Особенности применения операционных усилителей при однополярном питании
16 мая
Тенденции применения электронных компонентов направлены на снижение энергопотребления и стоимости, поэтому в современных изделиях используется однополярное питание, и с каждым годом значения питающих напряжений уменьшаются. В статье рассмотрены основные проблемы, с которыми сталкивается разработчик при использовании операционных усилителей в схемах с [[однополярным питанием]].
Х
отя симметричное двуполярное питание является оптимальным для операционных усилителей (ОУ), во многих случаях (жесткие требования к потреблению электроэнергии) необходимо или желательно использовать однополярное электропитание. Например, бортовая сеть в автомобильном и морском оборудовании — однополярная. Да и в оборудовании, где ранее традиционно использовалось двуполярное питание, все чаще применяется встроенный однополярный источник электроэнергии с питающим напряжением 5 или 12 В постоянного тока. Системы с однополярным электропитанием для обработки аналоговых сигналов имеют общие для таких решений дополнительные свойства, вызванные необходимостью использования компонентов для смещения аналогового сигнала на каждой стадии обработки. Если смещение аналогового сигнала не продумано, а тем более не выполнено, то возникает множество проблем, в том числе — нестабильность работы операционных усилителей.
ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ СМЕЩЕНИИ С ПОМОЩЬЮ РЕЗИСТОРОВ
Применение ОУ с однополярным питанием связано с проблемами, которые обычно не встречаются при использовании двуполярного питания. Главная из них возникает тогда, когда входной сигнал является двуполярным относительно общего уровня («земли»). В системе с однополярным питанием этот уровень совпадает с уровнем отрицательного источника питания в традиционных решениях. Поэтому в этом случае нулевой уровень входного сигнала не может соответствовать «земле» и должен находиться между «землей» и уровнем питающего напряжения. Основное преимущество систем с двуполярным питанием состоит в том, что их общее соединение («земля») является устойчивым, низкоомным нулевым уровнем для входного сигнала. При этом положительное и отрицательное напряжения питания могут быть несимметричными. При однополярном питании с помощью схем смещения создается уровень нулевого сигнала, обычно лежащий в середине диапазона питающего напряжения.
Чтобы использовать усилитель эффективно, то есть получить с его выхода максимальный сигнал без ограничения, входной сигнал должен быть смещен на середину выходного диапазона, или, что одно и то же, на уровень половины питающего напряжения. Наиболее эффективный способ — использование линейного стабилизатора, как показано на рисунке 6. Однако наиболее популярная схема смещения — резистивный делитель напряжения питания. Хотя этот способ наиболее прост, при его использовании возникает ряд проблем.
Используя рисунок 1, рассмотрим некоторые из них. На этом рисунке изображена классическая схема неинвертирующего усилителя переменного тока. Входной сигнал с помощью емкостной связи подается на вход усилителя. Средний уровень входного сигнала смещен на величину VS/2 с помощью резисторного делителя RA—RB. В полосе пропускания данный усилитель имеет коэффициент усиления КУ = 1 + R2/R1. Паразитное усиление постоянного сигнала сведено к единице с помощью емкостной обратной связи цепочкой R1C1, соединенной с нулевым уровнем («землей»). Поэтому уровень постоянной составляющей равен напряжению смещения. Этим самым мы избегаем возникновения искажений из-за усиления напряжения смещения. Обратная связь обеспечивает коэффициент усиления, равный 1 + R2/R1 для высокочастотных сигналов и равный единице — для постоянной составляющей и низкочастотных сигналов с частотами подавления f = 1/(2πR1C1) и f = 1/[2π(R1 + R2)C1], а также вносит фазовый сдвиг во входную и выходную цепи.
Эта схема имеет серьезные ограни чения применения. Во-первых, невозможно использовать такое важное свойство операционных усилителей, как подавление синфазного сигнала. Поскольку любое изменение питающего напряжения моментально отразится на напряжении смещения, равном VS/2, установленным резисторным делителем, любой шум, присутствующий в шине питания, будет усилен наряду с сигналом (за исключением самых низких частот). Так, при К
Еще хуже, что при мощной нагрузке усилитель становится нестабильным в работе. Плохие стабилизация и фильтрация в источнике питания приводят к тому, что на шинах питания появляется значительный уровень сигнала. При работе усилителя, включенного по неинвертирующей схеме, этот сигнал поступает на вход усилителя через схему смещения, как было рассмотрено ранее, и усилитель самовозбуждается.
Оптимизация расположения компонентов на печатной плате, установка большого количества блокирующих конденсаторов, правильная разводка заземляющих шин и соединение их в одной точке, соответствующее проектирование шин питания уменьшают наводки и повышают стабильность схемы, но не исключают рассмотренных проблем. Поэтому далее будет предложено несколько решений, помогающих избежать трудностей в использовании усилителей при включении по схеме с однополярным электропитанием.
РАЗВЯЗКА СХЕМЫ СМЕЩЕНИЯ
Чтобы снизить влияние нестабильности напряжения питания, можно зашунтировать схему смещения по переменному току и добавить отдельный резистор для входного сигнала, как показано на рисунке 2. Конденсатор C2 обеспечивает фильтрацию пульсаций шины питания, тем самым восстанавливая способность ОУ ослаблять синфазные сигналы и влияние напряжения питания. Резистор R
Сопротивления резисторов RA и RB должно быть минимальными, насколько это позволяют ограничения по энергопотреблению. В данном случае выбрано значение 100 кОм, чтобы уменьшить потребляемый ток в схемах с батарейным питанием. Выбор величины шунтирующего конденсатора также требует внимания. С делителем напряжения RA/RB (100 кОм/100 кОм) и С2 = 0,1 мкФ частота среза по уровню –3 дБ фильтра высоких частот (ФВЧ), образованного параллельно соединенными резисторами R
На практике емкость конденсатора C2 требуется увеличить до таких значений, при которых резисторный делитель схемы смещения эффективно шунтировался бы для всех частот в полосе пропускания усилителя. Хорошим правилом для расчета частоты среза ФВЧ, образованного R
Коэффициент усиления по постоянному току остается равным единице. Даже в этом случае должны учитываться входные токи. RIN с последовательно соединенным делителем напряжения RA/RB значительно повышают входное сопротивление на неинвертирующем входе операционного усилителя. Поддержание смещения выходного сигнала на уровне половины напряжения питания при использовании обычных усилителей с обратной связью по напряжению, которые имеют симметричные сбалансированные входы, достигается правильным выбором величины резистора обратной связи R2.
В зависимости от напряжения питания значения резисторов, которые обеспечивают разумный компромисс между увеличением тока потребления или увеличением зависимости параметров усилителя от изменений входного тока, должны быть порядка 100 кОм для питающего напряжения 12…15 В, снижены до 42 кОм для питания 5 В и до 27 кОм — для 3,3 В.
В высокочастотных усилителях (особенно с обратной связью по току) следует использовать низкоомный делитель и резистор обратной связи, для того чтобы сохранить широкую полосу пропускания при наличии паразитной емкости. Для операционных усилителей, таких как AD811, разработанных для обработки видеосигналов, оптимально подходит значение резистора R2, равное около 1 кОм. Поэтому схемы с такими ОУ требуют использования намного меньших значений резисторов R
Из-за малого входного тока необходимость согласования резисторов на входах современных усилителей с полевыми транзисторами во входных каскадах не так важна, если усилитель не будет работать в широком температурном диапазоне. Иначе такое согласование необходимо.
Схема на рисунке 3 показывает, как реализуется смещение и шунтирование цепи смещения для инвертирующего усилителя.
Смещение с помощью резисторного делителя дешево и обеспечивает постоянный средний уровень выходного сигнала, равный половине величины напряжения питания, но подавление синфазного сигнала операционным усилителем зависит от постоянной времени RC-цепочки, образованной делителем R
СМЕЩЕНИЕ ПРИ ПОМОЩИ СТАБИЛИТРОНА
Более эффективный способ обеспечить необходимое смещение при однополярном питании — это использование стабилитрона, как показано на рисунке 4. В этой схеме резистор RZ обеспечивает необходимый рабочий ток стабилитрона. Конденсатор CN шунтирует вход операционного усилителя от шума стабилитрона.
Стабилитрон должен иметь напряжение стабилизации, близкое к половине напряжения питания. Резистор RZ должен обеспечивать достаточно большой ток, позволяющий стабилитрону работать в устойчивом режиме и, тем самым, обеспечивать минимальную погрешность стабилизации. С другой стороны, важно минимизировать энергопотребление (и тепловые потери). Поскольку входной ток операционного усилителя незначителен, то наиболее оптимален выбор стабилитрона малой мощности. Стабилитрон мощностью 250 мВт является оптимальным, но и наиболее распространенные 500-мВт стабилитроны также приемлемы. Оптимальный рабочий ток — около 0,5 мА для 250-мВт и около 5 мА — для 500-мВт стабилитронов.
Схема на рисунке 4 обеспечивает низкоомный опорный уровень и устраняет влияние нестабильности питающего напряжения на вход усилителя. Преимущества существенны, но стоимость и энергопотребление увеличиваются, да и средний уровень напряжения на выходе усилителя будет соответствовать выходному напряжению стабилитрона и может отличаться от VS/2. Если это отличие окажется существенным, то при больших выходных сигналах будет происходить асимметричное ограничение. Входные токи смещения также должны быть согласованы. Резисторы RIN и R2 должны быть равными, чтобы при прохождении через них входного тока разница падения напряжения на них не приводила к появлению ошибки смещения.
Рисунок 5 показывает схему инвертирующего усилителя со смещением уровня входного сигнала стабилитроном.
В таблице 1 перечислены стабилитроны нескольких типов, которые могут быть выбраны в зависимости от напряжения питания для обеспечения необходимого смещения. Значение RZ в таблице выбрано исходя из обеспечения стабилитронов током 5 или 0,5 мА для схем, показанных на рисунках 4 и 5. Для уменьшения шума (ошибки стабилизации) может быть выбран и больший ток; его максимальную величину следует выяснить в техническом описании стабилитрона.
СМЕЩЕНИЕ С ПОМОЩЬЮ ЛИНЕЙНОГО СТАБИЛИЗАТОРА
Для операционных усилителей с однополярным питанием 3,3 В требуется смещение напряжения 1,65 В. Однако напряжение стабилизации выпускаемых стабилитронов — не ниже 2,4 В. Хотя существуют источники опорного напряжения AD589 и AD1580 с напряжением 1,225 В, которые могут использоваться подобно стабилитронам, но они не обеспечивают смещение на половину напряжения питания. Самый простой способ обеспечить смещение входного сигнала на произвольную величину — это использовать линейный стабилизатор напряжения, например ADP667 или ADP3367, как показано на рисунке 6. Выходное напряжение линейного стабилизатора может быть установлено в пределах от 1,3 В до 16 В, и это обеспечит низкоомное смещение для операционного усилителя с однополярным напряжением питания от 2,6 В до 16,5 В.
СВЯЗЬ ПО ПОСТОЯННОМУ ТОКУ ПРИ ОДНОПОЛЯРНОМ ПИТАНИИ
Пока была обсуждена только связь операционного усилителя по переменному току. Хотя при использовании входных и выходных конденсаторов связи большой емкости усилитель может работать с сигналами с частотами значительно ниже 1 Гц, в некоторых случаях требуется истинная связь по постоянному току. Схемные решения, которые обеспечивают низкоомное постоянное напряжение смещения, типа стабилитронов и линейных стабилизаторов, обсуждаемых выше, могут использоваться, чтобы создавать напряжение «среднего уровня».
Альтернативно схеме смещения, построенной на резистивном делителе, показанной на рисунках 1 и 3, для создания низкоомной искусственной «земли» может использоваться буферный операционный усилитель, как показано на рисунке 7. Если для питания используется низковольтная батарея, скажем 3,3 В, ОУ должен иметь возможность работать с сигналами, равными размаху напряжения питания — rail-to-rail. Кроме того, ОУ также должен быть способен обеспечить большой положительный или отрицательный выходной ток. Конденсатор C2 шунтирует делитель напряжения, чтобы уменьшить шумы резисторов. На эту схему не влияет нестабильность электропитания, потому что общий уровень («земля») всегда находится на уровне половины напряжения питания.
ПРОБЛЕМЫ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ
В заключение необходимо рассмотреть еще одну проблему — время включения усилителя. Оно приблизительно будет зависеть от постоянной времени RC-цепочки, используемой в самом низкочастотном фильтре.
В пассивных схемах смещения, рассмотренных здесь, требуется, чтобы постоянная времени RC цепочки, состоящей из параллельно соединенных резисторов RA и RB и С2, была в 10 раз больше, чем постоянные времени входной и выходной цепей. Длительная постоянная времени помогает удерживать схему смещения во «включающемся» состоянии по отношению к входным и выходным цепям усилителя, обеспечивая постепенное нарастание среднего уровня выходного сигнала от 0 В до половины напряжения питания без скачков до уровня напряжения питания. Главное требование, чтобы частота среза схемы смещения на уровне 3 дБ была меньше в десять раз, чем наименьшая из частот среза R1C1 и RLOAD/COUT. Например, в схеме на рисунке 2 для полосы пропускания начиная с 10 Гц и коэффициента усиления, равного 10, емкость конденсатора C2 должна быть равна 3 мкФ, что обеспечит частоту среза по уровню 3 дБ, равную 1 Гц.
С резисторами RA и RB = 100 кОм сопротивление в RC-цепочке (параллельное соединение) будет равно 50 кОм, и при C2 = 3 мкФ постоянная времени будет равна 0,15 с. Таким образом, средний уровень выходного сигнала усилителя достигнет величины половины напряжения питания приблизительно за 0,2…0,3 с… Между тем, входные и выходные RC-цепи установятся в десять раз быстрее.
В устройствах, где время включения может оказаться чрезмерно длительным, предпочтительнее использовать схемы смещения на стабилитронах или линейных стабилизаторах.
ЛИТЕРАТУРА
www.analog.com
Перевод с англ. яз.: Олег Романов, технический специалист компании «ЭЛТЕХ»
Однополярное питание операционного усилителя | PRO-диод
Однополярное питание ОУ
11.11.2013 | Рубрика: Операционный усилитель
В предыдущих главах, например в этой, предполагалось, что ОУ имеет два напряжения питания — положительной и отрицательной полярности (рис. 1). При этом напряжения питания обычно выбираются равными по величине, а их средняя точка является землёй. Сигналы на входе и выходе при этом подаются и снимаются относительно земли. Однако…
Однако в современной портативной аппаратуре с батарейным питанием это неудобно.
Рис. 1. Схема включения ОУ с двуполярным питанием.
При однополярном питании ОУ необходимо использовать цепь смещения выходного напряжения так, чтобы выходные сигналы могли изменяться в максимально широком диапазоне, ограниченном нулём (землёй) и напряжением питания. Кроме того, входные сигналы изменяются относительно потенциала земли, что эквивалентно подаче входных сигналов относительно шины отрицательного питания в схеме применения ОУ с двуполярным питанием. Необходимость преодоления этих проблем влечёт за собой некоторое усложнение схем применения ОУ с однополярным питанием.
Когда входной сигнал имеет постоянное смещение относительно земли (рис. 2), напряжение смещения усиливается вместе с напряжением входного сигнала. За исключением случая, когда это напряжение смещения используется для установления нужного постоянного напряжения на выходе ОУ, его приходится исключать из усиливаемого сигнала.
Рис. 2. Схема включения ОУ с двуполярным питанием и источником постоянного смещения на входе усилителя
На рис. 3 приведена одна из схем, применяемых для исключения постоянного смещения из усиливаемых сигналов за счёт использования дифференциального усилителя. В нём одинаковые постоянные напряжения от источников KREF являются синфазными и вычитаются друг из друга благодаря свойствам дифференциального усилителя.
Рис. 3. Схема включения ОУ с двуполярным питанием и синфазным напряжением на входах
Когда сигнал подаётся относительно земли, при однополярном питании ОУ, как правило, не удаётся использовать схему включения ОУ с двуполярным питанием. В схеме на рис. 4 усилитель совсем не может работать при положительной фазе входного сигнала, так как выходное напряжение при этом должно быть отрицательнее потенциала земли. Что касается отрицательной фазы входного напряжения, то только немногие ОУ могут работать при нулевом потенциале входа.
Рис. 4. Схема включения ОУ с однополярным питанием и входным сигналом, подаваемым относительно земли
Главную сложность при конструировании схем на ОУ с однополярным питанием представляет необходимость учёта того обстоятельства, что входные сигналы, как правило, подаются относительно земли или содержат различную постоянную составляющую. Если не указано иное, все схемы на ОУ в этой главе являются схемами с одним напряжением питания. Следует отметить, что с землёй может быть соединён как положительный, так и отрицательный полюс источника питания.
Использование одного напряжения питания ограничивает полярность выходных напряжений ОУ Например, при напряжении питания 10В выходное напряжение может быть только в диапазоне 0 <= VOUT <= 10В. Это обстоятельство не позволяет получать выходные напряжения отрицательной полярности. Вместе с тем инвертирующий усилитель может работать с отрицательными входными сигналами, когда выходные сигналы имеют положительную полярность.
Следует быть внимательным при работе с отрицательными (положительными) входными напряжениями при питании ОУ от источника положительной (отрицательной) полярности. Дело в том, что входы ОУ, как правило, очень чувствительны к пробою при обратном напряжении смещения. Особое внимание необходимо уделять условиям включения схем: необходимо, чтобы входы ОУ не оказались при этом под воздействием напряжения иной полярности, чем напряжение питания.
Метки:: Однополярное питание, Операционный усилитель
Операционные усилители с однополярным питанием
РАЗДЕЛ 3: Усилители для нормирования сигналов
Унекоторых операционных усилителей, например, семейство ОР191/OP291/OP491
иОР279, порог переключения от одной пары транзисторов к другой находится при синфазном напряжении на 1 В ниже положительной шины питания. p-n-p дифференциальный входной каскад приблизительно активен от 200 мВ ниже отрицательной шины питания до 1 В ниже положительной шины. По данному диапазону синфазных сигналов напряжение смещения, входной ток, ОСС, шумы напряжения/тока ОУ определяются, главным образом, характеристиками p-n-p транзисторной пары. Однако, при переключении входное напряжение смещения может резко измениться, из-за того что оно представляет собой среднее значение напряжений смещения p-n-p и n-p-n транзисторных пар. Входные токи усилителя изменят полярность и величину в момент включения n-p-n пары.
Операционные усилители, например, ОР184/OP284/OP484, используют входной каскад с технологией «от питания до питания», в котором обе транзисторные пары n-p-n
иp-n-p активны во всем диапазоне синфазных сигналов, и порога переключения не существует. Входное напряжение смещения усилителя является средним из напряжений смещения p-n-p и n-p-n каскадов.
Усилитель дает плавное изменение входного напряжения смещения по всему диапазону входного синфазного напряжения, что достигается тщательной лазерной подгонкой резисторов входного каскада. Это же происходит и со входным током. Исключение составляют крайние точки (не доходя 1 В до уровней питания), где напряжение смещения и входной ток резко изменяются вследствие открытия паразитных p-n переходов.
Когда обе дифференциальные пары транзисторов активны по всему диапазону входного синфазного напряжения, переходная характеристика усилителя более быстра в области середины диапазона синфазного сигнала (в два раза выше для биполярных транзисторов и в √2 раз в случае JFET транзисторов). Переходная проводимость входного каскада определяет скорость нарастания выходного напряжения и частоту единичного усиления усилителя, следовательно, время отклика слегка уменьшится в крайних точках диапазона синфазного сигнала, когда, либо p-n-p каскад (сигнал приближается к положительной шине питания), либо n-p-n каскад (сигнал идет в сторону отрицательной шины) вводятся в режим отсечки. Пороги, при которых переходная проводимость изменяется, отстоят приблизительно на 1 В от каждой шины питания.
По этой причине для приложений, требующих действительных входов «от питания до питания», следует тщательно оценивать операционный усилитель с тем, чтобы отобранные усилители гарантировали нужные для работы: входное напряжение смещения, входной ток, ОСС и шумы (тока и напряжения).
Выходные каскады ОУ с однополярным питанием
Выходные каскады первых операционных усилителей представляли собой n-p-n эмиттерные повторители с источниками тока или резисторами на «землю», как показано в левой части Рис.3.21. В действительности, скорости нарастания получались выше для положительных перепадов сигналов, нежели для отрицательных. В то время как современные операционные усилители имеют пуш-пульные выходные каскады различного типа, многие из них обладают асимметричностью и имеют скорость нарастания выходного сигнала в одну сторону выше, чем в другую. Асимметрия вводит искажения в сигналы переменного тока и проистекает из технологического процесса, дающего более быстрые n-p-n транзисторы, чем p-n-p транзисторы. Асимметрия может также привести к тому, что выходной сигнал будет приближаться к одной из шин питания ближе, чем к другой.
©АВТЭКС Санкт-Петербург (812) 567-7202, http://www.autexspb.da.ru, E-mail: [email protected] Автор перевода: Горшков Б.Л.
Схемы питания операционных усилителей | HomeElectronics
Всем доброго времени суток! Продолжаем тему операционных усилителей. В последних двух статьях я несколько отвлёкся от основной темы и рассказывал про обратную связь, но как я уже говорил в одной из предыдущих статей, что без обратной связи невозможно вести повествование про операционные усилители.
В данной статье я начну рассказывать о применении операционных усилителей в линейных схемах.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Работа ОУ от двухполярного источника питания
Как указывалось в одной из предыдущих статей, в основе операционного усилителя лежит дифференциальный каскад на транзисторах, для питания которого требуется источник питания с двумя напряжениями – положительным и отрицательным. Причем оба эти напряжения должны быт одинаковы: например, +5 и -5 В, +12 и -12 В. Типовая схема подключения ОУ к источнику питания приведена ниже
Типовая схема питания ОУ.
Типовая схема питания ОУ состоит из следующих элементов: конденсаторов С1, С2, защитный диодов VD1, VD2 и двухполярного источника питания +Uпит, -Uпит. Защитные диоды VD1 и VD2 являются необязательными элементами схемы, но рекомендуются для всех источников питания, где есть возможность случайно перепутать выводы питания.
Конденсаторы С1 и С2 обеспечивают развязку шин питания по переменному току и должны подключаться как можно ближе к выводам микросхемы. Данные конденсаторы должны иметь ёмкость порядка 0,001 – 0,1 мкФ.
Так как современные ОУ имеют достаточно большое усиление на высоких частотах, то довольно часто возникает паразитная обратная связь по цепям питания усилителя. Поэтому довольно часто в дополнение к развязывающим конденсаторам С1 и С2 в цепях питания ОУ часто подключают конденсаторы непосредственно к шинам питания, что улучшает стабильность усилителей.
Работа ОУ от однополярного источника питания
В обычных условиях схема включения ОУ предусматривает двухполярное питание, однако в современной портативной аппаратуре с батарейным питанием это представляется не совсем удобным. Вследствие этого применяют схемы однополярного питания ОУ с введение в схему цепи дополнительного смещения.
В линейном усилителе соотношение между входным UBX и выходным UBbIX напряжением имеет следующую функциональную зависимость, которая представляет собой уравнение прямой и называется передаточной характеристикой
где k – крутизна усилителя
b – смещение выходного напряжения.
Поэтому, в зависимости от коэффициентов k и b, возможно четыре варианта передаточных характеристик линейного усилителя
Для нахождения коэффициентов k и b в уравнении прямой линии необходимо задаться параметрами двух точек на этой прямой, в случае линейного усилителя – параметрами входного и выходного напряжения в двух точках, чаще всего крайних.
В качестве примера найдём коэффициенты k и b в следующем случае: на входе линейного усилителя сигнал от датчика может изменяться в пределах от 0,3 до 0,7 В, а с выхода усилителя на аналого-цифровой преобразователь должен поступать сигнал в диапазоне от 1 до 6 В. Для определения уравнения линейного усилителя мы имеем две точки А1(UBbIX1; UBX1) = (1; 0,3) и А2(6; 0,7), поэтому составим систему уравнений
Решив данную систему, получим следующие значения коэффициентов k = 7 и b = 1,1. В итоге передаточная характеристика линейного усилителя будет иметь следующий вид
Для каждого вида передаточной характеристики существует своя схема реализации цепей смещения, рассмотрим их подробнее.
Схема цепей смещения в усилителях типа UBbIX = kUBX + b
Схема, реализующая передаточную характеристику вида UBbIX = kUBX + b, представлена на рисунке ниже
Схема усилителя с передаточной характеристикой типа UBbIX = kUBX + b.
Данная схема представляет собой неинвертирующий сумматор и состоит из развязывающих конденсаторов С1 и С2 имеющих ёмкость порядка 0,001 – 0,1 мкФ, резисторов R1, R2, R3 и R4 и самого ОУ DA1 в неинвертирующей схеме. Передаточная характеристика данной схемы описывается следующим выражением
тогда коэффициенты k и b будут определяться следующими выражениями
Расчёт усилителя с характеристикой типа UBbIX = kUBX + b
Для примера рассчитаем элементы усилителя со следующими параметрами: входное напряжение UBX = 0,1…1 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.
Определим тип передаточной характеристики. Определяем коэффициенты k и b
Решив данную систему, получим k = 4,44 и b = 0,556, тогда передаточная характеристика будет иметь следующий вид
Рассчитаем номиналы резисторов R1 и R2, решив следующую систему уравнений относительно (R3 + R4) / R3
Подставив значения коэффициентов k, b и UCM получим следующее уравнение
Величина резистора R1 обычно выбирается в пределах от 1 до 10 кОм, так как резистор R1 определяет входное сопротивление усилителя и его следует увеличивать, чтобы исключить перегрузку источника сигнала.
Выберем R1 = 10 кОм, тогда R2 = 47,91 * 10 = 479,1 кОм. Примем R2 = 470 кОм.
Рассчитаем величины сопротивлений R3 и R4
Величина резистора, также как и R1 выбирается в пределах 1 … 10 кОм, поэтому примем R3 = 10 кОм, R4 = 10 * 3,53 = 35,3 кОм. Примем R4 = 36 кОм.
Схема цепей смещения в усилителях типа UBbIX = kUBX – b
Схема усилителя передаточная характеристика, которого имеет вид UBbIX = kUBX – b представлена ниже
Схема усилителя с передаточной характеристикой типа UBbIX = kUBX – b
Передаточная характеристика данной схемы представлена следующим выражением
В данном случае коэффициенты k и b будут определяться следующими выражениями
Расчёт усилителя с характеристикой типа UBbIX = kUBX — b
Для примера рассчитаем усилитель со следующими параметрами: входное напряжение UBX = 0,3…0,7 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.
Рассчитаем коэффициенты передаточной характеристики
Решив данную систему уравнений, получим k = 10 и b = -2.
Тогда переходная характеристика данного усилителя будет иметь вид
Рассчитаем сопротивление резисторов R3 и R В данной схеме сопротивление резистора R3 должно быть значительно больше эквивалентного сопротивления параллельных резисторов R1 || R2. Поэтому коэффициент k можно выразить следующим приближённым выражением
Примем сопротивление резистора R3 = 10 кОм, тогда R4 = 90 кОм.
Рассчитаем сопротивление резисторов и R
Так как R3 >> R1 || R2 примем R2 = 0,75 кОм, тогда R1 = 26*0,75=19,5 кОм. Примет R1 = 20 кОм.
Таким образом, передаточная характеристика усилителя будет иметь вид UBbIX = 10UBX — 2 при следующих номиналах элементов: R1 = 20 кОм, R2 = 0,75 кОм, R3 = 10 кОм, R4 = 90 кОм.
Схема цепей смещения в усилителях типа UBbIX = – kUBX + b
Третий случай питания ОУ от однополярного источника имеет передаточную характеристику вида UBbIX = – kUBX + b. Схемное решение для данного случая представлено ниже
Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX + b.
Данная схема состоит из ОУ DA1, развязывающих конденсаторов C1 и C2, резисторов R1, R2, R3, R4 и представляет собой дифференциальный или разностный усилитель.
С учётом элементов схемы можно передаточная характеристика будет иметь вид
Тогда коэффициенты k и b можно представить следующими выражениями
Расчёт усилителя с характеристикой вида UBbIX = – kUBX + b
В качестве примера рассчитаем усилитель, который должен иметь следующие параметры: диапазон входного напряжения UBX = -0,1 … -1 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.
Определим коэффициенты передаточной характеристики k и b, для этого составим и решим систему линейных уравнений
Решив данную систему, получаем k = — 4,44 и b = 0,556, тогда переходная характеристика данной схемы усилителя будет иметь вид
Определим сопротивление резисторов R1 и R4
Примем R1 = 10 кОм, тогда R4 = 4,44 * 10 = 44,4 кОм. Примем R4 = 43 кОм
Рассчитаем сопротивление резисторов и R3
Примем R3 = 1кОм, тогда R2 = 56,19 * 1 = 56,19 кОм. Примем R2 = 56 кОм.
Схема цепей смещения в усилителях типа UBbIX = – kUBX – b
Последний, четвёртый случай ОУ с однополярным питанием и переходной характеристикой вида UBbIX = – kUBX – b имеет схему представленную на рисунке ниже
Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX — b
Данная схема представляет собой инвертирующий сумматор и состоит из ОУ DA1, развязывающего конденсатора С1, резисторов R1, R2 и R3. С учётом элементов схемы передаточная характеристика будет иметь вид
Тогда коэффициенты k и b можно представить в следующем виде
Расчёт усилителя с переходной характеристикой вида UBbIX = – kUBX – b
Для примера рассчитаем усилитель реализующий переходную характеристику вида UBbIX = – kUBX — b. В качестве начальных условий примем следующие параметры схемы: диапазон входного напряжения UBX = -0,2 … -0,8 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.
Рассчитаем коэффициенты k и b, для этого решим систему линейных уравнений
Решив данную систему, получим k = – 6,67 и b = — 0,334. Тогда переходная характеристика будет иметь вид
Определим величину сопротивления R1 и R3
Примем R1 = 10 кОм, тогда R3 = 6,67 * 10 = 66,7 кОм. Примем R3 = 68 кОм.
Определим величину сопротивления R2
Примем R2 = 200 кОм.
Вместо заключения
Разработка схем на ОУ с однополярным питанием несколько сложнее, чем при использовании двухполярного источника питания, однако воспользовавшись расчетами, приведёнными в данной статье, хорошие результаты не заставят себя ждать.
Довольно часто необходимо построить схемы с несколькими входами, дополнительными требованиями по подавлению помех и так далее, но описанные схемы расчёта могут быть использованы и здесь.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Операционный усилитель с однополярным питанием
Чарльз Китчин, компания Analog Devices.
ОДНОПОЛЯРНОЕ ИЛИ ДВУПОЛЯРНОЕ ПИТАНИЕ?
Хотя симметричное двуполярное питание является оптимальным для операционных усилителей (ОУ), во многих случаях (жесткие требования к потреблению электроэнергии) необходимо или желательно использовать однополярное электропитание. Системы с однополярным электропитанием для обработки аналоговых сигналов имеют общие для таких решений дополнительные свойства, вызванные необходимостью использования компонентов для смещения аналогового сигнала на каждой стадии обработки. Если смещение аналогового сигнала не продумано, а тем более не выполнено, то возникает множество проблем, в том числе — нестабильность работы операционных усилителей.
ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ СМЕЩЕНИИ С ПОМОЩЬЮ РЕЗИСТОРОВ
Применение ОУ с однополярным питанием связано с проблемами, которые обычно не встречаются при использовании двуполярного питания. Главная из них возникает тогда, когда входной сигнал является двуполярным относительно общего уровня («земли»). В системе с однополярным питанием этот уровень совпадает с уровнем отрицательного источника питания в традиционных решениях. Поэтому в этом случае нулевой уровень входного сигнала не может соответствовать «земле» и должен находиться между «землей» и уровнем питающего напряжения.
Основное преимущество систем с двуполярным питанием состоит в том, что их общее соединение («земля») является устойчивым, низкоомным нулевым уровнем для входного сигнала. При этом положительное и отрицательное напряжения питания могут быть несимметричными. При однополярном питании с помощью схем смещения создается уровень нулевого сигнала, обычно лежащий в середине диапазона питающего напряжения.
Чтобы использовать усилитель эффективно, то есть получить с его выхода максимальный сигнал без ограничения, входной сигнал должен быть смещен на середину выходного диапазона, или, что одно и то же, на уровень половины питающего напряжения. Наиболее эффективный способ — использование линейного стабилизатора, как показано на рисунке 6. Однако наиболее популярная схема смещения — резистивный делитель напряжения питания. Хотя этот способ наиболее прост, при его использовании возникает ряд проблем.
Используя рисунок 1, рассмотрим некоторые из них. На этом рисунке изображена классическая схема неинвертирующего усилителя переменного тока. Входной сигнал с помощью емкостной связи подается на вход усилителя. Средний уровень входного сигнала смещен на величину VS/2 с помощью резисторного делителя RA—RB. В полосе пропускания данный усилитель имеет коэффициент усиления КУ = 1 + R2/R1. Паразитное усиление постоянного сигнала сведено к единице с помощью емкостной обратной связи цепочкой R1C1, соединенной с нулевым уровнем («землей»). Поэтому уровень постоянной составляющей равен напряжению смещения. Этим самым мы избегаем возникновения искажений из-за усиления напряжения смещения. Обратная связь обеспечивает коэффициент усиления, равный 1 + R2/R1 для высокочастотных сигналов и равный единице — для постоянной составляющей и низкочастотных сигналов с частотами подавления f = 1/(2πR1C1) и f = 1/[2π(R1 + + R2)C1], а также вносит фазовый сдвиг во входную и выходную цепи.
Эта схема имеет серьезные ограничения применения. Во-первых, невозможно использовать такое важное свойство операционных усилителей, как подавление синфазного сигнала. Поскольку любое изменение питающего напряжения моментально отразится на напряжении смещения, равном VS/2, установлен ным резисторным делителем, любой шум, присутствующий в шине питания, будет усилен наряду с сигналом (за исключением самых низких частот). Так, при КУ = 100 пульсации напряжением 20 мВ от электросети могут быть усилены до напряжения более 1 В (в зависимости от параметров компонентов схемы).
Еще хуже, что при мощной нагрузке усилитель становится нестабильным в работе. Плохие стабилизация и фильтрация в источнике питания приводят к тому, что на шинах питания появляется значительный уровень сигнала. При работе усилителя, включенного по неинвертирующей схеме, этот сигнал поступает на вход усилителя через схему смещения, как было рассмотрено ранее, и усилитель самовозбуждается.
Оптимизация расположения компонентов на печатной плате, установка большого количества блокирующих конденсаторов, правильная разводка заземляющих шин и соединение их в одной точке, соответствующее проектирование шин питания уменьшают наводки и повышают стабильность схемы, но не исключают рассмотренных проблем. Поэтому далее будет предложено несколько решений, помогающих избежать трудностей в использовании усилителей при включении по схеме с однополярным электро питанием.
РАЗВЯЗКА СХЕМЫ СМЕЩЕНИЯ
Чтобы снизить влияние нестабильности напряжения питания, можно зашунтировать схему смещения по переменному току и добавить отдельный резистор для входного сигнала, как показано на рисунке 2. Конденсатор C2 обеспечивает фильтрацию пульсаций шины питания, тем самым восстанавливая способность ОУ ослаблять синфазные сигналы и влияние напряжения питания. Резистор RIN, который заменяет в этой схеме входное сопротивление RA/2 для сигналов переменного тока, обеспечивает передачу постоянного смещения на неинвертирующий вход усилителя.
Сопротивления резисторов RA и RB должно быть минимальными, насколько это позволяют ограничения по энергопотреблению. В данном случае выбрано значение 100 кОм, чтобы уменьшить потребляемый ток в схемах с батарейным питанием. Выбор величины шунтирующего конденсатора также требует внимания. С делителем напряжения RA/RB (100 кОм/100 кОм) и С2 = 0,1 мкФ частота среза по уровню –3 дБ фильтра высоких частот (ФВЧ), образованного параллельно соединенными резисторами RA и RB и конденсатором С2, равна 1/[2π(RA/2)C2] = 32 Гц. Хотя это усовершенствование схемы, приведенной на рисунке 1, позволило подавить синфазные помехи с часто тами выше 32 Гц, более низкочастотные сигналы сохранили обратную связь по шине питания усилителя. Поэтому при реализации такой схемы необходимо использовать конденсаторы большой емкости.
На практике емкость конденсатора C2 требуется увеличить до таких значений, при которых резисторный делитель схемы смещения эффективно шунтировался бы для всех частот в полосе пропускания усилителя. Хорошим правилом для расчета частоты среза ФВЧ, образованного RA, RB и C2, является выбор значения, равного 1/10 от наименьшего из значений частот среза RC-цепочек RIN CIN и R1C1.
Коэффициент усиления по постоянному току остается равным единице. Даже в этом случае должны учитываться входные токи. RIN с последовательно соединенным делителем напряжения RA/RB значительно повышают входное сопротивление на неинвертирующем входе операционного усилителя. Поддержание смещения выходного сигнала на уровне половины напряжения питания при использовании обычных усилителей
с обратной связью по напряжению, которые имеют симметричные сбалансированные входы, достигается правильным выбором величины резистора обратной связи R2.
В зависимости от напряжения питания значения резисторов, которые обеспечивают разумный компромисс между увеличением тока потребления или увеличением зависимости параметров усилителя от изменений входного тока, должны быть порядка 100 кОм для питающего напряжения 12ѕ15 В, снижены до 42 кОм для питания 5 В и до 27 кОм — для 3,3 В.
В высокочастотных усилителях (особенно с обратной связью по току) следует использовать низкоомный делитель и резистор обратной связи, для того чтобы сохранить широкую полосу пропускания при наличии паразитной емкости. Для операционных усилителей, таких как AD811, разработанных для обработки видеосигналов, оптимально подходит значение резистора R2, равное около 1 кОм. Поэтому схемы с такими ОУ требуют использования намного меньших значений резисторов RA и RB в делителе напряжения (и большую емкость шунтирующего конденсатора C2).
Из-за малого входного тока необходимость согласования резисторов на входах современных усилителей с полевыми транзисторами во входных каскадах не так важна, если усилитель не будет работать в широком температурном диапазоне. Иначе такое согласование необходимо.
Схема на рисунке 3 показывает, как реализуется смещение и шунтирование цепи смещения для инвертирующего усилителя.
Смещение с помощью резисторного делителя дешево и обеспечивает пос тоянный средний уровень выходного сигнала, равный половине величины напряжения питания, но подавление синфазного сигнала операционным усилителем зависит от постоянной времени RC-цепочки, образованной делителем RA/RB и конденсатором C2. Необходимо использовать в качестве С2 конденсатор такой емкости, которая обеспечивает по крайней мере в 10 раз большее значение постоянной времени RC-цепи RA/RB – C2, чем у RINCIN и R1C1. Это гарантирует достаточное подавление синфазного сигнала. С резисторами RA и RB, равными 100 кОм, величина конденсатора C2 может оставаться довольно небольшой, если не требуется работа усилителя на очень низких частотах.
СМЕЩЕНИЕ ПРИ ПОМОЩИ СТАБИЛИТРОНА
Более эффективный способ обеспечить необходимое смещение при однополярном питании — это использование стабилитрона, как показано на рисунке 4. В этой схеме резистор RZ обеспечивает необходимый рабочий ток стабилитрона. Конденсатор CN шунтирует вход операционного усилителя от шума стабилитрона.
Стабилитрон должен иметь напряжение стабилизации, близкое к половине напряжения питания. Резистор RZ должен обеспечивать достаточно большой ток, позволяющий стабилитрону работать в устойчивом режиме и, тем самым, обеспечивать минимальную погрешность стабилизации. С другой стороны, важно минимизировать энергопотребление (и тепловые потери). Поскольку входной ток операционного усилителя незначителен, то
наиболее оптимален выбор стабилитрона малой мощности. Стабилитрон мощностью 250 мВт является оптимальным, но и наиболее распространенные 500-мВт стабилитроны также приемлемы. Оптимальный рабочий
ток — около 0,5 мА для 250-мВт и около 5 мА — для 500-мВт стабилитронов.
Схема на рисунке 4 обеспечивает низкоомный опорный уровень и устраняет влияние нестабильности питающего напряжения на вход усилителя. Преимущества существенны, но стоимость и энергопотребление увеличиваются, да и средний уровень напряжения на выходе усилителя будет соответствовать выходному напряжению стабилитрона и может отличаться от VS/2. Если это отличие окажется существенным, то при боль-
ших выходных сигналах будет происходить асимметричное ограничение. Входные токи смещения также должны быть согласованы. Резисторы RIN и R2 должны быть равными, чтобы при прохождении через них входного тока разница падения напряжения на них не приводила к появлению ошибки смещения.
Рисунок 5 показывает схему инвертирующего усилителя со смещением уровня входного сигнала стабилитроном.
В таблице 1 перечислены стабилитроны нескольких типов, которые могут быть выбраны в зависимости от напряжения питания для обеспе чения необходимого смещения. Значение RZ в таблице выбрано исходя из обеспечения стабилитронов током 5 или 0,5 мА для схем, показанных на рисунках 4 и 5. Для уменьшения шума (ошибки стабилизации) может быть выбран и больший ток; его максимальную величину следует выяснить в техническом описании стабилитрона.
СМЕЩЕНИЕ С ПОМОЩЬЮ ЛИНЕЙНОГО СТАБИЛИЗАТОРА
Для операционных усилителей с однополярным питанием 3,3 В требуется смещение напряжения 1,65 В. Однако напряжение стабилизации выпускаемых стабилитронов — не ниже 2,4 В. Хотя существуют источники опорного напряжения AD589 и AD1580 с напряжением 1,225 В, которые могут использоваться подобно стабилитронам, но они не обеспечивают смещение на половину напряжения питания. Самый простой способ
обеспечить смещение входного сигнала на произвольную величину — это использовать линейный стабилизатор напряжения, например ADP667 или ADP3367, как показано на рисунке 6.
Выходное напряжение линейного стабилизатора может быть установлено в пределах от 1,3 В до 16 В, и это обеспечит низкоомное смещение для операционного усилителя с однополярным напряжением питания от 2,6 В до 16,5 В.
СВЯЗЬ ПО ПОСТОЯННОМУ ТОКУ ПРИ ОДНОПОЛЯРНОМ ПИТАНИИ
Пока была обсуждена только связь операционного усилителя по переменному току. Хотя при использовании входных и выходных конденсаторов связи большой емкости усилитель может работать с сигналами с частотами значительно ниже 1 Гц, в некоторых случаях требуется истинная связь по постоянному току. Схемные решения, которые обеспечивают низкоомное постоянное напряжение смещения, типа стабилитронов
и линейных стабилизаторов, обсуждаемых выше, могут использоваться, чтобы создавать напряжение «среднего уровня».
Альтернативно схеме смещения, построенной на резистивном делителе, показанной на рисунках 1 и 3, для создания низкоомной искусственной «земли» может использоваться буферный операционный усилитель, как показано на рисунке 7. Если для питания используется низковольтная батарея, скажем 3,3 В, ОУ должен иметь возможность работать с сигналами, равными размаху напряжения питания — rail-to-rail. Кроме того,
ОУ также должен быть способен обеспечить большой положительный или отрицательный выходной ток. Конденсатор C2 шунтирует делитель напряжения, чтобы уменьшить шумы резисторов. На эту схему не влияет нестабильность электропитания, потому что общий уровень («земля») всегда находится на уровне половины напряжения питания.
ПРОБЛЕМЫ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ
В заключение необходимо рассмотреть еще одну проблему — время включения усилителя. Оно приблизительно будет зависеть от постоянной времени RC-цепочки, используемой в самом низкочастотном фильтре.
В пассивных схемах смещения, рассмотренных здесь, требуется, чтобы постоянная времени RC-цепочки, состоящей из параллельно соединенных резисторов RA и RB и С2, была в 10 раз больше, чем постоянные времени входной и выходной цепей. Длительная постоянная времени помогает удерживать схему смещения во «включающемся» состоянии по отношению к входным и выходным цепям усилителя, обеспечивая постепенное нарастание среднего уровня выходного сигнала от 0 В до половины напряжения питания без скачков до уровня напряжения питания. Главное требование, чтобы частота среза схемы смещения на уровне 3 дБ была меньше в десять раз, чем наименьшая из частот среза R1C1 и RLOAD/COUT. Например, в схеме на рисунке 2 для полосы пропускания начиная с 10 Гц и коэффициента усиления, равного 10, емкость конденсатора C2 должна быть равна 3 мкФ, что обеспечит частоту среза по уровню 3 дБ, равную 1 Гц.
С резисторами RA и RB = 100 кОм сопротивление в RC-цепочке (параллельное соединение) будет равно 50 кОм, и при C2 = 3 мкФ постоянная времени будет равна 0,15 с. Таким образом, средний уровень выходного сигнала усилителя достигнет величины половины напряжения питания приблизительно за 0,2ѕ0,3 с. Между тем, входные и выходные RC-цепи установятся в десять раз быстрее.
В устройствах, где время включения может оказаться чрезмерно длительным, предпочтительнее использовать схемы смещения на стабилитронах или линейных стабилизаторах.
Особенности применения операционных усилителей при однополярном питании
16 мая
Тенденции применения электронных компонентов направлены на снижение энергопотребления и стоимости, поэтому в современных изделиях используется однополярное питание, и с каждым годом значения питающих напряжений уменьшаются. В статье рассмотрены основные проблемы, с которыми сталкивается разработчик при использовании операционных усилителей в схемах с [[однополярным питанием]].
Х
отя симметричное двуполярное питание является оптимальным для операционных усилителей (ОУ), во многих случаях (жесткие требования к потреблению электроэнергии) необходимо или желательно использовать однополярное электропитание. Например, бортовая сеть в автомобильном и морском оборудовании — однополярная. Да и в оборудовании, где ранее традиционно использовалось двуполярное питание, все чаще применяется встроенный однополярный источник электроэнергии с питающим напряжением 5 или 12 В постоянного тока. Системы с однополярным электропитанием для обработки аналоговых сигналов имеют общие для таких решений дополнительные свойства, вызванные необходимостью использования компонентов для смещения аналогового сигнала на каждой стадии обработки. Если смещение аналогового сигнала не продумано, а тем более не выполнено, то возникает множество проблем, в том числе — нестабильность работы операционных усилителей.
ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ СМЕЩЕНИИ С ПОМОЩЬЮ РЕЗИСТОРОВ
Применение ОУ с однополярным питанием связано с проблемами, которые обычно не встречаются при использовании двуполярного питания. Главная из них возникает тогда, когда входной сигнал является двуполярным относительно общего уровня («земли»). В системе с однополярным питанием этот уровень совпадает с уровнем отрицательного источника питания в традиционных решениях. Поэтому в этом случае нулевой уровень входного сигнала не может соответствовать «земле» и должен находиться между «землей» и уровнем питающего напряжения. Основное преимущество систем с двуполярным питанием состоит в том, что их общее соединение («земля») является устойчивым, низкоомным нулевым уровнем для входного сигнала. При этом положительное и отрицательное напряжения питания могут быть несимметричными. При однополярном питании с помощью схем смещения создается уровень нулевого сигнала, обычно лежащий в середине диапазона питающего напряжения.
Чтобы использовать усилитель эффективно, то есть получить с его выхода максимальный сигнал без ограничения, входной сигнал должен быть смещен на середину выходного диапазона, или, что одно и то же, на уровень половины питающего напряжения. Наиболее эффективный способ — использование линейного стабилизатора, как показано на рисунке 6. Однако наиболее популярная схема смещения — резистивный делитель напряжения питания. Хотя этот способ наиболее прост, при его использовании возникает ряд проблем.
Используя рисунок 1, рассмотрим некоторые из них. На этом рисунке изображена классическая схема неинвертирующего усилителя переменного тока. Входной сигнал с помощью емкостной связи подается на вход усилителя. Средний уровень входного сигнала смещен на величину VS/2 с помощью резисторного делителя RA—RB. В полосе пропускания данный усилитель имеет коэффициент усиления КУ = 1 + R2/R1. Паразитное усиление постоянного сигнала сведено к единице с помощью емкостной обратной связи цепочкой R1C1, соединенной с нулевым уровнем («землей»). Поэтому уровень постоянной составляющей равен напряжению смещения. Этим самым мы избегаем возникновения искажений из-за усиления напряжения смещения. Обратная связь обеспечивает коэффициент усиления, равный 1 + R2/R1 для высокочастотных сигналов и равный единице — для постоянной составляющей и низкочастотных сигналов с частотами подавления f = 1/(2πR1C1) и f = 1/[2π(R1 + R2)C1], а также вносит фазовый сдвиг во входную и выходную цепи.
Эта схема имеет серьезные ограни чения применения. Во-первых, невозможно использовать такое важное свойство операционных усилителей, как подавление синфазного сигнала. Поскольку любое изменение питающего напряжения моментально отразится на напряжении смещения, равном VS/2, установленным резисторным делителем, любой шум, присутствующий в шине питания, будет усилен наряду с сигналом (за исключением самых низких частот). Так, при КУ = 100 пульсации напряжением 20 мВ от электросети могут быть усилены до напряжения более 1 В (в зависимости от параметров компонентов схемы).
Еще хуже, что при мощной нагрузке усилитель становится нестабильным в работе. Плохие стабилизация и фильтрация в источнике питания приводят к тому, что на шинах питания появляется значительный уровень сигнала. При работе усилителя, включенного по неинвертирующей схеме, этот сигнал поступает на вход усилителя через схему смещения, как было рассмотрено ранее, и усилитель самовозбуждается.
Оптимизация расположения компонентов на печатной плате, установка большого количества блокирующих конденсаторов, правильная разводка заземляющих шин и соединение их в одной точке, соответствующее проектирование шин питания уменьшают наводки и повышают стабильность схемы, но не исключают рассмотренных проблем. Поэтому далее будет предложено несколько решений, помогающих избежать трудностей в использовании усилителей при включении по схеме с однополярным электропитанием.
РАЗВЯЗКА СХЕМЫ СМЕЩЕНИЯ
Чтобы снизить влияние нестабильности напряжения питания, можно зашунтировать схему смещения по переменному току и добавить отдельный резистор для входного сигнала, как показано на рисунке 2. Конденсатор C2 обеспечивает фильтрацию пульсаций шины питания, тем самым восстанавливая способность ОУ ослаблять синфазные сигналы и влияние напряжения питания. Резистор RIN, который заменяет в этой схеме входное сопротивление RA/2 для сигналов переменного тока, обеспечивает передачу постоянного смещения на неинвертирующий вход усилителя.
Сопротивления резисторов RA и RB должно быть минимальными, насколько это позволяют ограничения по энергопотреблению. В данном случае выбрано значение 100 кОм, чтобы уменьшить потребляемый ток в схемах с батарейным питанием. Выбор величины шунтирующего конденсатора также требует внимания. С делителем напряжения RA/RB (100 кОм/100 кОм) и С2 = 0,1 мкФ частота среза по уровню –3 дБ фильтра высоких частот (ФВЧ), образованного параллельно соединенными резисторами RA и RB и конденсатором С2, равна 1/[2π(RA/2)C2] = 32 Гц. Хотя это усовершенствование схемы, приведенной на рисунке 1, позволило подавить синфазные помехи с частотами выше 32 Гц, более низкочастотные сигналы сохранили обратную связь по шине питания усилителя. Поэтому при реализации такой схемы необходимо использовать конденсаторы большой емкости.
На практике емкость конденсатора C2 требуется увеличить до таких значений, при которых резисторный делитель схемы смещения эффективно шунтировался бы для всех частот в полосе пропускания усилителя. Хорошим правилом для расчета частоты среза ФВЧ, образованного RA, RB и C2, является выбор значения, равного 1/10 от наименьшего из значений частот среза RC-цепочек RINCIN и R1C1.
Коэффициент усиления по постоянному току остается равным единице. Даже в этом случае должны учитываться входные токи. RIN с последовательно соединенным делителем напряжения RA/RB значительно повышают входное сопротивление на неинвертирующем входе операционного усилителя. Поддержание смещения выходного сигнала на уровне половины напряжения питания при использовании обычных усилителей с обратной связью по напряжению, которые имеют симметричные сбалансированные входы, достигается правильным выбором величины резистора обратной связи R2.
В зависимости от напряжения питания значения резисторов, которые обеспечивают разумный компромисс между увеличением тока потребления или увеличением зависимости параметров усилителя от изменений входного тока, должны быть порядка 100 кОм для питающего напряжения 12…15 В, снижены до 42 кОм для питания 5 В и до 27 кОм — для 3,3 В.
В высокочастотных усилителях (особенно с обратной связью по току) следует использовать низкоомный делитель и резистор обратной связи, для того чтобы сохранить широкую полосу пропускания при наличии паразитной емкости. Для операционных усилителей, таких как AD811, разработанных для обработки видеосигналов, оптимально подходит значение резистора R2, равное около 1 кОм. Поэтому схемы с такими ОУ требуют использования намного меньших значений резисторов RA и RB в делителе напряжения (и большую емкость шунтирующего конденсатора C2).
Из-за малого входного тока необходимость согласования резисторов на входах современных усилителей с полевыми транзисторами во входных каскадах не так важна, если усилитель не будет работать в широком температурном диапазоне. Иначе такое согласование необходимо.
Схема на рисунке 3 показывает, как реализуется смещение и шунтирование цепи смещения для инвертирующего усилителя.
Смещение с помощью резисторного делителя дешево и обеспечивает постоянный средний уровень выходного сигнала, равный половине величины напряжения питания, но подавление синфазного сигнала операционным усилителем зависит от постоянной времени RC-цепочки, образованной делителем RA/RB и конденсатором C2. Необходимо использовать в качестве С2 конденсатор такой емкости, которая обеспечивает по крайней мере в 10 раз большее значение постоянной времени RC-цепи RA/RB – C2, чем у RINCIN и R1C1. Это гарантирует достаточное подавление синфазного сигнала. С резисторами RA и RB, равными 100 кОм, величина конденсатора C2 может оставаться довольно небольшой, если не требуется работа усилителя на очень низких частотах.
СМЕЩЕНИЕ ПРИ ПОМОЩИ СТАБИЛИТРОНА
Более эффективный способ обеспечить необходимое смещение при однополярном питании — это использование стабилитрона, как показано на рисунке 4. В этой схеме резистор RZ обеспечивает необходимый рабочий ток стабилитрона. Конденсатор CN шунтирует вход операционного усилителя от шума стабилитрона.
Стабилитрон должен иметь напряжение стабилизации, близкое к половине напряжения питания. Резистор RZ должен обеспечивать достаточно большой ток, позволяющий стабилитрону работать в устойчивом режиме и, тем самым, обеспечивать минимальную погрешность стабилизации. С другой стороны, важно минимизировать энергопотребление (и тепловые потери). Поскольку входной ток операционного усилителя незначителен, то наиболее оптимален выбор стабилитрона малой мощности. Стабилитрон мощностью 250 мВт является оптимальным, но и наиболее распространенные 500-мВт стабилитроны также приемлемы. Оптимальный рабочий ток — около 0,5 мА для 250-мВт и около 5 мА — для 500-мВт стабилитронов.
Схема на рисунке 4 обеспечивает низкоомный опорный уровень и устраняет влияние нестабильности питающего напряжения на вход усилителя. Преимущества существенны, но стоимость и энергопотребление увеличиваются, да и средний уровень напряжения на выходе усилителя будет соответствовать выходному напряжению стабилитрона и может отличаться от VS/2. Если это отличие окажется существенным, то при больших выходных сигналах будет происходить асимметричное ограничение. Входные токи смещения также должны быть согласованы. Резисторы RIN и R2 должны быть равными, чтобы при прохождении через них входного тока разница падения напряжения на них не приводила к появлению ошибки смещения.
Рисунок 5 показывает схему инвертирующего усилителя со смещением уровня входного сигнала стабилитроном.
В таблице 1 перечислены стабилитроны нескольких типов, которые могут быть выбраны в зависимости от напряжения питания для обеспечения необходимого смещения. Значение RZ в таблице выбрано исходя из обеспечения стабилитронов током 5 или 0,5 мА для схем, показанных на рисунках 4 и 5. Для уменьшения шума (ошибки стабилизации) может быть выбран и больший ток; его максимальную величину следует выяснить в техническом описании стабилитрона.
СМЕЩЕНИЕ С ПОМОЩЬЮ ЛИНЕЙНОГО СТАБИЛИЗАТОРА
Для операционных усилителей с однополярным питанием 3,3 В требуется смещение напряжения 1,65 В. Однако напряжение стабилизации выпускаемых стабилитронов — не ниже 2,4 В. Хотя существуют источники опорного напряжения AD589 и AD1580 с напряжением 1,225 В, которые могут использоваться подобно стабилитронам, но они не обеспечивают смещение на половину напряжения питания. Самый простой способ обеспечить смещение входного сигнала на произвольную величину — это использовать линейный стабилизатор напряжения, например ADP667 или ADP3367, как показано на рисунке 6. Выходное напряжение линейного стабилизатора может быть установлено в пределах от 1,3 В до 16 В, и это обеспечит низкоомное смещение для операционного усилителя с однополярным напряжением питания от 2,6 В до 16,5 В.
СВЯЗЬ ПО ПОСТОЯННОМУ ТОКУ ПРИ ОДНОПОЛЯРНОМ ПИТАНИИ
Пока была обсуждена только связь операционного усилителя по переменному току. Хотя при использовании входных и выходных конденсаторов связи большой емкости усилитель может работать с сигналами с частотами значительно ниже 1 Гц, в некоторых случаях требуется истинная связь по постоянному току. Схемные решения, которые обеспечивают низкоомное постоянное напряжение смещения, типа стабилитронов и линейных стабилизаторов, обсуждаемых выше, могут использоваться, чтобы создавать напряжение «среднего уровня».
Альтернативно схеме смещения, построенной на резистивном делителе, показанной на рисунках 1 и 3, для создания низкоомной искусственной «земли» может использоваться буферный операционный усилитель, как показано на рисунке 7. Если для питания используется низковольтная батарея, скажем 3,3 В, ОУ должен иметь возможность работать с сигналами, равными размаху напряжения питания — rail-to-rail. Кроме того, ОУ также должен быть способен обеспечить большой положительный или отрицательный выходной ток. Конденсатор C2 шунтирует делитель напряжения, чтобы уменьшить шумы резисторов. На эту схему не влияет нестабильность электропитания, потому что общий уровень («земля») всегда находится на уровне половины напряжения питания.
ПРОБЛЕМЫ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ
В заключение необходимо рассмотреть еще одну проблему — время включения усилителя. Оно приблизительно будет зависеть от постоянной времени RC-цепочки, используемой в самом низкочастотном фильтре.
В пассивных схемах смещения, рассмотренных здесь, требуется, чтобы постоянная времени RC цепочки, состоящей из параллельно соединенных резисторов RA и RB и С2, была в 10 раз больше, чем постоянные времени входной и выходной цепей. Длительная постоянная времени помогает удерживать схему смещения во «включающемся» состоянии по отношению к входным и выходным цепям усилителя, обеспечивая постепенное нарастание среднего уровня выходного сигнала от 0 В до половины напряжения питания без скачков до уровня напряжения питания. Главное требование, чтобы частота среза схемы смещения на уровне 3 дБ была меньше в десять раз, чем наименьшая из частот среза R1C1 и RLOAD/COUT. Например, в схеме на рисунке 2 для полосы пропускания начиная с 10 Гц и коэффициента усиления, равного 10, емкость конденсатора C2 должна быть равна 3 мкФ, что обеспечит частоту среза по уровню 3 дБ, равную 1 Гц.
С резисторами RA и RB = 100 кОм сопротивление в RC-цепочке (параллельное соединение) будет равно 50 кОм, и при C2 = 3 мкФ постоянная времени будет равна 0,15 с. Таким образом, средний уровень выходного сигнала усилителя достигнет величины половины напряжения питания приблизительно за 0,2…0,3 с… Между тем, входные и выходные RC-цепи установятся в десять раз быстрее.
В устройствах, где время включения может оказаться чрезмерно длительным, предпочтительнее использовать схемы смещения на стабилитронах или линейных стабилизаторах.
ЛИТЕРАТУРА
www.analog.com
Перевод с англ. яз.: Олег Романов, технический специалист компании «ЭЛТЕХ»
Инвертирующий усилитель на ОУ | Практическая электроника
Инвертирующий усилитель – это собрат НЕинвертирующего усилителя на ОУ. Такой усилитель дает на выходе инвертируемый сигнал.
Схема и ее описание
Базовая схема инвертирующего усилителя с двухполярным питанием выглядит вот так:
Здесь мы видим два резистора и сам ОУ. На вход подаем сигнал, а с выхода уже снимаем усиленный сигнал. Как можно заметить, НЕинвертирующий вход ОУ заземлен. Как же работает схема? Здесь мы видим обратную связь. То есть с выхода сигнал подается обратно на вход через резистор R2. Наш усилитель является инвертирующим, так как сигнал на выходе на 180 градусов сдвинут по фазе относительно входного сигнала. Значит, в узле, где соединяются два резистора и инвертирующий вход, выходной сигнал будет приходить со знаком “минус”. Такая обратная связь называется отрицательной обратной связью (ООС). Она уменьшает высокий коэффициент усиления ОУ до нужных нам значений.
В НЕинвертирующем усилителе обратная связь идет по напряжению, а в инвертирующем усилителе – по току.
Если вы читали статью про ОУ, то, наверное, помните, что если один из входов ОУ соединен с землей, то и другой вход имеем точно такой же потенциал. В данном случае НЕинвентирующий вход у нас соединен с землей, следовательно, на инвертирующем входе будет точно такой же потенциал, то есть 0 Вольт. Такой вход еще называют мнимой (виртуальной) землей. Как говорит на Википедия, “мнимый – это фальшивый, поддельный, ложный”.
Коэффициент усиления по напряжению любого усилителя выражается формулой
Итак, что получаем в итоге?
Входное напряжение из формулы выше
Но так как наш усилитель инвертирует входной сигнал, следовательно, на выходе у нас будет напряжение со знаком “минус”, то есть -Uвых.
В этом случае ток I2 будет выражаться формулой:
Отсюда находим коэффициент усиления
Так как входное сопротивление инвертирующего входа бесконечно велико, следовательно, ток будет протекать только через цепь R1—>R2. Два разных тока в одной ветви быть не может, поэтому получается, что
В итоге наша формула сокращается и получаем
Симуляция в Proteus
Давайте посмотрим, как работает наш усилитель в программе-симуляторе электронных схем Proteus. Здесь мы собираем базовую схему с двухполярным питанием
В Proteus она будет выглядеть вот так:
Здесь мы взяли значение резисторов R2=10 кОм и R1=1 кОм, следовательно, коэффициент усиления такой схемы будет равен -10. Знак “минус” в данном случае просто инвертирует усиленный сигнал, что мы и видим на осциллограмме ниже. Входной сигнал – это розовая осциллограмма, а выходной – это желтая осциллограмма. Выходной сигнал находится в противофазе относительно входного, то есть инвертирует его. Отсюда и название “инвертирующий усилитель”.
Насыщение выхода
Давайте представим себе такую ситуацию. У нас входное переменное напряжение амплитудой 1 В. Коэффициент усиления 50. По нашим расчетам на выходе мы должны получить сигнал амплитудой 50 В. Но как мы получим 50 В, если питание нашего усилителя, допустим, +-15 В? Усиленный сигнал, амплитудой больше чем 15 В, мы получить не сможем. Хотя типичное падение напряжения во внутренних цепях реальных ОУ составляет около 0,5-1,5 В. То есть максимальный размах сигнала, который мы можем получить в данном случае на выходе будет 27-29 Вольт.
Хотя в настоящее время есть ОУ, которые все-так позволяют получать на выходе +-Uпит. Такое свойство некоторых ОУ называется Rail-to-Rail. В дословном переводе “от рельса до рельса” или “от шины до шины”. Есть такие параметры, как Rail-to-Rail по входу (Rail-to-Rail input). Здесь на вход мы можем подавать сигналы вплоть до Uпит ОУ. Иногда в даташите оговаривается, с отрицательной или положительной шины питания можно подходить к этому параметру. Есть также есть Rail-to-Rail output. Здесь на выходе мы можем получить напряжение +-Uпит. Если усиленный сигнал на выходе не вписывается в такой диапазон, то он будет срезаться. Такое свойство ОУ называется насыщением выхода. То есть надо всегда помнить, что если амплитуда сигнала будет превышать +-Uпит усилителя, то такой сигнал на выходе будет срезан по этому уровню.
Продемонстрируем это в симуляторе Proteus. Итак, давайте на вход подадим синусоидальный сигнал амплитудой в 1 В, а коэффициент усиления сделаем 20, подобрав нужные резисторы. То есть по нашим расчетам мы должны получить синус с амплитудой в 20 Вольт. Смотрим осциллограмму
Подавали на вход синусоиду, а получили на выходе синусоиду с обрезанными верхушками и амплитудой в 14 В. Одна клеточка в данном случае – это 2 В. Как вы видите,сигнал, амплитудой более чем +-Uпит мы получить не сможем. Всегда помните об этом, особенно при конструировании радиоэлектронных устройств.
Ток смещения и смещение выхода
Входы реального ОУ потребляют небольшой ток, который называется током смещения. В англоязычных даташитах он называется Input Bias Current. Если входные цепи ОУ построены на биполярных транзисторах, то такой ток смещения будет где-то несколько десятков наноампер, в отличите от ОУ, где входные цепи построены на полевых транзисторах. Во входных цепях, построенных на полевых транзисторах, ток смещения оценивается десятыми долями пикоампер. Следовательно, ток смещения очень важен именно для ОУ, чьи входные цепи построены на биполярных транзисторах.
Почему же так важен ток смещения? Давайте еще раз рассмотрим схему
Даже если мы не подаем никакого сигнала на вход, то на выходе у нас все равно будет какое-то маленькое постоянное напряжение. Почему так происходит? Во всем как раз и виноват ток смещения. Он создает падение напряжения на резисторе обратной связи. В данном случае – это резистор R2. А как вы знаете, на большем сопротивлении падает большее напряжение. То есть если номинал сопротивления R2 будет очень большим, то на нем будет падать большое напряжение, которое как раз и пойдет на выход нашего ОУ.
Допустим, ток смещения равен 0,1 мкА, а резистор R2= 1 МОм, то какое падение напряжения будет в этом случае на резисторе? Вспоминаем закон Ома: I=U/R, отсюда U=IR= 0,1 В. То есть на выходе у нас уже будет постоянное напряжение 0,1 В! Подавая на вход такого усилителя полезный сигнал с током смещения в 0,1 мкА , на выходе этот сигнал будет усиливаться и суммироваться с постоянной составляющей в 0,1 В. В нашем случае происходит смещение нулевого уровня. Наглядно – на рисунке ниже.
Способы борьбы с током смещения
В некоторых случаях током смещения можно пренебречь, если он не оказывает сильного влияния на ваши требования по сигналу. Но если все-таки вы разрабатываете какое-либо точное устройство, где выходной сигнал должен строго вписываться в рамки ТЗ, то в этом случае можно прибегнуть к таким способам:
1) Ставить в цепь обратной связи резистор малого номинала. На малом сопротивлении падает малое напряжение. Следовательно, на выходе уже будет меньшее постоянное напряжение. Стандартный диапазон резисторов от нескольких килоом и до 50 кОм.
2) Ввести в схему компенсирующий резистор
В этом случае он будет определяться по формуле:
Если все-таки выходной сигнал соответствует вашим ожиданиям и без RК , то лучше его не ставить, так как любой резистор вносит шумовые искажения в сигнал. Зачем лишний раз добавлять в схему шум?
3) Использовать ОУ с входными цепями, построенными на полевых транзисторах, либо подбирать ОУ с малыми токами смещения, благо сейчас технологии производства таких ОУ далеко шагнули вперед.
Инвертирующий усилитель с однополярным питанием
В некоторых случаях нам даже иногда нужно переместить нулевой уровень на более высокий “пьедестал”, чтобы мы могли полностью усиливать сигнал, если дело касается однополярного питания. Работать с однополярным питанием всегда проще и удобнее, чем с двухполярным. Поэтому, в этом случае надо поднять нулевой уровень на некоторый пьедестал, чтобы полностью усиливать переменный сигнал. То есть добавить постоянную составляющую в сигнал. В этом случае схема примет чуть-чуть другой вид:
Как можно увидеть, сейчас мы питаем наш ОУ однополярным питанием. Что будет, если мы НЕинвертирующий выход посадим на землю?
То есть мы получили базовую схему инвертирующего усилителя, но только с однополярным питанием. Давайте ппросимулируем такую схему. Коэффициент усиления в данном случае будет равен-10, так как мы взяли соотношение резисторов 10 килоом и 1 килоом. Загоняю на вход сигнал амплитудой в 1 В.
Что имеем в итоге на виртуальном осциллографе?
Как вы видите, в этом случае усиленная полуволна сигнала вырезается полностью. Оно и понятно, так как напряжение питания у нас однополярное и проломить “пол” нулевого потенциала невозможно. Но можно сделать одну хитрость: поднять “уровень пола” и дать сигналу место для размаха.
В этом случае нам надо добавить Uсм , для того, чтобы поднять сигнал над уровнем “пола”. Но не все так просто, дорогие друзья!
Здесь уже будет использоваться более хитрая формула, а не просто вольтдобавка. Приблизительная формула выглядит вот так:
Итак, мы хотим усилить наш сигнал полностью без среза. Какое же должно быть значение Uвых ? Оно должно иметь значение половины Uпит , чтобы сигнал ходил туда-сюда без срезов. Но также надо учитывать и коэффициент усиления, иначе получится насыщение выхода, о чем мы писали выше.
В нашем случае мы хотим увеличить сигнал амплитудой в 1 В в 10 раз. То есть Uпит должно быть как минимум 20 Вольт. Так как ОУ поддерживают однополярное питание до 32 В, то давайте для красоты выставим Uпит = 30 В. Рассчитываем Uсм :
Проверяем симуляцию, все ок!
Как здесь можно увидеть, желтый выходной сигнал поднялся над нулевым уровнем и усилился без искажений. В данном случае желтый сигнал – это сумма постоянного напряжения и переменного синусоидального сигнала.
То есть получилось что-то типа вот этого:
Хорошо это или плохо, когда в переменном сигнале есть постоянная составляющая, то есть постоянное напряжение? В некоторых случаях это плохо, потому как такой сигнал трудно использовать, и поэтому чаще всего его прогоняют через конденсатор, так как он пропускает через себя только переменный ток и блокирует прохождение постоянного тока. А еще лучше поставить фильтр из дифференцирующей цепи, с помощью которого можно отсекать лишние частоты.