Site Loader

Содержание

Магнитное поле однородное и неоднородное: характеристика и определение

Одним из основных понятий, используемых в физике, является магнитное поле. Оно воздействует на перемещающиеся электрические заряды. Незаметно и не ощущается человеком, однако его наличие можно выявить с помощью магнита или железа. Также достаточно легко понять, какое магнитное поле называется однородным и неоднородным.

Определение и способы обнаружения магнитного поля

Когда мы сталкиваемся с понятием магнитного поля, у нас возникает вопрос касательно того, какое это магнитное поле, однородное или неоднородное оно. Прежде чем дать ответ на такой вопрос, следует дать начальные определения терминам.

какое магнитное поле называется однородным и неоднородным

Магнитное поле полагается считать особым видом материи, существующим возле перемещающихся электрических зарядов, в особенности возле проводников с током. Обнаружить можно, используя магнитную стрелку или железные опилки.

Однородное поле

Встречается внутри полосового магнита и в соленоиде, когда его длина намного больше диаметра. В таком случае по правилу буравчика контуры магнитного поля будут направляться против часовой стрелки.

Магнитные линии параллельны и прямые, пустота между ними всегда одинакова, сила влияния на магнитную стрелку не различается во всех точках по своей величине и направлению.

Неоднородное поле

В случае с неоднородным полем магнитные линии будут искривляться, пустота между ними различается по величине, сила воздействия на магнитную стрелку различается в разных точках поля по своей величине и направлению. Также сила, действующая на помещённую в поле полосового магнита стрелку, действует в различные точки с разными по модулю и направлению силами. Это называют неоднородным полем. Линии такого поля искривлены, частота меняется от точки к точке.

магнитное поле однородное и неоднородное

Обнаружить такого рода поле возможно возле прямого проводника с током, полосового магнита и соленоида.

Что такое магнитные линии

В первую очередь при возникновении задачи следует определить, какое магнитное поле, однородное или неоднородное, образуется, следует узнать о магнитных линиях, по форме которых становится понятна характеристика поля.

примеры однородного и неоднородного магнитного поля

Чтобы изобразить магнитное поле, стали использовать магнитные линии. Они являются воображаемыми полосами, расположенными вдоль магнитной стрелки и размещенными в магнитном поле. Провести магнитную линию возможно сквозь любую точку поля, она будет иметь направление и всегда замыкаться.

Направление

Выходят из северного полюса магнита и направляются в южный. Изнутри самого магнита все строго наоборот. Сами линии не обладают началом или концом, сомкнуты или проходят из бесконечности в бесконечность.

За пределами магнита линии располагаются максимально густо возле полюсов. Из этого становится ясно, что наиболее сильно воздействие поля вблизи полюсов, и по мере удаления от низа оно слабеет. Учитывая, что магнитные полосы искривлены, то направление силы, которая действует на магнитную стрелку, тоже изменяется.

Как изобразить

Чтобы понять, чем отличаются однородные магнитные поля от неоднородных, необходимо их научиться изображать, используя магнитные линии.

Следует рассмотреть названный выше пример возникновения однородного магнитного поля в так называемом соленоиде, который представляет собой проволочную цилиндрическую катушку, через какую пускают ток. Внутри него магнитное поле может считаться однородным, при условии что длина намного больше диаметра (вне катушки поле будет неоднородным, магнитные линии будут располагаться так же, как и у полосового магнита).

Однородное поле также располагается в центре постоянного полосового магнита. В какой-либо ограниченной области в пространстве возможно воспроизвести и однородное магнитное поле, в котором силы воздействия на намагниченную стрелку будут одинаковы по модулю и направлению.

Чтобы изобразить магнитное поле, используют следующий пример. Если линии расположатся перпендикулярно к чертежной плоскости и направляются от смотрящего, то их изображают крестиками, если на смотрящего — точками. Как и с током, каждый крестик является как бы видимым хвостовым оперением летящей от смотрящего стрелы, а точка — острее стрелы, которая летит к нам.

чем отличаются однородные магнитные поля от неоднородных

Также требование «Изобразите однородное и неоднородное магнитное поле» легко выполнимо. Попросту нарисуйте эти магнитные линии, учитывая характеристики поля (однородность и неоднородность).

Однако существование неоднородных полей сильно усложняет задачу. В таком варианте получение какого-либо физического результата с использованием общего уравнения маловероятно.

Отличия

Ответ на вопрос о том, чем отличаются однородные магнитные поля от неоднородных, достаточно легко дать. В первую очередь это зависит от магнитных линий. В случае с однородным полем расстояние между ними будет одинаково, и они будут равномерно располагаться, с одной и той же силой действуя на приборы в любой точке. Для неоднородных полей все строго наоборот. Линии неравномерно расположены, в различных местах действуют с неодинаковой силой на приборы.

На практике достаточно часто встречается неоднородное поле, о чем также следует помнить, поскольку однородные поля могут встречаться разве что внутри предмета, вроде магнита или соленоида. Наружные же наблюдения зафиксируют неоднородность.

Обнаружение поля

Поняв, что такое однородные и неоднородные магнитные поля, и определения их разобрав, следует узнать, каким способом можно обнаружить их.

Наиболее простым для этого является опыт, проведенный Эрстедом. Заключается он в использовании магнитной стрелки, которая помогает определить существование электрического тока. Как только ток будет передвигаться по проводнику, расположенная рядом стрелка придет в движение, за счет того что существуют однородные и неоднородные магнитные поля.

Взаимодействие проводников с током

однородные и неоднородные магнитные поля

У каждого проводника с током наблюдается свое магнитное поле, воздействующее с определенной силой на ближайший. В зависимости от направления тока, проводники будут притягиваться или отталкиваться друг от друга. Поля, возникшие от различных источников, будут складываться и образовывать единое результирующее поле.

Как создаются и для чего

Примеры однородного и неоднородного магнитного поля, применяемые в электронно-лучевых приборах, создаются катушками, которые пропускают ток. Для получения необходимой формы магнитного поля применяют полочные наконечники и магнитные экраны, сделанные из материй, имеющих сильную магнитную проницаемость.

 какое магнитное поле однородное или неоднородное образуется

Влияние неоднородных магнитных полей способно изменить протекание необратимых явлений физико-химического характера, в основном гетерогенного процесса. Появление турбулентной диффузии ведет к увеличению на несколько порядков скорости перемещения газа из какой-либо жидкости к поверхности в виде микропузырьков. Эффект локальной дегидратации ионов и частиц обусловлен интенсификацией процесса микрокристаллизации. В проточных средах высокоэнергетические реакции способны создавать свободные радикалы, атомарный кислород, перекиси и азотистые соединения. Случается коагуляция, и в жидкости оказываются продукты, вызванные эрозионным разрушением.

Во время гидродинамической кавитации большая величина возникающих пузырьков и каверн усложняет их унос жидкостью из территории пониженного давления в зону большего давления, где ведется коллапсирование пузырьков. Во время коллапса пузырька малой величины имеется малое содержание воздуха и возникает сильная химическая реакция, схожая с плазменным разрядом. Присутствие неоднородных магнитных полей ведет к неустойчивости каверн, их распаду и возникновению мелкомасштабных вихрей и пузырьков. Учитывая, что давление в центре такого вихря понижено, он конверсирует газовые пузырьки незначительного размера.

Во время измерения индукции в неоднородном магнитном поле следует помнить, что напряжение Холла пропорционально усредненной величине индукции поля в пределах территории, ограниченной поверхностью преобразователя.

Чтобы сфокусировать параксиальные пучки, также используют неоднородные магнитные поля, образовываемые короткими катушками, являющимся многослойными соленоидами, длина коих соизмерима с их диаметром. На электрон, попадающий в такое поле, действуют силы, меняющие его направление. Электрон под влиянием такой силы приближается к оси линзы, при том плоскость, в которой находится его траектория, искривляется. Электрон продвигается по спиралевидному отрезку, который пересекает оси линзы в заданной точке.

Пространственный фактор увеличения вызван пространственным рассредотачиванием неоднородных полей на территории гетерогенной системы, запиленной жидкостью. Чтобы получить инверсию населенности уровней методом разделения, применяют неоднородные поля, созданные многополосным магнитом. Форма полюсов подобна стержням в квадрупольном конденсаторе молекулярного генератора на аммиаке.

Способы использования

Магнитно-порядковый способ дефектоскопии базируется на тяге магнитных частиц силами неоднородных полей, появляющихся над дефектами. По скоплению такого порошка выясняют присутствие дефекта, его величину и положение на проверяемой детали.

изобразите однородное и неоднородное магнитное поле

Немалым недостатком метода молекулярных пучков с применением сильных неоднородных магнитных полей считается малый эффект расщепления. Имеется простой и кажущийся неправдоподобным метод увеличения этого эффекта. Заключается он в применении легкого наружного магнитного поля. Последнее даст возможность увеличить область использования ядерных прецессионных магнитометров в сторону неоднородных магнитных полей.

Преимуществом такого метода является высокая разрешающая способность, дающая возможность фиксировать неоднородные магнитные поля, соразмерные с величиной частиц магнитного слоя ленты, а также возможность нахождения повреждений на сложных поверхностях и в тесных проемах.

Недостатками являются необходимость вторичной обработки информации, фиксируются лишь частицы магнитных полей вдоль ленты, сложность размагничивания и сохранения ленты, и необходимо предотвращать влияние внешних магнитных полей.

Магнитное поле однородное и неоднородное встречаются достаточно часто, несмотря на то, что незаметны простому обывателю. Примеры однородного и неоднородного магнитного поля можно обнаружить в полосовых магнитах и соленоидах. При этом заметить их можно, используя простейшую магнитную стрелку или железные опилки.

Однородное и неоднородное магнитное поле

Магнитное поле

Эмпирически показано, что перемещающиеся заряды действуют друг на друга иначе, чем стационарные. Помимо взаимодействия при помощи электрического поля, движущиеся заряды оказывают действия друг на друга магнитным полем.

Прежде чем говорить об однородности или неоднородности магнитного поля следует определить с помощью каких основных физических величин можно количественно описывать магнитное поле. Рассмотрим такие характеристики магнитного поля как:

  • Вектор магнитной индукции поля.
  • Вектор напряженности магнитного поля.
  • Индукция магнитного поля

Магнитная сила ($\vec{F}_{m})$), которая оказывает воздействие на элементарный заряд q, может быть найдена как:

$\vec{F}_{m}=q\left[ \vec{v}\vec{B} \right]\left( 1 \right)$

где $\vec{v}$– скорость перемещения частицы. Величину силы (1) определим:

$F_{m}=qvB\sin {\alpha \, \left( 2 \right),}$

где $\alpha =\hat{\vec{v}\vec{B}}$.

Уравнение (1) указывает нам на то, что магнитная сила всегда нормальна к вектору скорости и вектору магнитной индукции $\vec{B} $ Если движется положительный заряд, то векторы $\vec{F}_{m}$, $\vec{v}$, $\vec{B}$ связывает правило правого винта.

Вектор магнитной индукции ($\vec{B}$) является характеристикой силового действия магнитного поля. Величина магнитной индукции численно равна максимальной магнитной силе, которая действует на частицу с зарядом 1 Кл, которая движется со скоростью 1 м/с в вакууме, нормально вектору магнитной индукции.

Для магнитных полей выполняется принцип суперпозиции: магнитное поле, которое создается системой перемещающихся зарядов или рядом токов, находят как векторную сумму магнитных полей, которые созданы каждым отдельным источником поля.

Величина магнитной индукции поля зависит от магнитных свойств вещества, в котором поле локализовано. В веществе магнитное поле является суперпозицией внешнего магнитного поля и магнитных полей, создаваемых молекулярными токами.

Определение 1

Магнитное поле называют постоянным, если оно неизменно во времени.

Магнитные поля можно классифицировать, разделяя поля на:

  • однородные;
  • неоднородные.

Определение 2

Магнитное поле называют однородным, если векторы магнитной индукции во всех точках этого поля одинаковы:

$\vec{B}$=const.

Если $\vec{B}$≠const, то такое магнитное поле называется неоднородным.

Магнитное поле, как и электрическое можно изобразить графически при помощи силовых линий. Это делают для наглядности.

Линии магнитной индукции

Силовые линии магнитного поля называются линиями магнитной индукции. Касательные к этим линиям в любых точках имеют направления аналогичные направлениям векторов магнитной индукции в этих же точках.

Например, силовые линии прямого тока – это окружности с центрами на оси тока (рис.1).

Рисунок 1. Силовые линии прямого тока. Автор24 — интернет-биржа студенческих работ

У всех постоянных магнитных полей силовые линии замкнутые (или начинаются и заканчиваются в бесконечности). Это свойство качественного отличия постоянного электрического поля от магнитного.

Направление силовых линий магнитного поля связано с правилом буравчика.

Силовые линии постоянных магнитов начинаются на его северных полюсах и приходят к южным полюсам. Внутри постоянных магнитов силовые линии замыкаются.

Представление магнитных полей при помощи линий индукции говорит не только о направлении $\vec{B}$, но и модуле магнитной индукции. Линии магнитной индукции магнитного поля наносят на чертеж, изображая поле, такой густоты, что количество их, пронизывающих единичную площадку, нормальную к этим линиям, было пропорционально модулю магнитной индукции. На таких чертежах там, где магнитная индукция увеличивается по модулю, силовые линии сгущаются. Там, где модуль магнитной индукции уменьшается, силовые линии разрежаются.

Определение 3

Количество силовых линий, которые пересекают поверхность, называют магнитным потоком:

$Ф=\int\limits_S {\vec{B}d\vec{S}\left( 3 \right).}$

В однородном магнитном поле силовые линии изображаются как система параллельных прямых, находящихся на равных расстояниях (рис.2).

Рисунок 2. Однородное магнитное поле. Автор24 — интернет-биржа студенческих работ

Отличительные черты однородного магнитного поля:

  1. Силовые линии магнитного поля — это параллельные прямые.
  2. Плотность линий магнитной индукции везде одна.
  3. Сила воздействия поля на магнитную стрелку в любой точке поля одинакова по модулю и направлению.

Неоднородное магнитное поле изображено на рис.3.

Рисунок 3. Неоднородное магнитное поле. Автор24 — интернет-биржа студенческих работ

Отличительные черты неоднородного магнитного поля:

  1. Искривленность линий магнитной индукции.
  2. В различных точках поля густота силовых линий различны.
  3. Сила воздействия магнитного поля на магнитную стрелку является разной в разных точках поля по модулю и направлению.

Напряженность магнитного поля

Если магнитное поле находится в веществе (магнитная проницаемость $\mu \ne 1)$;), то в таком веществе происходит процесс намагничивания. В этом случае во всем объеме вещества возникают молекулярные токи, порождающие свое магнитное поле. Магнитное поле в веществе получается равным сумме внешнего поля (или поля в вакууме) $\vec{B}_{0}$ и поля молекулярных токов $\vec{B}_{mol}$:

$\vec{B}=\vec{B}_{0}+\vec{B}_{mol}\left( 4 \right)$

Магнитные свойства вещества характеризует такая физическая величина, как магнитная проницаемость $\mu$:

$\mu =\frac{B}{B_{0}}\left( 5 \right)$.

Вектор напряженности магнитного поля ($\vec{H}$) — это комбинация разных физических величин, которые относятся к полю и веществу, и, следовательно, физического смысла не имеет:

$\vec{H}=\frac{\vec{B}}{\mu_{0}}-\vec{P}_{m}\left( 6 \right)$

где $\vec{P}_{m}$ – вектор намагниченности (вектор интенсивности намагничения вещества). Однако вектор напряженности является количественной характеристикой магнитного поля, которая не зависит от магнитных свойств вещества, в котором его рассматривают. Применение $\vec{H}$ упрощает количественные описания магнитного поля в веществе.

Связь между $\vec{B}$ и $\vec{H}$ является линейной, если вещество считают изотропным:

$\vec{B}=\mu \mu_{0}\vec{H}\left( 7 \right)$.

Для магнитного поля в однородном изотропном магнетике напряженность магнитного поля не зависит от магнитной проницаемости вещества и равна напряженности в избранной точке поля для вакуума, если поле создают те же источники.

Для однородного магнитного поля имеем:

$\vec{H}=const (8)$.

Относительно неоднородного магнитного поля можно сказать, что:

$\vec{H}$≠const (9).

Примеры однородных магнитных полей

Однородных магнитных полей встречается совсем немного. К однородным магнитным полям относят:

  • магнитное поле внутри полосового магнита,
  • внутри длинного соленоида, если его длину можно считать намного большей, чем его диаметр.

Примеры неоднородных магнитных полей

К неоднородным магнитным полям относится большинство магнитных полей, например:

  • магнитное поле проводника с током,
  • вокруг постоянного магнита,
  • поле тороида,
  • магнитное поле витка с током и т.д.

Физика 9 кл. Неоднородное и однородное магнитное поле

Физика 9 кл. Неоднородное и однородное магнитное поле

 

1. Какое магнитное поле называется однородным? и где оно существует?

Однородное магнитное поле — это магнитное поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.
Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.

Например:

Однородное магнитное поле существует:
а) внутри соленоида, т. е. проволочной цилиндрической катушки с током, если длина соленоида значительно больше его диаметра.
б) внутри постоянного полосового магнита в центральной его части.

 

2. Какое магнитное поле называется неоднородным? и где оно существует?

Неоднородное магнитное поле — это магнитное поле, в котором сила, действующая на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.
Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.

Например:

Неоднородное магнитное поле существует:
а) снаружи полосового магнита,
б) снаружи соленоида (катушки с током),
в) вокруг прямого проводника с током.


3. Что вы знаете о направлении и форме линий поля полосового магнита?

Магнитное поле постоянного полосового магнита:

Магнитные линии выходят из северного полюса магнита и входят в южный.
Внутри магнита они направлены от южного полюса к северному.
Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность.
Вне магнита магнитные линии расположены наиболее густо у его полюсов.
Это значит, что возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает.
Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на нее поле магнита.
Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.
Сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку. в разных точках поля может быть различной как по модулю, так и по направлению.
Поле постоянного полосового магнита является неоднородным снаружи магнита и однородным внутри его центральной части..

4. Что вы знаете о магнитном поле прямого проводника с током?

Магнитное поле может прямолинейного проводника с током:

Проводник с током расположен перпендикулярно к плоскости чертежа.
Кружочком обозначено сечение проводника.
Точка означает, что ток направлен из-за чертежа к нам.
Магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.
Магнитное поле прямого проводника с током неоднородно.

5. Что вы знаете о магнитном поле соленоида (катушки с током)?

Магнитное поле соленоида (катушки с током):

Магнитное поле соленоида (катушки с током) аналогично магнитному полю полосового магнита, если длина катушки больше ее диаметра.
Катушка с током представляет собой магнит.
Тот конец соленоида, из которого магнитные линии выходят, является северным полюсом, а тот, в который входят, — южным.
Однородное магнитное поле, возникает внутри соленоида, т. е. проволочной цилиндрической катушки с током.
Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра.
Вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита.

6. Какое магнитное поле — однородное или неоднородное — образуется вокруг полосового магнита? вокруг прямолинейного проводника с током? внутри соленоида, длина которого значительно больше его диаметра?

Вокруг полосового магнита образуется неоднородное магнитное поле.

Вокруг прямолинейного проводника с током образуется неоднородное магнитное поле.

Внутри соленоида, если длина его больше его диаметра, образуется однородное магнитное поле.

7. Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля? однородного магнитного поля?

Сила, с которой манитное поле полосового магнита действует на помещенную в его неоднородное поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

Сила, с которой манитное поле катушки с током действует на помещенную внутри катушки (в однородное поле) магнитную стрелку, в разных точках поля должна быть одинаковой как по модулю, так и по направлению.

8. Сравните картины расположения линий в неоднородном и однородном магнитных полях.

Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.

Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.

9. Как изображают линии магнитного поля, направленные перпендикулярно к плоскости чертежа?


Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками.

Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены из-за чертежа к нам, то их изображают точками.

Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с н45аправлением магнитных линий).

Следующая страница — смотреть

Назад в «Оглавление» — смотреть

Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле (Зарицкий А.Н.)

Тема сегодняшнего урока «Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле». Мы вспомним понятия постоянный магнит, магнитное поле, рассмотрим графическое изображение магнитного поля. Узнаем различие однородного и неоднородного магнитных полей

Что многим из нас приходит в голову, когда мы слышим слово «магнит»? Скорее всего, это магнитная стрелка компаса. Вспомнив уроки географии и природоведения, подумаем, как же устроен компас. Основной его деталью является так называемая магнитная стрелка, обычно она двухцветная: синим покрыт её северный полюс, а красным южный.

Рис. 1. Компас

Стрелка ориентируется в пространстве таким образом, что своей синей частью показывает на северный полюс Земли, красной же своей частью – на южный полюс. Именно из-за такого свойства магнитной стрелки и пошли названия полюсов магнита. Северный полюс магнита принято обозначать большой буквой N от голландского слова «норд», которое в переводе обозначает «север», южный полюс магнита принято обозначать буквой S, от немецкого слова «сьюден», которое в переводе обозначает «юг». Теперь давайте обратим внимание на основное свойство магнитной стрелки – притягиваться к определенным участкам нашей планеты. Таким образом, возникает сила, которая ориентирует стрелку в пространстве. Эту силу принято называть магнитной. Давайте вспомним другие примеры магнитного взаимодействия: практически ежедневно мы сталкиваемся с таким устройством, как электромагнитный замок, они установлены на множестве дверей с домофонами, в них массивная пластина притягивается к мощному магниту, установленному на дверной раме.

Рис. 2. Устройство домофона

Пока вы не используете магнитный ключ – дверь не откроется.

Еще одно устройство, которое любят демонстрировать в зарубежных фильмах и научно-популярных передачах: это огромный электромагнит, установленный на манипуляторе, который притягивает к себе и переносит старые разбитые автомобили на свалке мусора.

Рис. 3. Магнит для притягивания автомобилей

В данном случае речь идет также о магнитной силе, причем настолько значительной, что она свободно преодолевает силу тяжести в десятки тысяч ньютон. Все описанные устройства объединяет то, что они работают на так называемом магнитном взаимодействии (или, как это принято называть, электромагнитном взаимодействии). В случае с магнитной стрелкой мы имеем дело с постоянным магнитом, в двух других случаях речь идет об электромагнитах. Давайте дадим определение постоянному магниту: Постоянный магнит – это тело, обладающее собственным магнитным полем.

На прошлых уроках мы выяснили, что причиной возникновения магнитной силы является наличие магнитного поля. Магнитное поле порождается движущимися электрическими зарядами и, в частности, электрическим током, поскольку это упорядоченный поток заряженных частиц. Например, магнитное поле образуется вокруг проводника с током. Каким же образом можно пояснить наличие магнитного поля у постоянных магнитов, у которых никаких видимых токов нет? Согласно гипотезе великого французского физика Ампера, в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. В магнитах такие кольцевые токи ориентируются одинаково. Магнитные поля, которые они образуют, направлены одинаково и усиливают друг друга. В результате образуется магнитное поле внутри и вблизи постоянного магнита. Когда мы ранее сталкивались с понятием «поле», то возникала проблема понимания, что же это такое. Если сравнивать с понятием «вещество», этой проблемы, очевидно, нет, так как из вещества созданы все окружающие нас тела, мы их можем потрогать, мы их можем увидеть. Что же касается магнитного поля, то это особый вид материи, который проявляется через взаимодействие с определенными телами. Вспомним, что гравитационное поле взаимодействует с телами, имеющими массу, то есть со всеми телами. При этом электрическое поле взаимодействует с телами, имеющими заряд, что же касается поля магнитного, то оно будет взаимодействовать с телами, в которых есть подвижные заряды. Из этого возникает вопрос: если поле нельзя увидеть, можно ли его как-то изобразить? Проведем эксперимент, возьмем обыкновенный полосовой магнит, положим его на стол и накроем обыкновенной прозрачной пластиковой накладкой. Сверху на поверхность накладки над магнитом аккуратно посыпаем железные опилки, в процессе посыпания мы можем увидеть интересный эффект: опилки будут распределяться неравномерным образом, образуя так называемые дорожки, и картина этих дорожек получается упорядоченной. Что же мы увидели и почему так происходит?

Рис. 4. Силовые линии магнитного поля в опыте  железными опилками

Наш опыт позволяет наглядно продемонстрировать так называемые силовые линии магнитного поля (или, как их еще именуют, просто магнитные линии). Магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. В нашем эксперименте в роли магнитных стрелок выступают железные опилки. Они имеют очень простое свойство намагничиваться во внешнем магнитном поле и выстраиваться вдоль магнитных линий, причем по правилу взаимодействия магнитов, то есть противоположными полюсами друг к другу. Стоит отметить, что магнитные линии могут быть как прямолинейными, так и криволинейными, при этом правило их построения очень простое: в любой точке нахождения магнитной стрелки касательная, проведенная через нее должна быть и касательной к магнитной линии.

Для того чтобы правильно изображать магнитное поле, не проводя постоянных экспериментов с железными опилками и магнитами, необходимо знать правило его построени.

Во-первых, силовые линии магнитного поля являются замкнутыми либо уходят на бесконечность. Кроме этого, следует помнить, что они выходят из северного полюса магнита и входят в южный. Во-вторых, наиболее сильное магнитное поле является у полюсов магнитов, что изображается как более плотное расположение магнитных линий, в областях же с менее сильным магнитным полем магнитные линии изображают на большем расстоянии друг от друга.

Какие же выводы мы можем сделать из этих правил?

Магнитные линии позволяют изображать направление поля в данной точке. Магнитные линии позволяют определять силу действия этого поля.

Рассмотрим картину поля полосового магнита. Вблизи полюсов его магнитные линии расположены более плотно, чем вдали них. Кроме того, линии искривлены, это означает, что в различных точках пространства вблизи магнита, его поле будет действовать на магнитную стрелку с различной силой и по-разному ее поворачивать.

               

Рис. 5. Силовые линии неоднородного  магнитного  поля

Таким образом, сила, с которой поле полосового магнита действует на магнитную стрелку, в разных точках поля может быть различна как по модулю, так и по направлению. Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, и их густота меняется от точки к точке. Другим примером неоднородного магнитного поля является поле проводника с током.

Рис. 6. Неоднородное магнитное поле проводника с током

На рисунке точкой обозначено направление тока на нас от рисунка, если бы там был крестик, то направление было бы от нас к  рисунку. Эти обозначения именуют правилом стрелы. Точка обозначает острие, летящей в нашу сторону стрелы, а крестик ее хвостовое оперение, которое можно было бы увидеть, если бы стрела улетела от нас. Магнитные линии проводника представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от  проводника, что означает, что поле тем слабее, чем дальше от проводника. Поскольку линии такого поля искривлены и в различных точках расположены на разном расстоянии, то такое поле неоднородно. Кроме этого, необходимо отметить, что магнитное поле нашей планеты Земля также является неоднородным. Его сила очень зависит от географического расположения: на экваторе оно слабее, а на полюсах соответственно сильнее.

Что касается однородного магнитного поля, то его можно рассматривать только в некотором приближении, связано это с тем, что однородное магнитное поле – это поле, в любой точке которого сила действия на магнитную стрелку одинаково по модулю и по направлению.

Рис. 7. Магнитные линии однородного магнитного поля

Поскольку линии магнитного поля в реальной ситуации всегда искривлены, то об однородности можно говорить только приблизительно.  Во-первых, однородным можно считать поле внутри, вблизи середины полосового магнита, о котором мы уже многократно говорили.

Во-вторых, примером практически однородного магнитного поля является поле внутри цилиндрической катушки с током, которую принято называть соленоидом, причем ее длина должна быть больше диаметра. Магнитные линии однородного магнитного поля параллельны и находятся на одинаковом расстоянии.

Итак, сегодня мы вспомнили такое понятие, как магнитное поле, перечислили случаи, когда оно образуется, ввели инструмент его графического изображения, то есть силовые магнитные линии.

На следующем уроке мы рассмотрим магнитное поле тока.

 

Домашнее задание

  1. Дать определение магнитной силе.
  2. В какой точке магнитное поле тока, протекающего по проводнику, действует на магнитную стрелку с наименьшей силой?
  3. В чем состоит различие между однородным и неоднородным магнитными полями?

 

Список литературы

  1. Перышкин А.В., Гутник Е.М. Физика 9, Дрофа, 2009.
  2. Громов С.В., Родина Н.А. Физика 9. — М.: Просвещение.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Class-fizika.narod.ru (Источник).
  2. Uchifiziku.ru (Источник).
  3. Ivanpobeda.ru (Источник).

Магнитное поле. Однородное и неоднородное магнитное поле

 «…Камень притягивать может железо,

камень же этот по имени месторождения

 магнитом назван был греками,

так как он найден в пределах магнетов».

Лукреций.

Магнитные явления известны людям с глубокой древности. Еще древние греки знали, что существует особый минерал, способный притягивать железные предметы. Это был один из минералов железной руды, который сейчас известен как магнетит. Его залежи находились возле города Магнесии на севере Турции. Слово «магнит» в переводе с греческого означает «камень из Магнесии».

Впервые свойства магнитных материалов использовали в Китае. Именно там более 4000 лет назад был сконструирован первый компас, и толькок XII веку он стал известен в Европе.

Известные с древних времен явления притяжения разноименных и отталкивания одноименных полюсов магнита напоминают явление взаимодействия разноименных и одноименных электрических зарядов. Однако многочисленные попытки ученых установить связь между электрическими и магнитными явлениями на протяжении многих столетий оставались безрезультатными.

Первыми экспериментами, показавшими, что между электрическими и магнитными явлениями имеется связь, были опыты датского физика Ханса Кристиана Эрстеда. В своём знаменитом опыте, описываемом ныне во всех школьных учебниках физики и проведённом в 1820 году, он обнаружил, что провод, по которому идёт ток, действует на магнитную стрелку.

Эрстед не только провёл свой опыт, но и сделал правильный вывод: «электрический конфликт не ограничен проводящей проволокой, а имеет довольно обширную сферу активности вокруг этой проволоки». Переводя на современный язык, это можно понимать так: «действие тока есть не только внутри провода (его нагревание), но и вокруг (магнитное поле)».

Открытие Эрстеда вызвало необычайный интерес его современников-физиков и послужило началом ряда исследований, показавших сходство магнитного действия тока и действия постоянного магнита.

У многих возникал вопрос: а существует ли обратное действие, то есть постоянного магнита на проводник с током? Для поиска ответа проделаем опыт.

Положим на стол полосовой магнит, а над ним подвесим прямой жёсткий проводник на гибких проводах, подводящих ток, но дающих вместе с тем возможность проводнику поворачиваться. Как только мы подключим источник тока, проводник развернётся перпендикулярно к магниту. Другой вариант этого же опыта. Гибкий провод подвешен рядом с вертикально закреплённым магнитом. Когда по проводу идёт ток, то на каждый участок провода действует сила, разворачивающая его перпендикулярно к магниту. Поэтому провод и обвивается вокруг магнита, указывая на «круговой» характер магнитного поля.

Французский физик Доминик Франсуа Жан Араго провёл серию своих опытов. Он обмотал медной проволокой стеклянную трубку, в которую вставил железный стержень. Как только был включён ток, стержень сильно намагнитился и к его концу крепко прилипли железные ключи; когда выключили ток, ключи отпали. Так был изобретён электромагнит — устройство, создающее сильное магнитное поле.

Открытие АрагО заинтересовало его соотечественника Андре-Мари Ампера, и он провёл опыты с параллельными проводниками с токами и обнаружил их взаимодействие. Ампер показал, что если в проводниках идут токи одинаковых направлений, то такие проводники притягиваются друг к другу. В случае же токов противоположных направлений, их проводники отталкиваются.

Напомним, что согласно гипотезе Ампера в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. На рисунке показано, что в магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.

Для наглядного представления магнитного поля пользуются магнитными линиями (их называют также линиями магнитного поля). Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.

Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.

Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно свидетельствует о том, что магнитных зарядов, подобных электрическим, в природе нет. Источником магнитного поля являются движущиеся заряды и переменные электрические поля.

За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку.

В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т.е. гуще, чем в тех местах, где поле слабее. Например, поле, изображенное на рисунке, слева сильнее, чем справа.

Рассмотрим картину линий магнитного поля постоянного полосового магнита. Из курса физики 8 класса известно, что магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность.

Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает. Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на нее поле магнита. Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.

Таким образом, сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.

Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками, а если из-за чертежа к нам — то точками. Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — острие стрелы, летящей к нам.

Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.

В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

На рисунке показано однородное поле, возникающее внутри так называемого соленоида, т. е. проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита). Из этого рисунка видно, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.

Однородным является также поле внутри постоянного полосового магнита в центральной его части.

Основные выводы:

– Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды.

– Для наглядного представления магнитного поля пользуются магнитными линиями. Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.

– Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно свидетельствует о том, что магнитных зарядов, подобных электрическим, в природе нет.

– За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку.

– Сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению. Такое поле называется неоднородным.

– Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.

Однородное и неоднородное магнитное поле

1. Способы обнаружения магнитного поля 1 вид — рецептивный лёгкое 1 Б. Определить источники и действия магнитного поля.
2. Магнитные линии 1 вид — рецептивный лёгкое 1 Б. Выбрать правильное определение, особенность, направление магнитных линий, расположение магнитных стрелок в магнитном поле.
3. Свойства однородного и неоднородного магнитных полей 1 вид — рецептивный лёгкое 1 Б. Определить модуль, направление силы, расположение магнитных линий однородного и неоднородного полей.
4. Магнитные свойства веществ 2 вид — интерпретация лёгкое 1 Б. Определить, какие вещества обладают магнитными свойствами.
5. Разрезание магнита 2 вид — интерпретация лёгкое 1 Б. Определить полюса магнита после его разрезания.
6. Магнитные полюса 2 вид — интерпретация среднее 2 Б. Определить магнитные полюса по условию задачи и рисунку.
7. Расположение магнитной стрелки 3 вид — анализ среднее 2 Б. По рисунку определить правильное расположение магнитной стрелки.
8. Направление магнитных линий 3 вид — анализ среднее 2 Б. Определить правильное расположение или направление магнитных линий по рисунку.
9. Картина магнитного поля 3 вид — анализ сложное 3 Б. По картине линий, полученных с помощью железных опилок, и судя по расположению магнитной стрелки, определить полюса магнитов.

Работа и энергия в электростатическом поле

Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.

Работа по перемещению заряда в электростатическом поле.

  • Поле однородно

Однородным называется поле, напряжённость которого во всех точках одинакова (

). Поместим в данное поле заряд . Тогда, исходя из определения напряжённости электростатического поля, модуль силы, действующей на заряд:

(1)

Вспомним определение механической работы:

(2)

Подставим (1) в (2):

(3)

Соотношение (3) удобно для поиска работы, в случае заряда в однородном электростатическом поле.

Важно: в задачах однородное поле должно быть задано самим выражением «считать поле однородным», также электростатическое поле плоского конденсатора можно считать однородным.

  • Поле неоднородно

Неоднородным называется поле, напряжённость которого непостоянно в различных точках пространства. В случае неоднородности поля, воспользуемся выражением (3):

=  =  (4)

Мы воспользовались определением перемещения: разность конечного (

) и начального () положения тела.

Исходя из определения потенциала:

=  =  (5)
  • где
    • — проекция вектора на выбранную ось,
    • — потенциал в точке.

Тогда, если ввести

и , получим:

(6)

Т.е. в неоднородном электростатическом поле (а на самом деле, в любом), работа по переносу заряда численно равна переносимому заряду, умноженному на разность потенциалов между точками переноса.

Важно: неоднородное поле в задаче вводится через саму фразу «поле неоднородное» и через источники: точечный заряд, шар, которые также создают неоднородные поля.

Вывод: в задачах на нахождение работы по переносу заряда необходимо выяснить характер поля (однородное или неоднородное) и применить соответствующее выражение (3) или (6).

Энергия взаимодействия зарядов

А теперь обсудим энергию взаимодействия зарядов. Энергия взаимодействие зарядов на школьном уровне даётся без вывода, поэтому мы тоже ещё просто зафиксируем:

(7)

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка…

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *