трансформаторы находят применение во многих других типах цепей, включая электронные усилители (для согласования импеданса) и даже цепи датчиков (определение физического положения).
Основные принципы
Прежде чем исследовать работу трансформатора, полезно рассмотреть работу простого индуктора, который представляет собой не что иное, как катушку из проволоки, обычно намотанную на материал ферромагнитного сердечника:
Если мы подадим на эту катушку переменное (AC) напряжение, оно создаст переменное магнитное поле в сердечнике.То, сколько магнитного потока (\ (\ phi \)) будет развиваться в сердечнике, зависит от того, какое напряжение мы прикладываем к катушке. Фундаментальная взаимосвязь между напряжением и магнитным потоком для любой проводящей катушки определяется Законом электромагнитной индукции Фарадея:
\ [V = N {d \ phi \ over dt} \]
Где,
\ (V \) = Напряжение, приложенное к катушке или индуцированное катушкой (вольт)
\ (N \) = Количество витков провода
\ (d \ phi \ over dt \) = Скорость изменения магнитного потока (Веберов в секунду)
Если приложенное напряжение синусоидальное (т.е.е. в форме синусоиды), то величина магнитного потока будет отражать косинусоидальную волну с течением времени. Мы можем продемонстрировать это математически, подставив \ (\ sin \ omega t \) (синус некоторой частоты \ (\ omega \) в любой конкретный момент времени \ (t \)) вместо \ (V \) в уравнении Фарадея и интегрирующий:
\ [V = N {d \ phi \ over dt} \]
\ [\ sin \ omega t = N {d \ phi \ over dt} \]
\ [\ sin \ omega t \> dt = N d \ phi \]
\ [\ int \ sin \ omega t \> dt = \ int N d \ phi \]
\ [\ int \ sin \ omega t \> dt = N \ int d \ phi \]
\ [- {1 \ over \ omega} \ cos \ omega t + \ phi_0 = N \ phi \]
\ [\ phi = — {1 \ over N \ omega} \ cos \ omega t + \ phi_0 \]
Таким образом, величина магнитного потока (\ (\ phi \)) в сердечнике в любой момент времени \ (t \) пропорциональна косинусу частотно-временной функции \ (\ omega t \) плюс любой остаточной магнетизм (\ (\ phi_0 \)), с которого начинался сердечник, до того, как на катушку было приложено какое-либо напряжение.
Величина тока, потребляемого этой катушкой индуктивности, зависит от сопротивления магнитной «цепи» сердечника и количества витков в катушке (\ (N \)). Чем меньше сопротивление, обеспечиваемое магнитным трактом, тем меньше тока потребуется для создания необходимого магнитного поля для балансировки приложенного напряжения. Если бы мы возьмем два совершенных индуктора (то есть без сопротивления провода) — один с тяжелым железным сердечником и один с легким железным сердечником (или даже с воздушным сердечником) — и приложим к ним одинаковое напряжение переменного тока, они оба будут генерировать точно такая же сила переменного магнитного поля, но индуктор с меньшим сердечником будет потреблять больше тока от источника при этом.Другими словами, последняя катушка индуктивности будет иметь меньшее реактивное сопротивление (т.е. меньшее сопротивление), чтобы противодействовать току.
Все станет интересно, если мы намотаем вторую катушку провода вокруг того же сердечника, что и первая. Для анализа обозначим полярность напряжения на одном из пиков источника переменного тока:
В тот момент, когда верхняя клемма источника положительна, а нижняя клемма отрицательна, мы видим, что на первой катушке падает такое же напряжение (из-за самоиндукции), а на второй катушке падает такое же напряжение, как и на колодец (за счет взаимной индукции ).Полярность напряжений обеих катушек идентична, потому что они намотаны в одном направлении вокруг сердечника и испытывают одинаковый магнитный поток (\ (\ phi \)). Однако, когда мы исследуем направления тока через каждую катушку, мы видим, что они противоположны друг другу: левая катушка действует как нагрузка (потребляет энергию от источника переменного напряжения), а правая катушка действует как источник (обеспечивающий энергией резистивную нагрузку).
Мы создали настоящий трансформатор : электромагнитный компонент, передающий энергию из электрической формы в магнитную и обратно в электрическую форму.Источник переменного напряжения может возбуждать резистивную нагрузку без прямого проводящего соединения между ними, поскольку магнитный поток служит энергетической «связью» между двумя цепями.
Трансформаторы обычно изображаются как набор катушек с общим сердечником. Катушка, подключенная к источнику электроэнергии, называется первичной обмоткой , а катушка, подключенная к электрической нагрузке, называется вторичной обмоткой . Если сердечник ферромагнитный, он отображается как набор параллельных линий между катушками:
Эффекты нагрузки
Мы можем исследовать поведение трансформатора, наблюдая за эффектом его питания от источника переменного тока постоянного напряжения и изменяя сопротивление нагрузки:
Посмотрите, как напряжение на обеих катушках не зависит от нагрузки, и точно так же как магнитный поток остается неизменным при различных условиях нагрузки.Вторичная катушка действует как источник напряжения для резистивной нагрузки, отражая характер поведения источника первичной катушки. Амплитуда магнитного потока не зависит от вторичной нагрузки, чтобы удовлетворять закону напряжения Кирхгофа и закону Фарадея на первичной катушке: падение напряжения на катушке должно быть равно и противоположно приложенному напряжению источника, поэтому магнитный поток должен меняться с одинаковой скоростью. и достигают тех же пиков, пока напряжение первичного источника остается неизменным.
Продолжая наше исследование поведения трансформатора, мы теперь запитаем его от источника постоянного тока переменного тока и изменяем сопротивление нагрузки:
Обратите внимание на то, что ток теперь является незатронутой величиной, в то время как напряжение и магнитный поток зависят от нагрузки.Вторичная катушка теперь действует как источник тока для резистивной нагрузки, отражая характер поведения источника первичной катушки. При изменении сопротивления нагрузки пропорционально изменяется напряжение вторичной катушки, что, в свою очередь, требует соразмерного изменения магнитного потока.
Передаточное число
Трансформаторыв основном используются для переключения между различными уровнями напряжения и тока. Это достигается за счет создания трансформатора с первичной и вторичной обмотками, имеющими разное количество витков.Поскольку обе катушки имеют одинаковый магнитный поток, количество витков будет пропорционально тому, сколько напряжения создается на каждой катушке. Мы можем доказать это математически с помощью закона Фарадея, используя \ (d \ phi \ over dt \) как величину, разделяемую между первичной и вторичной обмотками:
\ [V_P = N_P {d \ phi \ over dt} \ hskip 50pt V_S = N_S {d \ phi \ over dt} \]
\ [{V_P \ over N_P} = {d \ phi \ over dt} \ hskip 50pt {V_S \ over N_S} = {d \ phi \ over dt} \]
\ [{V_P \ over N_P} = {V_S \ over N_S} \]
\ [{V_P \ over V_S} = {N_P \ over N_S} \]
То есть отношение напряжения первичной обмотки к напряжению вторичной обмотки такое же, как отношение витков первичной обмотки к вторичному.Мы можем использовать этот принцип для создания трансформаторов, передающих одинаковую мощность на два разных сопротивления нагрузки от одного и того же источника питания, с той лишь разницей, что количество витков во вторичной катушке:
Независимо от того, каким образом трансформатор переключает напряжение с первичной на вторичную, он должен изменять ток.
Вот несколько количественных примеров, предполагающих трансформаторы без потерь:
Обратите внимание на то, что первичная и вторичная мощности всегда равны друг другу для любой конфигурации трансформатора.Настоящие трансформаторы страдают от некоторых внутренних потерь мощности и, как таковые, будут показывать уровни вторичной мощности немного ниже, чем первичные, но при условии, что равенство обеспечивает простой способ проверить наши расчеты отношения напряжения и тока.
Импеданс трансформатора
Идеальный трансформатор без потерь передает электроэнергию от подключенного источника (на первичной стороне) к подключенной нагрузке (на вторичной стороне) со 100-процентным КПД. Идеальные трансформаторы также не накладывают ограничений на количество мощности, которое они могут передавать от первичной обмотки ко вторичной — другими словами, идеальный трансформатор не накладывает никаких ограничений на пропускную способность мощности.
Настоящие трансформаторы, однако, не работают без потерь и фактически действуют как устройства ограничения тока. Механизмы этого включают потери на магнитный гистерезис, сопротивление проволоки, индуктивность рассеяния и т. Д.
Рассмотрим мысленный эксперимент, в котором мы закорачиваем вторичную обмотку идеального трансформатора, который питается от источника переменного напряжения бесконечной мощности (т. Е. Источник имеет нулевое сопротивление). Сколько тока пройдет через закороченную вторичную цепь?
На этот вопрос нет реального ответа.Если источник 480 В переменного тока не имеет ограничения по току (то есть способен подавать бесконечный ток на закороченную нагрузку), а трансформатор также не имеет никакого ограничения по току, закороченная вторичная цепь также будет испытывать бесконечный ток, по крайней мере, в принципе.
Должно быть достаточно очевидно, что этот сценарий не может существовать в реальном мире. Даже с источником неограниченного тока любой реалистичный трансформатор будет препятствовать току, подаваемому на короткое замыкание на вторичной стороне.Вопрос о том, «сколько тока пройдет через короткое замыкание» — это действительно вопрос о том, какое сопротивление предлагает трансформатор.
Давайте рассмотрим другой мысленный эксперимент, на этот раз с использованием реального трансформатора с короткозамкнутой вторичной обмоткой, питаемого от источника переменного напряжения переменного тока:
Представьте, что напряжение источника постепенно увеличивается до тех пор, пока амперметр вторичной цепи не зарегистрирует ток, равный номинальной мощности трансформатора при полной нагрузке.Для идеального трансформатора (идеальное соединение мощности) это могло бы произойти при очень небольшом напряжении, приложенном к первичной обмотке. Однако из-за несовершенства и потерь реальных трансформаторов полный вторичный ток будет получен при первичном напряжении, равном некоторому небольшому проценту от нормального (номинального) первичного напряжения. Предположим, например, что наш гипотетический трансформатор с номиналом первичной обмотки 480 В переменного тока выдает полный вторичный ток через короткое замыкание при приложенном к источнику напряжении всего 22 вольт.22 вольт — это 4,58% от 480 вольт, поэтому мы бы сказали, что этот трансформатор имеет измеренное сопротивление 4,58%.
Хотя сценарий короткозамкнутой вторичной обмотки может показаться надуманным, на самом деле он вполне уместен в реальных условиях. В системах электроснабжения нас часто беспокоит максимальное количество тока, которое будет протекать в условиях неисправности и . Если два силовых проводника непосредственно касаются друг друга или если между ними возникает дуга с низким сопротивлением, протекающая по воздуху, это почти полностью приводит к короткому замыканию.Это означает, что полное сопротивление трансформатора будет доминирующим фактором при ограничении тока повреждения: чем больше сопротивление у трансформатора, тем меньше ток повреждения будет проявляться во время короткого замыкания.
Один из способов применения процентного значения импеданса силового трансформатора к сценарию неисправности — использовать его в качестве множителя для вторичного тока. Например, если силовой трансформатор имеет максимальный номинальный вторичный ток 180 ампер и номинальное сопротивление 3,3%, доступный вторичный ток при замыкании на болтах будет:
\ [{180 \ hbox {A} \ более 3.3 \%} = 5454,5 \ hbox {A} \]
Расчеты тока короткого замыкания очень полезны при прогнозировании количества энергии, выделяющейся при возникновении дуги , что происходит, когда электрическая дуга возникает между двумя близко расположенными проводниками в мощной электроэнергетической системе. Дуга ведет себя как соединение между проводниками с очень низким сопротивлением, что приводит к очень большим значениям тока и, соответственно, высокой температуре дуги.
Сопротивление трансформатора также полезно для расчета степени, в которой выходное напряжение силового трансформатора будет «проседать» ниже своего идеального значения при питании нагрузки.Предположим, у нас есть силовой трансформатор с соотношением витков 5: 1, рассчитанный на получение 120 В переменного тока на первичной обмотке и на выходе 24 В переменного тока. В условиях холостого хода внутреннее сопротивление трансформатора не будет иметь никакого влияния, и трансформатор будет выдавать ровно 24 В переменного тока. Однако, когда нагрузка подключена к клеммам вторичной обмотки и начинает течь ток для питания этой нагрузки, внутреннее сопротивление трансформатора приведет к небольшому снижению вторичного напряжения. Например, если этот трансформатор имеет импеданс 5.5%, это означает, что вторичное (выходное) напряжение упадет на 5,5% ниже 24 В переменного тока при полной нагрузке, если первичное напряжение поддерживается на стандартном уровне 120 В переменного тока. 5,5% от 24 вольт — это 1,32 вольт, поэтому вторичное напряжение этого трансформатора будет «проседать» с 24 вольт до 22,68 вольт (т.е. на 1,32 вольт меньше 24 вольт) по мере увеличения тока нагрузки от нуля до его полного номинального значения.
Электротрансформатор — Устройство, работа и виды
Эта статья поможет вам разобраться в основных понятиях электрических трансформаторов или силовых трансформаторов, их конструкции, принципе действия, проводимых на них испытаниях и их классификации.
Вы когда-нибудь задумывались, как электричество, произведенное в сельской местности, освещает ваш дом, питает вашу бытовую технику и электронные устройства, которые вы используете и носите? Как линии высокого напряжения, проходящие над головой, преобразуются в линии низкого напряжения и помогают вам смотреть прямые трансляции спортивных состязаний по телевизору? Оборудование, которое это делает, называется электрическим трансформатором.
Раньше Электроэнергия постоянного тока вырабатывалась вблизи грузовых станций и распределялась. Изобретение трансформатор привел к недавним достижениям в производстве электроэнергии, секторы передачи и распределения.Трансформаторы сделали массовую выработку электроэнергии возможна передача электроэнергии переменного тока на большие расстояния. Сегодня мощность передается на до 765 кВ с минимальными потерями мощности и более высоким КПД.
Что такое электрический трансформатор?
Электрический трансформатор или силовой трансформатор r — это часть оборудования, которая предназначена для изменения величины переменного напряжения в цепи без изменения частоты и с минимальными потерями мощности. Он используется для понижения и повышения напряжения.Энергия передается от его входной стороны к его выходной стороне в процессе электромагнитной индукции.
Используется для передачи мощность, произведенная в удаленном месте для потребителя, эффективно на необходимое напряжение. Трансформаторы доступны в различных размерах и номиналах от те огромные на подстанции к тем крошечным на электронной плате.
Самые ранние образцы разработанных ZBD высокоэффективных трансформаторов постоянного напряжения, изготовленные на заводе Ганца в 1885 году.Источник: Википедия Принцип работы электротрансформаторовЭлектрический трансформатор работает по принципу взаимной индуктивности и закону Фарадея электромагнитной индукции . Прохождение переменного тока через катушку создает переменное магнитное поле. Когда другая катушка контактирует с переменным магнитным полем, в этой катушке индуцируется напряжение. Согласно закону Фарадея величина индуцированного напряжения зависит от скорости изменения магнитного потока, соединяющего вторую катушку, и количества витков.
ε = -N dΦ / dt
В случае трансформаторов: Поскольку скорость изменения магнитного потока между катушками практически одинакова, индуцированное напряжение зависит от количества витков катушек.
Идеальный трансформаторAn Идеальный трансформатор состоит из первичной и вторичной обмоток, намотанных вокруг два вертикальных плеча ядра. Когда переменное напряжение подается на первичная обмотка трансформатора, через нее протекает ток, что создает переменное магнитное поле и, следовательно, переменный магнитный поток.Величина создаваемого магнитного поля зависит от количества витков катушка. Этот магнитный поток индуцирует ЭДС во вторичной катушке. Нагрузка может быть подключен к вторичной обмотке, пропускающей ток.
Идеальный трансформатор — это воображаемый трансформатор, имеющий нулевые потери, бесконечную магнитную проницаемость и 100% КПД. Поскольку одинаковая величина магнитного потока связывает первичную и вторичную обмотки трансформатора, отношение приложенного напряжения (V первичная ) и индуцированного напряжения (V вторичная ) должно быть пропорционально отношению количества витков в первичной обмотке к количество витков (N первичной ) во вторичной обмотке (N вторичной ).
В первичный / V вторичный = N первичный / N вторичный
В Идеальный трансформатор, входная мощность равна выходной мощности.
В первичный / V вторичный = I вторичный / I первичный
В реальном трансформаторе индуцированное напряжение на виток определяется следующим уравнением:
E / N = K.Φm.f
где K — константа, Φm — максимальное значение общего потока по Веберсу, связывающее это оборот, а f — частота питания в герцах.
Повышающий трансформаторВ повышающих трансформаторах вторичная обмотка имеет больше витков, чем первичная. Кроме того, напряжение на вторичной обмотке должно быть выше первичного напряжения (в зависимости от соотношения витков). Повышающие трансформаторы используются для увеличения напряжения передачи и уменьшения потерь при передаче. Их можно найти на генерирующих станциях и обычно называют силовыми трансформаторами.
Понижающий трансформаторВ понижающем трансформаторе количество витков на вторичной стороне трансформатора меньше, чем количество витков на первичной стороне и, следовательно, напряжение.Эти трансформаторы используются для понижения напряжения на распределительной стороне энергосистемы.
Коэффициент трансформацииКоэффициент «n» витков трансформатора — это число, обозначающее отношение количества витков проводника в первичной катушке к числу витков вторичной катушки. Коэффициент трансформации также известен как коэффициент трансформации напряжения. Это говорит о напряжении, доступном на вторичной стороне трансформатора для приложенного первичного напряжения.
N P — Число витков проводника в первичной обмотке.
В P — Приложенное первичное напряжение.
N S — Число витков проводника вторичной обмотки.
В С — Преобразованное напряжение, измеренное на вторичной обмотке.
Подробнее: Онлайн — Калькулятор коэффициента трансформации трансформатора
Строительство трансформатораНезависимо от типа конструкции, ниже представлены основные компоненты трансформатора.Узнайте больше о различных частях электрического трансформатора.
- Сердечник
- Обмотка
- Изоляция
- Консерватор
- Трансформаторное масло (в масляных трансформаторах)
- Реле Бухгольца
Сердечник трансформатора — это часть, на которую намотаны первичная и вторичная обмотки. Это поддерживает обмотки, а также обеспечивает путь с низким сопротивлением для магнитный поток, связывающий первичную и вторичную обмотку.Он состоит из высоких Ламинирование проницаемой кремнистой стали для уменьшения потерь в сердечнике.
ОбмоткаЭлектротрансформаторы имеют два набора обмоток: обмотку низкого напряжения и обмотку высокого напряжения. Несколько витков медных проводников, связанных вместе, образуют обмотки трансформатора. Размер медных проводников зависит от тока нагрузки. В большинстве случаев обмотки называют первичной обмоткой и вторичной обмоткой. Обычно обмотка, к которой подключено входное напряжение, называется первичной обмоткой, а обмотка, к которой подключена нагрузка, называется вторичной обмоткой.
ИзоляцияИзоляция — самая важная часть электрических трансформаторов. Обмотки изолированы друг от друга и от сердечника. Нарушения изоляции трансформаторов — самая серьезная проблема. Следовательно, при проектировании трансформатора особое внимание уделяется изоляции. Лак, Крафт-бумага , Хлопковая целлюлоза и Прессованный картон являются наиболее широко используемыми изоляционными материалами для обмоток.
Трансформатор маслоНе все трансформаторы, но в масляных трансформаторах трансформаторное масло служит двойным назначение изоляции и охлаждения.Имеет высокое напряжение пробоя, высокое удельное сопротивление и высокая диэлектрическая прочность. Он извлекает тепло из обмотки и сердечник трансформатора и помогает снизить потери и улучшает КПД и ресурс трансформатора.
Реле Бухгольца
Реле Бухгольца — это устройство защиты, используемое в электрических трансформаторах. Это реле с масляным приводом, используемое для определения неисправностей, возникающих внутри основного бака масляного трансформатора. Он может определять короткие замыкания, утечку масла, перегрев катушек трансформатора и т. Д.
Подробнее о реле Бухгольца деталь: реле Бухгольца — Принцип действия
W Кто изобрел электрический трансформатор? В 1884 году три венгерских инженера, Кароли Зиперновски, Отто Блати и Микса Дери, разработали первый высокоэффективный трансформатор. Этот трансформатор получил название трансформатор ЗНД. Это привело к новым разработкам в конструкции трансформатора. Первый трехфазный трансформатор был разработан Михаилом Доливо-Добровольским.Потери в электротрансформаторе
Потери в трансформаторе подразделяются на потери в обмотке и в сердечнике.Потери в обмотке возникают из-за сопротивления проводника. Он пропорционален квадрату тока, протекающего через него. Использование толстых медных проводников минимизирует сопротивление току и снижает потери в обмотке. Потери в сердечнике возникают из-за вихревых токов, образующихся в сердечнике трансформатора, и эффекта гистерезиса. Потери в сердечнике, также известные как потери в стали, всегда постоянны и не зависят от нагрузки. Использование ламинированного сердечника из мягкого железа и толстых проводников может помочь снизить потери в сердечнике и повысить КПД трансформатора.
эквивалент Схема трансформатораЭто теоретическая схема, которая представляет трансформатор и его физическое поведение. Эта схема, показанная ниже, представляет различные электрические параметры трансформатора. По этой схеме легко вычислить различные потери и перепады напряжения.
В P — Первичное напряжение или приложенное напряжение
I P — Первичный ток
R P — Сопротивление первичной обмотки
X -пол. — Реактивное сопротивление первичной обмотки
I C — Составляющая тока, вносящая вклад в потери в сердечнике
R C — Резистивная составляющая, приводящая к потерям в сердечнике
I M — Ток намагничивания
X M — Реактивное сопротивление намагничивания
В с — Вторичное напряжение или приложенное напряжение
I с — Вторичный ток
R s — Сопротивление вторичной обмотки
X с — Реактивность вторичной обмотки
Примечание:
Вышеупомянутая эквивалентная схема представляет собой обобщенную форму эквивалентной схемы для идеального трансформатора с коэффициентом трансформации 1: 1 без ссылки ни на первичную, ни на вторичную стороны.
Регулировка напряжения трансформаторПодробнее: Эквивалентная схема и фазовая диаграмма трансформатора
Насколько точно Трансформация напряжения происходит в трансформаторе при изменении нагрузки от нуля. нагрузка до полной нагрузки определяется регулированием напряжения трансформатора. Это рассчитывается по следующей формуле:
Где,
E sec-noload — Напряжение измеряется на вторичной обмотке без нагрузки.
E сек при полной загрузке — Напряжение измерено на вторичной обмотке при полной нагрузке.
Классификация трансформатораПодробнее о регулировании напряжения
Трансформаторы подразделяются на различные типы в зависимости от различных параметров, таких как тип источника питания, их применение, тип конструкции, метод охлаждения, рабочее напряжение, режим работы, форма сердечника и т. Д.
Классификация по типу источника питания: Трехфазный трансформатор, однофазный трансформатор.
Классификация по типу конструкция: Трансформатор с сердечником, Трансформатор с оболочкой.
Классификация на основе метода охлаждения: Сухого типа или с естественным воздушным охлаждением, с масляным охлаждением — Oil Natural Air Natural (ONAN), Oil Natural Air Forced (ONAF), Oil Forced Air Natural (OFAN), Oil Forced Air Forced ( OFAF), с масляным и водяным охлаждением — масляное природное водяное принудительное (ONWF), масляное принудительное водяное (OFWF)
Классификация по назначению : Распределительный трансформатор, трансформатор напряжения, трансформатор тока, изолирующий трансформатор, радиочастотный трансформатор, катушка Тесла.
Подробнее: Виды электротрансформаторов.
Трансформаторы распределительные
Распределительные трансформаторы — это электрические трансформаторы низкого напряжения. Они находятся недалеко от центров силы. Он снижает передаваемое напряжение до уровней, которые может использовать потребитель.
Трансформаторы напряжения
Трансформаторы потенциала (PT) используются для понижения высокого напряжения до измеримого уровня, чтобы облегчить измерение и управляемость.Они подключаются параллельно к линиям передачи, а измерительные приборы подключаются к их вторичной обмотке.
Трансформаторы тока
Трансформаторы тока (ТТ) используются для понижения высоких токов до измеримых уровней, чтобы облегчить измерение и управляемость. Они подключаются последовательно к нагрузке, а измерительные приборы подключаются к их вторичной обмотке.
Испытание трансформатораЭлектротрансформаторы проходят следующие испытания:
- Проверка сопротивления обмотки.
- Проверка сопротивления изоляции.
- Проверка сопротивления трансформатора.
- Тест без нагрузки — Тест на разрыв цепи.
- Тест импеданса короткого замыкания — Тест короткого замыкания.
- Испытание на превышение температуры.
- Проверка полярности.
- Диэлектрические испытания трансформаторного масла.
- Испытания уровня шума
Почему в энергосистеме используются электрические трансформаторы?Подробнее: Испытание на обрыв и испытание на короткое замыкание в трансформаторах
Электрический трансформатор можно рассматривать как наиболее важный компонент в сети передачи и распределения электроэнергии.Он выполняет функцию повышения эффективности передачи и снижения потерь и затрат на передачу. В основном трансформатор повышающих / понижающих напряжений. Электростанция вырабатывает электроэнергию напряжением от 11 кВ до 28 кВ при частоте 50 Гц. Чтобы уменьшить потери при передаче, напряжение повышается до 220 кВ или более и передается. На распределительной подстанции оно снова понижается до 33 кВ или 11 кВ по требованию и поставляется промышленным предприятиям. На стороне бытового потребителя он снова снижается до низковольтных нагрузок потребителя.
Подробнее: Почему электричество передается при высоком напряжении?
При повышении напряжения ток нагрузки, протекающий по линиям передачи, уменьшается. Уменьшение тока нагрузки приводит к уменьшению потерь в меди (потери I2R) и размера проводника, используемого для передачи энергии. Следовательно, стоимость передачи энергии, а также ее эффективность повышаются. Следовательно, электрические трансформаторы повышают эффективность, надежность системы и снижают затраты на передачу электроэнергии.
Артикул:
- Силовые трансформаторы с тороидальной линией. Рейтинг мощности утроился: https://web.archive.org/web/20160924114636/http://www.magneticsmagazine.com/main/articles/toroidal-line-power-transformers-power-ratings-tripled/ ,
- Lane, Кейт (2007 г.) (июнь 2007 г.). «Основы больших трансформаторов сухого типа». EC&M. Проверено 29 января 2013 г.
- Электромеханические системы, электрические машины и прикладная мехатроника Сергей Эдуард Лышевский.
- Электротрансформаторы Эрик Эгберт Уайлд · 1940
Основные принципы работы трансформатора
Векторные группы и заземление нейтрали
Три конфигурации, в которых обычно соединяются три фазные обмотки трансформатора, — треугольник, звезда или соединенная звезда (зигзаг).Конфигурации (расположение обмоток) показаны на Рисунке 1 ниже.
Основные принципы и работа трансформатора (фото предоставлено Kazmi Electric Works)Как сгруппированы векторы и как используется номенклатура фазовых соотношений, определяется следующим образом:
- Заглавные буквы для обозначения группы векторов первичной обмотки
- Строчные буквы для обозначения группы вторичной обмотки
- D или d представляет первичную или вторичную обмотку треугольником
- Y или y представляет первичную или вторичную обмотку звездой
- Z или z представляет первичную или вторичную обмотку, соединенную звездой
- N или n обозначает первичную или вторичную обмотку с заземлением к нейтрали.
Числа представляют фазовое соотношение между первичной и вторичной обмотками .
Углы смещения напряжения от вторичной к первичной задаются в соответствии с положением «стрелок» на часах относительно положения середины дня или двенадцати часов.
Это означает: 1 — -30 °, 3 — -90 °, 11 — + 30 ° и так далее .
Рисунок 1 — Расположение обмотокПример определения векторной группировки Dy1 приведен на рисунке 1. В этом случае можно заметить, что вторичное напряжение звезды находится в положении на один час, что означает, что отстает от первичного треугольника. вектор напряжения на 30 ° .
На рисунке 2 ниже показан еще один пример , определяющий группировку векторов Dyn5 .
Очевидно, что вторичное напряжение звезды находится в положении «5 часов», что означает, что оно отстает от вектора первичного треугольного напряжения на 5 × 30 ° = 150 ° .
Рисунок 2 — Определение векторной группировки Dyn5В основном разработчики системы сами решают, какое расположение векторной группировки требуется для каждого уровня напряжения в сети, хотя есть много факторов, влияющих на это решение.
Важными аспектами с точки зрения пользователя являются:
- Векторное смещение между системами, подключенными к каждой обмотке трансформатора, и возможность работы в параллельном режиме
- Обеспечение точки или точек заземления нейтрали, к которым относится нейтраль на землю либо напрямую, либо через импеданс
- Практичность конструкции трансформатора и стоимость, связанная с требованиями к изоляции
- Обмотка Z снижает дисбаланс напряжения в системах, где нагрузка неравномерно распределяется между фазами, и допускает нагрузку нейтрального тока с изначально низкой нулевой нагрузкой. сопротивление последовательности. Поэтому часто используется для заземления трансформаторов.