Подключение трехфазного двигателя к однофазной сети без потери мощности
Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).
Кроме того, затруднён запуск двигателя под нагрузкой.
В предлагаемой статье описан метод подключения двигателя без потери мощности.
В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.
Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на
Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.
На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.
К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.
Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.
При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.
Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.
Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.
Таблица 1
P, Вт | IC1=IL1, A | C1, мкФ | L1, Гн |
---|---|---|---|
100 | 0.26 | 3.8 | 2.66 |
200 | 0.53 | 7.6 | 1.33 |
300 | 0.79 | 11.4 | 0.89 |
400 | 15.2 | 0.67 | |
500 | 1.32 | 19.0 | 0.53 |
600 | 1.58 | 22.9 | 0.44 |
700 | 1.84 | 26.7 | 0.38 |
800 | 2.11 | 30.5 | 0.33 |
900 | 2.37 | 34.3 | 0.30 |
1000 | 2.63 | 38.1 | 0.27 |
1100 | 2.89 | 41.9 | 0.24 |
1200 | 3.16 | 45.7 | 0.22 |
1300 | 3.42 | 49.5 | 0.20 |
1400 | 3.68 | 53.3 | 0.19 |
1500 | 3.95 | 57.1 | 0.18 |
В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.
Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20…40°.
На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.
Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.
Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить
Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.
Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.
В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:
IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° — IL1cos30° = Iлsinφ,
получаем следующие значения этих токов:
IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).
При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.
На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.
Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85…0,9.
Таблица 2
P, Вт | IC1, A | IL1, A | C1, мкФ | L1, Гн |
---|---|---|---|---|
100 | 0.35 | 0.18 | 5.1 | 3.99 |
200 | 0.70 | 0.35 | 10.2 | 2.00 |
300 | 1.05 | 0.53 | 1.33 | |
400 | 1.40 | 0.70 | 20.3 | 1.00 |
500 | 1.75 | 0.88 | 25.4 | 0.80 |
600 | 2.11 | 1.05 | 30.5 | 0.67 |
700 | 2.46 | 1.23 | 35.6 | 0.57 |
800 | 2.81 | 1.40 | 40.6 | 0.50 |
900 | 3.16 | 1.58 | 45.7 | 0.44 |
1000 | 3.51 | 1.75 | 50.8 | 0.40 |
1100 | 1.93 | 55.9 | 0.36 | |
1200 | 4.21 | 2.11 | 61.0 | 0.33 |
1300 | 4.56 | 2.28 | 66.0 | 0.31 |
1400 | 4.91 | 2.46 | 71.1 | 0.29 |
1500 | 5.26 | 2.63 | 76.2 | 0.27 |
В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.
Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.
Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.
Если же в магнитопровод ввести зазор порядка 0,2…1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.
Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.
В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.
Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.
Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.
Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.
Таблица 3
Зазор в магнитопроводе, мм | Ток в сетевой обмотке, A, при соединении выводов на напряжение, В | ||
---|---|---|---|
220 | 237 | 254 | |
0.2 | 0.63 | 0.54 | 0.46 |
0.5 | 1.26 | 1.06 | 0.93 |
1 | — | 2.05 | 1.75 |
В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.
Таблица 4
Трансформатор | Номинальный ток, A | Мощность двигателя, Вт |
---|---|---|
ТС-360М | 1.8 | 600…1500 |
ТС-330К-1 | 1.6 | 500…1350 |
СТ-320 | 1.6 | 500…1350 |
СТ-310 | 1.5 | 470…1250 |
ТСА-270-1, ТСА-270-2, ТСА-270-3 | 1.25 | 400…1250 |
ТС-250, ТС-250-1, ТС-250-2, ТС-250-2М, ТС-250-2П | 1.1 | 350…900 |
ТС-200К | 1 | 330…850 |
ТС-200-2 | 0.95 | 300…800 |
ТС-180, ТС-180-2, ТС-180-4, ТС-180-2В | 0.87 | 275…700 |
При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.
Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.
Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.
Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2…3 В, что подтверждало высокую симметрию трехфазного напряжения.
Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.
В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.
К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.
Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.
Как запустить трехфазный двигатель от однофазной сети без конденсатора
В этой статье будет рассмотрен способ запуска трех фазовый двигателя от сети 220 Вольт. Запускаться он будет бес помощи пускового конденсатора, а от специального пускового устройства, которое собирается на двух тиристорах, с тиристорными ключами и транзисторным управлением. Схема достаточно проста и собрать её не составит большого труда.
Схема пускового устройства для трех фазового двигателя
Данное управление двигателем мало кому известно и практически не используется. Преимущество предлагаемого пускового устройства в том, что значительно уменьшается потеря мощности двигателя. При пуске трехфазного двигателя 220 В помощью конденсатора потеря мощности составляет минимум 30%, а может достигать 50%. Использование этого пускового устройства снижает потерю мощности до 3%, максимум составит 5%.
Подключается однофазная сеть:
Пусковое устройство подключается к двигателю вместо конденсатора.
Подключенный к устройству резистор позволяет регулировать обороты двигателя. Устройство также можно включить на реверс.
Для эксперимента взят старый двигатель еще советского производства.
С данным пусковым устройством двигатель запускается мгновенно и работает без каких-либо проблем. Такую схему можно использовать практически на любом двигателе мощностью до 3 кВт.
Примечание: в сети 220 В двигатели мощностью более 3 кВт включать просто не имеет смысла – бытовая электропроводка не выдержит нагрузки.
В схеме можно использовать любые тиристоры, ток которых не менее 10 А. Диоды 231, также 10-амперные.
Примечание: у автора в схеме установлены диоды 233, что не имеет значения (только они идут по напряжению 500 В) −поставить можно любые диоды, которые имеют ток 10 А и удерживают более 250 В.
Устройство компактно. Автор схемы собрал резисторы просто наборами, чтобы не тратить время на подборку резисторов по номиналу. Теплоотвод не требуется. Установлен конденсатор, стабилитрон, два диода 105. Схема получилась очень простая и эффективная в работе.
Рекомендуется для использования – сборка пускового устройства проблем не создаст. В итоге при подключении двигатель стартует на своей максимальной мощности и практически без ее потери в отличие от стандартной схемы с использованием конденсатора.
Смотрите видео работы пускового устройства
Трехфазный двигатель в однофазной сети без конденсаторов: схема и описание подключения
Трёхфазный асинхронный двигатель можно запускать в однофазной сети, без подключения конденсаторов, а с использованием самодельного пускового электронного устройства. Схема его очень проста: на двух тиристорах, с тиристорными ключами и транзисторным управлением.
Преимущество предлагаемого пускового устройства в том, что значительно уменьшается потеря мощности двигателя. При пуске трехфазного двигателя 220 В помощью конденсатора, потеря мощности составляет минимум 30%, а может достигать 50%. Использование этого пускового устройства снижает потерю мощности до 3%, максимум составит 5%.
Схема пускового устройства для трёхфазного двигателя.
В схеме можно использовать любые тиристоры, ток которых не менее 10 А. Диоды 231, также 10-амперные.
Примечание: у автора в схеме установлены диоды 233, что не имеет значения (только они идут по напряжению 500 В) −поставить можно любые диоды, которые имеют ток 10 А и удерживают более 250 В.
Устройство компактно. Автор схемы собрал резисторы просто наборами, чтобы не тратить время на подборку резисторов по номиналу. Теплоотвод не требуется. Установлен конденсатор, стабилитрон, два диода 105. Схема получилась очень простая и эффективная в работе.
Пусковое устройство подключается к двигателю вместо конденсатора.
Подключенный к устройству резистор, позволяет регулировать обороты двигателя. Устройство также можно включить на реверс.
С данным пусковым устройством двигатель запускается мгновенно и работает без каких-либо проблем. Такую схему можно использовать практически на любом двигателе мощностью до 3 кВт.
В итоге при подключении двигатель стартует на своей максимальной мощности и практически без ее потери в отличие от стандартной схемы с использованием конденсатора.
Работа этого пускового устройства показана в этом видео:
Как подключить электродвигатель 380В на 220В
В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».
Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?
Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.
СОДЕРЖАНИЕ (нажмите на кнопку справа):
Конструктивные особенности
Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).
Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).
Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.
Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.
При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.
Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.
Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.
Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.
Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.
Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.
Как подключить электродвигатель с 380 на 220В без конденсатора?
Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.
Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.
Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.
Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.
По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.
Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.
Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.
Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.
Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.
Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.
Схема №1.
Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.
В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).
Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.
Схема №2.
Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.
Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.
Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.
Делается это следующим образом:
- Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
- После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R
При реализации рассмотренных схем стоит учесть ряд особенностей:
- Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
- Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.
Как подключить через конденсаторы
Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).
Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».
Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).
Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.
Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.
Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.
Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:
- Рабочие конденсаторы подключаются параллельно;
- Номинальное напряжение должно быть не меньше 300 Вольт;
- Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
- Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.
Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.
Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.
Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.
Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.
Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.
Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:
- Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
- Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
- Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.
С конденсатором дополнительная упрощенная — для схемы звезда.
С конденсатором дополнительная упрощенная — для схемы треугольник.
Как подключить с реверсом
В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.
Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.
Для реализации схемы можно использовать переключатель с двумя положениями.
К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.
Как подключить по схеме «звезда-треугольник» (с тремя проводами)
В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.
Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.
Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.
Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.
К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.
Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».
Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».
Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.
Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.
Принцип работы схемы прост:
- При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
- Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
- Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.
Итоги
Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.
Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети. Запуск 3 фазного двигателя от однофазной сети без конденсаторов
ГлавнаяРазноеЗапуск 3 фазного двигателя от однофазной сети без конденсаторовЗапуск трехфазного двигателя с 220 без конденсаторов — sovetskyfilm.ru
Вращающий момент, вполне достаточный для запуска указанных электродвигателей от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5. 2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме). В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.
Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема [1], которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С9raquo; на некоторый угол (50. 70°), что обеспечивает достаточный вращающий момент.
Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор VS2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.
Вторая схема (рис.2) предназначена для пускс ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивле ния при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда ([2], рис. 14,в), которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами Один ключ включен последовательно с обмоткой фазы «А9raquo; и создает в ней «индуктивный9raquo; (отстающий)
Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети сдвиг тока, второй — включен параллельно обмотке фазы «В9raquo; и создает в ней «емкостной9raquo; (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.Подача напряжения на ЭД осуществляется пускателем нажимного «ручного9raquo; типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск9raquo;.Нажав кнопку «Пуск9raquo;, путем вращения движка подстроечного сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается9raquo; вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.Автор производил отладку схемы, показанной на рис.1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть
220 В. Изменяя величину R, надо установить напряжение на лампе 170 В (для схемы рис.1) и 100 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагр
Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети
электроника для дома
Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор. При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства (0,5…3 кВт), стоимость пусковых конденсаторов соизмерима со стоимость к электродвигателя. Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно. В тожe время применение рабочих, постоянно включенных фазосдвигающих конденсоторов можно считать целесообразным, так как они позволяют загрузить двигатель на75…85% его мощности при 3-фазном включении (безконденсаторов его мощность снижается примерно на 50%).
Вращающий момент, вполне достаточный для запуска указанных ЭД от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.
Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5…2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме). В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.
Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема [1], которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50…70°), что обеспечивает достаточный вращающий момент.
Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор VS2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.
Вторая схема (рис.2) предназначена для пускс ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивле ния при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда ([2], рис. 14,в), которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий)
сдвиг тока, второй — включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.
Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.
Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».
Нажав кнопку «Пуск», путем вращения движка подстроечного сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.
При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.
Автор производил отладку схемы, показанной на рис.1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.
При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть ~220 В. Изменяя величину R, надо установить напряжение на лампе 170 В (для схемы рис.1) и 100 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.
Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.
Детали
Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.
Симметричный динистор DB3 можно заменить отечественным КР1125. У него немного меньше напряжение переключения. Возможно, это и лучше, но этот динистор очень сложно найти в продаже.
Конденсаторы С любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше — 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).
Внешний вид электропривода измельчителя травы с описанной схемой запуска и ЭД 2,2 кВт 3000 об/мин показан на фото 1.
В. В. Бурлоко, г. Мориуполь
Литература
1. // Сигнал. — 1999. — №4.
2. С.П. Фурсов Использование трехфазных
электродвигателей в быту. — Кишинев: Картя
молдовенскэ, 1976.
Подключение трехфазного двигателя к однофазной сети
Здравствуйте, дорогие читатели и гости сайта «Заметки электрика».
Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.
А в наличии имеется только источник однофазного напряжения.
Как быть в данной ситуации?
Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.
Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.
Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.
Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье.
Выбор емкости конденсаторов
1. Выбор емкости рабочего конденсатора
Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:
Полученное значение емкости рабочего конденсатора получается в (мкФ).
Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.
Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.
При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.
2. Выбор емкости пускового конденсатора
Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.
Что случится, если забыть отключить пусковые конденсаторы?
Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.
Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.
В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.
Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.
Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.
Выбор типа конденсаторов
Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.
Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.
Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.
Кое-что я нашел у себя в запасе.
Практически все они имеют прямоугольную форму.
На самом корпусе можно увидеть их параметры:
- емкость (мкФ)
- рабочее напряжение (В)
Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».
Также вместо бумажных конденсаторов можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.
Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!
У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).
Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.
Вот например, СВВ60 в круглом корпусе.
Или СВВ61 в прямоугольном корпусе.
В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.
Выбор напряжения конденсаторов
Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.
Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.
Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).
Принято выбирать рабочее напряжение конденсаторов для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).
Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.
Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).
Пример подключения трехфазного двигателя к однофазной сети
Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.
Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).
Данные двигателя АОЛ 22-4:
Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.
Определим емкость рабочего конденсатора:
Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).
Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.
Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.
Теперь нам необходимо, применив навыки электротехники
, собрать из этих конденсаторов необходимую нам емкость.Емкость одного конденсатора составляет 10 (мкФ).
При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.
Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.
Дальнейшие итоги нашего эксперимента смотрите на видео.
Эксперимент завершился УДАЧНО!!!
И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!
При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора практически равна номинальной.
Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.
Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.
Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.
P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.
Если статья была Вам полезна, то поделитесь ей со своими друзьями: