Site Loader

Постоянный электрический ток

1. Понятие электрического тока. Постоянный электрический ток. Виды токов. Условия, необходимые для появления и существования тока. Сила и плотность тока. Единицы измерения.

Электрический ток — это упорядоченное движение заряженных частиц в проводнике.

Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

Виды токов:

1. Электрический ток появляется тогда, когда заряженные частицы или тела начинают перемещаться в пространстве под действием не электрических сил (скажем движение потока ионов в комнате под действием потока воздуха)- это токи конвекции

2. Кратковременные токи возникают в диэлектриках в начальный момент поляризации (создании электрического поля) или при располяризации (снятии поля), ибо в этом случае происходит смещение зарядов в диполях; такой вид тока называется

током поляризации.

3. Когда под действием сил поля положительные частицы перемещаются по направлению вектора напряженности Е, а отрицательные против него. Такие токи называются токами проводимости. –это такой ток, который обусловлен колебаниями электронов и ионов в среде

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q — величина заряда (количество электричества), t — время прохождения заряда.

Единица силы тока 1 Ампер — сила тока, когда через поперечное сечение проводника в 1 секунду проходит заряд в 1 Кулон.

Плотностью тока – сила тока, проходящая через единицу площади поверхности сечения проводника, перпендикулярной направлению скорости направленного движения электрических зарядов.

где j -плотность тока, S — площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

2. Электрический ток в металлах. Опытное доказательство природы носителей электрических зарядов в металлах. Основы классической электронной теории проводимости в металлах.

Представление об электронной природе носителей зарядов в металлах, заложенная в теории Друде и Лоренца, в основе имеет ряд классических опытных доказательств.

Первым из таких опытов является опыт Рикке (1901), в котором в течение года эл. ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Сu,Аl,Сu) одинакового радиуса. Несмотря на то, что общий заряд, прошедший через цилиндры, достигал огромной величины (около 3,5*

Кл) никаких изменений в массе крайних металлов обнаружено не было. Это явилось доказательством предположения, что в переносе заряда участвуют частицы чрезвычайно малой массы.

Несмотря на малость массы носителей заряда, они обладают свойством инерции, что и было использовано в опытах Мандельштама и Папалекси, а затем в опытах Стюарта и Толмена, которые раскручивали катушку с очень большим числом витков до огромной скорости (порядка 300 м/с), а затем резко тормозили ее. В результате смещения зарядов вследствие инерции создавало импульс тока, а зная размеры и сопротивление проводника и величину тока, регистрировавшегося в опыте, можно было вычислить отношение заряда к массе частицы, которая оказалась очень близка к величине, которая получается для электрона (1,7*

Кл/кг).

Основы классической электронной теории проводимости в металлах

Существование свободных электронов в металлах объясняется тем, что при образовании кристаллической решетки металла ( в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся „свободными» и могут перемещаться по объему. Т.е. в узлах кристаллической решетки располагаются положительные ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, средняя длина свободного пробега электронов при этом порядка

м (расстояние между узлами решетки).Электроны проводимости сталкиваются с ионами решетки, передавая им энергию, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде-Лоренца электроны обладают такой же энергией теплового движения, как и молекулы идеального одноатомного газа и при комнатных температурах тепловая скорость электронов будет порядка м/с, все электроны рассматриваются как независимые и для объяснения макроскопических явлений (например, ток) достаточно знать поведение одного электрона, чтобы определить поведение всех электронов. Поэтому такую теорию называют „ одноэлектронным приближением» и не смотря на свою упрощенность она дает некоторые удовлетворительные результаты.

Тепловое хаотическое движение электронов не может привести к появлению тока. При наложении на металлический проводник электрического поля все электроны приобретают направленное движение, величину скорости которого можно оценить по плотности тока- даже при очень больших плотностях (порядка 10 -10 А/м ) скорость упорядоченного движения получается около м/с. Следовательно, при вычислениях результирующую скорость движения электрона (тепловая + упорядоченная) можно заменять на скорость теплового движения.

Встает вопрос, а как же объяснить факт мгновенной передаче электрических сигналов на большие расстояния? Дело в том, что электрический сигнал переносят не те электроны, которые находятся на начале линии передачи, а электрическое поле, имеющее скорость около 3* м/с, вовлекающее в движение практически мгновенно все электроны вдоль цепи. Поэтому электрический ток и возникает практически мгновенно с замыканием цепи

3. Закон Ома для однородного участка цепи (интегральный закон Ома). Сопротивление, удельное сопротивление. Зависимость сопротивления от температуры. Соединение проводников.

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U — напряжение на участке, R — сопротивление участка.

Величину обратную удельной электропроводности называют удельным сопротивлением проводника . Тогда получаем формулу , которая характеризует сопротивление проводника (току) или

омические сопротивление.

В электрических цепях осуществляется соединение проводников последовательное, параллельное и смешанное.

При последовательном соединении выполняются условия:

; ;

При параллельном соединении:

; ;

При смешанном соединении сначала выделяются участки последовательно соединенных сопрот. в параллельных участка и определяются общее сопрот. этич участков; затем вычисляются сопрот. параллельных участков и только после этого общее сопротивление всей цепи.

Сопротивление проводников зависит от температуры: для нормального металла с примесями и металла с идеальной кристаллической решеткой в области комнатных температур удельное сопротивление изменяется пропорционально абсолютной температуре по закону:

где — удельное сопротивление при С;

1 / 273К — температурный коэффициент; t —

температура по шкале Цельсия.

Если пренебречь изменениями объема проводника при его нагревании, то сопротивление проводников изменяется по аналогичному закону:

где — удельное сопротивление при С; α ≈ 1 / 273К — температурный коэффициент; t —

температура по шкале Цельсия.

Температурная зависимость сопротивления металлических проводников широко используется для создания термометров сопротивления. Измеряя сопротивление проводника, сопротивление которого при 0°С известно, можно определить температуру окружающей среды (точность достигает до 0,003 К).

5. Сторонние силы. Замкнутая электрическая цепь с источником тока. Электродвижущая сила (ЭДС), падение напряжения на участке цепи. Закон Ома для замкнутой цепи. Закон Ома для неоднородного участка цепи.

Разделение зарядов происходит под действием сторонних сил. Сторонние силы действуют лишь внутри источника тока и могут быть обусловлены химическими процессами (аккумуляторы, гальванические элементы), действием света (фотоэлементы), изменяющимися магнитными полями (генераторы) и т.д.

Электрическая цепь – соединение источников постоянного тока с проводниками и другими электрическими элементами.

Замкнутая цепь состоит из двух частей — внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r; внешняя — различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается R. Тогда полное сопротивление цепи равно r + R.

Электродвижущая сила источника тока – физическая величина , равная отношению работы, совершаемой сторонними силами внутри источника тока при перемещении через него зарядов, к величине этого заряда.

или

где — падение напряжения на внешнем участке цепи;

— падение напряжения на внутреннем участке цепи (источника тока)

Единицей электродвижущей силы в СИ является вольт (В).

Напряжение – разность потенциалов между крайними точками этого участка

Закон Ом для замкнутой цепи: сила тока в замкнутой цепи прямо пропорциональна ЭДС в цепи и обратно пропорциональна общему сопротивлению цепи.

Закон Ома для неоднородного участка цепи:

где R — общее сопротивление неоднородного участка.

8. Разветвленные цепи. Законы Кирхгофа. Правила знаков для токов, падений напряжений и ЭДС.

Разветвлённая цепь

Узлом электрической цепи называют соединение не менее трех проводников, по которым идут токи. Ток, входящий в узел считают положительным, выходящим из узла — отрицательным.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус».

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

где n – число источников ЭДС в контуре;

m – число элементов с сопротивлением в контуре;

– напряжение или падение напряжения на k-м элементе контура.

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю :

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Постоянный электрический ток

240. Электрический ток — это направленное движение электрически заряженных частиц. За направление тока принято направление движения положительно заряженных частиц.

241. Постоянный ток — это ток, сила и направление которого не изменяются со временем.

242. Сила тока — это величина, равная отношению заряда, протекшего через поперечное сечение проводника за некоторый промежуток времени, к величине этого промежутка.

В системе СИ сила тока измеряется в амперах (А).

1 Ампер — это сила такого не изменяющегося тока, который при пропускании его по 2 проводникам бесконечной длины и ничтожно малого сечения, находящимся в вакууме на расстоянии 1 метр друг от друга, вызывает силу взаимодействия между ними 210-7 Н на каждый метр длины.

243. Для существования электрического тока необходимо выполнение двух условий:

1) наличие электрического поля;

2) наличие свободных носителей зарядов.

244. Сила тока связана со скоростью движения носителей заряда соотно­шением:

где q — заряд носителя зарядов, n — число носителей заряда в единице объёма (концентрация), S — площадь поперечного сечения проводника, v — средняя скорость упорядоченного движения носителей заряда под действием электрического поля.

245. Закон Ома для участка цепи: сила тока в однородном участке цепи прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению.

Сопротивление проводников в системе СИ измеряется в омах (Ом). 1 Ом — это сопротивление такого проводника, в котором при напряжении в 1 В возникает ток силой в 1 А.

246. Сопротивление проводника можно вычислить по формуле:

где — удельное сопротивление, l — длина проводника, S — площадь поперечного сечения.

247. Удельным сопротивлением материала проводника называется величина, численно равная сопротивлению куба с ребром 1 метр, изготовленного из данного материала, при его подключении противоположными гранями. Удельное сопротивление измеряется в Омм.

248. Плотнсть тока — это физическая величина, равная отношению силы тока, текущего в проводнике, к площади его поперечного сечения.

Плотность тока измеряется в A/м2. Плотность тока величина векторная. Вектор плотности тока совпадает по направлению с вектором напряжённости электрического поля.

где n — концентрация носителей зарядов, q — заряд носителя, v — скорость упорядоченного движения носителей заряда под действием электрического поля.

249. При последовательном соединении проводников:

250. При параллельном соединении проводников:

251. Работа тока:

252. Мощность тока:

253. Закон Джоуля-Ленца: количество теплоты, которое выделяется в проводнике при пропускании электрического тока равно произведению квадрата силы тока, протекающего по проводнику, на сопротивление проводника и на время протекания электрического тока.

254. Электродвижущая сила (ЭДС) — это физическая величина, равная отношению работы сторонних сил по перемещению заряда по замкнутой цепи, к величине этого заряда.

ЭДС в системе СИ измеряется в вольтах.

255. Закон Ома для замкнутой цепи: cила тока в замкнутой цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи.

где r — внутреннее сопротивление источника тока, R — общее сопротивление внешнего участка цепи.

256. Короткое замыкание цепи — это такой режим работы источника тока, при котором сопротивление внешнего участка цепи стремится к нулю.

257. Сила тока при коротком замыкании равна

258. Мощность, выделяющаяся во внешней цепи, будет максимальной в том случае, когда сопротивление внешней цепи будет равно внутреннему сопротивлению источника тока, т.е. при

259. Сопротивление проводников зависит от температуры по закону, выраженному формулой

где R0 — сопротивление проводника при 00С, R — сопротивление проводника при температуре t,  ‑ температурный коэффициент сопротивления. Температурный коэффициент сопротивления измеряется в К-1. Температурный коэффициент сопротивления равен относительному изменению сопротивления при изменении температуры на 1 К.

260. Сверхпроводимость-это такое состояние вещества проводника, при котором его сопротивление становится равным нулю. Наблюдается это явление при температурах близких к абсолютному нулю.

261. Свободными носителями зарядов в металлах являются электроны.

262. Основные положения электронной теории проводимости металлов:

1) Свободные электроны ведут себя как молекулы идеального газа. Они не взаимодействуют друг с другом и обладают только кинетической энергией;

2) Свободные электроны в процессе своего хаотического движения сталкиваются не между собой (как молекулы идеального газа), а с ионами кристаллической решётки. При этом они полностью отдают свою кинетическую энергию кристаллической решётке;

3) Движение свободных электронов в металле подчиняется законам классической механики.

263. Электролиты — это вещества, растворы и расплавы которых проводят электрический ток. Носителями зарядов в электролитах являются положи­тельные и отрицательные ионы.

264. Электролитическая диссоциация — это распад молекул электролита на ионы под влиянием электрических полей молекул растворителя.

265. Электролиз — это явление выделения вещества на электродах при пропускании тока через электролит.

Другая формулировка: Электролиз — это совокупность электрохимических процессов, происходящих на электродах, погруженных в электролит, при прохождении через него электрического тока.

266. Рекомбинация — это процесс образования нейтральных молекул из ионов.

267.Закон Фарадея для электролиза: Масса вещества, выделившегося на электроде при электролизе, прямо пропорциональна заряду, протекшему через электролит.

где k — электрохимический эквивалент вещества, выделяющегося на электроде, измеряется в кг/Кл и численно равен массе вещества, выделившегося на электроде при пропускании заряда в 1 Кл.

где — молярная масса, е — элементарный заряд, NА — число Авогадро, n — валентность.

268. Газовый разряд — это процесс протекания электрического тока через газ. Обычно газовый разряд сопровождается излучением атомами и ионами фотонов света, т.е. частиц света.

269. Несамостоятельным называют разряд, который происходит под действием внешнего ионизатора (пламя свечи, рентгеновское, ультрафиолетовое, радиоактивное излучения и т.д).

270. Ионизация молекул газа — это процесс выбивания электронов из нейтральных молекул при их соударениях, при соударении свободных электронов с нейтральными молекулами, при взаимодействии с электромагнитными и радиоактивными излучениями и т.д.

271. Рекомбинация молекул газа — это процесс образования нейтральных молекул из электронов и положительных ионов.

272. Носителями зарядов в газах являются электроны и ионы, которые появляются в результате ионизации. Но главную роль в проводимости газов играют электроны, т.к. электроны движутся со значительно большими скоростями, чем ионы.

273. Самостоятельным называется газовый разряд, протекающий в отсутствии внешнего ионизатора. При самостоятельном разряде положительные ионы приобретают большую скорость и, ударяясь о катод, выбивают из него электроны, которые в процессе своего движения к аноду ионизируют нейтральные атомы газа, порождая тем самым новые носители зарядов. Катод может испускать электроны не только в результате ударов ионов, но и в результате явления термоэлектронной эмиссии, которая происходит с катода при его нагревании.

274. Плазма — это такое состояние вещества, при котором атомы и молекулы находятся в частично или полностью ионизированном состоянии. В плазме концентрация положительных и отрицательных ионов одинакова.

275. Вакуум — это такое состояние вещества в сосуде, когда молекулы пролетают от одной его стенки до другой, не сталкиваясь друг с другом

276. Термоэлектронная эмиссия — это явление вылетания электронов с поверхности металлов и их окислов при нагревании. Явление термоэлектронной эмиссии используется для создания носителей зарядов в электровакуумных приборах.

277. Полупроводники — это группа веществ, представители которой по своей проводимости занимают промежуточное положение между металлами и диэлектриками. Их главное отличие от металлов состоит в характере зависи­мости электрического сопротивления от температуры. Сопротивление ме­таллов при нагревании медленно растёт, а сопротивление полупроводников быстро уменьшается. Сопротивление диэлектриков тоже при повышении температуры уменьшается. но эта зависимость начинает сказываться при температурах 800-10000С и выше, а у полупроводников эта зависимость проявляется при температурах близких к 00С. Типичные представители полупроводников: германий. кремний и ещё 10 химических элементов.

278. В полупроводниках в результате теплового движения некоторые электроны покидают ковалентные (парнозлектронные) связи и становятся свободными. На их месте оказываются вакансии, которые ведут себя как положительно заряженные частицы. Их называют дырками. Таким образом, носителями свободных зарядов в полупроводниках являются электроны и дырки. В чистых (без примесей) полупроводниках их концентрация одинакова.

279. Собственной называется проводимость полупроводников, которая возникает в результате образования электронов и дырок при ионизации атомов полупроводника.

280. При введении в чистый полупроводник небольшого количества атомов примеси его проводимость сильно увеличивается. Если в кристаллическую решётку ввести атомы примеси с валентностью больше 4, в полупроводнике образуются свободные электроны, которые появляются в результате ионизации атомов примеси. Если в кристаллическую решётку ввести атомы примеси с валентностью меньшей 4, то для образования завершённых ковалентных связей у атомов примеси не будет хватать электронов, т.е. в ковалентных связях атомов примеси появятся вакансии, называемые дырками.

281. Проводимость, обусловленная носителями зарядов, появившимися в результате введения примесей, называется примесной.

282. Примеси, валентность которых больше 4, дающие электронную проводимость называют донорами, а возникающую при этом проводимость — донорной, или n-типа.

283. Примеси, валентность которых меньше 4, дающие дырочную проводимость, называют акцепторами, а проводимость акцепторной или p-типа.

284. Практическое применение получил контакт между полупроводниками с разной проводимостью. Этот контакт получил название p-n-перехода. Он обладает односторонней проводимостью и является основной частью полупроводниковых приборов: диодов, транзисторов, микросхем.

Постоянный электрический ток. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Электрический ток — упорядоченное (направленное) движение заряженных частиц Направленное движение свободных зарядов (носителей тока) в проводнике возможно под действием внешнего электрического поля

За направление тока принимается направление движения положительно заряженных частиц.

Электрический ток — упорядоченное (направленное) движение заряженных частиц Направленное движение свободных зарядов (носителей тока) в проводнике возможно под действием внешнего электрического поля

За направление тока принимается направление движения положительно заряженных частиц.

Сила тока в данный момент времени — скалярная физическая величина, равная пределу отношения величины электрического заряда, прошедшего сквозь поперечное сечение проводника, к промежутку времени его прохождения

Единица силы тока (основная единица СИ) — ампер (1 А) 1 А = 1 Кл/с

Постоянный электрический ток — ток, сила которого не изменяется с течением времени

Источник тока — устройство, разделяющее положительные и отрицательные заряды

Сторонние силы — силы неэлектростатического происхождения, вызывающие разделение зарядов в источнике тока

ЭДС— скалярная физическая величина, равная отношению работы сторонних сил по перемещению положительного заряда от отрицательного полюса источника тока к положительному к величине этого заряда:

ЭДС равна напряжению между полюсами разомкнутого источника тока.

Закон Ома для однородного проводника (участка цепи): сила тока в однородном проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника

Сопротивление проводника прямо пропорционально его удельному сопротивлению и длине и обратно пропорционально площади его поперечного сечения

Единица сопротивления — ом (1 Ом) 1 Ом = 1 В/А

Резистор — проводник с определенным постоянным сопротивлением

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади.

Единица удельного сопротивления — ом-метр (1 Ом • м).

Удельное сопротивление металлического проводника линейно возрастает с температурой:

где ρ0— удельное сопротивление при T0 = 293 К, ΔТ= Т- T0, α — температурный коэффициент сопротивления. Единица температурного коэффициента сопротивления К-1. Удельное сопротивление полупроводника уменьшается при увеличении температуры из-за увеличения числа свободных зарядов, способных переносить электрический ток.

Дырка — вакантное электронное состояние в кристаллической решетке, имеющее избыточный положительный заряд.

Сверхпроводимость — физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.

Критическая температура — температура скачкообразного перехода вещества из нормального состояния в сверхпроводящее.

Изотопический эффект — зависимость критической температуры от массы ионов в кристаллической решетке.

Электрический ток в сверхпроводнике обусловлен согласованным движением пар электронов, связанных между собой взаимодействием с кристаллической решеткой

При последовательном соединении резисторов общее сопротивление цепи равно сумме их сопротивлений При параллельном соединении резисторов проводимость цепи равна сумме их проводимостей Закон Ома для замкнутой цепи: сила тока в замкнутой цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи:

где R и r — внешнее и внутреннее сопротивления цепи.

Закон Ома для замкнутой цепи с несколькими последовательно соединенными источниками тока:

сила тока в замкнутой цепи с последовательно соединенными источниками тока прямо пропорциональна алгебраической сумме их ЭДС и обратно пропорциональна полному сопротивлению цепи:

Амперметр измеряет силу электрического тока, включается в цепь последовательно

Шунт — проводник, присоединяемый параллельно амперметру для увеличения предела его измерений*

где RA — сопротивление амперметра, n — кратность изменения предела измерений.

Вольтметр измеряет электрическое напряжение. Включается в цепь параллельно

Дополнительное сопротивление — проводник, присоединяемый последовательно с вольтметром для увеличения предела его измерений.

где Rv — сопротивление вольтметра Количество теплоты, выделяющееся в проводнике, равно работе электрического тока.

Закон Джоуля—Ленца: количество теплоты, выделяемое в проводнике с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения по нему тока:

Мощность электрического тока — работа, совершаемая в единицу времени электрическим полем при упорядоченном движении заряженных частиц в проводнике

Потребителю передается максимальная мощность, если сопротивление нагрузки равно суммарному сопротивлению источника тока и подводящих проводов

Жидкости, как и твердые тела, могут быть проводниками электрического тока

Электролиты — вещества, растворы и расплавы которых обладают ионной проводимостью.

Электролитическая диссоциация — расщепление молекул электролита на положительные и отрицательные ионы под действием растворителя

Электролиз — выделение на электродах веществ, входящих в состав электролита, при протекании через его раствор (или расплав) электрического тока

Закон Фарадея: масса вещества, выделившегося на электроде, прямо пропорциональна заряду, прошедшему через раствор (расплав) электролита. где k— электрохимический эквивалент вещества.

Единица электрохимического эквивалента — килограмм на кулон (1 кг/Кл).

Объединенный закон Фарадея:

где М — молярная масса, n — валентность химического элемента; постоянная Фарадея F = 9,65- 104Кл/моль.

Постоянный электрический ток

 на главную   

 

Официальный сайт АНО ДО Центра «Логос», г.Глазов

http://logos-glz.ucoz.net/

 

ГОТОВИМСЯ К УРОКУ

Кинематика

Динамика

МКТ

Термодинамика 

Электростатика

Электрический ток

Электрический ток в средах

Магнитное поле Электромагнитная индукция

Оптика

Методы познания

постоянный электрический ток                                                      немного о физике:   

 

Что называют электрическим током?

 

Электрический ток — упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

 

Условия существования постоянного электрического тока.

 

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

 

Основные понятия.

 

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q — величина заряда (количество электричества), t — время прохождения заряда.

Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j плотность токаS площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A — полная работа сторонних и кулоновских сил,  q — электрический заряд.

Электрическое сопротивление — физическая величина, характеризующая  электрические свойства участка цепи.

где ρ — удельное сопротивление проводника, l — длина участка проводника,  S — площадь поперечного сечения проводника.

 

Проводимостью называется величина, обратная сопротивлению

где  G — проводимость.

 

 

Законы Ома.

 

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U — напряжение на участке,  R — сопротивление участка.

 

 

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где   φ1— φ2 + ε = U напряжение на заданном участке цепи, R — электрическое сопротивление  заданного участка цепи.

 

 

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R — электрическое сопротивление внешнего участка цепи,  r — электрическое сопротивление внутреннего участка цепи.

 

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи  с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением  R<< r, то тогда только  ЭДС источника тока и его сопротивление будут определять  значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания. 

 

Последовательное и параллельное

соединение проводников.

 

Электрическая цепь включает в себя источника тока и проводники (потребители, резисторы и др), которые могут соединятся  последовательно или параллельно.

 

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

 

 

Во всех  последовательно соединенных проводниках сила тока одинакова:

I1= I2=I

 

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

R = R1+ R2

 

 

 

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

U= U1 +U2

 

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

I = I1+ I2

 

Величина, обратная сопротивлению разветвленного участка,  равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

 

    

Падение напряжения во всех проводниках одинаково:

U= U1 = U2

 

 

Силы тока в проводниках обратно пропорциональны их сопротивлениям

 

 

Смешанное соединение — комбинация  параллельного и последовательного  соединений.

 

 

Правила Кирхгофа.

Для расчета разветвленных цепей, содержащих неоднородные участки, используют правила Кирхгофа. Расчет сложных цепей состоит в отыскании токов в различных участках цепей.

Узел — точка разветвленной цепи, в которой сходится более двух проводников.

1 правило Кирхгофа: алгебраическая сумма сил токов, сходящихся в узле, равна нулю;

где n — число проводников, сходящихся в узле, Ii— сила тока в проводнике.

токи, входящие в узел считают положительными, токи, отходящие из узла — отрицательными.

2 правило Кирхгофа: в любом произвольно выбранном замкнутом контуре разветвленной цепи алгебраическая сумма произведений сил токов и сопротивлений каждого из участков этого контура равна алгебраической сумме ЭДС в контуре.

 

Чтобы учесть знаки сил токов и ЭДС выбирается определенное направление обхода контура(по часовой стрелке или против нее). Положительными считают токи, направление которых совпадает с направлением обхода контура, отрицательными считают  токи противоположного направления. ЭДС источников  электрической энергии считают положительными если они создают токи, направление которых совпадает с направлением обхода контура, в противном случае — отрицательными.

 

Порядок расчета сложной цепи постоянного тока.

  1. Произвольно выбирают направление токов во всех участках цепи.

  2. Первое правило Кирхгофа  записывают  для  (m-1)  узла, где m — число узлов в цепи.

  3. Выбирают произвольные замкнутые контуры, и после выбора направления обхода записывают второе правило Кирхгофа.

  4. Система из составленных уравнений должна быть разрешимой: число уравнений должно соответствовать количеству неизвестных.

Шунты и добавочные сопротивления.

Шунт — сопротивление, подключаемое параллельно к амперметру (гальванометру), для расширения его шкалы при измерении силы тока.

Если  амперметр рассчитан на силу тока I0, а с помощью него необходимо измерить силу тока, превышающую в n раз допустимое значение, то сопротивление, подключаемого шунта должно удовлетворять следующему условию:

 

 

Добавочное сопротивление — сопротивление, подключаемое последовательно с вольтметром (гальванометром),  для расширения его шкалы при измерении напряжения.

Если  вольтметр рассчитан на напряжение U0, а с помощью него необходимо измерить напряжение, превышающее в n раз допустимое значение, то добавочное сопротивление должно удовлетворять следующему условию:

 

 

Постоянный электрический ток — это что такое?

Постоянный электрический ток – это непрерывное движение электронов из области отрицательных (-) в область положительных (+) зарядов через проводящий материал, такой как металлическая проволока. Хотя статические разряды и представляют собой спонтанные движения заряженных частиц от отрицательно к положительно заряженной поверхности, непрерывного движения частиц через проводник не происходит.

Для создания потока электронов необходима цепь постоянного электрического тока. Это источник энергии (например, батарея) и проводник, идущий от положительного полюса к отрицательному. В цепь могут быть включены различные электрические устройства.

Непрерывное движение электронов

Постоянный ток представляет собой непрерывное движение электронов через проводящий материал, такой как металлическая проволока. Заряженные частицы движутся к положительному (+) потенциалу. Для создания потока электроэнергии требуется электрическая цепь, состоящая из источника питания постоянного тока и провода, образующего замкнутый контур. Хорошим примером такой цепи является фонарик.

Хотя отрицательно заряженные электроны движутся через провод к положительному (+) полюсу источника питания, движение тока указывается в противоположном направлении. Это является следствием неудачного и путающего соглашения. Ученые, экспериментировавшие с токами, посчитали, что электричество движется от (+) к (-), и это стало общепринятым еще до открытия электронов. В действительности отрицательные заряженные частицы движутся к положительному полюсу, противоположно направлению, указанному как направление движения тока. Это сбивает с толку, но после того, как соглашение было принято, уже трудно что-то исправить.

постоянный электрический ток это

Напряжение, ток и сопротивление

Электричество, проходящее через провод или другой проводник, характеризуется напряжением U, током I и сопротивлением R. Напряжение является потенциальной энергией. Ток представляет собой поток электронов в проводнике, а сопротивление – силу его трения.

Хороший способ представить постоянный электрический ток – это провести аналогию с водой, текущей по шлангу. Напряжение представляет собой потенциал, нарастающий на одном конце провода из-за избытка отрицательно заряженных электронов. Это похоже на повышенное давления воды в шланге. Потенциал заставляет электроны двигаться через провод в область положительного заряда. Эта потенциальная энергия называется напряжением и измеряется в вольтах.

Постоянный электрический ток – это поток электронов, измеряемый в амперах. Он подобен скорости движения воды по шлангу.

Ом является единицей измерения электрического сопротивления. Атомы проводника расположены так, что электроны будут проходить с небольшим трением. В изоляторах или плохих проводниках атомы оказывают сильное сопротивление или препятствуют перемещению заряженных частиц. Это аналогично трению воды в шланге при прохождении через него.

Таким образом, напряжение подобно давлению, расход – току и гидравлическое сопротивление – электрическому.

электрическая схема постоянного тока

Создание постоянного тока

Хотя статическое электричество может быть разряжено через металлическую проволоку, оно не является источником постоянного тока. Им являются батареи и генераторы.

В батареях для создания электроэнергии постоянного тока используются химические реакции. Например, автомобильный аккумулятор состоит из свинцовых пластин, помещенных в раствор серной кислоты. Когда пластины получают заряд от сети или генератора автомобиля, они изменяются химически и удерживают заряд. Этот источник постоянного тока может затем использоваться для питания фар автомобиля и т. д. Проблема заключается в том, что серная кислота очень едкая и опасная.

Другую батарею можно сделать самостоятельно из лимона. Она не требует зарядки, но зависит от кислотной реакции разных металлов. Медь и цинк работают лучше всего. Можно использовать медную проволоку или монету. В качестве другого электрода можно использовать оцинкованный гвоздь. Железный тоже будет работать, но не так хорошо. Достаточно воткнуть медный провод и гальванизированный гвоздь в обычный лимон и измерить напряжение между ними вольтметром. Некоторым с помощью этой батареи даже удавалось зажечь лампочку фонарика.

Надежным источником является генератор, который сделан из проволоки, намотанной между северными и южными полюсами магнита.

Таким образом, постоянный электрический ток – это непрерывное движение электронов от отрицательного к положительному полюсу проводника, такого как металлическая проволока. Для прохождения заряженных частиц необходима цепь. В ней направление движения тока противоположно потоку электронов. Цепь характеризуется такими величинами, как напряжение, ток и сопротивление. Источниками постоянного тока являются аккумуляторы и генераторы.

постоянный электрический ток источники постоянного тока

Электрические цепи

Электрическая схема постоянного тока состоит из источника, к полюсам которого подсоединены проводники, соединяющие приемники в замкнутый контур. Это обязательное условие для прохождения тока. Цепи могут быть последовательными, параллельными или комбинированными.

Если взять источник постоянного тока, например аккумулятор, и подсоединить его положительный и отрицательный полюсы проводами к нагрузке, например лампочке, то образуется электрическая цепь. Иными словами, электроэнергия течет от одного контакта батареи к другому. Последовательно с лампой можно установить выключатель, который при необходимости будет регулировать подачу постоянного электрического тока.

электрическое напряжение постоянного тока

Источники постоянного тока

Цепь требует наличия источника питания. Как правило, для этого используется батарея или аккумулятор. Другим источником энергии служит генератор постоянного тока. Кроме того, можно пропустить переменный ток через выпрямитель. Обычный адаптер, используемый с некоторыми портативными устройствами (например, смартфонами), преобразует 220 В переменного тока в постоянный напряжением 5 В.

Проводники

Провода и нагрузка должны проводить электричество. Медь или алюминий являются хорошими проводниками и имеют низкое сопротивление. Вольфрамовая нить в лампе накаливания проводит ток, но имеет высокое сопротивление, которое заставляет ее нагреваться и накаляться.

мощность постоянного электрического тока

Последовательное и параллельное подключение

В электроцепи несколько устройств, таких как лампочки, могут соединяться в одну линию между положительным и отрицательным полюсами батареи. Такое подключение называется последовательным. Одной из проблем такой компоновки является то, что в случае перегорания одной лампочки она действует как выключатель и отключает всю цепь.

Приемники также могут соединяться параллельно, так что, если какая-либо лампа погаснет, цепь не будет обесточена. Параллельная схема включения используется не только в елочных гирляндах — электропроводка в домах тоже проводится параллельно. Поэтому освещение и приборы можно включать и выключать независимо друг от друга.

постоянный и переменный электрический ток

Закон Ома

К законам постоянного электрического тока относится закон Ома, который является самой фундаментальной формулой для электрических цепей. Согласно ему, ток, проходящий через проводник, прямо пропорционален разности потенциалов на нем. Закон был впервые сформулирован в 1827 году немецким физиком Георгом Омом, когда он исследовал проводимость металлов. Закон Ома лучше всего описывает простые электрические цепи постоянного тока. Хотя он также применим к переменному току, в этом случае следует учитывать другие возможные переменные. Соотношение между током, напряжением и сопротивлением позволяет вычислить одну физическую величину, если известны значения двух других.

Закон Ома показывает зависимость между напряжением, током и сопротивлением в простой электрической цепи. В простейшем виде записывается уравнением U = I × R. Здесь U – напряжение в вольтах, I – ток в амперах и R – сопротивление в омах. Таким образом, если известны I и R, можно вычислить U. При необходимости формулу можно изменять методами алгебры. Например, если известны U и R и нужно найти I, то следует использовать уравнение I = U / R. Или, если даны U и I и необходимо вычислить R, то применяется выражение R = U / I.

Важность Закона Ома заключается в том, что если значение двух переменных в уравнении известно, то можно определить третье. Любую из этих физических величин можно измерить с помощью вольтметра. Большинство вольтметров или мультиметров измеряют U, I, R постоянного и переменного электрического тока.

законы постоянного электрического тока

Вычисление U, I, R

Электрическое напряжение постоянного тока при известных токе и сопротивлении можно найти по формуле U = I × R. Например, если I = 0,2 А и R = 1000 Ом, то U = 0,2 А * 1000 Ом = 200 В.

Если известны напряжение и сопротивление, ток можно вычислить с помощью уравнения I = V / R. Например, если U = 110 В и R = 22000 Ом, то I = 110 В / 22000 Ом = 0,005 А.

Если известны напряжение и ток, то R = V / I. Если V = 220 В и I = 5 А, то R = 220 В / 5 А = 44 Ом.

Таким образом, закон Ома показывает зависимость между напряжением, током и сопротивлением в простой электрической цепи. Он может применяться к цепям как постоянного, так и переменного тока.

Мощность постоянного электрического тока

Заряд, движущийся в цепи (если это не сверхпроводник), расходует энергию. Это может привести к нагреву или вращению двигателя. Электрическая мощность – это скорость, с которой электроэнергия преобразуется в другую форму, такую как механическая энергия, тепло или свет. Она равна произведению тока и напряжения: P = U × I. Измеряется в ваттах. Например, если U = 220 В и I = 0,5 А, то P = 220 В * 0,5 А = 110 Вт.

Постоянный ток

Постоянный ток (direct current) – это упорядоченное движение заряженных частиц в одном направлении. Другими словами
величины характеризующие электрический ток, такие как напряжение или сила тока, постоянны как по значению, так и по направлению.

В источнике постоянного тока, например в обычной пальчиковой батарейке, электроны движутся от минуса к плюсу. Но исторически сложилось так, что за техническое направление тока считается направление от плюса к минусу.

Для постоянного тока применимы все основные законы электротехники, такие как закон Ома и законы Кирхгофа.

История

Изначально постоянный ток назывался – гальваническим током, так как впервые был получен с помощью гальванической реакции. Затем, в конце девятнадцатого века, Томас Эдисон, предпринимал попытки организовать передачу постоянного тока по линиям электропередачи. При этом даже разыгралась так называемая “война токов”, в которой шел выбор в качестве основного тока между переменным и постоянным. К сожалению, постоянный ток “проиграл” эту “войну”, потому что в отличие от переменного тока, постоянный, несет большие потери в мощности при передаче на расстояния. Переменный ток легко трансформировать и благодаря этому передавать на огромные расстояния.

Источники постоянного тока

Источниками постоянного тока могут быть аккумуляторы, либо другие источники в которых ток появляется благодаря химической реакции (например, пальчиковая батарейка).  

Также источниками постоянного тока может быть генератор постоянного тока, в котором ток вырабатывается благодаря 
явлению электромагнитной индукции, а затем выпрямляется с помощью коллектора.

Постоянный ток может быть получен с помощью выпрямления переменного тока. Для этого существуют различные выпрямители и преобразователи.

Применение

Постоянный ток,  достаточно широко применяется в электрических схемах и устройствах. К примеру, дома, большинство приборов, таких как модем или зарядное устройство для мобильного, работают на постоянном токе. Генератор автомобиля, вырабатывает и преобразует постоянный ток, для зарядки аккумулятора. Любое портативное устройство питается от источника постоянного тока.

В промышленности постоянный ток используется в машинах постоянного тока, например в двигателях, или генераторах. В некоторых странах существуют высоковольтные линии электропередачи постоянного тока.

Постоянный ток также нашел свое применение и в медицине, например в электрофорезе – процедуре лечения с помощью электрического тока.

В железнодорожном транспорте, кроме переменного, используется и постоянный ток. Это связано с тем, что тяговые двигатели, которые имеют более жесткие механические характеристики, чем асинхронные, являются двигателями постоянного тока.

Влияние на организм человека

Постоянный ток в отличие от переменного является более безопасным для человека. Например, смертельным током для человека является 300 мА если это ток постоянный, а если переменный с частотой 50 Гц, то 50-100 мА.

  • Просмотров: 7174
  • постоянный ток — это… Что такое постоянный ток?

    электрический ток, не изменяющийся во времени.

    ПОСТОЯ́ННЫЙ ТОК, электрический ток (см. ЭЛЕКТРИЧЕСКИЙ ТОК), величина и направление которого не изменяются с течением времени.
    Постоянный электрический ток может возникнуть только при наличии свободных заряженных частиц, на которые действуют силы, обеспечивающие их упорядоченное перемещение в течение конечного промежутка времени. Электрический ток характеризуется силой тока (см. СИЛА ТОКА) и плотностью тока (см. ПЛОТНОСТЬ ТОКА). Во всех сечениях неразветвлённой замкнутой цепи сила постоянного тока одинакова. За направление тока условно принимают направленное движение положительных зарядов, которое соответствует переходу от большего потенциала (см. ПОТЕНЦИАЛ (в физике)) к меньшему. Если через любое сечение проводника в одни и те же промежутки времени проходит одно и то же количество электричества, ток называют установившимся (стационарным).
    Для протекания постоянного тока в проводнике необходимо, чтобы цепь постоянного тока проводимости была замкнутой, напряженность электрического поля в проводнике была постоянной, на свободные электрические заряды, помимо кулоновских сил, действовали неэлектростатические сторонние силы (см. СТОРОННИЕ СИЛЫ).
    Цепь постоянного тока можно разбить на определенные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными. Участки, включающие источники тока, называются неоднородными.
    Основными законами для постоянного тока являются Ома закон (см. ОМА ЗАКОН), устанавливающий зависимость силы тока от напряжения, и Джоуля — Ленца закон (см. ДЖОУЛЯ — ЛЕНЦА ЗАКОН), определяющий количество тепла, выделяемого током в проводнике. Расчет разветвленных цепей постоянного тока производится с помощью Кирхгофа правил (см. КИРХГОФА ПРАВИЛА).
    В технике установками постоянного тока принято считать такие установки, в которых ток не меняет своего направления, но может меняться по величине.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *