Site Loader

Содержание

Электричество и магнетизм

Таким образом, скорость  в выражении (4.7) — это дрейфовая скорость носителей тока в присутствии внешнего электрического поля или любого другого силового поля, обуславливающего направленное (упорядоченное) движение носители заряда. Если в веществе возможно движение зарядов разного знака, то полная плотность тока определяется векторной суммой плотностей потоков заряда каждого знака.

Как уже указывалось, в отсутствие электрического поля движение носителей заряда хаотично и не создает результирующего тока. Если, приложив электрическое поле, сообщить носителям заряда даже малую (по сравнению с их тепловой скоростью) скорость дрейфа, то, из-за наличия в проводниках огромного количества свободных электронов, возникнет значительный ток.

Поскольку дрейфовая скорость носителей тока создается электрическим полем, логично предположить пропорциональность

так что и плотность тока будет пропорциональна вектору напряженности (рис. 4.4)

                              

(4.9)

Более подробно этот вопрос обсуждается в Дополнении

Входящий в соотношение (4.9) 

Коэффициент пропорциональности   называется проводимостью вещества проводника. 

Проводимость связывает напряженность поля в данной точке с установившейся скоростью «течения» носителей заряда. Поэтому она может зависеть от локальных свойств проводника вблизи этой точки (то есть от строения вещества), но не зависит от формы и размеров проводника в целом. Соотношение (4.9) носит название

закона Ома для плотности тока в проводнике (его называют также законом Ома в дифференциальной форме).

Рис. 4.4. Силовые линии электрического поля совпадают с линиями тока 

Чтобы понять порядки величин, оценим дрейфовую скорость носителей заряда в одном из наиболее распространенных материалов — меди. Возьмем для примера силу тока I = 1 А, и пусть площадь поперечного сечения провода составляет
1 мм2

= 10–6 м2. Тогда плотность тока равна j = 106 А/м2. Теперь воспользуемся соотношением (4.7)

Носителями зарядов в меди являются электроны (е = 1.6·10-19 Кл), и нам осталось оценить их концентрацию . В таблице Менделеева медь помещается в первой группе элементов, у нее один валентный электрон, который может быть отдан в зону проводимости. Поэтому число свободных электронов примерно совпадает с числом атомов. Берем из справочника плотность меди — r Cu=8,9·10кг/м3. Молярная масса меди указана в таблице Менделеева — MCu

= 63,5·10–3 кг/моль. Отношение 

 

— это число молей в 1 м3. Умножая на число Авогадро Na = 6,02·1023 моль–1, получаем число атомов в единице объема, то есть концентрацию электронов

Теперь получаем искомую оценку дрейфовой скорости электронов

Для сравнения: скорости хаотического теплового движения электронов при 20°С в меди по порядку величины составляют 106 м/с, то есть на одиннадцать порядков величины больше. 

Возьмем произвольную воображаемую замкнутую поверхность S, которую в разных направлениях пересекают движущиеся заряды. Мы видели, что полный ток через поверхность равен

где dq — заряд, пересекающий поверхность за время dt. Обозначим через q ‘ заряд, находящийся внутри поверхности. Его можно выразить через плотность заряда , проинтегрированную по всему объему, ограниченному поверхностью

Из фундаментального закона природы — закона сохранения заряда — следует, что заряд dq, вышедший через поверхность за время dt, уменьшит заряд q ‘ внутри поверхности точно на эту же величину, то есть dq ‘ = –dq  или

Подставляя сюда написанные выше выражения для скоростей изменения заряда внутри поверхности , получаем математическое соотношение, выражающее

закон сохранения заряда в интегральной форме

                          

(4.10)

Напомним, что интегрирования ведутся по произвольной поверхности S и ограниченному ею объему V.

электрический ток в различных средах

 на главную   

Официальный сайт АНО ДО Центра «Логос», г.Глазов

http://logos-glz.ucoz.net/

 

 

ГОТОВИМСЯ К УРОКУ

Кинематика

Динамика

МКТ

Термодинамика 

Электростатика

Электрический ток

Электрический ток в средах

Магнитное поле Электромагнитная индукция

Оптика

Методы познания

Электрический ток в различных средах                                                      немного о физике:

   

Электрическим током называют всякое  упорядоченное движение электрических зарядов. Электрический ток может проходить через различные вещества при определенных условиях. Одним из условий возникновения электрического тока является наличие свободных зарядов, способных двигаться под действием электрического поля.

Поэтому в этом разделе мы попытаемся  установить, какие частицы, переносят  электрический заряд в различных средах.

 

Электрический ток в металлах.

Металлы состоят из положительно заряженных ионов, находящихся в узлах кристаллической решетки и совокупности свободных электронов. Вне электрического поля свободные электроны движутся хаотически, подобно молекулам идеального газа, а потому рассматриваются в классической электронной теории как электронный газ.

Под действием внешнего электрического поля меняется характер движения свободных электронов внутри металла. Электроны, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля.

Следовательно, электрический ток в металлах — это упорядоченное движение электронов.

 

Сила тока в металлическом проводнике определяется по формуле:

где I — сила тока в проводнике, e — модуль заряда электрона,  n0 — концентрация электронов проводимости,  — средняя скорость упорядоченного движения электронов,  S — площадь поперечного сечения проводника.

 

Плотность тока проводимости численно равна заряду, проходящему за 1с через единицу площади поверхности, перпендикулярной направлению тока.

где j — плотность тока.

У большинства металлов практически каждый атом ионизирован. А так как концентрация электронов проводимости  одновалентного металла равна

где Na — постоянная Авогадро,  A — атомная масса металла, ρ — плотность металла,

то получаем что концентрация определяется в пределах 10

28 — 1029 м-3.

 

Закон Ома для однородного участка цепи:

где U — напряжение на участке,  R — сопротивление участка.

 

Для однородного участка цепи:

где  ρУ— удельное сопротивление проводника, l — длина проводника,  S — площадь поперечного сечения проводника.

Удельное сопротивление проводника зависит от температуры и  эта зависимость выражается соотношением:

ρу = ρоу ( 1 + α ∆Т )

где ρоу  — удельное сопротивление металлического проводника при температуре Т =273К, α — термический коэффициент сопротивления, ∆Т = Т — То  — изменение температуры.

 

 

 

Вольт-амперная характеристика металлов.

Сила тока в  проводниках по закону Ома прямо пропорциональна напряжению. Такая зависимость имеет место для проводников со строго заданным сопротивлением ( для резисторов).

Тангенс угла наклона графика равен проводимости проводника. Проводимостью называется величина, обратная сопротивлению

где  G — проводимость.

 

Но так как сопротивление металлов зависит от температуры, то вольт-амперная характеристика металлов не является линейной.

 

 

 

Электрический ток в растворах и расплавах электролитов.

Явление распада молекул солей, щелочей и кислот в воде на ионы противоположных знаков называют электролитической диссоциацией. Полученные в следствие распада ионы служат носителями заряда в жидкости, а сама жидкость становятся проводником.

 

Вне электрического поля ионы движутся хаотически. Под действием внешнего электрического поля ионы, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля: катионы к катоду, анионы — к аноду.

Следовательно, электрический ток в растворах (расплавах) электролитов — это направленное перемещение ионов обоих знаков в противоположных направлениях.

Прохождение электрического тока через раствор электролита всегда сопровождается выделением на электродах веществ, входящих в его состав. Это явление называют электролизом.

При движении внутри электролитов ионы взаимодействуют с молекулами воды и другими ионами, т.е. электролиты оказывают некоторое противодействие движению, а, следовательно, обладают сопротивлением. Электрическое сопротивление электролитов зависит от концентрации ионов, величины заряда иона, от скорости движения ионов обоих знаков.

Сопротивление электролитов так же определяется по формуле:

где  ρУ— удельное сопротивление электролита, l — длина жидкого проводника,  S — площадь поперечного сечения жидкого проводника.

При увеличении температуры электролита уменьшается его вязкость, что ведет к увеличению скорости движения ионов. Т.е. при повышении температуры сопротивление электролита уменьшается.

 

Законы Фарадея.

1. Масса вещества, выделяемого на электроде, прямо пропорциональна электрическому заряду, прошедшему через электролит.

где m — масса вещества, выделяющегося на электроде,  k — электрохимический эквивалент, q — заряд, прошедший через электролит.

 

2. Электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту.

          

где М— молярная масса вещества, F- постоянная Фарадея, z — валентность иона.

постоянная Фарадея численно равна заряду, который должен пройти через электролит, чтобы выделить из него массу вещества, численно равную химическому эквиваленту.

 

Объединенный закон Фарадея.

 

                    

 

 

 

Электрический ток в газах.

При нормальных условиях   газы  состоят  из  нейтральных молекул, а поэтому являются диэлектриками. Так как для  получения электрического тока необходимо наличие заряженных частиц, то молекулы газа следует ионизировать (оторвать электроны от молекул). Для ионизации молекул необходимо затратить энергию — энергию ионизации, количество которой зависит от рода вещества. Так, энергия ионизации минимальна для атомов щелочных металлов, максимальна — для инертных газов.

Ионизировать молекулы можно при нагревании газа, при облучении его различного рода лучами. Благодаря дополнительной  энергии  возрастает скорость  движения  молекул, нарастает интенсивность их теплового движения  и  при соударении отдельные молекулы теряют электроны, превращаясь в положительно заряженные ионы.

Электроны, оторвавшись от молекулы могут присоединятся к нейтральным молекулам, образуя при этом отрицательно заряженные ионы.

Следовательно, при ионизации появляются три типа носителей зарядов: положительные ионы, отрицательные ионы и электроны.

Под действием внешнего электрического поля ионы обоих знаков и электроны движутся  в направлении действия сил электрического поля: положительные ионы  к катоду, отрицательные ионы и электроны — к аноду. Т.е. электрический ток в газах — это упорядоченное движение ионов и электронов под действием электрического поля.

Вольт- амперная характеристика газов.

Зависимость силы тока от напряжения выражена  кривой ОАВС.

На  участке графика  ОА сила тока подчиняется закону Ома. При малом напряжении сила тока мала, т.к.  ионы двигаясь с малыми скоростями рекомбинируют, не достигая электродов. При увеличении напряжения  между электродами скорость направленного движения электронов  и ионов возрастает, поэтому  большая часть заряженных частиц достигает  электродов, а, следовательно возрастает сила тока.

При определенном значении напряжения U1 все ионы имеют достаточные скорости и, не рекомбинируя, достигают электродов. Ток становится максимально возможным и не зависит от дальнейшего увеличения напряжения до значения U2. Такой ток называют током насыщения, и ему соответствует участок графика АВ.

При напряжении U2 в несколько тысяч вольт скорость электронов, возникающих при ионизации молекул, а следовательно, их кинетическая энергия значительно увеличиваются. И когда  кинетическая энергия  достигает значения энергии ионизации, электроны, сталкиваясь с нейтральными молекулами, ионизируют их. Дополнительная ионизация  приводит к лавинообразному увеличению количества заряженных частиц, а следовательно и к значительному увеличению силы тока без воздействия внешнего ионизатора. Прохождение электрического тока без воздействия внешнего ионизатора называют самостоятельным разрядом. Такая зависимость выражена участком графика АС.

 

 

 

Электрический ток в вакууме.

В вакууме отсутствуют заряженные частиц, а следовательно, он является диэлектриком. Т.е.  необходимо создать определенные  условия, которые помогут  получить заряженные частицы.

Свободные электроны есть в металлах. При комнатной температуре  они не могут покинуть металл, т. к. удерживаются в нем силами кулоновского притяжения со стороны положительных ионов. Для преодоления этих сил электрону необходимо затратить определенную энергию, которая называется работой выхода. Энергию, большую или  равную работе выхода, электроны могут получить при разогреве металла до высоких температур.

 

При нагревании металла  количество электронов с кинетической энергией, большей работы выхода, увеличивается, поэтому из металла вылетает большее количество электронов. Испускание электронов из металлов  при его нагревании называют термоэлектронной эмиссией. Для осуществления термоэлектронной эмиссии в качестве оного из электродов используют тонкую проволочную нить из тугоплавкого металла (нить накала). Подключенная  к источнику тока нить раскаляется и с ее поверхности  вылетают электроны. Вылетевшие электроны попадают в электрическое поле между двумя электродами и начинают двигаться направленно, создавая электрический ток.

Явление термоэлектронной эмиссии лежит  в основе принципа действия электронных ламп:  вакуумного диода, вакуумного триода.

 

                  Вакуумный диод                                            Вакуумный триод

 

                                   

                 

Вольт-амперная характеристика вакуумного диода.

Зависимость силы тока от напряжения выражена  кривой ОАВСD.

При испускании электронов катод приобретает положительный заряд и поэтому удерживает возле себя электроны.  При отсутствии электрического поля между катодом и анодом, вылетевшие электроны образуют у  катода электронное облако.

По мере увеличения напряжения между анодом и катодом большее количество электронов устремляется к аноду, а следовательно сила тока увеличивается. Эта зависимость выражена участком графика ОАВ. Участок АВ является характеризует прямую зависимость  силы тока от напряжения, т.е. в  интервале напряжений U1 — U2 выполняется закон Ома.

 

 

Нелинейная зависимость на участке ВСD объясняется тем, что число электронов, устремляющихся к аноду, стает больше числа электронов, вылетающих с катода.

При достаточно большом  значении напряжения U3все электроны, вылетающие с катода, достигают анода, и электрический  ток достигает насыщения.

 

Так же в качестве источника заряженных частиц можно использовать радиоактивный препарат, испускающий α-частицы.Под действием сил электрического поля α-частицы будут двигаться, т.е. возникнет электрический ток.

Таким образом, электрический ток в вакууме может быть создан упорядоченным  движением любых заряженных частиц (электронов, ионов).

 

 

 

Электрический ток в полупроводниках.

 

Полупроводники — вещества, удельное сопротивление которых убывает с увеличением температуры и зависит от наличия примесей и  изменения освещенности. Удельное сопротивление проводников при комнатной температуре находится в интервале от 10-3 до 107 Ом ·м.  Типичными представителями полупроводников являются кристаллы германия и кремния.

В этих кристаллах атомы соединены между собой ковалентной связью. При нагревании ковалентная связь нарушается, атомы ионизируются. Это обуславливает  возникновение свободных электронов и «дырок»- вакантных положительных мест с недостающим электроном.

 

 

При этом электроны соседних атомов могут занимать вакантные места, образуя «дырку»  в соседнем атоме. Таким образом не только  электроны, но и «дырки» могут перемещаться по кристаллу. При помещении такого кристалла в электрическое поле электроны и дырки придут в упорядоченное движение — возникнет электрический ток.

 

Собственная проводимость.

В чистом кристалле электрический  ток создается равным количеством электронов и «дырок». Проводимость, обусловленную движением свободных электронов и равного им количества «дырок» в полупроводниковом кристалле  без примесей, называют собственной проводимостью полупроводника.

При повышении  температуры собственная проводимость полупроводника увеличивается, т.к. увеличивается число свободных электронов и «дырок».

 

 

Примесная  проводимость.

Проводимость проводников зависит от наличия примесей. Примеси бывают донорные и акцепторные. Донорная примесь — примесь с большей валентностью. Например, для четырехвалентного кремния донорной примесью является пятивалентный мышьяк. Четыре валентных электрона атома мышьяка участвуют в создании ковалентной связи, а пятый  станет электроном проводимости.

 

 

При нагревании  нарушается ковалентная связь,  возникают  дополнительные   электроны проводимости  и «дырки». Поэтому в кристалле количество свободных электронов преобладает над количеством «дырок». Проводимость такого проводника является электронной, полупроводник является полупроводником n-типа.  Электроны являются основными носителями заряда, «дырки» — неосновными.

 

Акцепторная  примесь — примесь с меньшей валентностью. Например, для четырехвалентного кремния акцепторной примесью является трехвалентный индий. Три валентных электрона атома индия участвуют в создании ковалентной связи с тремя атомами кремния, а на месте четвертой  незавершенной ковалентной связи образуется «дырка». 

 

 

При нагревании  нарушается ковалентная связь,  возникают  дополнительные   электроны проводимости  и «дырки». Поэтому в кристалле количество «дырок» преобладает над количеством свободных электронов. Проводимость такого проводника является дырочной, полупроводник является полупроводником p-типа.  «Дырки» являются основными носителями заряда, электроны — неосновными.

 

p-n переход.

 При контакте полупроводников p-типа и  n-типа через границу происходит диффузия электронов из n-области в p-область и «дырок» из p-области в n-область. Это приводит к возникновению запирающего слоя, препятствующего дальнейшей диффузии.  p-n переход обладает односторонней проводимостью.

При подключении p-n перехода к источнику тока так, чтобы p-область была соединена с положительным полюсом , а  n-область — с отрицательным полюсом, появляется  движение основных носителей зарядов через контактный слой. Этот способ подключения называют включением в прямом направлении.

 

При подключении p-n перехода к источнику тока так, чтобы p-область была соединена с отрицательным  полюсом , а  n-область — с положительным полюсом, толщина запирающего слоя увеличивается, и движение основных носителей зарядов через контактный слой прекращается, но может иметь место движение неосновных зарядов через контактный слой. Этот способ подключения называют включением в обратном направлении.

 

 

Принцип действия полупроводникового диода  основан на свойстве односторонней проводимости  p-n перехода. Основное применение полупроводникового диода — выпрямитель тока.

 

 

 

Вольт-амперная характеристика полупроводникового диода.

Зависимость силы тока от напряжения выражена  кривой АОВ.

 

Ветвь ОВ соответствует пропускному направлению тока, когда ток создается основными носителями зарядов, и  при увеличении напряжения сила тока возрастает. Ветвь АО соответствует току, созданному неосновными носителями зарядов, и значения силы тока невелики.

© ГБПОУ КК ПАТИС

ГБПОУ КК ПАТИС

Государственное бюджетное профессиональное образовательное учреждение Краснодарского края

Приморско-Ахтарский техникум индустрии и сервиса


Адрес: 353860 г. Приморско-Ахтарск, ул. Тамаровского, 85

тел: 8 (861-43) 2-35-94, 8 (861-43) 2-18-98

Адрес сайта: http://патис.рф

Социальные сети: VK и OK

Электронная почта: [email protected]

Режим работы:

ПН — СБ: с 8.00 до 16.00

Выходные дни: ВС

Учредители

Наименование:
Министерство образования, науки и молодежной политики Краснодарского края


Адрес: 350063 г. Краснодар, ул. Рашпилевская, 23

тел: 8 (861) 298-25-73

Адрес сайта: minobr.krasnodar.ru

Электронная почта: [email protected]

Режим работы:

ПН.ВТ.СР.ЧТ. – с 09.00 до 18.00

ПТ. – с 09.00 до 17.00

Перерыв на обед: с 13.00 до 13.50

Выходные дни: СБ.ВС.



Наименование:
Департамент имущественных отношений Краснодарского края


Адрес: 350000 г. Краснодар, ул. Гимназическая, 36

Канцелярия: 8 (861) 268-24-08

Факс: 8 (861) 267-11-75

Специалист по работе с обращениями граждан — консультации, запись на прием — телефон 267-11-78

Телефон горячей линии по вопросам земельных отношений: 8 (861) 992-33-35

Адрес сайта: diok.krasnodar.ru

Электронная почта: [email protected]

Режим работы:

ПН.ВТ.СР.ЧТ. – с 09.00 до 18.00

ПТ. – с 09.00 до 17.00

Перерыв на обед ПН.ВТ.СР.ЧТ.: с 13.00 до 13.50

Перерыв на обед ПТ.: с 13.00 до 13.40

Выходные дни: СБ.ВС.

Направленное движение — заряженная частица

Направленное движение — заряженная частица

Cтраница 2

Мы знаем, что электрический ток — это направленное движение заряженных частиц. Это движение создается электрическим полем, которое при этом совершает работу.  [16]

Мы уже знаем, что электрический ток представляет собой направленное движение заряженных частиц, создаваемое приложенным к телу внешним электрическим полем. Сталкиваясь с рассеивающими центрами в конце участка свободного пробега, электроны передают накопленную в электрическом поло энергию решетке в виде тепла.  [17]

Прохождение электрического тока через газ ( газовый разряд) определяется направленным движением заряженных частиц — электронов и ионов. При этом движении заряженные частицы сталкиваются с нейтральными молекулами и передают им свою энергию. Так Появляются новые заряженные частицы и происходят различные другие превращения молекул — их возбуждение, диссоциация на свободные радикалы и атомы. Поэтому передача энергии при столкновениях является основным процессом, поддерживающим как само существование разряда, так и развитие химических реакций в разряде.  [18]

Исходя из описанного выше явления электрического тока, последний можно определить как направленное движение заряженных частиц. Однако, согласно Максвеллу, в понятие электрического тока входят также явления, связанные с изменением электрического поля во времени ( ток смещения, см. § 7 — 12), и основным признаком электрического тока является наличие магнитного поля, всегда связанного с этим током.  [19]

Электрическим сопротивлением называют одну из характеристик электрических свойств участка цепи, которая определяет направленное движение заряженных частиц на этом участке.  [20]

Помимо ограничения, связанного с образованием экранирующего слоя, который возникает благодаря высоким тепловым скоростям электронов, в приложении магнитогидродинамики, использующей концепцию неразрывности, к проблемам, связанным с использованием ионизованных газов, возникает другое ограничение, обусловленное наличием направленного движения заряженных частиц в электрическом и магнитном полях. Первое ограничение имеется в любой замкнутой системе, содержащей разреженную плазму, второе ограничение возникает при давлениях, которые при отсутствии поля обычно достаточны для использования концентрации неразрывности.  [21]

Поэтому направленное движение заряженных частиц происходит среди большого числа частиц, не принимающих участия в этом движении, а совершающих хаотическое ( тепловое) движение на месте. Естественно, что упорядоченное движение заряженных частиц сопровождается многочисленными столкновениями носителей заряда с другими частицами — это и является причиной сопротивления проводников проходящему току. Именно поэтому сопротивление зависит от размеров проводника, от его строения.  [22]

Так как электрический ток есть направленное движение заряженных частиц ( электронов или ионов), то отсюда следует, что на движущийся заряд в магнитном поле действует сила. Получим выражение для этой силы.  [23]

Электрический ток — это явление направленного движения заряженных частиц. Электрический ток, значение которого не изменяется во времени, называется постоянным током.  [24]

Эффекты, связанные с наличием сильных полей. В отличие от пространственного заряда, образующегося вследствие большой тепловой скорости электронов, другое ограничение в применении магнитогидродинамики континуума к ионизированному газу связано с направленным движением заряженных частиц в электрических и магнитных полях. Первое явление имеет место в любой ограниченной системе плазмы низкого давления; второе явление проявляется при таких давлениях, при которых ( в случае нулевого поля) плазму можно считать континуумом. Эти эффекты, которые не совсем точно можно назвать эффектами сильных полей, в настоящей работе подробно не рассматриваются, так как они выходят за пределы магнитогидродинамики континуума в строгом смысле этого слова. Однако они имеют достаточно важное практическое значение в проблемах современных МГД генераторов, что оправдывает их краткое рассмотрение.  [25]

Под воздействием излучений в изолированном объеме происходит ионизация газа: электрически нейтральные атомы ( молекулы) газа разделяются на положительные и отрицательные ионы. Если в этот объем поместить два электрода, к которым приложено постоянное напряжение, то между электродами создается электрическое поле. При наличии электрического поля в ионизированном газе возникает направленное движение заряженных частиц, т.е. через газ проходит электрический ток, называемый ионизационным. Измеряя ионизационный ток, можно судить об интенсивности ионизирующих излучений.  [26]

В отсутствие поля плотность тока равна нулю. Действительно, заряженные частицы проводника, как и атомы газа, участвуют в тепловом движении, а в силу хаотичности этого движения среднее значение вектора скорости частицы равно нулю. Если поле в проводнике отлично от нуля, то возникает направленное движение заряженных частиц проводника, при котором плотность тока отлична от нуля.  [27]

Луиджи Гальвани ( 1737 — 1798) взял два соединенных последовательно проводника из различных металлов и замкнул их концы на нерв препарированной лапки лягушки. Гальвани, занимавшийся изучением животного электричества, объяснил сокращение мышцы возникновением в ней электрического тока. Вольта понял, что при контакте проводников из различных металлов между их свободными концами начинает действовать сила ( получившая ныне название электродвижущей), и нашел более эффективную в этом отношении комбинацию металлов. Так был создан первый электрохимический элемент, или электрическая батарея. Заменив лягушачий нерв проводником и присоединив концы проводника к полюсам батареи, Вольта показал, что электродвижущая сила способна заставить крохотные частицы вещества перемещаться по проводнику. Такое направленное движение заряженных частиц ( каковыми, как выяснилось много позже, являются электроны) по проводнику и есть электрический ток. Построенная Вольтой батарея заставляла электроны именно двигаться, а не скапливаться в каком-то материале, как, например, в янтаре, натертом мехом. Заметим попутно, что батарея Вольты в принципе не отличается от батарей-и батареек, используемых ныне в автомобилях и карманных фонариках.  [28]

Страницы:      1    2

3.1. Распределение зарядов на проводнике

Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы — носители заряда — способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Ограничим рассмотрение твердыми металлическими проводниками, имеющими кристаллическую структуру. Эксперименты показывают, что при очень малой разности потенциалов, приложенной к проводнику, содержащиеся в нем электроны проводимости, приходят в движение и перемещаются по объему металлов практически свободно.

В отсутствие внешнего электростатического поля электрические поля положительных ионов и электронов проводимости взаимно скомпенсированы, так что напряженность внутреннего результирующего поля равна нулю.

При внесении металлического проводника во внешнее электростатическое поле с напряженностью Е0 на ионы и свободные электроны начинают действовать кулоновские силы, направленные в противоположные стороны. Эти силы вызывают смещение заряженных частиц внутри металла, причем в основном смещаются свободные электроны, а положительные ионы, находящиеся в узлах кристаллической решетки, практически не меняют своего положения. В результате внутри проводника возникает электрическое поле с напряженностью Е.

Смещение заряженных частиц внутри проводника прекращается тогда, когда суммарная напряженность поля Е в проводнике, равная сумме напряженностей внешнего и внутреннего полей, станет равной нулю:

Представим выражение, связывающее напряженность и потенциал электростатического поля, в следующем виде:

где Е — напряженность результирующего поля внутри проводника; n — внутренняя нормаль к поверхности проводника. Из равенства нулю результирующей напряженности Е следует, что в пределах объема проводника потенциал имеет одно и то же значение: .

Полученные результаты позволяют сделать три важных вывода:
1. Во всех точках внутри проводника напряженность поля , т. е. весь объем проводника эквипотенциален.
2. При статическом распределении зарядов по проводнику вектор напряженности Е на его поверхности должен быть направлен по нормали к поверхности , в противном случае под действием касательной к поверхности проводника компоненты напряженности заряды должны перемещаться по проводнику.
3. Поверхность проводника также эквипотенциальна, так как для любой точки поверхности



Вопросы

1) Оцените число избыточных электронов, приходящихся на 1 см2 поверхности заряженного до потенциала 100 В металлического шара радиусом 1 см.
2) Изобразите качественно изменение Е и с изменением расстояния от центра заряженного шара
3) Как направлена и чему равна напряженность поля вблизи поверхности заряженного проводника

наверх

Электрический ток в газах — материалы для подготовки к ЕГЭ по Физике

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: носители свободных электрических зарядов в газах.

При обычных условиях газы состоят из электрически нейтральных атомов или молекул; свободных зарядов в газах почти нет. Поэтому газы являются диэлектриками — электрический ток через них не проходит.

Мы сказали «почти нет», потому что на самом деле газах и, в частности, в воздухе всегда присутствует некоторое количество свободных заряженных частиц. Они появляются в результате ионизирующего воздействия излучений радиоактивных веществ, входящих в состав земной коры, ультрафиолетового и рентгеновского излучений Солнца, а также космических лучей — потоков частиц высокой энергии, проникающих в атмосферу Земли из космического пространства. Впоследствии мы вернёмся к этому факту и обсудим его важность, а сейчас заметим лишь, что в обычных условиях проводимость газов, вызванная «естественным» количеством свободных зарядов, пренебрежимо мала, и её можно не принимать во внимание.

На изолирующих свойствах воздушного промежутка основано действие переключателей в электрических цепях (рис. 1). Например, небольшого воздушного зазора в выключателе света оказывается достаточно, чтобы разомкнуть электрическую цепь в вашей комнате.

Рис. 1. Ключ

Можно, однако, создать такие условия, при которых электрический ток в газовом промежутке появится. Давайте рассмотрим следующий опыт.

Зарядим пластины воздушного конденсатора и подсоединим их к чувствительному гальванометру (рис. 2, слева). При комнатной температуре и не слишком влажном воздухе гальванометр не покажет заметного тока: наш воздушный промежуток, как мы и говорили, не является проводником электричества.

Рис. 2. Возникновение тока в воздухе

Теперь внесём в зазор между пластинами конденсатора пламя горелки или свечи (рис. 2, справа). Ток появляется! Почему?

Свободные заряды в газе

Возникновение электрического тока между пластинами кондесатора означает, что в воздухе под воздействием пламени появились свободные заряды. Какие именно?

Опыт показывает, что электрический ток в газах является упорядоченным движением заряженных частиц трёх видов. Это электроны, положительные ионы и отрицательные ионы.

Давайте разберёмся, каким образом эти заряды могут появляться в газе.

При увеличении температуры газа тепловые колебания его частиц — молекул или атомов — становятся всё интенсивнее. Удары частиц друг о друга достигают такой силы, что начинается ионизация — распад нейтральных частиц на электроны и положительные ионы (рис. 3).

Рис. 3. Ионизация

Степенью ионизации называется отношение числа распавшихся частиц газа к общему исходному числу частиц. Например, если степень ионизации равна , то это означает, что исходных частиц газа распалось на положительные ионы и электроны.

Степень ионизации газа зависит от температуры и резко возрастает с её увеличением. У водорода, например, при температуре ниже степень ионизации не превосходит , а при температуре выше степень ионизации близка к (то есть водород почти полностью ионизирован (частично или полностью ионизированный газ называется плазмой)).

Помимо высокой температуры имеются и другие факторы, вызывающие ионизацию газа.

Мы их уже вскользь упоминали: это радиоактивные излучения, ультрафиолетовые, рентгеновские и гамма-лучи, космические частицы. Всякий такой фактор, являющийся причиной ионизации газа, называется ионизатором.

Таким образом, ионизация происходит не сама по себе, а под воздействием ионизатора.

Одновременно идёт и обратный процесс — рекомбинация, то есть воссоединение электрона и положительного иона в нейтральную частицу (рис. 4).

Рис. 4. Рекомбинация

Причина рекомбинации проста: это кулоновское притяжение противоположно заряженных электронов и ионов. Устремляясь навстречу друг другу под действием электрических сил, они встречаются и получают возможность образовать нейтральный атом (или молекулу — в зависимости от сорта газа).

При неизменной интенсивности действия ионизатора устанавливается динамическое равновесие: среднее количество частиц, распадающихся в единицу времени, равно среднему количеству рекомбинирующих частиц (иными словами, скорость ионизации равна скорости рекомбинации).Если действие ионизатора усилить (например, повысить температуру), то динамическое равновесие сместится в сторону ионизации, и концентрация заряженных частиц в газе возрастёт. Наоборот, если выключить ионизатор, то рекомбинация начнёт преобладать, и свободные заряды постепенно исчезнут полностью.

Итак, положительные ионы и электроны появляются в газе в результате ионизации. Откуда же берётся третий сорт зарядов — отрицательные ионы? Очень просто: электрон может налететь на нейтральный атом и присоединиться к нему! Этот процесс показан на рис. 5.

Рис. 5. Появление отрицательного иона

Образованные таким образом отрицательные ионы будут участвовать в создании тока наряду с положительными ионами и электронами.

Несамостоятельный разряд

Если внешнего электрического поля нет, то свободные заряды совершают хаотическое тепловое движение наряду с нейтральными частицами газа. Но при наложении электрического поля начинается упорядоченное движение заряженных частиц — электрический ток в газе.

Рис. 6. Несамостоятельный разряд

На рис. 6 мы видим три сорта заряженных частиц, возникающих в газовом промежутке под действием ионизатора: положительные ионы, отрицательные ионы и электроны. Электрический ток в газе образуется в результате встречного движения заряженных частиц: положительных ионов — к отрицательному электроду (катоду), электронов и отрицательных ионов — к положительному электроду (аноду).

Электроны, попадая на положительный анод, направляются по цепи к «плюсу» источника тока. Отрицательные ионы отдают аноду лишний электрон и, став нейтральными частицами, возвращаются в обратно газ; отданный же аноду электрон также устремляется к «плюсу» источника. Положительные ионы, приходя на катод, забирают оттуда электроны; возникший дефицит электронов на катоде немедленно компенсируется их доставкой туда с «минуса» источника. В результате этих процессов возникает упорядоченное движение электронов во внешней цепи. Это и есть электрический ток, регистрируемый гальванометром.

Описанный процесс, изображённый на рис. 6, называется несамостоятельным разрядом в газе. Почему несамостоятельным? Потому для его поддержания необходимо постоянное действие ионизатора. Уберём ионизатор — и ток прекратится, поскольку исчезнет механизм, обеспечивающий появление свободных зарядов в газовом промежутке. Пространство между анодом и катодом снова станет изолятором.

Вольт-амперная характеристика газового разряда

Зависимость силы тока через газовый промежуток от напряжения между анодом и катодом (так называемая вольт-амперная характеристика газового разряда) показана на рис. 7.

Рис. 7. Вольт-амперная характеристика газового разряда

При нулевом напряжении сила тока, естественно, равна нулю: заряженные частицы совершают лишь тепловое движение, упорядоченного их движения между электродами нет.

При небольшом напряжении сила тока также мала. Дело в том, что не всем заряженным частицам суждено добраться до электродов: часть положительных ионов и электронов в процессе своего движения находят друг друга и рекомбинируют.

С повышением напряжения свободные заряды развивают всё большую скорость, и тем меньше шансов у положительного иона и электрона встретиться и рекомбинировать. Поэтому всё большая часть заряженных частиц достигает электродов, и сила тока возрастает (участок ).

При определённой величине напряжения (точка ) скорость движения зарядов становится настолько большой, что рекомбинация вообще не успевает происходить. С этого момента все заряженные частицы, образованные под действием ионизатора, достигают электродов, и ток достигает насыщения — а именно, сила тока перестаёт меняться с увеличением напряжения. Так будет происходить вплоть до некоторой точки .

Самостоятельный разряд

После прохождения точки сила тока при увеличении напряжения резко возрастает — начинается самостоятельный разряд. Сейчас мы разберёмся, что это такое.

Заряженные частицы газа движутся от столкновения к столкновению; в промежутках между столкновениями они разгоняются электрическим полем, увеличивая свою кинетическую энергию. И вот, когда напряжение становится достаточно большим (та самая точка ), электроны за время свободного пробега достигают таких энергий, что при соударении с нейтральными атомами ионизируют их! (С помощью законов сохранения импульса и энергии можно показать, что именно электроны (а не ионы), ускоряемые электрическим полем, обладают максимальной способностью ионизировать атомы.)

Начинается так называемая ионизация электронным ударом. Электроны, выбитые из ионизированных атомов, также разгоняются электрическим полем и налетают на новые атомы, ионизируя теперь уже их и порождая новые электроны. В результате возникающей электронной лавины число ионизированных атомов стремительно возрастает, вследствие чего быстро возрастает и сила тока.

Количество свободных зарядов становится таким большим, что необходимость во внешнем ионизаторе отпадает. Его можно попросту убрать. Свободные заряженные частицы теперь порождаются в результате внутренних процессов, происходящих в газе — вот почему разряд называется самостоятельным.

Если газовый промежуток находится под высоким напряжением, то для самостоятельного разряда не нужен никакой ионизатор. Достаточно в газе оказаться лишь одному свободному электрону, и начнётся описанная выше электронная лавина. А хотя бы один свободный электрон всегда найдётся!

Вспомним ещё раз, что в газе даже при обычных условиях имеется некоторое «естественное» количество свободных зарядов, обусловленное ионизирующим радиоактивным излучением земной коры, высокочастотным излучением Солнца, космическими лучами. Мы видели, что при малых напряжениях проводимость газа, вызванная этими свободными зарядами, ничтожно мала, но теперь — при высоком напряжении — они-то и породят лавину новых частиц, дав начало самостоятельному разряду. Произойдёт, как говорят, пробой газового промежутка.

Напряжённость поля, необходимая для пробоя сухого воздуха, равна примерно кВ/см. Иными словами, чтобы между электродами, разделёнными сантиметром воздуха, проскочила искра, на них нужно подать напряжение киловольт. Вообразите же, какое напряжение необходимо для пробоя нескольких километров воздуха! А ведь именно такие пробои происходят во время грозы — это прекрасно известные вам молнии.

Урок 26. Лекция 26. Проводники и диэлектрики в электрическом поле. Конденсаторы.

По электрическим свойствам все вещества разделяют на два больших класса — вещества, которые проводят электрический ток (проводники) и вещества, которые не проводят электрический ток (диэлектрики, или изоляторы). 

Мы знаем, что все вещества состоят из атомов, которые, в свою очередь, состоят из заряженных частиц. Если внешнее поле вокруг вещества отсутствует, то его частицы распределяются так, что суммарное электрическое поле внутри вещества равно нулю. Если вещество поместить во внешнее электрическое поле, то поле начет действовать на заряженные частицы и они перераспределяться так, что в веществе возникнет собственное электрическое поле. Полное электрическое поле  складывается из внешнего поля  и внутреннего поля  создаваемого заряженными частицами вещества.

Проводник — это тело или материал, в котором электрические заряды начинают перемещаться под действием сколь угодно малой силы. Поэтому эти заряды называют свободными.

В металлах свободными зарядами являются электроны, в растворах и расплавах солей (кислот и щелочей) — ионы.

Диэлектрик — это тело или материал, в котором под действием сколь угодно больших сил заряды смещаются лишь на малое, не превышающее размеров атома расстояние относительно своего положения равновесия. Такие заряды называются связанными.

Рассмотрим подробнее эти классы веществ.

Проводники в электрическом поле.

Проводниками называют вещества, проводящие электрический ток.

Типичными проводниками являются металлы.

Основная особенность проводников – наличие свободных зарядов ( в металлах это электроны), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.

 

   Явление перераспределения зарядов внутри проводника под действием внешнего электрического поля называется электростатической индукцией.

  Заряды, появляющиеся на поверхности проводника, называются индукционными зарядами. 

   Индукционные заряды создают свое собственное поле  , которое компенсирует внешнее поле  во всем объеме проводника:

   (внутри проводника).

   Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

   Диэлектрики в электрическом поле.

   Диэлектриками (изоляторами) называют вещества, не проводящие электрического тока.

   В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

   При внесении диэлектрика во внешнее электрическое поле  в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

   Связанные заряды создают электрическое поле , которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля . Этот процесс называется поляризацией диэлектрика.

   Электрической поляризацией называют особое состояние вещества, при котором электрический момент некоторого объёма этого вещества не равен нулю.

   В результате полное электрическое поле внутри диэлектрика  оказывается по модулю меньше внешнего поля .

   Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме  к модулю напряженности полного поля в однородном диэлектрике , называется диэлектрической проницаемостью вещества.

 

   Диэлектрическая проницаемость среды показывает, во сколько раз напряженность поля в вакууме больше, чем в диэлектрике. Это величина безразмерная (нет единиц измерения).

   При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов  и полное поле  могут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое поле   в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем  строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:

   Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд q, то напряженность поля , создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

               

   Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная, электронная и ионная поляризации. Ориентационная и электронная механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков, ионная — при поляризации твердых диэлектриков.

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.

Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью (электрической емкостью) проводников называется физическая величина, характеризующая способность проводника или системы проводников накапливать электрический заряд.

Электроемкость находится как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:


 В системе СИ единица электроемкости называется фарад [Ф]: 

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.

Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.

Простейший конденсатор – плоский конденсаторсистема из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

Электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними.

Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.

Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.

Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

   — сферический конденсатор

   — цилиндрический конденсатор

Для получения заданного значения емкости конденсаторы соединяются между собой, образуя батареи конденсаторов.

1) При параллельном соединении конденсаторов соединяются их одноименно заряженные обкладки.

 

Напряжения на конденсаторах одинаковы     U1U2U,  заряды равны q1 = С1U и    q2 = С2U.

Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом qq1q2 при напряжении между обкладками равном U. Отсюда следует  или С = С1 + С2

Таким образом, при параллельном соединении электроемкости складываются.

2) При последовательном соединении конденсаторов соединяют разноименно заряженные обкладки

Заряды обоих конденсаторов одинаковы    q1q2q,  напряжения на них равны  и 

Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками UU1U2.

Следовательно,   или  

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

Т.е. в случае n конденсаторов одинаковой емкости С емкость батареи

при параллельном соединении Собщ = nС

при последовательном соединении Собщ = С/n

Если обкладки заряженного конденсатора замкнуть металлическим проводником, то по цепи пойдет электрический ток, лампочка загорится и будет гореть до тех пор, пока конденсатор не разрядится. Значит, заряженный конденсатор содержит запас энергии.

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую.При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов

   

при переносе каждой порции Δq внешние силы должны совершить работу

   

Энергия We конденсатора емкости C, заряженного зарядом q, может быть найдена путем интегрирования этого выражения в пределах от 0 до q:

   

Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением qCU.

   

Электрическую энергию We следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе.

По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля.

Проводников и электрических полей в статическом равновесии

Цели обучения

К концу этого раздела вы сможете:

  • Перечислите три свойства проводника в электростатическом равновесии.
  • Объясните влияние электрического поля на свободные заряды в проводнике.
  • Объясните, почему внутри проводника не может быть электрического поля.
  • Опишите электрическое поле, окружающее Землю.
  • Объясните, что происходит с электрическим полем, приложенным к нестандартному проводнику.
  • Опишите, как работает громоотвод.
  • Объясните, как металлический автомобиль может защитить находящихся внутри пассажиров от опасных электрических полей, возникающих из-за того, что сбитая линия соприкасается с автомобилем.

Проводники содержат бесплатных зарядов , которые легко перемещаются. Когда на проводник помещается избыточный заряд или проводник помещается в статическое электрическое поле, заряды в проводнике быстро реагируют, достигая устойчивого состояния, называемого электростатическим равновесием .

На рисунке 1 показано влияние электрического поля на свободные заряды в проводнике. Свободные заряды движутся до тех пор, пока поле не станет перпендикулярно поверхности проводника. В электростатическом равновесии не может быть компонента поля, параллельного поверхности, поскольку, если бы она была, это привело бы к дальнейшему перемещению заряда. Показан положительный свободный заряд, но свободные заряды могут быть как положительными, так и отрицательными, и, фактически, в металлах они отрицательны. Движение положительного заряда эквивалентно движению отрицательного заряда в противоположном направлении.

Рис. 1. Когда к проводнику приложено электрическое поле E, свободные заряды внутри проводника перемещаются до тех пор, пока поле не станет перпендикулярным поверхности. (а) Электрическое поле — это векторная величина, имеющая как параллельные, так и перпендикулярные компоненты. Параллельная составляющая (E∥) воздействует на свободный заряд q силой (F∥), которая перемещает заряд до тех пор, пока F∥ = 0. (б) Получающееся поле перпендикулярно поверхности. Свободный заряд был доставлен к поверхности проводника, в результате чего электростатические силы остались в равновесии.

Проводник, помещенный в электрическое поле , будет поляризованным . На рисунке 2 показан результат помещения нейтрального проводника в изначально однородное электрическое поле. Поле усиливается около проводника, но полностью исчезает внутри него.

Рис. 2. На этом рисунке показан сферический проводник в статическом равновесии с первоначально однородным электрическим полем. Свободные заряды перемещаются внутри проводника, поляризуя его, пока силовые линии электрического поля не станут перпендикулярны поверхности.Силовые линии заканчиваются избыточным отрицательным зарядом на одном участке поверхности и снова начинаются на избыточном положительном заряде на противоположной стороне. Внутри проводника отсутствует электрическое поле, так как свободные заряды в проводнике будут продолжать двигаться в ответ на любое поле, пока оно не будет нейтрализовано.

Предупреждение о заблуждении: электрическое поле внутри проводника

Избыточные заряды, помещенные на сферический проводник, отталкиваются и перемещаются до тех пор, пока они не будут равномерно распределены, как показано на рисунке 3. Избыточный заряд вынуждается к поверхности, пока поле внутри проводника не станет равным нулю.Вне проводника поле точно такое же, как если бы проводник был заменен точечным зарядом в его центре, равным избыточному заряду.

Рис. 3. Взаимное отталкивание избыточных положительных зарядов сферического проводника равномерно распределяет их по его поверхности. Возникающее электрическое поле перпендикулярно поверхности и равно нулю внутри. Вне проводника поле идентично полю точечного заряда в центре, равного избыточному заряду.

Свойства проводника в электростатическом равновесии

  1. Электрическое поле внутри проводника равно нулю.
  2. Сразу за проводником силовые линии электрического поля перпендикулярны его поверхности и заканчиваются или начинаются на зарядах на поверхности.
  3. Любой избыточный заряд полностью находится на поверхности или поверхностях проводника.

Свойства проводника согласуются с уже обсужденными ситуациями и могут использоваться для анализа любого проводника в электростатическом равновесии. Это может привести к новым интересным открытиям, например, описанным ниже.

Как можно создать очень однородное электрическое поле? Рассмотрим систему из двух металлических пластин с противоположными зарядами на них, как показано на рисунке 4.Свойства проводников в электростатическом равновесии показывают, что электрическое поле между пластинами будет однородным по силе и направлению. За исключением краев, избыточные заряды распределяются равномерно, создавая силовые линии, равномерно распределенные (следовательно, однородные по силе) и перпендикулярные поверхностям (следовательно, однородные по направлению, поскольку пластины плоские). Краевые эффекты менее важны, когда пластины расположены близко друг к другу.

Рис. 4. Две металлические пластины с равными, но противоположными избыточными зарядами.Поле между ними одинаково по силе и направлению, за исключением краев. Одно из применений такого поля — создание равномерного ускорения зарядов между пластинами, например, в электронной пушке телевизионной лампы.

Электрическое поле Земли

Рисунок 5. Электрическое поле Земли. (а) Поле хорошей погоды. Земля и ионосфера (слой заряженных частиц) являются проводниками. Они создают однородное электрическое поле около 150 Н / Кл. (Источник: Д. Х. Паркс) (б) Штормовые поля. При наличии грозовых облаков местные электрические поля могут быть больше.В очень сильных полях изолирующие свойства воздуха нарушаются, и может возникнуть молния. (кредит: Ян-Йуст Верхоф)

Землю окружает почти однородное электрическое поле приблизительно 150 N / C, направленное вниз, которое окружает Землю, причем величина слегка увеличивается по мере того, как мы приближаемся к поверхности. Что вызывает электрическое поле? На высоте около 100 км над поверхностью Земли у нас есть слой заряженных частиц, называемый ионосферой . Ионосфера ответственна за ряд явлений, включая электрическое поле, окружающее Землю.В хорошую погоду ионосфера является положительной, а Земля в значительной степени отрицательной, поддерживая электрическое поле (рис. 5а).

В штормовых условиях образуются облака, и локализованные электрические поля могут быть больше и меняются по направлению (рис. 5b). Точное распределение заряда зависит от местных условий, и возможны вариации рисунка 5b.

Если электрическое поле достаточно велико, изолирующие свойства окружающего материала нарушаются, и он становится проводящим.Для воздуха это происходит примерно при 3 × 10 6 N / C. Воздух ионизирует ионы, и электроны рекомбинируют, и мы получаем разряд в виде искр молнии и коронного разряда.

Электрические поля на неровной поверхности

До сих пор мы рассматривали избыточные заряды на гладкой симметричной поверхности проводника. Что будет, если у проводника острые углы или заостренный? Избыточные заряды на неоднородном проводнике концентрируются в самых острых точках. Кроме того, избыточный заряд может перемещаться по проводнику или с него в самых острых местах.

Чтобы увидеть, как и почему это происходит, рассмотрим заряженный проводник на рисунке 6. Электростатическое отталкивание одинаковых зарядов наиболее эффективно при раздвигании их на самой плоской поверхности, поэтому они становятся там меньше всего. Это связано с тем, что силы между идентичными парами зарядов на обоих концах проводника идентичны, но компоненты сил, параллельных поверхностям, различны. Компонент, параллельный поверхности, больше всего на самой плоской поверхности и, следовательно, более эффективен при перемещении заряда.

Такой же эффект производит на проводник внешнее электрическое поле, как показано на рисунке 6c. Поскольку силовые линии должны быть перпендикулярны поверхности, их больше сосредоточено на наиболее изогнутых частях.

Рис. 6. Избыточный заряд на неоднородном проводнике больше всего концентрируется в месте наибольшей кривизны. (а) Силы между идентичными парами зарядов на обоих концах проводника идентичны, но компоненты сил, параллельных поверхности, различны.Именно F раздвигает заряды, когда они достигают поверхности. (b) F наименьший на более заостренном конце, заряды оставлены ближе друг к другу, создавая показанное электрическое поле. (c) Незаряженный проводник в первоначально однородном электрическом поле поляризован с наиболее концентрированным зарядом на его самом остром конце.

Применение проводов

Рис. 7. Заостренный проводник имеет большую концентрацию заряда на острие.Электрическое поле очень сильное в точке и может оказывать достаточно большую силу, чтобы переносить заряд на проводник или с него. Громоотводы используются для предотвращения накопления больших избыточных зарядов на конструкциях и, таким образом, являются заостренными.

На очень сильно изогнутой поверхности, такой как показано на рисунке 7, заряды настолько сконцентрированы в точке, что возникающее электрическое поле может быть достаточно большим, чтобы удалить их с поверхности. Это может быть полезно.

Громоотводы работают лучше всего, когда они наиболее острыми.Большие заряды, создаваемые грозовыми облаками, вызывают противоположный заряд в здании, что может привести к удару молнии в здание. Индуцированный заряд постоянно сбрасывается громоотводом, предотвращая более драматический удар молнии.

Конечно, иногда мы хотим предотвратить передачу заряда, а не облегчить его. В этом случае проводник должен быть очень гладким и иметь как можно больший радиус кривизны. (См. Рис. 8.) Гладкие поверхности используются на высоковольтных линиях электропередачи, например, для предотвращения утечки заряда в воздух.

Еще одно устройство, использующее некоторые из этих принципов, — это клетка Фарадея . Это металлический щит, закрывающий объем. Все электрические заряды будут находиться на внешней поверхности этого экрана, а внутри не будет электрического поля. Клетка Фарадея используется для предотвращения влияния паразитных электрических полей в окружающей среде на чувствительные измерения, такие как электрические сигналы внутри нервной клетки.

Во время грозы, если вы ведете машину, лучше всего оставаться внутри машины, поскольку ее металлический корпус действует как клетка Фарадея с нулевым электрическим полем внутри.Если вы находитесь в непосредственной близости от удара молнии, ее воздействие ощущается снаружи автомобиля, а внутренняя часть остается неизменной, если вы остаетесь полностью внутри. Это также верно, если активный («горячий») электрический провод был оборван (во время шторма или аварии) и упал на вашу машину.

Рис. 8. (a) Громоотвод направлен для облегчения передачи заряда. (предоставлено: Romaine, Wikimedia Commons) (b) Этот генератор Ван де Граафа имеет гладкую поверхность с большим радиусом кривизны, чтобы предотвратить передачу заряда и позволить генерировать большое напряжение.Взаимное отталкивание одинаковых зарядов проявляется в волосах человека при прикосновении к металлической сфере. (Источник: Джон «ShakataGaNai» Дэвис / Wikimedia Commons).

Сводка раздела

  • Проводник позволяет свободным зарядам перемещаться внутри себя.
  • Электрические силы вокруг проводника заставят свободные заряды перемещаться внутри проводника до тех пор, пока не будет достигнуто статическое равновесие.
  • Любой избыточный заряд будет собираться на поверхности проводника.
  • Проводники с острыми углами или концами собирают больше заряда в этих точках.
  • Громоотвод — это проводник с заостренными концами, который собирает на здании избыточный заряд, вызванный грозой, и позволяет ему рассеиваться обратно в воздух.
  • Электрические бури возникают, когда электрическое поле поверхности Земли в определенных местах становится более заряженным из-за изменений изолирующего эффекта воздуха.
  • Клетка Фарадея действует как щит вокруг объекта, предотвращая проникновение электрического заряда внутрь.

Концептуальные вопросы

  1. Объект на рисунке 9 — проводник или изолятор? Обосновать ответ.

    Рисунок 9.

  2. Линии внешнего поля, входящие в объект с одного конца и выходящие с другого, показаны линиями.
    Если бы силовые линии электрического поля на рисунке выше были перпендикулярны объекту, обязательно ли он был бы проводником? Объяснять.
  3. Обсуждение электрического поля между двумя параллельными проводящими пластинами в этом модуле утверждает, что краевые эффекты менее важны, если пластины расположены близко друг к другу. Что значит закрыть? То есть, действительно ли решающее значение имеет фактическое разделение пластин или отношение расстояния между пластинами к площади пластины?
  4. Будет ли само созданное электрическое поле на конце заостренного проводника, такого как громоотвод, снимать положительный или отрицательный заряд с проводника? Будет ли такой же знаковый заряд удален с нейтрального заостренного проводника путем приложения аналогичного внешнего электрического поля? (Ответы на оба вопроса имеют значение для точек использования переноса заряда.)
  5. Почему гольфистка с металлической клюшкой на плече уязвима для удара молнии на открытом фарватере? Будет ли ей безопаснее под деревом?
  6. Может ли пояс ускорителя Ван де Граафа быть проводником? Объяснять.
  7. Вы относительно защищены от удара молнии внутри автомобиля? Назовите две причины.
  8. Обсудите плюсы и минусы заземления громоотвода по сравнению с простым прикреплением к зданию.
  9. Используя симметрию расположения, покажите, что чистая кулоновская сила, действующая на заряд [латекс] q [/ латекс] в центре квадрата ниже (Рисунок 10), равна нулю, если заряды на четырех углах точно равны.

    Рис. 10. Четырехточечные заряды q a , q b , q c и q d лежат на углах квадрата, а q — на его углах. центр.

  10. (a) Используя симметрию расположения, покажите, что электрическое поле в центре квадрата на Рисунке 10 равно нулю, если заряды в четырех углах точно равны. (b) Покажите, что это также верно для любой комбинации начислений, в которой q a = q b и q b = q c
  11. (a) Каково направление полной кулоновской силы на q на рисунке 10, если q отрицательное, q a = q c и оба отрицательные, и q b = q c и оба положительные? б) Каково направление электрического поля в центре квадрата в этой ситуации?
  12. Рассматривая рисунок 10, предположим, что q a = q d и q b = q c .Сначала покажите, что q находится в статическом равновесии. (Вы можете пренебречь силой тяжести.) Затем обсудите, является ли равновесие стабильным или нестабильным, отметив, что это может зависеть от знаков зарядов и направления смещения q от центра квадрата.
  13. Если q a = 0 на рисунке 10, при каких условиях не будет чистой кулоновской силы на q ?
  14. В регионах с низкой влажностью у человека развивается особая «хватка» при открывании дверей автомобиля или касании металлических дверных ручек.Для этого нужно положить на устройство как можно большую часть руки, а не только кончики пальцев. Обсудите индуцированный заряд и объясните, почему это происходит.
  15. Пункты взимания платы за проезд на дорогах и мостах обычно имеют перед собой втыканный в тротуар кусок проволоки, который при приближении касается автомобиля. Зачем это делается?
  16. Предположим, женщина несет лишний заряд. Может ли она стоять на земле в любой обуви для поддержания своего заряженного статуса? Как бы вы ее уволили? Каковы будут последствия, если она просто уйдет?

Задачи и упражнения

  1. Изобразите линии электрического поля вблизи проводника на рис. 11, учитывая, что поле изначально было однородным и параллельно длинной оси объекта.Является ли результирующее поле маленьким возле длинной стороны объекта?

    Рисунок 11

  2. Изобразите линии электрического поля вблизи проводника на рис. 12, учитывая, что поле изначально было однородным и параллельно длинной оси объекта. Является ли результирующее поле маленьким возле длинной стороны объекта?

    Рисунок 12.

  3. Изобразите электрическое поле между двумя проводящими пластинами, показанными на рисунке 13, при условии, что верхняя пластина является положительной, а на нижней пластине находится равное количество отрицательного заряда.Обязательно укажите распределение заряда на пластинах.

    Рисунок 13.

  4. Изобразите линии электрического поля вблизи заряженного изолятора на рис. 14, отметив его неоднородное распределение заряда.

    Рис. 14. Заряженный изолирующий стержень, который может быть использован в демонстрации в классе.

  5. Какова сила, действующая на заряд, расположенный в области x = 8,00 см на рисунке 15a, при условии, что q = 1,00 мкКл?

    Рис. 15. (a) Точечные заряды, расположенные в точке 3.00, 8,00 и 11,0 см по оси абсцисс. (b) Точечные заряды, расположенные на расстоянии 1,00, 5,00, 8,00 и 14,0 см по оси абсцисс.

  6. (a) Найдите полное электрическое поле при x = 1,00 см на рисунке 15b, учитывая, что q = 5,00 нКл. (b) Найдите полное электрическое поле при x = 11,00 см на рисунке 15b. (c) Если заряды могут двигаться и в конечном итоге останавливаться за счет трения, какова будет окончательная конфигурация заряда? (То есть будет одинарная зарядка, двойная зарядка и т. Д., и каковы будут его значения?)
  7. (a) Найдите электрическое поле при x = 5,00 см на рисунке 15a, учитывая, что q = 1,00 мкКл. (b) В каком положении между 3,00 и 8,00 см полное электрическое поле такое же, как и для только −2 q ? (c) Может ли электрическое поле быть нулевым в диапазоне от 0,00 до 8,00 см? (d) При очень больших положительных или отрицательных значениях x электрическое поле приближается к нулю как в (а), так и (б). В каких случаях он наиболее быстро приближается к нулю и почему? (e) В какой позиции справа от 11.0 см — это нулевое полное электрическое поле, кроме как на бесконечности? (Подсказка: графический калькулятор может значительно помочь в решении этой проблемы.)
  8. (a) Найдите полную кулоновскую силу на заряде 2,00 нКл, расположенном в точке x = 4,00 см на рисунке 15b, учитывая, что q = 1,00 мкКл. (b) Найдите положение x , в котором электрическое поле равно нулю на рисунке 15b.
  9. Используя симметрию расположения, определите направление силы на q на рисунке ниже, учитывая, что q a = q b = +7.50 мкКл и q c = q d = -7,50 мкКл. (b) Рассчитайте величину силы, действующей на заряд q , учитывая, что квадрат со стороной 10,0 см и q = 2,00 мкКл.

    Рисунок 16.

  10. (a) Используя симметрию расположения, определите направление электрического поля в центре квадрата на рисунке, учитывая, что q a = q b = -1,00 мкКл и q c = q d = +1.00 мкКл. (b) Рассчитайте величину электрического поля в точке q, учитывая, что квадрат со стороной 5,00 см.
  11. Найдите электрическое поле в точке q a на рисунке 16, учитывая, что q b = q c = q d = +2,00 нКл, q = — 1,00 нКл, а сторона квадрата 20,0 см.
  12. Найдите полную кулоновскую силу на заряде q на рисунке 16, учитывая, что q = 1.00 μ C, q a = 2,00 μ C, q b = −3,00 μ C, q c = −4,00 μ C и q d = +1,00 μ C. Квадрат со стороной 50,0 см.
  13. (a) Найдите электрическое поле в местоположении q a на рисунке 17, учитывая, что q b = +10,00 μ C и q c = –5,00 μ С.(b) Какова сила, действующая на q a , учитывая, что q a = +1,50 нКл?

    Рис. 17. Точечные заряды, расположенные в углах равностороннего треугольника со стороной 25,0 см.

  14. (a) Найдите электрическое поле в центре треугольной конфигурации зарядов на рисунке 17, учитывая, что q a = +2,50 нКл, q b = -8,00 нКл и q c = +1,50 нКл. (b) Существует ли какая-либо комбинация зарядов, кроме q a = q b = q c , которая создаст электрическое поле нулевой напряженности в центре треугольной конфигурации?

Глоссарий

проводник: объект со свойствами, позволяющими зарядам свободно перемещаться внутри него

бесплатный заряд: электрический заряд (положительный или отрицательный), который может перемещаться отдельно от своей основной молекулы

электростатическое равновесие: электростатически сбалансированное состояние, в котором все свободные электрические заряды перестали двигаться примерно

поляризованный: состояние, в котором положительные и отрицательные заряды в объекте собраны в разных местах

ионосфера: слой заряженных частиц, расположенный примерно в 100 км над поверхностью Земли, который отвечает за ряд явлений, включая электрическое поле, окружающее Землю.

Клетка Фарадея: металлический экран, предотвращающий проникновение электрического заряда на ее поверхность

Избранные решения проблем и упражнения

6.(а) E x = 1,00 см = −∞; (б) 2,12 × 10 5 N / C; (c) один заряд + q

8. а — 0,252 Н влево; (б) x = 6,07 см

10. (a) Электрическое поле в центре квадрата будет направлено вверх, так как q a и q b положительны, а q c и q d отрицательны и все имеют одинаковую величину; (Би 2.{\ circ} \\ [/ latex], ниже горизонтали; (б) №

Учебник по физике: электрические поля и проводники

Ранее мы показали в Уроке 4, что любой заряженный объект — положительный или отрицательный, проводник или изолятор — создает электрическое поле, которое пронизывает окружающее его пространство. В случае с проводниками есть множество необычных характеристик, о которых мы могли бы подробнее рассказать. Вспомните из Урока 1, что проводник — это материал, который позволяет электронам относительно свободно перемещаться от атома к атому.Было подчеркнуто, что, когда проводник приобретает избыточный заряд, избыточный заряд перемещается и распределяется по проводнику таким образом, чтобы уменьшить общее количество сил отталкивания внутри проводника. Мы рассмотрим это более подробно в этом разделе Урока 4, когда познакомимся с идеей электростатического равновесия. Электростатическое равновесие — это состояние, устанавливаемое заряженными проводниками, в котором избыточный заряд оптимально удален, чтобы уменьшить общее количество сил отталкивания.Как только заряженный проводник достигает состояния электростатического равновесия, движение заряда по поверхности прекращается.

Электрические поля внутри заряженных проводников

Заряженные проводники, достигшие электростатического равновесия, обладают множеством необычных характеристик. Одной из характеристик проводника в электростатическом равновесии является то, что электрическое поле в любом месте под поверхностью заряженного проводника равно нулю.Если бы электрическое поле действительно существовало под поверхностью проводника (и внутри него), то электрическое поле оказывало бы силу на все электроны, которые там присутствовали. Эта результирующая сила начнет ускорять и перемещать эти электроны. Но объекты, находящиеся в состоянии электростатического равновесия, больше не имеют движения заряда по поверхности. Так что, если бы это произошло, то первоначальное утверждение, что объект находился в состоянии электростатического равновесия, было бы ложным. Если электроны внутри проводника приняли состояние равновесия, то результирующая сила, действующая на эти электроны, равна нулю.Силовые линии электрического поля либо начинаются, либо заканчиваются на заряде, а в случае проводника заряд существует только на его внешней поверхности. Линии идут от этой поверхности наружу, а не внутрь. Это, конечно, предполагает, что наш проводник не окружает область пространства, где был другой заряд.

Чтобы проиллюстрировать эту характеристику, давайте рассмотрим пространство между двумя концентрическими проводящими цилиндрами разного радиуса и внутри них, как показано на диаграмме справа.Внешний цилиндр заряжен положительно. Внутренний цилиндр заряжен отрицательно. Электрическое поле вокруг внутреннего цилиндра направлено в сторону отрицательно заряженного цилиндра. Поскольку этот цилиндр не окружает область пространства, где есть другой заряд, можно сделать вывод, что избыточный заряд находится исключительно на внешней поверхности этого внутреннего цилиндра. Электрическое поле внутри внутреннего цилиндра было бы нулевым. При рисовании линий электрического поля линии будут проводиться от внутренней поверхности внешнего цилиндра к внешней поверхности внутреннего цилиндра.Что касается избыточного заряда на внешнем цилиндре, нужно учитывать не только силы отталкивания между зарядами на его поверхности. Хотя избыточный заряд на внешнем цилиндре стремится уменьшить силы отталкивания между его избыточным зарядом, он должен уравновесить это с тенденцией притяжения к отрицательным зарядам на внутреннем цилиндре. Поскольку внешний цилиндр окружает заряженную область, характеристика заряда, находящегося на внешней поверхности проводника, не применяется.

Эта концепция нулевого электрического поля внутри замкнутой проводящей поверхности была впервые продемонстрирована Майклом Фарадеем, физиком XIX века, который продвигал полевую теорию электричества.Фарадей построил комнату внутри комнаты, накрыв внутреннюю комнату металлической фольгой. Он сидел во внутренней комнате с электроскопом и заряжал поверхности внешней и внутренней комнаты с помощью электростатического генератора. Хотя между стенами двух комнат летели искры, во внутренней комнате не было обнаружено электрического поля. Избыточный заряд на стенах внутренней комнаты полностью приходился на внешнюю поверхность комнаты. Сегодня эта демонстрация часто повторяется на демонстрационных показах физики в музеях и университетах.

Внутренняя комната с проводящей рамкой, которая защищала Фарадея от статического заряда, теперь называется клеткой Фарадея . Клетка служит для защиты всех, кто находится внутри, от воздействия электрических полей. Любая закрытая проводящая поверхность может служить клеткой Фарадея, защищая все, что она окружает, от потенциально разрушительного воздействия электрических полей. Этот принцип экранирования обычно используется сегодня, поскольку мы защищаем хрупкое электрическое оборудование, заключая его в металлические корпуса.Даже хрупкие компьютерные микросхемы и другие компоненты поставляются внутри проводящей пластиковой упаковки, которая защищает микросхемы от потенциально разрушительного воздействия электрических полей. Это еще один пример «Физики для лучшей жизни».

Электрические поля перпендикулярны заряженным поверхностям

Вторая характеристика проводников в электростатическом равновесии состоит в том, что электрическое поле на поверхности проводника направлено полностью перпендикулярно поверхности.Не может быть компонента электрического поля (или электрической силы), параллельного поверхности. Если проводящий объект имеет сферическую форму, это означает, что перпендикулярные векторы электрического поля выровнены по центру сферы. Если объект имеет неправильную форму, то вектор электрического поля в любом месте перпендикулярен касательной линии, проведенной к поверхности в этом месте.

Понимание того, почему эта характеристика верна, требует понимания векторов, силы и движения.Движение электронов, как и любого физического объекта, подчиняется законам Ньютона. Одним из результатов законов Ньютона было то, что несбалансированные силы заставляют объекты ускоряться в направлении несбалансированной силы, а баланс сил заставляет объекты оставаться в равновесии. Эта истина составляет основу того, почему электрические поля должны быть направлены перпендикулярно поверхности проводящих объектов. Если бы существовала составляющая электрического поля, направленная параллельно поверхности, то избыточный заряд на поверхности был бы вынужден ускоренно двигаться этой составляющей.Если заряд приводится в движение, то объект, на котором он находится, не находится в состоянии электростатического равновесия. Следовательно, электрическое поле должно быть полностью перпендикулярно проводящей поверхности для объектов, находящихся в электростатическом равновесии. Конечно, проводящий объект, который недавно приобрел избыточный заряд, имеет компонент электрического поля (и электрической силы), параллельный поверхности; именно этот компонент воздействует на вновь приобретенный избыточный заряд, распределяя избыточный заряд по поверхности и устанавливая электростатическое равновесие.Но как только оно достигнуто, больше нет ни параллельной составляющей электрического поля, ни движения избыточного заряда.

Электрические поля и кривизна поверхности

Третьей характеристикой проводящих объектов в электростатическом равновесии является то, что электрические поля наиболее сильны в местах вдоль поверхности, где объект наиболее изогнут. Кривизна поверхности может варьироваться от абсолютной плоскостности на одном конце до изогнутой до тупой точки на другом конце.

Плоское место не имеет кривизны и характеризуется относительно слабыми электрическими полями. С другой стороны, затупленная точка имеет высокую степень кривизны и характеризуется относительно сильными электрическими полями. Сфера имеет одинаковую форму с одинаковой кривизной во всех точках ее поверхности. Таким образом, напряженность электрического поля на поверхности сферы везде одинакова.

Чтобы понять причину этой третьей характеристики, мы рассмотрим объект неправильной формы, который заряжен отрицательно.У такого объекта избыток электронов. Эти электроны будут распределяться таким образом, чтобы уменьшить действие их сил отталкивания. Поскольку электростатические силы изменяются обратно пропорционально квадрату расстояния, эти электроны будут стремиться позиционировать себя так, чтобы увеличивать свое расстояние друг от друга. На сфере правильной формы максимальное расстояние между всеми соседними электронами будет одинаковым. Но на объекте неправильной формы избыточные электроны будут накапливаться с большей плотностью в местах наибольшей кривизны.Рассмотрим диаграмму справа. Электроны A и B расположены вдоль более плоского участка поверхности. Как и все электроны с хорошим поведением, они отталкиваются друг от друга. Силы отталкивания направлены вдоль линии, соединяющей заряд с зарядом, в результате чего сила отталкивания в основном параллельна поверхности. С другой стороны, электроны C и D расположены вдоль участка поверхности с более резкой кривизной. Эти избыточные электроны также отталкивают друг друга с силой, направленной вдоль линии, соединяющей заряд с зарядом.Но теперь сила направлена ​​под более острым углом к ​​поверхности. Составляющие этих сил, параллельные поверхности, значительно меньше. Большая часть силы отталкивания между электронами C и D направлена ​​перпендикулярно поверхности.

Параллельные компоненты этих сил отталкивания заставляют избыточные электроны перемещаться по поверхности проводника. Электроны будут двигаться и распределяться, пока не будет достигнуто электростатическое равновесие. По достижении, равнодействующая всех параллельных компонентов на любом данном избыточном электроне (и на всех избыточных электронах) будет в сумме равняться нулю.Все параллельные компоненты силы, действующие на каждый из электронов, должны быть равны нулю, поскольку результирующая сила, параллельная поверхности проводника, всегда равна нулю (вторая характеристика, обсуждавшаяся выше). Для того же расстояния разделения параллельная составляющая силы является наибольшей в случае электронов A и B. Таким образом, чтобы достичь этого баланса параллельных сил, электроны A и B должны дистанцироваться друг от друга дальше, чем электроны C и D. Электроны C и D, с другой стороны, могут сближаться друг с другом в месте своего расположения, поскольку параллельная составляющая сил отталкивания меньше.В конце концов, относительно большое количество заряда скапливается в местах наибольшей кривизны. Это большее количество заряда в сочетании с тем фактом, что их силы отталкивания в основном направлены перпендикулярно поверхности, приводит к значительно более сильному электрическому полю в таких местах с повышенной кривизной.

Тот факт, что поверхности с резкими изгибами до тупой кромки создают сильные электрические поля, является основным принципом использования громоотводов.В следующем разделе Урока 4 мы исследуем явление разряда молнии и использование громоотводов для предотвращения ударов молнии.

Мы хотели бы предложить … Иногда просто прочитать об этом недостаточно. Вы должны взаимодействовать с ним! И это именно то, что вы делаете, когда используете один из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного приложения «Положите заряд в цель» и / или интерактивного интерфейса «Электростатические ландшафты».Оба интерактивных компонента можно найти в разделе Physics Interactives на нашем веб-сайте. Оба Interactives предоставляют увлекательную среду для изучения электрических полей и действий на расстоянии.


Проверьте свое понимание

Используйте свое понимание, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.

1. Предположим, что сфера генератора Ван де Граафа собирает заряд.Затем двигатель выключают, и сфере дают возможность достичь электростатического равновесия. Заряд ___.

а. находится как на его поверхности, так и во всем объеме

г. находится в основном внутри сферы и выходит наружу только при прикосновении

г. находится только на поверхности сферы


2.Опишите напряженность электрического поля в шести отмеченных местах заряженного объекта неправильной формы справа. Используйте в описании фразы «ноль», «относительно слабый», «умеренный» и относительно сильный «.

3. Справа показана схема заряженного проводника неправильной формы. Обозначены четыре точки на поверхности — A, B, C и D.Расположите эти места в порядке возрастания силы их электрического поля, начиная с наименьшего электрического поля.


4. Рассмотрите схему кнопки, показанную справа. Предположим, что канцелярская кнопка заряжается положительно. Нарисуйте линии электрического поля вокруг кнопки.

См. Схему силовых линий электрического поля.


5.Изобразите линии электрического поля для следующей конфигурации двух объектов. Разместите стрелки на линиях поля.

См. Схему силовых линий электрического поля.


6. Любимая демонстрация физики, используемая с генератором Ван де Граафа, включает в себя медленное приближение к куполу с протянутой к устройству скрепкой для бумаг. Почему демонстратор не поджаривается при приближении к машине с торчащим вперед тупым краем скрепки?

7. ИСТИНА или ЛОЖЬ :

Громоотводы устанавливаются на дома, чтобы защитить их от молнии. Они работают, потому что электрическое поле вокруг молниеотводов слабое; таким образом, существует небольшой поток заряда между громоотводами / домом и заряженными облаками.

Схема линий электрического поля

для вопроса № 4:

Приведенная выше диаграмма не была создана программой Field Plotting; было бы, конечно, лучше, если бы это было так.Ваш ответ может выглядеть иначе (особенно при сравнении деталей), но он должен иметь следующие общие характеристики с диаграммой, приведенной здесь:

  • Линии электрического поля должны быть направлены от положительно заряженной кнопки к краям страницы. На каждой линии поля ДОЛЖНА быть стрелка, указывающая направление.
  • Все силовые линии электрического поля должны быть перпендикулярны поверхности кнопки в местах пересечения линий и кнопки.
  • Должно быть больше линий, сконцентрированных на остром конце кнопки и двух резко изогнутых участках, и меньше линий на более плоских участках кнопки.

Вернуться к вопросу №4

Схема линий электрического поля

для вопроса № 5:

Еще раз, приведенная выше диаграмма не была создана программой Field Plotting; вероятно, было бы лучше, если бы это было так.Ваш ответ может выглядеть иначе (особенно при сравнении деталей), но он должен иметь следующие общие характеристики с диаграммой, приведенной здесь:

  • Линии поля должны быть направлены от + к — или от края страницы к — или от + к краю страницы. На каждой линии поля ДОЛЖНА быть стрелка, указывающая направление.
  • На поверхности любого объекта силовые линии должны быть направлены перпендикулярно поверхности.
  • На резко изогнутых и заостренных поверхностях объектов должно быть больше линий и меньше линий на более плоских участках.

Вернуться к вопросу № 5

Почему текут электроны?

Что заставляет электрический заряд двигаться?

Вы знаете, что нужно проделать работу, чтобы поднять объект, потому что гравитационное поле Земли притягивает объект вниз.Аналогичным образом необходимо проделать работу по перемещению заряженной частицы в электрическом поле. Объем работы, необходимый для перемещения заряда между точками или работа на единицу заряда, называется «разностью электрических потенциалов » между двумя точками. Единица измерения разности потенциалов называется вольт. Разница потенциалов может быть как положительной, так и отрицательной, в зависимости от движения заряда.

Для перемещения зарядов нам нужно устройство, которое может работать.К таким устройствам относятся: батареи, генераторы, термопары и батареи.

Как электроны движутся по проводу?

Электроны не движутся по проводу, как автомобили по шоссе. Фактически, любой проводник (вещь, через которую может проходить электричество) состоит из атомов. В каждом атоме есть электроны. Если вы поместите новые электроны в проводник, они соединятся с атомами, и каждый атом доставит электрон к следующему атому. Следующий атом забирает электрон и посылает другой с другой стороны.

Что такое электродвижущая сила (ЭДС)?

Электродвижущая сила, также называемая ЭДС (измеряемая в вольтах), — это напряжение, развиваемое любым источником электрической энергии, например батареей или генератором. Обычно его определяют как электрический потенциал источника в цепи. Устройство, которое поставляет электрическую энергию, называется электродвижущей силой или ЭДС. ЭДС преобразовывают химическую, механическую и другие формы энергии в электрическую.Слово «сила» в данном случае используется не для обозначения механической силы, измеряемой в ньютонах, а для обозначения потенциала или энергии на единицу заряда, измеряемой в вольтах.

Что такое проводники?

В таких металлах, как медь, серебро и алюминий, электроны не связаны прочно с атомами. Их называют «свободными электронами». Это делает их хорошими проводниками. Проводники — это материалы, которые позволяют электричеству легко течь. Когда отрицательный заряд приближается к одному концу проводника, электроны отталкиваются.Когда положительно заряженный объект помещается рядом с проводником, электроны притягиваются к объекту.

ВЫШЕ — АТОМ МЕДИ — ОДНОЗНАЧНЫЙ ЭЛЕТРОН СЛОЖНО СВЯЗАН

Металлы содержат свободно движущиеся делокализованные электроны. При приложении электрического напряжения электрическое поле внутри металла вызывает движение электронов, заставляя их перемещаться от одного конца проводника к другому. Электроны будут двигаться в положительную сторону.

Медь — хороший проводник, потому что самые внешние электроны ядра еженедельно связываются и отталкиваются, так что небольшое возмущение, такое как разность потенциалов между двумя концами провода, может выбить валентные электроны из атома, что затем приведет к возмущению. соседние валентные электроны и так далее, что приводит к каскадному возмущению движущихся зарядов или тока по всему материалу. Энергия, необходимая для освобождения валентных электронов, называется энергией запрещенной зоны, потому что ее достаточно, чтобы переместить электрон из валентной зоны или внешней электронной оболочки в зону проводимости, где электрон может перемещаться через материал и влиять на соседние атомы.Приведенная выше диаграмма иллюстрирует эту концепцию.

Что такое изоляторы?

Изоляторы — это материалы, в которых электроны не могут свободно перемещаться. Примеры хороших изоляторов: резина, стекло, дерево,

.

Что такое аккумулятор и как он работает?

Аккумулятор преобразует химическую энергию в электрическую с помощью химической реакции. Обычно химические вещества хранятся внутри батареи.Он используется в цепи для питания других компонентов. Батарея вырабатывает электричество постоянного тока (DC) (электричество, которое течет в одном направлении и не переключается взад и вперед, как при переменном (AC) токе). Для получения дополнительной информации о батареях см .: Как работает батарея?

Генераторы

Генератор обычно означает машину, вырабатывающую электрическую энергию. У него есть генераторная головка с проводами, вращающимися внутри магнитного поля.Возникающая в результате электромагнитная индукция заставляет электричество течь по проводам. Гибридные электромобили оснащены генератором, достаточно мощным, чтобы заставить их двигаться. Самые большие генераторы никуда не денутся; они остаются на своей электростанции.

Термопары

Термопара, сокращенно ТС, — это устройство, преобразующее тепло непосредственно в электричество. Термопара также может работать в обратном направлении — используя электрический ток для преобразования в тепло, а также в холод.


Проверьте свой Понимание:

Каково физическое объяснение того факта, что электрическое поле внутри проводника равно нулю?


Спросил: Имран

Ответ

В проводнике, например, в металлической проволоке, носители заряда (электроны) могут перемещаться под действием даже крошечного электрического поля.- Через 9 секунд изолированный проводник будет макроскопически иметь нулевое электрическое поле внутри. Поскольку электроны могут двигаться, они делают это до тех пор, пока не найдут положения, в которых они не чувствуют результирующей силы. Когда они приходят в состояние покоя, внутри проводника должно быть нулевое электрическое поле. Это означает 1) Макроскопическая плотность заряда внутри проводника равна нулю. 2) Чистый заряд проводника существует только на поверхности. (по крайней мере, в хорошем приближении, поскольку электрическое поле будет немного проникать в проводник).3) Внешние электростатические поля всегда перпендикулярны поверхности проводников. В противном случае это создало бы силу на носителях заряда внутри проводника, и поэтому поле не было бы статическим, как мы предполагаем. 4) Электростатическое поле на поверхности проводника пропорционально заряду поверхности, т.е.не зависит от носителей заряда внутри проводника.
Ответил: Эндрю Джеймс Брюс, аспирант физики, Великобритания

У зарядов есть максимальная свобода движения внутри проводника, и это позволяет избежать электрического поля внутри проводника.Это очень интуитивный процесс отрицательной обратной связи внутри проводника. В любой момент, когда внутри проводника есть электрическое поле, положительные заряды (или отсутствие отрицательных зарядов), которые полностью свободны для движения, будут двигаться в направлении электрического поля, а отрицательные заряды могут совершенно свободно двигаться в направлении, противоположном направлению электрического поля. электрическое поле. Однако эти заряды окружены собственным электрическим полем. Заряды, которые только что переместились под действием внутреннего электрического поля, создадут поле, которое будет противодействовать влиянию исходного поля.Возможно, будет яснее на более конкретном примере. Представьте себе электрическое поле, проходящее слева направо через металлический проводник. Электроны в зоне проводимости этого металла не имеют ограничений в своем движении. Таким образом, электроны в металле будут двигаться влево (потому что силовые линии тянутся в направлении положительных зарядов). Это приведет к отсутствию электронов справа и их избытку слева. Это разделение зарядов похоже на маленькую батарею — оно создает электрическое поле справа налево.Он создает электрическое поле от отсутствия электронов до избытка электронов. Это электрическое поле полностью противодействует исходному полю слева направо. Это также объясняет, почему электрические поля ВСЕГДА должны быть ПЕРПЕНДИКУЛЯРНЫМИ по отношению к поверхности проводников. На поверхности электроны НЕ могут двигаться во всех направлениях. Затем они могут накапливаться на поверхности. Если есть какие-либо линии поля, которые наклонены, тангенциальные компоненты (компоненты, параллельные поверхности) вызовут боковое движение зарядов до тех пор, пока результирующее вторичное поле смещения не будет противодействовать исходному полю.Таким образом, единственные электрические поля на поверхности проводника будут перпендикулярны поверхности. Опять же, это связано с динамикой свободных зарядов внутри проводника. Это создает эффект отрицательной обратной связи, так что статическое равновесие не имеет внутреннего электрического поля. Таким образом, те материалы, которые не являются проводниками, которые вызывают определенную организацию электронов, не смогут противостоять внешним электрическим полям, и тогда они будут иметь те же самые поля внутри них (или поля с интересными модификациями — рассмотрите материалы, которые позволяют движение, но только по определенным осям).
Ответил: Тед Павлик, бакалавр наук, аспирант-электротехник, штат Огайо, США.

Electron — Energy Education

Рис. 1. Рисунок, показывающий, как выглядит атом. Обратите внимание, насколько большую площадь занимает электронное облако по сравнению с ядром. [1]

Электроны — это отрицательно заряженные частицы, которые существуют в облаке вокруг ядра атома.Они невообразимо малы, настолько малы, что для объяснения их специфического поведения необходима квантовая механика, и насколько физика смогла определить, они являются фундаментальными частицами. В рамках этой энциклопедии лучше всего представить электроны как крошечные частицы, которые «вращаются» вокруг ядра атома (другие источники, приведенные ниже, предоставят более продвинутую интерпретацию). Однако вместо гравитационной силы, которая отвечает за вращение лун вокруг планет, электромагнитные силы заставляют электроны «вращаться» вокруг ядер.{-26} [/ math] м

Электроны и электричество

Электричество — это поток электронов через проводник, обычно в форме провода, этот поток называется электрическим током. Чтобы этот поток произошел, электроны должны разорвать свою атомную связь (электричество — это поток электронов, не поток электронов и ядер, с которыми они связаны). Разрыв атомной связи между электроном и его ядром требует ввода энергии, которая заставляет электрон преодолевать сдерживающую его электромагнитную силу и, таким образом, течет свободно.Эта необходимая энергия может быть получена из ряда различных источников, и вот несколько примеров:

Проводящий материал

Все формы материи содержат электроны, однако в некоторых материалах электроны более слабо связаны со своими ядрами. Эти материалы (известные как проводники или металлы) требуют очень мало энергии для создания электрического тока, потому что слабосвязанным электронам требуется гораздо меньше энергии для преодоления электромагнитной силы, удерживающей их на месте.

Что генерирует поток электронов?

Электрические генераторы — это устройства, в которых используется принцип электромагнитной индукции — это процесс перемещения проводника через магнитное поле для создания потока электронов. Примечание: необходимо только относительное движение проводника и магнитного поля, что означает, что магнитное поле может перемещаться, пока проводник неподвижен. Когда электроны в проводнике проходят через магнитное поле (если поле достаточно сильное и относительная скорость проводников через поле достаточно велика), то связи с их ядрами будут разорваны, и будет индуцирован поток. Чтобы вызвать высокий уровень потока электронов, необходимо большое количество энергии, чтобы создать относительную скорость между проводником и магнитами.

Химические реакции внутри батарей также создают электродвижущую силу, заставляя электроны течь в цепи. Фотоны (световая энергия) также могут вызывать движение электронов, когда они ударяются о фотоэлектрический элемент.

Внешние ресурсы

Чтобы узнать больше о том, как электроны образуют материю с протонами и нейтронами, посетите нашу страницу об атомах. Для более глубокой физики электрона см. Гиперфизику. Чтобы узнать больше о том, какое отношение электроны имеют к химии, см. Вики UC Davis.Чтобы просто поиграть с различными моделями электронов вокруг атома, см. Модели атома водорода в PhET.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

  1. ↑ Интернет «Электронное облако»: http://letstalkaboutscience.wordpress.com/2012/02/16/the-electron-cloud/
  2. ↑ Р. Д. Найт, «Миликан и фундаментальная единица заряда» в Физика для ученых и инженеров: стратегический подход, 2-е изд.Сан-Франциско, США: Пирсон Аддисон-Уэсли, 2008 г., глава 38, секция 5, стр. 1192.
  3. ↑ «Электрон на удивление круглый, — говорят ученые после 10-летнего исследования», доступ: https://phys.org/news/2011-05-electron-surprisingly-scientists-year.html 18 мая 2018 года. Улучшенное измерение формы электрона »Hudson et al. Nature 473, 493-496, 26 мая 2011 г. Доступ: https://www.nature.com/articles/nature10104

Произошла ошибка: SQLSTATE [42000]: синтаксическая ошибка или нарушение прав доступа: 1064 У вас есть ошибка в синтаксисе SQL; проверьте руководство, соответствующее вашей версии сервера MySQL, чтобы найти правильный синтаксис рядом с ‘)’ в строке 1

11.4. Движение заряженной частицы в магнитном поле

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как заряженная частица во внешнем магнитном поле совершает круговое движение
  • Опишите, как определить радиус кругового движения заряженной частицы в магнитном поле

Заряженная частица испытывает силу при движении в магнитном поле. Что произойдет, если это поле будет однородным при движении заряженной частицы? По какому пути следует частица? В этом разделе мы обсуждаем круговое движение заряженной частицы, а также другое движение, возникающее в результате попадания заряженной частицы в магнитное поле.

Самый простой случай возникает, когда заряженная частица движется перпендикулярно однородному полю B (рисунок \ (\ PageIndex {1} \)). Если поле находится в вакууме, магнитное поле является доминирующим фактором, определяющим движение. Поскольку магнитная сила перпендикулярна направлению движения, заряженная частица следует по кривой траектории в магнитном поле. Частица продолжает следовать по этому изогнутому пути, пока не образует полный круг. Другой способ взглянуть на это состоит в том, что магнитная сила всегда перпендикулярна скорости, поэтому она не действует на заряженную частицу.Таким образом, кинетическая энергия и скорость частицы остаются постоянными. Это влияет на направление движения, но не на скорость.

Рисунок \ (\ PageIndex {1} \): отрицательно заряженная частица движется в плоскости бумаги в области, где магнитное поле перпендикулярно бумаге (представленное маленькими \ (X \) — как хвосты стрелок). Магнитная сила перпендикулярна скорости, поэтому скорость изменяется по направлению, но не по величине. Результат — равномерное круговое движение. (Обратите внимание, что поскольку заряд отрицательный, сила противоположна предсказанию правила правой руки.2} {r}. \]

Решение для r дает

\ [r = \ dfrac {mv} {qB}. \ label {11.5} \]

Здесь r — радиус кривизны пути заряженной частицы с массой m и зарядом q , движущейся со скоростью v , перпендикулярной магнитному полю с напряженностью B . Время прохождения заряженной частицы по круговой траектории определяется как период, равный пройденному расстоянию (окружности), деленному на скорость.Основываясь на этом и уравнении, мы можем получить период движения как

.

\ [T = \ dfrac {2 \ pi r} {v} = \ dfrac {2 \ pi} {v} \ dfrac {mv} {qB} = \ dfrac {2 \ pi m} {qB}. \ label {11.6} \]

Если скорость не перпендикулярна магнитному полю, то мы можем сравнить каждую составляющую скорости отдельно с магнитным полем. Компонент скорости, перпендикулярный магнитному полю, создает магнитную силу, перпендикулярную как этой скорости, так и полю:

\ [\ begin {align} v_ {perp} & = v \, \ sin \ theta \\ [4pt] v_ {para} & = v \, \ cos \ theta.\ end {align} \]

, где \ (\ theta \) — угол между v и B . Компонент, параллельный магнитному полю, создает постоянное движение в том же направлении, что и магнитное поле, что также показано в уравнении. Параллельное движение определяет шаг p спирали, то есть расстояние между соседними витками. Это расстояние равно параллельной составляющей скорости, умноженной на период:

\ [p = v_ {para} T. \ label {11.8} \]

В результате получается спиральное движение , как показано на следующем рисунке.

Рисунок \ (\ PageIndex {2} \): Заряженная частица движется со скоростью, отличной от направления магнитного поля. Компонент скорости, перпендикулярный магнитному полю, создает круговое движение, тогда как компонент скорости, параллельный полю, перемещает частицу по прямой. Шаг — это расстояние по горизонтали между двумя последовательными кругами. Результирующее движение — спиральное.

Пока заряженная частица движется по спирали, она может попасть в область, где магнитное поле неоднородно.В частности, предположим, что частица перемещается из области сильного магнитного поля в область более слабого поля, а затем обратно в область более сильного поля. Частица может отразиться до того, как войдет в область более сильного магнитного поля. Это похоже на волну на струне, которая движется от очень легкой тонкой струны к твердой стене и отражается назад. Если отражение происходит с обоих концов, частица оказывается в так называемой магнитной бутылке.

Захваченные частицы в магнитных полях обнаружены в радиационных поясах Ван Аллена вокруг Земли, которые являются частью магнитного поля Земли.Эти пояса были обнаружены Джеймсом Ван Алленом при попытке измерить поток космических лучей на Земле (частицы высокой энергии, приходящие извне Солнечной системы), чтобы выяснить, похож ли он на поток, измеренный на Земле. Ван Аллен обнаружил, что из-за вклада частиц, захваченных магнитным полем Земли, поток на Земле был намного выше, чем в космическом пространстве. Полярные сияния, как и знаменитое полярное сияние (северное сияние) в Северном полушарии (рис. \ (\ PageIndex {3} \)), представляют собой прекрасные проявления света, излучаемого при рекомбинации ионов с электронами, входящими в атмосферу, когда они вращаются вдоль силовых линий магнитного поля.(Ионы — это в основном атомы кислорода и азота, которые первоначально ионизируются в результате столкновений с энергичными частицами в атмосфере Земли.) Полярные сияния также наблюдались на других планетах, таких как Юпитер и Сатурн.

Рисунок \ (\ PageIndex {3} \): (a) Радиационные пояса Ван Аллена вокруг Земли захватывают ионы, образованные космическими лучами, падающими на атмосферу Земли. (b) Великолепное зрелище северного сияния, или северного сияния, сияет в северном небе над Беар-Лейк недалеко от базы ВВС Эйлсон, Аляска.Этот свет, сформированный магнитным полем Земли, создается светящимися молекулами и ионами кислорода и азота. (кредит b: модификация работы старшего летчика ВВС США Джошуа Стрэнга)

Пример \ (\ PageIndex {1} \): отражатель луча

Группа исследователей занимается изучением короткоживущих радиоактивных изотопов. Им необходимо разработать способ транспортировки альфа-частиц (ядер гелия) от места их создания к месту, где они столкнутся с другим материалом, образуя изотоп. Пучок альфа-частиц \ ((m = 6.{-19} C) \) изгибается через область под углом 90 градусов с однородным магнитным полем 0,050 Тл (рисунок \ (\ PageIndex {4} \)). а) В каком направлении следует приложить магнитное поле? (б) Сколько времени требуется альфа-частицам, чтобы пройти через область однородного магнитного поля?

Рисунок \ (\ PageIndex {4} \): вид сверху на установку дефлектора балки.

Стратегия

  1. Направление магнитного поля показано RHR-1. Ваши пальцы указывают в направлении v , а большой палец должен указывать в направлении силы, влево.Следовательно, поскольку альфа-частицы заряжены положительно, магнитное поле должно указывать вниз. {- 27} кг)} {(3.{-7} с. \]

Значение

Это время может быть достаточно быстрым, чтобы добраться до материала, который мы хотели бы бомбардировать, в зависимости от того, насколько короткоживущий радиоактивный изотоп и продолжает испускать альфа-частицы. Если бы мы могли усилить магнитное поле, приложенное к области, это сократило бы время еще больше. Путь, по которому частицы должны пройти, можно было бы сократить, но это может оказаться неэкономичным с учетом экспериментальной установки.

Упражнение \ (\ PageIndex {1} \)

Однородное магнитное поле величиной 1.5 \, м / с \). Под каким углом должно быть магнитное поле относительно скорости, чтобы шаг результирующего спирального движения был равен радиусу спирали?

Стратегия

Шаг движения относится к параллельной скорости, умноженной на период кругового движения, тогда как радиус относится к перпендикулярной составляющей скорости. Установив одинаковый радиус и шаг, найдите угол между магнитным полем и скоростью или \ (\ theta \).

Решение

Шаг задается уравнением \ ref {11.8}, период задается уравнением \ ref {11.6}, а радиус кругового движения задается уравнением \ ref {11.5}. Обратите внимание, что скорость в уравнении радиуса связана только с перпендикулярной скоростью, в которой происходит круговое движение. Поэтому мы подставляем синусоидальную составляющую общей скорости в уравнение радиуса, чтобы приравнять шаг и радиус

\ [p = r \]

\ [v _ {\ parallel} T = \ dfrac {mv} {qB} \]

\ [v \, cos \, \ theta \ dfrac {2 \ pi m} {qB} = \ dfrac {mv \, sin \, \ theta} {qB} \]

\ [2 \ pi = загар \, \ theta \]

\ [\ theta = 81.о \) будет происходить только круговое движение, и не будет движения кругов перпендикулярно движению. Вот что создает спиральное движение.

Авторы и авторство

  • Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

Носителей заряда.Полупроводник против проводника против изолятора

Структура энергетических зон

Полупроводники кристаллические материалы, внешняя оболочка которых атомарная уровни демонстрируют структуру энергетической зоны, состоящую из валентной зоны, «запрещенная» энергетическая щель и проводимость группа.

Энергия полосы на самом деле являются областями множества дискретных уровней, которые так близко разнесены, чтобы их можно было рассматривать как континуум, а «запрещенные» энергетическая щель — это область, в которой вообще нет доступных уровней энергии.Поскольку принцип Паули запрещает более одного электрона в то же состояние, вырождение уровней энергии внешней оболочки атома разрывается, образуя множество дискретных уровней, лишь слегка отделенных друг от друга. Поскольку два электрона противоположного спина могут находиться на одном уровне, существуют столько же уровней, сколько пар электронов в кристалле. Этот Однако нарушение вырождения не влияет на внутренние атомные уровни, которые связаны более жестко.

Самая высокая энергетическая полоса — проводимость. группа.Электроны в этой области отрываются от своих родительских атомов и становятся свободно бродить по всему кристаллу. В электроны на уровнях валентной зоны, тем не менее, они более тесно связаны и остаются связано с соответствующие атомы решетки.

Ширина зазора и полос составляет определяется шагом решетки между атомами. Эти параметры таким образом зависит от температуры и давления.В проводниках энергия разрыв отсутствует, а в изоляторах разрыв большой.

При нормальных температурах все электроны в изоляторе обычно все валентная зона, тепловая энергия недостаточна для возбуждения электронов через этот пробел. Следовательно, при приложении внешнего электрического поля возникает отсутствие движения электронов через кристалл и, следовательно, отсутствие тока. Для проводник, с другой стороны, отсутствие зазора позволяет очень легко термически возбужденные электроны, чтобы прыгнуть в зону проводимости, где они могут свободно перемещаться по кристаллу.Тогда будет течь ток, когда электрический поле применяется.

В полупроводнике ширина запрещенной зоны является промежуточной по размеру. так что только несколько электронов возбуждаются в зону проводимости за счет термальная энергия. Поэтому при приложении электрического поля небольшая ток наблюдается. Однако если полупроводник охлаждается, почти все электроны попадут в валентную зону, а проводимость полупроводник уменьшится.

Носители заряда в полупроводниках

При 0 К, в состоянии с наименьшей энергией полупроводника, электроны в все валентные зоны участвуют в ковалентной связи между атомами решетки.

Однако при нормальных температурах действие термического энергия может возбудить валентный электрон в зону проводимости, покидая отверстие в исходном положении.В таком состоянии легко соседнему валентный электрон прыгнет со своей связи, чтобы заполнить дыру. Теперь остается дырка в соседнем положении. Если теперь следующий соседний электрон повторяет последовательность и так далее, отверстие кажется движущимся через кристалл. Поскольку дыра положительна относительно моря отрицательных электронов в валентной зоне дырка действует как носитель положительного заряда и его движение через кристалл также представляет собой электрический ток.

Таким образом, в полупроводнике электрический ток возникает из двух источников: движение свободных электронов в зоне проводимости и движение дыры в валентной зоне. Это контрастирует с металлом, где ток переносится только электронами.

Энергия, необходимая для создания заряд несет полупроводники

энергия Вт требуется создать пару e-h в полупроводнике с помощью частица заряженной массы, пересекающая среда зависит от ширины запрещенной зоны E g из материал и, следовательно, хотя только немного, от температуры.

измерения этой величины показывают почти линейная зависимость от ширины запрещенной зоны, и линейная аппроксимация данных, полученных для различные материалы дают [ 1 ]

Энергия для заряда генерация носителей всегда выше, чем запрещенная зона из-за возможного дополнительное возбуждение фонона и плазмона состояния.Фононное возбуждение передает энергию решетке, а переданная энергия появляется, наконец, как тепло в детекторе.

Плазмон — это квант плотности валентных электронов колебания со средней энергией 17 эВ для кремний. Валентные электроны принадлежат M-оболочка и они связаны только слабо к атомам. Таким образом, их можно считать как плотная и почти однородная плотность газ, т.е. плазма отрицательных носителей заряда в объеме полупроводникового материала.

Средняя энергия W для создания пары e-h был рассчитан и измерен в эксперименты, в том числе заряженные частицы и рентгеновские фотоны [1,2].

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *