Site Loader

«Как перевести мощность кВА в кВт и в чем их разница?» – Яндекс.Знатоки

Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Мощность бывает полная, реактивная и активная.

S – полная мощность измеряется в кВА (килоВольтАмперах)

Характеризует полную электрическую мощность переменного тока. Для получения полной мощности значения реактивной и активной мощностей суммируются. При этом соотношение полной и активной мощностей у разных потребителей электроэнергии может отличаться. Таким образом, для определения совокупной мощности потребителей следует суммировать их полные, а не активные мощности.

кВА характеризует полную электрическую мощность, имеющую принятое буквенное обозначение по системе СИ – S: это геометрическая сумма активной и реактивной мощности, находимая из соотношения: S=P/cos(ф) или S=Q/sin(ф).

Q – реактивная мощность измеряется в кВар (килоВарах)

Реактивная мощность, потребляемая в электрических сетях, вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения).

Р – активная мощность измеряется в кВт (килоВаттах)

Это физическая и техническая величина, характеризующая полезную электрическую мощность. При произвольной нагрузке в цепи переменного тока действует активная составляющая тока. Эта часть полной мощности, которая определяется коэффициентом мощности и является полезной (используемой).

Единый коэффициент мощности обозначается Сos φ.

Это коэффициент мощности, который показывает соотношение (потерь) кВт к кВА при подключении индуктивных нагрузок.

Распространенные  коэффициенты мощности и их расшифровка(cos φ):

1 – наилучшее значение

0,95 – отличный показатель

0,90 – удовлетворительные значение

0,80 – средний наиболее распространенный показатель

0,70 – плохой показатель

0,60 – очень низкое значение

кВт характеризует активную потребляемую электрическую мощность, имеющую принятое буквенное обозначение P: это геометрическая разность полной и реактивной мощности, находимая из соотношения: P=S*cos(ф).

Говоря языком потребителя: кВт – нетто (полезная мощность), а кВа брутто (полная мощность).

1 кВт = 1.25 кВА

1 кВА = 0.8 кВт

Чтобы быстро перевести кВА в кВт нужно из кВА вычесть 20% и получится кВт с небольшой погрешностью, которой можно пренебречь. Или воспользоваться формулой для перевода кВА в кВт:

P=S * Сos f

Где P-активная мощность (кВт), S-полная мощность (кВА), Сos f- коэффициент мощности.

К примеру, чтобы мощность 400кВА перевести в кВт, необходимо 400кВА*0,8=320кВт или 400кВа-20%=320кВт.

Для перевода кВт в кВА применима формула:

S=P/ Сos f

Где S-полная мощность (кВА), P-активная мощность (кВт), Сos f- коэффициент мощности.

Например, чтобы мощность 1000 кВт перевести в кВА, следует 1000 кВт / 0,8= 1250кВА.

Чем отличаются кВа и кВт?


Мощность

Вольт-ампер (ВА или VA) – единица, используемая для обозначения полной мощности переменного тока, определяемая как произведение силы тока действующей в цепи (измеряется в амперах, сокращенно A) и напряжения на зажимах цепи (измеряется в вольтах, сокращенно B).

Ватт (Вт или W) – единица , применяемая для измерения мощности. Своим названием данная единица обязана шотландско-ирландскому изобретателю Джеймсу Уатту. 1 ватт – мощность, при которой за время равное 1с. совершается работа в 1Дж. Ватт является единицей активной мощности, значит, 1 ватт – мощность постоянного электрического тока силой 1A при напряжении равном 1B.

!Выбирая дизельный генератор нужно помнить о том, что полная мощность, потребляемая прибором, измеряется в кВА, а активная мощность, затрачиваемая на то, чтобы совершить полезную работу измеряется в кВт.

Полная мощность рассчитывается как сумма двух слагаемых реактивной мощности и активной мощности. Весьма часто отношение полной и активной мощностей имеет различные значения для разных потребителей, поэтому, для того, чтобы найти суммарную мощность всего потребляющего оборудования требуется провести суммирование полных, а не активных мощностей оборудования.

Номинальная мощность

Мощность большинства промышленных электроприборов определяется в ваттах, это активная мощность, выделяющаяся на резистивной нагрузке (лампочка, нагревательные приборы, холодильник и т.п.).

Обычно под потребляемой мощностью понимают именно активную мощность, полностью идущую на полезную работу. В случае, если речь идет об активном потребителе (чайник, лампа накаливания), то на нем, как правило, написаны номинальное напряжение и номинальная мощность в Вт, этой информации достаточно, чтобы вычислить косинус «фи».

Угол «фи» – это угол между напряжением и током. Для активных потребителей угол «фи» равен 0, а, как известно, cos(0) = 1. Для того, чтобы вычислить активную мощность (обозначается P) нужно найти произведение трех множителей: тока через потребитель, напряжения на потребителе, косинуса «фи», то есть провести расчёты по формуле


P=I×U×сos(φ)= I×U×cos(0)=I×U

Рассмотрим пример для ТЭНа. Так как это активный потребитель, то cos(0) = 1. Полная мощность (обозначаемая S) будет равна 10кВА. Следовательно, P=10× cos(0)=10 кВт — активная мощность.

Если же речь идет о потребителях, имеющих не только активное, но и реактивное сопротивление, то на них, как правило, указывается P в Вт (активная мощность) и величина косинуса «фи».

Приведем пример для двигателя, на бирке которого написано: P=5 кВт, сos(φ)=0.8, отсюда следует, что этот двигатель, работая в номинальном режиме будет потреблять S = P/сos(φ)=5/0,8= 6,25 кВа — полная (активная) мощность и Q = (U×I)/sin(φ) — реактивная мощность.

Чтобы найти

номинальный ток двигателя необходимо разделить его полную мощность S на рабочее напряжение равное 220 B.

Однако номинальный ток можно также прочитать на бирке.

Чтобы увидеть разницу между кВА и кВт на практике, изучите товары в разделе Дизельные генераторы >>

Почему мощность на генераторах указывается в ВА?

Ответ следующий: пусть мощность стабилизатора напряжения, указанная на бирке равна 10000 ВА, если к этому трансформатору подключить некоторое количество ТЭНов, то отдаваемая трансформатором мощность (трансформатор работает в номинальном режиме) не превысит 10000 Вт.

В данном примере все сходится. Однако, если же подключить к стабилизатору напряжения катушку индуктивности (много катушек) или электродвигатель со значением сos(φ)=0.8. В итоге мощность отдаваемая стабилизатором будет равна 8000 Вт. Если же для электродвигателя сos(ф)=0.85, то отдаваемая мощность будет равна 8500 Вт. Отсюда следует, что надпись 10000Ва на бирке трансформатора не будет соответствовать действительности. Именно поэтому, мощность генераторов (стабилизаторов и трансформаторов напряжения) определяется в полной мощности (для рассмотренного примера 1000 кВА).

Коэффициент мощности рассчитывается как соотношение средней мощности переменного тока и произведения действующих в цепи значений тока и напряжения. Максимальное значение,которое может принимать коэффициент мощности равно 1.

При рассмотрении синусоидального переменного тока, для определения коэффициента мощности используется формула:

сos(φ) = r/Z


колебания

r и Z – соответственно активное и полное сопротивления цепи, а угол φ– это разность фаз напряжения и тока. Отметим, что коэффициент мощности может принимать значения меньшие 1, даже в цепях с только активным сопротивлением, если в них присутствуют нелинейные участки, так как происходит изменение формы кривых тока и напряжения.

Коэффициент мощности равен также косинусу угла фаз между основаниями кривых тока и напряжения. Коэффициент мощности – отношение активной мощности к полной мощности: сos(φ) = активная мощность/полная мощность = P/S (Вт/ВА). Коэффициент мощности – это комплексная характеристика нелинейных и линейных искажений, которые вносятся в сеть нагрузкой.

Значения, принимаемые коэффициентом мощности:


  • 1.00 – очень хороший показатель;
  • 0.95 — хорошее значение;
  • 0.90 — удовлетворительное значение;
  • 0.80 — среднее значение;
  • 0.70 — низкое значение;
  • 0.60 — плохое значение.

Для того, чтобы увидеть отличия кВА и кВт на конкретном примере, перейдите в раздел Стабилизаторы напряжения >>


Расчёт мощности генератора

Для начала вспомним школу.

Что такое электрическая мощность?
Электрическая мощность обозначается при написании формул латинской буквой Р и измеряется в ваттах Вт или на латинице W, киловаттах (кВт или kW), мегаваттах (МВт или MW) и так далее.
Электрическая мощность равна произведению напряжения и тока:

P (Вт) = U (В) * I (А)

Различают следующие виды электрической мощности, которые, соответственно, по-разному обозначаются:

Активная мощность:
Обозначение: P
Единица измерения: Вт (W)

Это мощность, отдаваемая при подключении к источнику тока (генератору) нагрузки, имеющей активное (омическое) сопротивление. Если нагрузка, имеет только активное сопротивление и не содержит реактивных сопротивлений, то активная мощность будет равна полной мощности.

Расчёт производится по формуле: P = U * I * cos φ

Примеры: лампы накаливания, нагревательные приборы и т. п.

Реактивная мощность:
Обозначение: Q
Единица измерения: вар или VAr (вольт-ампер реактивный)

Это мощность, отдаваемая при подключении к источнику тока компонента сети или нагрузки, имеющей индуктивные (электродвигатель) или ёмкостные (конденсатор) элементы.

Расчёт производится по формуле: Q = U * I * sin φ

Примеры:
Потребители, придающие нагрузке индуктивный характер: электродвигатели, сварочные трансформаторы и т.п.
Потребители, придающие нагрузке ёмкостной характер: конденсаторы в компенсаторных устройствах, конденсаторы, создающие реактивную мощность в цепи возбуждения генераторов и т.п.

Полная мощность:
Обозначение: S
Единица измерения: В·A или VA (вольт-ампер)

Полная электрическая мощность равна произведению сдвинутых по фазе напряжения и тока. Полная мощность непосредственно связана с активной и реактивной мощностями. Её расчёт производится по формуле, выражающей закон Пифагора. Полная электрическая мощность представляет собой максимальную мощность электрического тока, которая может быть выработана генератором или использована.

Расчёт производится по формуле: S = U * I  или S = P + Q

Изображенный на рисунке треугольник отображает взаимосвязь между электрическими мощностями или соответствующими им напряжениями.

Теперь о расчёте мощности генератора.

Для точного определения области применения и пригодности любого электроагрегата для выполнения поставленных задач необходимо прежде всего определить суммарную мощность потребителей тока. Только таким образом можно определить, какой электроагрегат может быть использован для данных целей. При выборе необходимой мощности электроагрегата можно использовать приведённые ниже эмпирические формулы.

1. Потребители, являющиеся только активной нагрузкой (например, электронагреватели, лампы накаливания и подобные им приборы с чисто омическим сопротивлением).
Суммарную мощность можно расчитать путём простого сложения мощностей отдельных потребителей, которые могут быть подключены к генератору. В данном случае полная электрическая мощность, измеряемая в ВА или VA (Вольт-ампер) равна активной мощности, измеряемой в

Вт или W (Ватт). Необходимая мощность электроагрегата определяется путём увеличения суммарной мощности подключаемых потребителей на 10% (т.е. с учётом определённых технических факторов).

Пример: Суммарная мощность потребителей * 110% = Мощность, требуемая от электроагрегата.

Если суммарная мощность всех потребителей 2000 Вт (в данном случае 2000 Вт = 2000 ВА ), то требуемая мощность электроагрегата будет: 2000 ВА * 110% = 2200ВА

2. Потребители, имеющие индуктивную составляющую мощности (компрессоры, насосы и прочие электродвигатели). Эти нагрузки потребляют очень большой ток при пуске и выходе на рабочий режим. В данном случае, сначала необходимо определить точное значение мощности одновременно подключаемых потребителей. Далее следует выбрать мощность электроагрегата.

Полная мощность такого электроагрегата должна быть не менее, чем в 3,5 раза больше суммарной мощности потребителей. В исключительных случаях она должна превышать мощность потребителей в 4—5 раз.

Пример: Суммарная мощность потребителей * 3,5 = Мощность, требуемая от электроагрегата.

Если суммарная мощность всех потребителей 2000 ВА, то требуемая мощность электроагрегата будет: 2000 ВА * 3,5 = 7000 ВА

Коэффициент мощности — Википедия

Синусоидальное напряжение (красная линия) и ток (зелёная линия) синфазны — между ними нет фазового сдвига (φ=0∘{\displaystyle \varphi =0^{\circ }}, cos⁡φ=1{\displaystyle \cos \varphi =1}) — нагрузка полностью активная, нет реактивной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 1. Как видно, синяя линия (график мгновенной мощности) находится полностью над осью абсцисс (в положительной полуплоскости), вся подводимая энергия преобразуется в работу: переходит в активную мощность, потребляемую нагрузкой. \cos \varphi =1 Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг φ=90∘{\displaystyle \varphi =90^{\circ }} (cos⁡φ=0{\displaystyle \cos \varphi =0}) — нагрузка полностью реактивная, нет активной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 0. Расположение синей линии (графика мгновенной мощности) на оси абсцисс показывает, что в течение первой четверти цикла вся подводимая мощность временно сохраняется в нагрузке, а во второй четверти цикла возвращается в сеть, и так далее, то есть никакой активной мощности не потребляется, полезной работы в нагрузке не совершается. \cos \varphi =0 Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг φ=45∘{\displaystyle \varphi =45^{\circ }} (cos⁡φ=0,71{\displaystyle \cos \varphi =0{,}71}) — нагрузка имеет и активную, и реактивную составляющие. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны из переменного напряжения и тока с коэффициентом мощности, равным 0,71. Расположение синей линии (графика мгновенной мощности) под осью абсцисс показывает, что некоторая часть подводимой мощности всё же возвращается в сеть в течение части цикла, отмеченного φ.

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность). Следует отличать понятие «коэффициент мощности» от понятия «косинус фи», который равен косинусу сдвига фазы переменного тока, протекающего через нагрузку, относительно приложенного к ней напряжения. Второе понятие используют в случае синусоидальных тока и напряжения, и только в этом случае оба понятия эквивалентны.

Коэффициент мощности равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. В случае синусоидальных тока и напряжения полная мощность представляет собой геометрическую сумму активной и реактивной мощностей. Иными словами, она равна корню квадратному из суммы квадратов активной и реактивной мощностей. В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

В электроэнергетике для коэффициента мощности приняты обозначения cos⁡φ{\displaystyle \operatorname {cos} \varphi } (где φ{\displaystyle \varphi } — сдвиг фаз между силой тока и напряжением) либо λ{\displaystyle \lambda }. Когда для обозначения коэффициента мощности используется λ{\displaystyle \lambda }, его величину обычно выражают в процентах.

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения (в общем случае бесконечномерных). Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстоят соответствующие фазы.

В случае синусоидального напряжения, но несинусоидального тока, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой.

При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

Можно показать, что если к источнику синусоидального напряжения (например, розетка ~230 В, 50 Гц) подключить нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку с реактивной составляющей от электростанции требуется больше отвода тепла, чем при работе на активную нагрузку; избыток передаваемой энергии выделяется в виде тепла в проводах, и в масштабах, например, предприятия потери могут быть довольно значительными.

Не следует путать коэффициент мощности и коэффициент полезного действия (КПД) нагрузки. Коэффициент мощности практически не влияет на энергопотребление самого устройства, включённого в сеть, но влияет на потери энергии в идущих к нему проводах, а также в местах выработки или преобразования энергии (например, на подстанциях). Т.е. счётчик электроэнергии в квартире практически не будет реагировать на коэффициент мощности устройств, поскольку оплате подлежит лишь электроэнергия, совершающая работу (активная составляющая нагрузки). В то же время от КПД непосредственно зависит потребляемая электроприбором активная мощность. Например, компактная люминесцентная («энергосберегающая») лампа потребляет примерно в 1,5 раза больше энергии, чем аналогичная по яркости светодиодная лампа. Это связано с более высоким КПД последней. Однако независимо от этого каждая из этих ламп может иметь как низкий, так и высокий коэффициент мощности, который определяется используемыми схемотехническими решениями.

Треугольник мощностей

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Если его снижение вызвано нелинейным, и особенно импульсным характером нагрузки, это дополнительно приводит к искажениям формы напряжения в сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U{\displaystyle U} (напряжение) и I{\displaystyle I} (сила тока) используются следующие математические формулы:

  1. χ=PS{\displaystyle \chi ={\frac {P}{S}}}
  2. P=U×I×cos⁡φ{\displaystyle P=U\times I\times \cos \varphi }
  3. Q=U×I×sin⁡φ{\displaystyle Q=U\times I\times \sin \varphi }
  4. S=∑k=1∞(U)×I=P2+Q2+T2{\displaystyle S=\textstyle \sum _{k=1}^{\infty }\displaystyle (U)\times I={\sqrt {P^{2}+Q^{2}+T^{2}}}}

Здесь P{\displaystyle P} — активная мощность, S{\displaystyle S} — полная мощность, Q{\displaystyle Q} — реактивная мощность, T — мощность искажения.

Типовые оценки качества электропотребления[править | править код]

При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Значение коэффициента мощностиВысокоеХорошееУдовлетворительноеНизкоеНеудовлетворительное
cos⁡φ{\displaystyle \operatorname {cos} \varphi }0,95…10,8…0,950,65…0,80,5…0,650…0,5
λ{\displaystyle \lambda }95…100 %80…95 %65…80 %50…65 %0…50 %

Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют электромагнитные балласты (ЭмПРА), характеризующиеся низким значением коэффициента мощности, то есть неэффективным электропотреблением. Многие компактные люминесцентные («энергосберегающие») лампы, имеющие ЭПРА, тоже характеризуются низким коэффициентом мощности (0,5…0,65). Но аналогичные изделия известных производителей, как и большинство современных светильников, содержат схемы коррекции коэффициента мощности, и для них значение cos⁡φ{\displaystyle \operatorname {cos} \varphi } близко к 1, то есть к идеальному значению.

Несинусоидальность[править | править код]

Низкое качество потребителей электроэнергии, связанное с наличием в нагрузке мощности искажения, то есть нелинейная нагрузка (особенно при импульсном её характере), приводит к искажению синусоидальной формы питающего напряжения. Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы, импульсные источники питания и др.

Коррекция коэффициента мощности при помощи конденсаторов

Коррекция коэффициента мощности (англ. power factor correction (PFC)) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная. Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина cos⁡φ{\displaystyle \cos \varphi }. Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, она обязательна для импульсных источников питания мощностью в 100 и более ватт[источник не указан 3204 дня]. Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения и равномерную нагрузку на силовую линию.

Разновидности коррекции коэффициента мощности[править | править код]

  • Коррекция реактивной составляющей полной мощности потребления устройства. Выполняется путём включения в цепь реактивного элемента, производящего обратное действие. Например, для компенсации действия электродвигателя переменного тока, обладающего высокой индуктивной реактивной составляющей полной мощности, параллельно цепи питания включается конденсатор. В масштабах предприятия для компенсации реактивной мощности применяются батареи конденсаторов и других компенсирующих устройств.
  • Коррекция нелинейности потребления тока в течение периода колебаний питающего напряжения. Если нагрузка потребляет ток непропорционально приложенному напряжению, для повышения коэффициента мощности требуется схема пассивного (PPFC) или активного корректора коэффициента мощности (APFC). Простейшим пассивным корректором коэффициента мощности является дроссель с большой индуктивностью, включённый последовательно с питаемой нагрузкой. Дроссель выполняет сглаживание импульсного потребления нагрузки и выделение низшей, то есть основной, гармоники потребления тока, что и требуется (правда, это достигается в ущерб форме напряжения, поступающего на вход устройства). Активная коррекция коэффициента мощности ценой некоторого усложнения схемы устройства способна обеспечивать наилучшее качество коррекции, приближая коэффициент мощности к 1.

В чем разница между кВт и кВа?

В разделе «Справочная информация» содержатся пояснения о различных терминах, используемых при описании технических характеристик оборудования, которые неподготовленному человеку бывает нелегко понять.

 

Различия «кВА» и «кВт»

Зачастую, в прайсах различных производителей электрическая мощность оборудования указывается не в привычных киловаттах (кВт), а в «загадочных» кВА (киловольт-амперах). Как же понять потребителю сколько «кВА» ему нужно?

Существует понятие активной (измеряется в кВт) и полной мощности (измеряется в кВА).

Полная мощность переменного тока есть произведение действующего значения силы тока в цепи и действующего значения напряжения на её концах. Полную мощность есть смысл назвать «кажущейся»,так как эта мощность может не вся участвовать в совершении работы. Полная мощность — это мощность передаваемая источником, при этом часть её преобразуется в тепло или совершает работу (активная мощность), другая часть передаётся электромагнитным полям цепи — эта составляющая учитывается введением т.н. реактивной мощности.

Полная и активная мощность — разные физические величины, имеющие размерность мощности. Для того, чтобы на маркировках различных электроприборов или в технической документации не требовалось лишний раз указывать, о какой мощности идёт речь, и при этом не спутать эти физические величины, в качестве единицы измерения полной мощности используют вольт-ампер вместо ватта.

Если рассматривать практическое значение полной мощности, то это величина, описывающая нагрузки, реально налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи, генераторные установки…), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Отношение активной мощности к полной мощности цепи называется коэффициентом мощности.

Коэффициент мощности (cos фи) есть безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Значения коэффициента мощности:

1.00

идеальный показатель

0.95

хорошее значение

0.90

удовлетворительное значение

0.80

плохое значение

Большинство производителей определяют потребляемую мощность своего оборудования в Ваттах.

В случае, если потребитель не имеет реактивной мощности (нагревательные приборы – такие как чайник, кипятильник, лампа накаливания, ТЭН), информация о коэффициенте мощности неактуальна, в виду того, что он равен единице. То есть в таком случае полная мощность, потребляемая прибором и необходимая для его эксплуатации, равна активной мощности в Ваттах.

P = I*U*Сos (fi) →

P = I*U*1 →

P=I*U

Пример: В паспорте электрического чайника указана потребляемая мощность – 2 кВт. Это значит, что и полная мощность, необходимая для успешного функционирования прибора, составит 2 кВА.

Если же потребителем является прибор, имеющий в своем составе реактивное сопротивление (емкость, индуктивность), в технических данных всегда указывается мощность в Ваттах и значение коэффициента мощности для данного прибора. Это значение определяется параметрами самого прибора, а конкретно – соотношением его активных и реактивных сопротивлений.

Пример: В техническом паспорте перфоратора указана потребляемая мощность – 5 кВт и коэффициент мощности (Сos(fi)) – 0.85. Это значит, что полная мощность, необходимая для его работы, составит

Pполн.= Pакт./Cos(fi)

Pполн.= 5/0.85= 5,89 кВА

При выборе генераторной установки часто возникает резонный вопрос – «Сколько же мощности она все-таки сможет выдать?». Это обусловлено тем, что в характеристиках генераторных установок указывается полная мощность в кВА. Ответом на этот вопрос и служит данная статья.

Пример: Генераторная установка мощностью 100 кВА. Если потребители будут иметь только активное сопротивление, то кВА=кВт. Если также будет присутствовать и реактивная составляющая, то надо учитывать коэффициент мощности нагрузки.

Именно поэтому в характеристиках генераторных установок указывается полная мощность в кВА. А уж как Вы ее будете использовать – решать только Вам.

чем отличаются, какая разница, расшифровка

Многие люди, интересующиеся электроникой и гальванистикой, спрашивают, как перевести ква в квт, чем отличаются эти величины друг от друга, и какого их соотношение. Об этом далее.

Что такое кВТ и кВА

Электрическая мощность является величиной, характеризующей скорость передачи с потреблением либо генерацией электроэнергии за временную единицу. Чем больше сила, тем больше работы может выполнить электрическое оборудование за временную единицу. Бывает она полной, реактивной и активной.

кВТ и кВА

кВт — полная электрическая сила, а кВА — активная согласно понятию, представленному Джейсом Уаттом. В соответствии с этим в первом случае одна единица равняется 1000 Ватт. Одним Вт является мощность, при которой за одну секунду может совершаться работа в один джоуль. Часть полной силы, передающейся в нагрузку за конкретный период тока, это активная мощность. Она подсчитывается в качестве произведения действующих значений тока с напряжением на угловой косинус со сдвигом фаз около них.

Подробное определение киловатта

Киловатт ампер является полной мощностью, которая потребляется любым электрическим оборудованием, а киловатт считается активной энергией, которая тратится на выполнение полезной работы. Полная сила это сумма активных и реактивных показателей.

Обратите внимание! Все электрические приборы, имеющие статус потребителей, делятся на несколько категорий:

  • активные,
  • реактивные.

К первым относятся лампы накаливания с обогревателями и электрическими плитами. Ко вторым относятся кондиционеры с телевизорами, дрелями и люминесцентными лампами.

Подробное определение киловатт ампер

Объект измерения

В ваттах на данный момент можно измерить любую силу, не только электрическую. К примеру, чтобы измерить двигательную автомобильную силу, применяются ватты. Но зачастую используются не сами они, а их производные. Аналогично с метрами и километрами, граммами и килограммами, 1 кВТ=1000 Вт. Поэтому все электроприборы, как правило, имеют выраженную силу.

Что касается амперной величины, самыми популярными приборами, измеряемыми в ней, являются источники бесперебойного питания и различные промышленные и строительные генераторы питания.

Что измеряется в величинах

Отличия

Измерение активной силы происходит в киловаттах, а полной или номинальной — в киловольт амперах. Вольт ампер с киловольт ампером, будучи мощностной единицей тока, подсчитывается как произведение токовых амперных значений в электрической цепи и вольтовое напряжение на ее окончаниях. Ватт на киловатт является энергией, совершаемой за секунду, и равной одному джоулю. Измерение осуществляется при помощи силы постоянно действующей энергии при вольтовом напряжении.

Обратите внимание! Только часть от мощности устройства участвует в момент совершения рабочей деятельности. Остальная же выходит наружу.

Чем отличаются величины

Соотношение кВА и кВТ

Любая электрическая установка характеризуется несколькими показателями, а именно полной и активной мощностью, а также угловым косинусом по отношению сдвига энергии к току. Соотношение значений можно выразить формулой S = A / Сos φ.

Соотношение величин по формуле

Перевод кВА в кВТ и наоборот

Если говорить обычным языком, отличие квт от ква в том, что кВт является полезной, а кВА полной мощностью. Согласно следующему примеру перевода значений кВА-20%=кВт и 1=0,8 кВт. Для перевода ампера в квт необходимо от первого значения вычесть двадцать процентов. В итоге выйдет показатель, имеющий малую погрешность. Например, если бытовой стабилизатор обладает мощностью 15, то чтобы вычислить киловатты, необходимо это значение перемножить на 0,8 или же отнять от него 20%. Потом можно все пересчитать, используя онлайн-конвертеры. В итоге необходимо действовать по простой формуле:

P=S * Сosf, где P является активной мощностью, S-полной силой, Сos f мощностным коэффициентом.

Формула перевода

Для обратного действия и вычисления киловольт, к примеру, на портативном генераторе 10 киловатт необходимо поделить это значение на 0,8, согласно приведенной ниже формуле:

S=P/ Сos f, где S считается полной мощностью, P активной силой, а Сos f мощностным коэффициентом. Более подробная справочная информация дана в любом физическом учебном пособии, в том числе и ответ на вопрос, как мощность трансформатора 1000 ква перевести в кВт.

Формула перевода кВТ в кВА

Стоит отметить, что наиболее часто встречающимися расшифровками мощностного коэффициента являются следующие значения: 1 является оптимальным значением, 0,95 хорошим, 0,90 — удовлетворительным, 0,80 средним, 0,70 низким и 0,60 плохим. Поэтому силу трансформатора 1000 ква перевести в киловатты не составит труда.

Мощностный коэффициент значения

Отвечая на вопрос, какая у киловатт и киловольт разница, можно сказать, что это две разные величины. В первом случае это единица измерения полной мощности, а во втором только активной. Разница их проявляется в работе электрического оборудования, несмотря на возможную схожесть в написании величин.

полная мощность — это… Что такое полная мощность?


полная мощность
по́лная мо́щность (кажущаяся мощность) (эл.–техн.), величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах. Для синусоидального тока равна , где Р и Q — активная и реактивная мощности. Единица измерения — B·А.

* * *

ПОЛНАЯ МОЩНОСТЬ

ПО́ЛНАЯ МО́ЩНОСТЬ (кажущаяся мощность), в электротехнике — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на ее зажимах. Для синусоидального тока равна
,
где P и Q — активная и реактивная мощности. Единица измерения — В.А.

Энциклопедический словарь. 2009.

  • полная вода
  • полное внутреннее отражение

Смотреть что такое «полная мощность» в других словарях:

  • Полная мощность — Длительная эффективная мощность двигателя, назначаемая и гарантируемая изготовителем при заданной частоте вращения двигателя, заданных окружающих условиях, полной комплектности и рабочих условиях, для которых предназначен дизель, устанавливаемая… …   Словарь-справочник терминов нормативно-технической документации

  • полная мощность — Величина, равная произведению действующих значений электрического напряжения и электрического тока на входе двухполюсника. [ГОСТ Р 52002 2003] полная мощность Произведение действующих значений напряжения и тока, относящихся к одному и тому же… …   Справочник технического переводчика

  • ПОЛНАЯ МОЩНОСТЬ — (кажущаяся мощность) в электротехнике величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на ее зажимах. Для синусоидального тока равна,где P и Q активная и реактивная мощности. Единица… …   Большой Энциклопедический словарь

  • полная мощность — суммарная мощность Словарь русских синонимов …   Словарь синонимов

  • полная мощность — pilnutinė galia statusas T sritis fizika atitikmenys: angl. total power vok. Gesamtleistung, f; Totalleistung, f rus. общая мощность, f; полная мощность, f; суммарная мощность, f pranc. puissance totale, f …   Fizikos terminų žodynas

  • полная мощность — pilnutinė galia statusas T sritis automatika atitikmenys: angl. apparent power; total power vok. Gesamtleistung, f; Scheinleistung, f; Totalleistung, f rus. кажущаяся мощность, f; полная мощность, f pranc. puissance apparente, f; puissance totale …   Automatikos terminų žodynas

  • полная мощность — pilnutinė galia statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, išreiškiamas efektinės įtampos ir efektinio srovės stiprio sandauga: S = U · I; čia U – efektinė įtampa, I – efektinis srovės stipris, S – pilnutinė galia.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • полная мощность — pilnutinė galia statusas T sritis Standartizacija ir metrologija apibrėžtis Kompleksinės galios modulis. Matavimo vienetas – voltamperas (V · A). atitikmenys: angl. apparent power; total power vok. Gesamtleistung, f; Scheinleistung, f;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Полная мощность —         кажущаяся мощность, величина, равная произведению действующих значений периодического электрического тока в цепи I и напряжения U на её зажимах: S=U․I; для синусоидального тока (в комплексной форме) комплексное действующее значение… …   Большая советская энциклопедия

  • ПОЛНАЯ МОЩНОСТЬ — см. в ст. Мощность электрическая …   Большой энциклопедический политехнический словарь

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *