Site Loader

Содержание

Законы Кирхгофа

Законы Кирхгофа:   Первый и второй законы Кирхгофа.

Вытекает из закона сохранения заряда.
Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где i – число токов, сходящихся в данном узле.
Например, для узла электрической цепи ( рис. 1 ) уравнение по первому закону Кирхгофа можно записать в виде
I1 — I2 + I3 — I4 + I5 = 0

Рис. 1
В этом уравнении токи, направленные к узлу, приняты положительными.

Второй закон Кирхгофа.

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii, Ri – ток и сопротивление i — й ветви.
Рис. 2
Так, для замкнутого контура схемы ( рис. 2 ) Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4
Замечание о знаках полученного уравнения:
1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;
2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа.

Точечные тела (материальные точки) взаимодействуют с силами, равными по величине и противоположными по направлению и направленными вдоль прямой, соединяющей эти тела.

Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b, следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.
Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.
Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b — ( y — 1 ) = b — y + 1.
Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.
Составим систему уравнений Кирхгофа для электрической цепи ( рис. 3 ). Схема содержит четыре узла и шесть ветвей.
Поэтому по первому закону Кирхгофа составим y — 1 = 4 — 1 = 3 уравнения, а по второму b — y + 1 = 6 — 4 + 1 = 3, также три уравнения.
Произвольно выберем положительные направления токов во всех ветвях ( рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

Рис. 3
Составляем необходимое число уравнений по первому и второму законам Кирхгофа
Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.

Первый закон Кирхгофа — Юридическая помощь

, где p + q = n

Примечание: знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.

Здесь также как и в первом законе оба варианта корректны, но на практике удобнее использовать второй вариант, т.к. в нем проще определить знаки слагаемых.

С помощью законов Кирхгофа для любой электрической цепи можно составить независимую систему уравнений и определить любые неизвестные параметры, если число их не превышает число уравнений. Для выполнения условий независимости эти уравнения должны составляться по определенным правилам.

Общее число уравнений N в системе равно числу ветвей N в минус число ветвей, содержащих источники тока N J , т.е. N = N в — N J .

Наиболее простыми по выражениям являются уравнения по первому закону Кирхгофа, однако их число N 1 не может быть больше числа узлов N у минус один.

Недостающие уравнения составляются по второму закону Кирхгофа, т.е.

N 1 = N у -1 ;

N 2 = N — N 1 = N в — N J — N 1.

Сформулируем алгоритм составления системы уравнений по законам Кирхгофа :

  1. определить число узлов и ветвей цепи N у и N в ;
  2. определить число уравнений по первому и второму законам N 1 и N 2 . ;
  3. для всех ветвей (кроме ветвей с источниками тока) произвольно задать
    направления протекания токов;
  4. для всех узлов, кроме одного, выбранного произвольно, составить уравнения по первому закону Кирхгофа;
  5. произвольно выбрать на схеме электрической цепи замкнутые контуры таким образом, чтобы они отличались друг от друга по крайней мере одной ветвью и чтобы все ветви, кроме ветвей с источниками тока, входили по крайней мере в один контур;
  6. произвольно выбрать для каждого контура направление обхода и составить уравнения по второму закону Кирхгофа, включая в правую часть уравнения ЭДС действующие в контуре, а в левую падения напряжения на резисторах. Примечание: Знак ЭДС выбирают положительным, если направление ее действия совпадает с направлением обхода независимо от направления тока; а знак падения напряжения на резисторе принимают положительным, если направление тока в нем совпадает с направлением обхода.

Рассмотрим этот алгоритм на примере рис 2.

Здесь светлыми стрелками обозначены выбранные произвольно направления токов в ветвях цепи. Ток в ветви с R 4 не выбирается произвольно, т.к. в этой ветви он определяется действием источником тока.

Число ветвей цепи равно 5, а т.к. одна из них содержит источник тока, то общее число уравнений Кирхгофа равно четырем.

Число узлов цепи равно трем ( a, b и c ), поэтому число уравнений по первому закону Кирхгофа равно двум и их можно составлять для любой пары из этих трех узлов. Пусть это будут узлы a и b , тогда

b ) I R 3 + I E 2 = I R 1 + I R 2 Ы I R 3 + I E 2 — I R 1 — I R 2 = 0

По второму закону Кирхгофа нужно составить два уравнения. Выберем два контура I и II так, чтобы все ветви, кроме ветви с источником тока попали по крайней мере в один из них, и зададим произвольно направление обхода как показано стрелками. Тогда

II) E 2 = I R 2 R 2

При выборе контуров и составлении уравнений все ветви с источниками тока должны быть исключены, т.е. контуры обхода не должны включать ветви с источниками тока. Это не означает что для контуров с источниками тока нарушается второй закон Кирхгофа. Просто при необходимости определения падения напряжения на источнике тока или на других элементах ветви с источником тока это можно сделать после решения системы уравнений. Например, на рис. 2 можно создать замкнутый контур из элементов R 3 , R 4 , J и E 2 , и для него будет справедливым уравнение

I R 3 R 3 + E 2 + JR 4 + U J = 0 ,

где U J — падение напряжения на источнике тока J.

Из сказанного выше очевидно, что законы Кирхгофа необязательно использовать в виде систем уравнений. Они справедливы всегда для любого узла и для любого замкнутого контура любой электрической цепи.

Современные средства математического анализа позволяют легко получить результат решения составленной выше системы уравнений, если она записана в матричной форме A ґ X = B . Это можно сделать, например, для токов в качестве неизвестных.

Каждая строка матрицы A должна соответствовать одному из уравнений (7)-(10). Поэтому в строки матрицы A нужно включить все коэффициенты при токах соответствующего уравнения, в той последовательности, в какой эти токи включены в координаты вектора неизвестных величин . Если какой-либо ток отсутствует в уравнении, то в качестве элемента матрицы нужно указать нуль. Для включения в матрицу уравнения по первому закону Кирхгофа удобнее записывать в форме (1) с нулевой правой частью, однако, для уравнения (7) нужно перенести ток источника J в правую часть, т.к. он не входит в число неизвестных.

Вектор неизвестных токов X представляет собой столбец, в который включены неизвестные токи в произвольной последовательности.

Вектор B представляет собой столбец, координатами которого являются источники электрической энергии, действующие в цепи (правая часть уравнений (7)-(10)). Порядок включения их в столбец должен соответствовать порядку записи уравнений в строки матрицы A .

Составим матричное уравнение для схемы рис. 2 , используя полученные ранее уравнения (7)-(8) и (9)-(10) .

Здесь для упрощения восприятия строки записи помечены указателями на тот узел или контур, которому они соответствуют.

Правила Кирхгофа

Alexey Немного теоретических основ электротехники Немецкий ученый Густав Кирхгоф — один из величайших физиков всех времен, написавший целую кучу работ по электричеству. Эти работы получили признание среди передовых ученых девятнадцатого века и стали основой для работ множества других ученых, а также дальнейшего развития науки и техники.

Он был человеком который посвятил всю свою жизнь науке и несомненно сделал наш мир чуточку лучше. В теории, законы Ома устанавливают взаимосвязь между силой, напряжением и сопротивлению тока для простых замкнутых одноконтурных цепей. Но на практике чаще всего используются гораздо более сложные, разветвленные цепи, в систему которых может входить несколько контуров и узлов, в которые сходятся проходящие по другим ответвлениям электротоки и их невозможно описать по стандартным правилам для расчета комбинаций параллельных и последовательных цепей.

Правило Кирхгофа делает возможным определение силы и напряжения тока в таких цепях. Общие понятия и описание первого закона Кирхгофа Первый закон Кирхгофа показывает связь токов и узлов электрической цепи.

Формула связи очень проста. Это правило гласит, что сумма токов всех ветвей, которые сходятся в один узел электроцепи, равняется нулю речь идёт об алгебраических значениях. При этом накопление электрических зарядов в одной точке замкнутой электроцепи невозможно.

При суммировании токов принято брать положительный знак, если электроток идёт по направлению к узлу, и отрицательный знак, если ток идёт в противоположную от узла сторону.

Для описания понятной аналогии для этого случая, уместны сравнения с течениями воды в соединенных между собой трубопроводах. Пример вышеописанной формулы первого закона: Общие понятия и описание второго закона Кирхгофа Второй закон Кирхгофа описывает алгебраическую зависимость между электродинамической силой и напряжением в замкнутой электроцепи.

В любом замкнутом контуре сумма электродинамической силы равна сумме падания напряжения на сопротивлениях, относящихся к данному контуру. Для написания формул, определяющих второй закон Кирхгофа, берут положительное значение электродинамической силы и падение напряжений, если направление на относящихся к ним отрезках контура совпадает с произвольным направлением обхода контура. А если же направление электродинамической силы и токов противоположны выбранному направлению, то эти электродинамические силы и падение напряжений берут отрицательными: Алгоритм определения знака величины электродинамической силы и падения напряжений: Выбираем направление обхода контурных цепей.

Тут возможны несколько вариантов: либо по часовой стрелке, либо против часовой стрелки. Произвольным образом выбираем направление движения токов протекающих через элементы контурных цепей. И наконец, расставляем знаки для электродинамической силы и падения напряжений не забывая о совпадении или несовпадении направления электродинамической силы с направлением движения обхода контура Пример вышеописанной формулы второго закона : Области применения Закономерности Кирхгофа применяются на практике для сложных контурных цепей, для выяснения распределений и значений токов в этих электроцепях.

С помощью уравнений, положенных в основу этих закономерностей моделируется система контурных напряжений и токов, после решения которой можно сказать какое направление электротока необходимо выбрать. Первое и Второе правило Кирхгофа получили огромное применение при построении параллельных и последовательных контурных цепей.

При последовательном строении электроцепи в качестве примера отлично подойдёт новогодняя ёлочная гирлянда сопротивление на каждом последующем элементе падает согласно закону Ома. При параллельном строении напряжение равно подаётся на все элементы электроцепи, и для определения значений токов в любом месте электроцепи используется второй закон Кирхгофа.

Также часто эти правила сочетаются с другими приёмами, такими как принцип суперпозиции и метод эквивалентного электрогенератора и составления потенциальной диаграммы.

Интересные факты: Существует множество заблуждений о третьем, четвертом и т. Густав Кирхгофф был всесторонне развитым человеком, который изучал множество наук; Он сделал несколько открытий в области теоретической механики для абсолютно упругих тел, в области химии, физики, термодинамике. Именно к этим открытиям относятся эти законы, а с электродинамикой и контурными электрическими цепями не имеют ничего общего; В его честь назван один из кратеров на Луне; Еще один величайший изобретатель Джеймс Максвелл основывал свои идеи именно на этих двух главных закономерностях электродинамики.

Похожие статьи.

Законы Кирхгофа простыми словами ⋆ diodov.net

Два закона Кирхгофа вместе с законом Ома составляют тройку законов, с помощью которых можно определить параметры электрической цепи любой сложности.

Законы Кирхгофа мы будем проверять на примерах простейших электрических схем, собрать которые не составит никакого труда.

Для этого понадобится несколько резисторов, пара источников питания, в качестве которых подойдут гальванические элементы (батарейки) и мультиметр.

Первый закон Кирхгофа

Первый закон Кирхгофа говорит, что сумма токов в любом узле электрической цепи равна нулю. Существует и другая, аналогичная по смыслу формулировка: сумма значений токов, входящих в узел, равна сумме значений токов, выходящих из узла.

Давайте разберем сказанное более подробно. Узлом называют место соединения трех и более проводников.

Ток, который втекает в узел, обозначается стрелкой, направленной в сторону узла, а выходящий из узла ток – стрелкой, направленной в сторону от узла.

Согласно первому закону Кирхгофа

1 закон Кирхгофа согласуется с законом сохранения энергии, поскольку электрические заряды не могут накапливаться в узлах, поэтому, поступающие к узлу заряды покидают его.

Убедиться в справедливости 1-го закона Кирхгофа нам поможет простая схема, состоящая из источника питания, напряжением 3 В (две последовательно соединенные батарейки по 1,5 В), три резистора разного номинала: 1 кОм, 2 кОм, 3,2 кОм (можно применять резисторы любых других номиналов). Токи будем измерять мультиметром в местах, обозначенных амперметром.

Если сложить показания трех амперметров с учетом знаков, то, согласно первому закону Кирхгофа, мы должны получить ноль:

I1 — I2 — I3 = 0.

Или показания первого амперметра А1 будет равняться сумме показаний второго А2 и третьего А3 амперметров.

Второй закон Кирхгофа

Второй закон Кирхгофа воспринимается начинающими радиолюбителями гораздо сложнее, нежели первый. Однако сейчас вы убедитесь, что он достаточно прост и понятен, если объяснять его нормальными словами, а не заумными терминами.

Упрощенно 2 закон Кирхгофа говорит: сумма ЭДС в замкнутом контуре равна сумме падений напряжений

ΣE = ΣIR

Самый простой случай данного закона разберем на примере батарейки 1,5 В и одного резистора.

Поскольку резистор всего один и одна батарейка, то ЭДС батарейки 1,5 В будет равна падению напряжения на резисторе.

Если мы возьмем два резистора одинакового номинала и подключим к батарейке, то 1,5 В распределятся поровну на резисторах, то есть по 0,75 В.

Если возьмем три резистора снова одинакового номинала, например по 1 кОм, то падение напряжения на них будет по 0,5 В.

Формулой это будет записано следующим образом:

Рассмотрим условно более сложный пример. Добавим в последнюю схему еще один источник питания E2, напряжением 4,5 В.

Обратите внимание, что оба источника соединены последовательно и согласно, то есть плюс одной батарейки соединяется с минусом другой батарейки или наоборот. При таком способе соединения гальванических элементов их электродвижущие силы складываются: E1 + E2 = 1,5 + 4,5 = 6 В, а падение напряжения на каждом сопротивлении составляет по 2 В. Формулой это описывается так:

И последний отличительный вариант, который мы рассмотрим в данной статье, предполагает последовательное встречное соединение гальванических элементов. При таком соединении источников питания из большей ЭДС отнимается значение меньшей ЭДС. Следовательно к резисторам R1…R3 будет приложена разница E1 – E2, то есть 4,5 – 1,5 = 3 В, — по одному вольту на каждый резистор.

Второй закон Кирхгофа работает не зависимо от количества источников питания и нагрузок, а также независимо от места их расположения в контуре схемы. Полезно будет собрать рассмотренные схемы и выполнить соответствующие измерения с помощью мультиметра.

Законы Кирхгофа действуют как для постоянного, так и для переменного тока.

Источник: https://diodov.net/zakony-kirhgofa-prostymi-slovami/

Навигация по записям

Вам также может понравиться

Свежие записи
Рубрики

Первый и второй закон Кирхгофа — доступное объяснение

Первый закон Кирхгофа

Определение первого закона звучит так: «Алгебраическая сума токов, протекающих через узел, равна нулю». Можно сказать немного в другой форме: «Сколько токов втекло в узел, столько же и вытекло, что говорит о постоянстве тока».

Узлом цепи называют точку соединения трех и больше ветвей. Токи в таком случае распределяются пропорционально сопротивлениям каждой ветви.

I1=I2+I3

Такая форма записи справедлива для цепей постоянного тока. Если использовать первый закон Кирхгофа для цепи переменного тока, то используются мгновенные значения напряжений, обозначаются буквой İ и записывается в комплексной форме, а метод расчета остаётся прежним:

Комплексная форма учитывает и активную и реактивную составляющие.

Законы Кирхгофа простыми словами ⋆ diodov.net

Два закона Кирхгофа вместе с законом Ома составляют тройку законов, с помощью которых можно определить параметры электрической цепи любой сложности.

Законы Кирхгофа мы будем проверять на примерах простейших электрических схем, собрать которые не составит никакого труда.

Для этого понадобится несколько резисторов, пара источников питания, в качестве которых подойдут гальванические элементы (батарейки) и мультиметр.

Первый закон Кирхгофа

Первый закон Кирхгофа говорит, что сумма токов в любом узле электрической цепи равна нулю. Существует и другая, аналогичная по смыслу формулировка: сумма значений токов, входящих в узел, равна сумме значений токов, выходящих из узла.

Давайте разберем сказанное более подробно. Узлом называют место соединения трех и более проводников.

Ток, который втекает в узел, обозначается стрелкой, направленной в сторону узла, а выходящий из узла ток – стрелкой, направленной в сторону от узла.

Согласно первому закону Кирхгофа

1 закон Кирхгофа согласуется с законом сохранения энергии, поскольку электрические заряды не могут накапливаться в узлах, поэтому, поступающие к узлу заряды покидают его.

Убедиться в справедливости 1-го закона Кирхгофа нам поможет простая схема, состоящая из источника питания, напряжением 3 В (две последовательно соединенные батарейки по 1,5 В), три резистора разного номинала: 1 кОм, 2 кОм, 3,2 кОм (можно применять резисторы любых других номиналов). Токи будем измерять мультиметром в местах, обозначенных амперметром.

Если сложить показания трех амперметров с учетом знаков, то, согласно первому закону Кирхгофа, мы должны получить ноль:

I1 — I2 — I3 = 0.

Или показания первого амперметра А1 будет равняться сумме показаний второго А2 и третьего А3 амперметров.

Второй закон Кирхгофа

Второй закон Кирхгофа воспринимается начинающими радиолюбителями гораздо сложнее, нежели первый. Однако сейчас вы убедитесь, что он достаточно прост и понятен, если объяснять его нормальными словами, а не заумными терминами.

Упрощенно 2 закон Кирхгофа говорит: сумма ЭДС в замкнутом контуре равна сумме падений напряжений

ΣE = ΣIR

Самый простой случай данного закона разберем на примере батарейки 1,5 В и одного резистора.

Поскольку резистор всего один и одна батарейка, то ЭДС батарейки 1,5 В будет равна падению напряжения на резисторе.

Если мы возьмем два резистора одинакового номинала и подключим к батарейке, то 1,5 В распределятся поровну на резисторах, то есть по 0,75 В.

Если возьмем три резистора снова одинакового номинала, например по 1 кОм, то падение напряжения на них будет по 0,5 В.

Формулой это будет записано следующим образом:

Рассмотрим условно более сложный пример. Добавим в последнюю схему еще один источник питания E2, напряжением 4,5 В.

Обратите внимание, что оба источника соединены последовательно и согласно, то есть плюс одной батарейки соединяется с минусом другой батарейки или наоборот. При таком способе соединения гальванических элементов их электродвижущие силы складываются: E1 + E2 = 1,5 + 4,5 = 6 В, а падение напряжения на каждом сопротивлении составляет по 2 В. Формулой это описывается так:

И последний отличительный вариант, который мы рассмотрим в данной статье, предполагает последовательное встречное соединение гальванических элементов. При таком соединении источников питания из большей ЭДС отнимается значение меньшей ЭДС. Следовательно к резисторам R1…R3 будет приложена разница E1 – E2, то есть 4,5 – 1,5 = 3 В, — по одному вольту на каждый резистор.

Второй закон Кирхгофа работает не зависимо от количества источников питания и нагрузок, а также независимо от места их расположения в контуре схемы. Полезно будет собрать рассмотренные схемы и выполнить соответствующие измерения с помощью мультиметра.

Законы Кирхгофа действуют как для постоянного, так и для переменного тока.

Источник: https://diodov.net/zakony-kirhgofa-prostymi-slovami/

Историческая справка

Год открытия Закон Ома  — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

Законы Кирхгофа для расчета линейной электрической цепи постоянного тока. Первый и второй закон Кирхгофа

Общие сведения о законах Кирхгофа

Законы Кирхгофа применяют для анализа и расчета разветвленных сложных электрических цепей постоянного и переменного тока. Они позволяют рассчитать электрические токи во всех ветвях. По найденным токам можно рассчитать падение напряжения, мощность и т.д.

Существует мнение, что «Законы Кирхгофа» нужно называть «Правилами Кирхгофа», т.к. они могут быть выведены из других положений и предположений. Данные правила не являются обобщением большого количества опытных данных. Они являются одной из форм закона сохранения энергии и потому относятся к фундаментальным законам природы.

В некоторых книгах пишут фамилию ученого Густава с буквой Х — Кирхгоф. В некоторых изданиях пишут без буквы х — Киргоф. 

Сколько всего законов Кирхгофа?

В отличии от Ньютона, который «придумал» три закона, Кирхгоф придумал только два закона. Они названы в его честь: 1 и 2 закон Кирхгофа. 3-ий закон Кирхгофа не существует.

Как применять правила Кирхгофа

Законы Кирхгофа необязательно использовать в виде систем уравнений. Они могут быть использованы для любого узла или для любого замкнутого контура в электрической цепи.

Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приёмами и способами (метод эквивалентного генератора, метод контурных токов, метод узловых напряжений, принцип суперпозиции (метод наложения)) решать задачи электротехники.

Плюсы правил Кирхгофа 

  1. Правила Кирхгофа нашли широкое применение благодаря простой формулировке уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.). 
  2. Простой и понятный алгоритм составления уравнений 

Минусы законов Кирхгофа

  1. Большое количество уравнений по сравнению с другими методами.

Моделирование в электроэнергетике — Расчет электрической цепи. Первый и второй законы Кирхгофа. Метод контурных токов и метод узловых потенциалов.

Расчет электрической цепи. Первый и второй законы Кирхгофа. Метод контурных токов и метод узловых потенциалов.

 

Электрическая цепь представляет собой совокупность электрических элементов (резисторов, катушек индуктивностей, батарей конденсаторов, постоянные и переменные источники напряжения и т.д.), которые соединены между собой таким образом, что в полученном замкнутом контуре протекает электрический ток.

Для определения действующих (или мгновенных) значений токов и падений напряжений на элементах электрической цепи необходимо выполнить следующую последовательность действий:

• Этап 1. Составить схему замещения электрической цепи, в которой реальные элементы заменяются идеализированными элементами электрической цепи (активное сопротивление, индуктивность, емкость, ЭДС и т.д.).

• Этап 2. Обозначить на схеме замещения условно положительное направление токов в ветвях и падение напряжения на элементах расчетной схемы замещения. Следует отметить, что в качестве положительного направления падения напряжения выбирают направление, которое совпадает с направлением тока в ветви расчетной схемы замещения.

• Этап 3. Записать систему уравнений, которая связывает напряжения и токи, по одному из следующих способов:

– 1-ого и 2-ого закона Кирхгофа;

– метод контурных токов;

– метод узловых потенциалов.

Каждый из представленных методов позволяет получить необходимый результат, но при разном количестве записанных уравнений в исходной системе уравнений. Следует отметить, что данные методы справедливы как для мгновенных значений токов и напряжений, так и для векторных переменных токов и напряжений.

• Этап 4. Выполнить расчет записанной системы уравнений и определить величины напряжения, токов, перетоков активной и реактивной мощности в ветвях расчетной схемы.

Составление системы уравнений, используя первый и второй закон Кирхгофа.

Первый и второй законы Кирхгофа обеспечивают связь между токами и напряжениями на участках любой электрической цепи. Впервые законы были сформулированы Густавом Кирхгофом в 1845 году.  Данные законы вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (третье уравнение Максвелла при неизменном магнитном поле).

Первый закон Кирхгофа — алгебраическая сумма токов в каждом узле расчетной схемы равна нулю. Данное утверждение справедливо как для мгновенных значений, так и для векторных значений.

где p – количество ветвей, которые присоединены к рассматриваемому узлу расчетной схемы.

При составлении уравнений согласно первому закону Кирхгофа со знаком «плюс» записываются токи, направленные к узлу, а со знаком «минус» записываются токи, направленные от узла.

Формулировка данного закона может быть переписана в следующем виде: алгебраическая сумма токов, втекающих в узел расчетной схемы, равна алгебраической сумме токов, вытекающих из узла расчетной схемы.

Рис.1. Пояснение к первому закону Кирхгофа

Второй закон Кирхгофа — алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС действующих в этом контуре. Данное утверждение справедливо как для мгновенных значений, так и для векторных значений.

где n – число ветвей в замкнутом контуре;

m – число источников ЭДС.

При составлении уравнений согласно второму закону Кирхгофа со знаком «плюс» записываются падения напряжения (или ЭДС) направление которых совпадает с направлением обхода контура, а со знаком «минус» записываются падения напряжения (или ЭДС) направление которых противоположно направлению обхода контура

Рис.2. Пояснение ко второму закону Кирхгофа

В качестве примера рассмотрим расчетную схему замещению, которая состоит из двух источников ЭДС и трех сопротивлений. Произвольно выберем положительные направления токов и падений напряжений во всех ветвях расчётной схемы, а также выберем направление обхода во всех контурах.

Рис.3. Расчетная схема замещения для пояснения первого и второго закона Кирхгофа.

Рассматриваемая схема замещения состоит из 2 узлов (q = 2) и 3 ветвей (p = 3). В соответствии с первым законом Кирхгофа можно записать одно уравнение (q – 1):

В соответствии со вторым законом Кирхгофа можно записать два уравнения (p – q + 1):

В результате была получена система уравнений, которая позволяет определить токи во всех ветвях расчетной схемы исходя из заданных значений ЭДС и сопротивлений.

Составление системы уравнений, используя метод контурных токов

Метод контурных токов позволяет упростить расчет электрических цепей по сравнению с методом по первому и второму законам Кирхгофа за счет уменьшения числа уравнений. Данный метод основан на применении второго закона Кирхгофа.

При выполнении расчета методом контурных токов необходимо выбрать одинаковое направление обхода в каждом рассматриваемом контуре (либо по часовой стрелке, либо против часовой стрелке). Далее в соответствии с данным методом записывается система уравнений относительно контурных токов, которые протекают в каждом независимом контуре, используя следующие правила:

Правило №1. В левой части i-го уравнения записываются:

— со знаком «+» записывается произведение контурного тока i-го контура на сумму сопротивлений всех звеньев, входящих в контур;

— со знаком «-» записывается остальные контурные токи, умноженные на суммы сопротивлений звеньев, по которым i-ый контур пересекается с этими контурами.

— ток i-го контура, для которого записывается уравнение;

— сопротивления звеньев, входящих в i-ый контур;

— токи соседних контуров, который пересекаются с i-ым контуром;

— сопротивления звеньев, по которым i-ый контур пересекается с другими контурами.

Правило №2. В правой части i-го уравнения записывается сумма источников ЭДС с учётом знаков («плюс» — если направления ЭДС и обхода контура совпадают, в противном случае – «минус»), а также добавляются источники тока, умноженные на сопротивление соответствующего звена с учётом знаков («плюс» — если направления источника тока и обхода контура совпадают, в противном случае – «минус»)

— источники ЭДС, которые входят в i-ый контур;

 — произведение тока и сопротивление ветви с источником тока, которые входят в i-ый контур.

Заключительным этапом определяются токи во всех ветвях расчетной схемы по найденным значениям контурных токов.

В качестве примера рассмотрим расчетную схему замещению, которая состоит из двух источников ЭДС и трех сопротивлений. Произвольно выберем положительные направления обхода в каждом рассматриваемом контуре: направление по часовой стрелке.

Рис.4. Расчетная схема замещения для пояснения метода контурных токов.

Рассматриваемая схема замещения состоит из 2 узлов (q = 2) и 3 ветвей (p = 3), таким образом, в расчетной схеме замещения можно выделить два независимых контура. В соответствии с методом контурных токов можно записать два уравнения (p – q + 1):

В результате была получена система уравнений, которая позволяет определить контурные токи исходя из заданных значений ЭДС и сопротивлений. Заключительным этапом расчета будет являться процесс определения токов во всех ветвях расчетной схемы по найденным значениям контурных токов.

Составление системы уравнений, используя метод узловых потенциалов

Метод узловых потенциалов позволяет упростить расчет электрических цепей по сравнению с методом по первому и второму законам Кирхгофа за счет уменьшения числа уравнений. Данный метод основан на применении первого закона Кирхгофа.

При выполнении расчета методом узловых потенциалов необходимо выбрать один узел, в котором потенциал узла приравнивается к нулю. Остальные потенциалы узлов расчетной схемы определяются относительно узла с нулевым потенциалом. Далее в соответствии с данным методом записывается система уравнений, относительно потенциалов узлов расчетной схемы, используя следующие правила:

Правило №1. В левой части i-го уравнения записываются:

—  со знаком «+» потенциал i-го узла, для которого составляется данное i-е уравнение, умноженный на сумму проводимостей ветвей, присоединенных к данному i-му узлу;

— со знаком «-» потенциал соседних узлов, каждый из которых умножен на сумму проводимостей ветвей, присоединенных к i-муи k-му узлам.

— потенциал i-го узла, для которого записывается уравнение;

— сумму проводимостей ветвей, присоединенных к данному i-му узлу;

— потенциал k-го узла, который связан через ветвь с i-ым узлом;

— проводимость ветви, которая связывает i-ый и k-ый узел.

Правило №2. В правой части i-го уравнения записывается так называемый узловой ток, который равный сумме произведений ЭДС ветвей, подходящих к i-му узлу, и проводимостей этих ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС направлена к i-му узлу, в противном случае ставится знак “–”. Если в подходящих к i-му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих в узловой ток простыми слагаемыми, определяются аналогично.

— источники тока, которые присоединены к i-му узлу;

— произведение ЭДС и проводимости ветви с источником ЭДС, которые присоединены к i-му узлу.

В качестве примера рассмотрим расчетную схему замещению, которая состоит из двух источников ЭДС и трех сопротивлений. В одном из рассматриваемых узлов расчетной схеме обозначим нулевой потенциал.

Рис.5. Расчетная схема замещения для пояснения метода узловых потенциалов.

В соответствии с методом узловых потенциалов можно записать одно уравнение (q — 1):

В результате была получена система уравнений, которая позволяет определить потенциал узлов рассматриваемой схемы замещения исходя из заданных значений ЭДС и сопротивлений. Заключительным этапом расчета будет являться процесс определения токов во всех ветвях расчетной схемы по найденным значениям потенциалов узлов рассматриваемой схемы замещения.

Представленные выше методы позволяют определять токи и напряжения в ветвях расчетной схемы для любой электрической цепи постоянного и переменного тока.

 

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

Закон Кирхгофа второй — Справочник химика 21

    Для полученных расходов с учетом данных о коэффициентах гидравлического сопротивления вычисляются потери давления на всех ветвях и их суммарные невязки во всех независимых контурах. Эти невязки в соответствии со вторым законом Кирхгофа должны быть сведены до нулевых значений. [c.38]

    М.Г. Сухарев дал матричную форму записи системы уравнений законов Кирхгофа (на примере газосборных сетей), а также общее доказательство сходимости для нее (в случае плоских схем) метода простой итерации. Причем в отличие от других авторов [188, 247] сделано это подстановкой общего решения подсистемы уравнений первого закона Кирхгофа непосредственно в уравнения второго закона. Монография [c.44]


    Второй закон Кирхгофа требует суммарного нулевого изменения перепадов У давления (разностей потенциала) в любом контуре схемы для этого необходимо и достаточно, чтобы равенство [c.48]

    Уравнение второго закона Кирхгофа для отдельно взятого контура может быть записано как скалярное произведение вектора-строки матрицы [c.52]

    Исходя из этого, декомпозиция систем уравнений первого и второго законов Кирхгофа дает [c.57]

    Элементы этой матрицы являются коэффициентами при х,- (/ = 1,…, 6) в уравнениях второго закона Кирхгофа [c.66]

    Проведение линеаризации (5.19) в данном случае (см. (5.7) и (5.13)), но отдельно для подсистем уравнений первого и второго законов Кирхгофа дает [c.67]

    Уравнения второго закона Кирхгофа, как в их исходной записи относительно вектора х, так и после перехода к контурным переменным, представляют совокупность положительно и отрицательно определенных квадратичных форм [67], отвечающих некоторым поверхностям в многомерных и-или —пространствах. [c.75]

    Действительно, условие (7.11) является критерием того, чтобы уравнения (7.10) обратились в уравнения второго закона Кирхгофа. [c.94]

    Перейдем теперь к общему случаю неоднородной цепи, содержащей источники давления Я, на ветвях и с произвольными замыкающими соотношениями у + Н = f(x), для которой выпишем еще раз систему уравнений второго закона Кирхгофа [c.96]

    Уравнения связей в (7.29), если их сравнить с уравнениями у =А Р, являющимися аналогами второго закона Кирхгофа, однозначно указывают на физический смысл множителей Лагранжа в нашей задаче X — это с точностью до знака вектор Р узловых давлений. (В случае минимизируемой функции (7.27) и /3/ = /3 X будет совпадать с -Р с точностью до множителя [c.97]

    Следующая группа уравнений отражает уравнения второго закона Кирхгофа  [c.110]

    Здесь (9.1) — уравнения первого закона, а (9.2) и (9.3) — уравнения второго закона Кирхгофа соответственно в контурной и узловой формах Р — известное давление в линейно-зависимом узле. [c.117]

    Каждый вектор у = / .соо ветствующий замеренным значениям узловых давлений (Pi,…, P Y = Р, обращает уравнения второго закона Кирхгофа в тождества, поэтому исходная система уравнений сокращается до [c.149]

    Из других возможных нелинейных формализаций задач оценивания параметров ТПС следует отметить постановку, основанную на физическом смысле задачи, а именно требуется, не нарушая условий потокораспределения, т. е. первого и второго закона Кирхгофа, так подобрать сопротивления ветвей г. д., которая моделирует данную ТПС, чтобы расхождения между измеренными потерями давления и значениями полу- [c.156]

    Это уравнение фактически представляет собой другой вывод закона Кирхгофа. Если две поверхности обладают одинаковыми температурами, то ,х1= ьх2 и, согласно второму закону термодинамики, поток тепла д должен быть равен нулю. [c.492]

    Следует заметить, что первый и второй законы Кирхгофа, широко используемые для расчета электрических цепей и заключающиеся в том, что равны нулю алгебраические суммы токов в каждом узле цепи и суммы напряжений в любом замкнутом контуре, остаются справедливыми для комплексных амплитуд и комплексных действующих значений  [c.27]


    Для вычисления с помощью аналоговой схемы, показанной на рис. 1.6, изменения температуры центра пластины во времени применяют первый или второй законы Кирхгофа для токов в узлах или напряжений в контурах. Применяя второй закон Кирхгофа к контуру, содержащему электрические аналоги термического сопротивления емкости, получаем  [c.23]

    По второму закону Кирхгофа [c.122]

    Повышенный интерес к экстремальному подходу и виду минимизируемого функционала объясняется еще и тем, что задачу расчета потокораспределения можно тогда трактовать и как нелинейную сетевую транспортную задачу. Такая интерпретация имеет теоретическое и практическое значение. Первое заключается в том, что формальное применение теоремы о потенциалах позволяет установить двойственный характер гидравлических параметров (расходов на ветвях и давлений в узлах) и соответст-ственно систем уравнений первого и второго законов Кирхгофа, а также и вид функционала. Подобное рассмотрение проведено Ю31. Ермольевым и ИЛ1. Мельником [66]. Подробный содержательный и математический анализ применимости теории нелинейных сетевьк транспортных задач к сетям физической природы дан в книге EJii. Васильевой, Б.Ю. Левита и В.Н. Лившица [35]. Прикладная сторона здесь заключается в возможности применения методов и стандартных программ для решения сетевых транспортных задач или даже общих методов нелинейного программирования, например методов возможных направлений [74,211]. [c.44]

    Далее необходимо выразить ток в плазме /2 через измеряемые величины ток индуктора /1 или напряжение на индукторе С/1. Для этого служит модель воздушного трансформатора. Составляются уравнения равновесия (второй закон Кирхгофа) для цени индуктора  [c.119]

    Электрический расчет подобной схемы при числе элементов, соответствующем числу ячеек электродиализного аппарата (от 100 до 600 ячеек), обычными методами с помощью первого и второго законов Кирхгофа и закона Ома трудно выполним. Расчет с использованием матричных методов по контурным токам и узловым напряжениям в данном случае не дает положительных результатов вследствие большого числа узлов независимых контуров. В связи с этим О. В. Евдокимовым для электрических расчетов схем электродиализных аппаратов использовался метод моделирования. На модели постоянного тока с помощью активных сопротивлений непосредственно моделируется эквивалентная схема электродиалнзатора. Изменения режимов имитируются регулированием соответствующих сопротивлений модели. Полученные зависимости могут быть аппроксимированы аналитическими формулами. На модели постоянного тока может быть достигнута высокая точность расчета и получена наглядная картина токораспределений в системе. [c.121]

    Рассматривая контур термопары, замкнутый через участок АД, на основании второго закона Кирхгофа получим [c.80]

    На фиг. 5 показан участок сложной электрической цепи с разветвлениями, которая может быть рассчитана по первому и второму закону Кирхгофа. [c.21]

    Согласно второму закону Кирхгофа, в замкнутом контуре цепи алгебраическая сумма всех э. д. с. равна алгебраической сумме всех напряжений, теряемых на отдельных сопротивлениях, входящих в этот же контур (падение напряжения равно произведению величины тока на сопротивление). [c.21]

    Для контура, состоящего из источников тока и Е , сопротивлений / 2 и второй закон Кирхгофа имеет вид  [c.21]

    Общее электрическое сопротивление электрокоагулятора с учетом поляризационных эффектов на основных электродах по второму закону Кирхгофа равно [c.53]

    При согласном включении двух источников Е и а.э (рис. 38, в) можно записать систему уравнений на основании первого и второго законов Кирхгофа для узла А и двух контуров  [c.111]

    Методы поконтурной увязки перепадов давлений и поузловой увязки расходов предназначены для нахождения таких взаимосвязанных расходов на ветвях и давлений в узлах, которые с наперед заданной точностью в отношении расходов и (или) давлений удовлетворяли бы первому и второму законам Кирхгофа. [c.38]

    Ю. Картером [280], 1956 г., также вводит в рассмотрение функцию, частные производные от которой дают уравнения первого закона Кирхгофа, и затем интерпретирует процедуру поконтурной увязки как процесс минимизации этой функции. Затем строит аналогичную функцию по отношению к уравнениям второго закона Кирхгофа. [c.43]

    Распределение расходов и напоров в г.ц. с сосредоточенными постоянными при установившемся движении несжимаемой жидкости описьтается, во-первых, линейными соотношениями, аналогичными законам Кирхгофа для электрической цепи, и, во-вторых, нелинейными уравнениями связи между расходами и потерями давления на ветвях, которые будем называть замыкающими соотношениями. [c.45]

    Гидравлический расчет, который связан с определением перепадов y давления на ветвях, завершается обьмно откладыванием зтих значений от заданной величины Р т ДОя получения искомых давлений во всех узлах схемы. Для этой процедуры достаточно использовать значения только для ветвей дерева (их значения для хорд будут автоматически подтвер>кде-ны в силу второго закона Кирхгофа). В связи с этим дадим в общем виде связь между векторами Р, у и значением Р .  [c.62]

    Нетрудно показать (впервые это сделано В.Г. Лобачевым [109]), что фиктивные расходы представляют удобную для расчетов комбинацию неопределенных множителей Лагранжа для учета уравнений второго закона Кирхгофа. Можно также установить соответствие между ними и величинами 0,-, введенными Б.Л. Шифринсоном [269] для получения оптимальных напоров при расчете разветвленных тепловых сетей. [c.214]


    Данные моменты уже нашли свое отражение в литературе, и можно указать в связи с этим на следующие группы публикаций. Прежде всего, это работы по применению метода ДП для оптимизации режимов магистральных нефте- и газопроводов [226] и других разветвленных ТПС. Другая часть публикаций касается использования сетевых потоковых моделей линейного и кусочно-линейного программирования (являющихся приближенными в том плане, что они не учитьшают в полной мере уравнений второго закона Кирхгофа) для управления потокораспределением в Единой системе газоснабждения [228] и других многоконтурных ТПС. Имеются также отдельные работы по относительно частным задачам, связанным с оптимизацией выходных параметров источников и распределением между ними суммарной нагрузки. [c.233]

    В основу метода расчета на ЭВМ положена система уравнений, составленных для всех узлов и контуров вентиляционной схемы по аналогии с первым и вторым законами Кирхгофа 2О,-=0 (во всех узлах сумма расходов равна нулю) и 2 iг-f2ДH =0 (сумма перепадов и потерь давлений всех ветвей для любого замкнутого контура равна нулю). Расчет вентиляционных схем в этом случае осуществляется по известным программам расчета нелинейных электрических цепей [7]. Более подробные сведения [c.268]

    По второму закону Кирхгофа величины тока в двух паралле- р [c.147]

    Распределение тока между двумя разветвлениями проводника проходит по второму закону Кирхгофа, таким образом, что падение потенциала в обои разветвлениях проводника О инаково. Представим себе вместо обоих разветвлени проводника два электрохимических процесса тогда нет никакого основания до пустить, что падение потенциала здесь неодинаково. Такое допущение было бь весьма произвольным. Относительно скорости гидратации см. также М е, Ann. d Phys., (4) 33, 381, 1910. [c.285]


ЗАКОНЫ КИРХГОФА ДЛЯ МАГНИТНЫХ ЦЕПЕЙ — FINDOUT.SU

 

При расчетах магнитных цепей, как и электрических, используют первый и второй законы Кирхгофа.

Первый закон Кирхгофа: алгебраическая сумма магнитных потоков в любом узле магнитной цепи равна нулю:

Σ Ф = 0.                                                   (6.8)

Первый закон Кирхгофа для магнитных цепей следует из принципа непрерывности магнитного потока, известного из курса физики (о принципе непрерывности магнитного потока.

Второй закон Кирхгофа: алгебраическая сумма падений магнитного напряжения вдоль любого замкнутого контура равна алгебраической сумме м. д. с. вдоль того же контура:

ΣUm = Σ Iω.                                                   (6.9)

Второй закон Кирхгофа для магнитных цепей по сути дела есть иная форма записи закона полного тока.

Перед тем как для магнитной цепи записать уравнения по законам Кирхгофа, следует произвольно выбрать положительные направления потоков в ветвях магнитной цепи и положительные направления обхода контуров.

Если направление магнитного потока на некотором участке совпадает с направлением обхода, то падение магнитного напряжения этого участка входит в сумму ∑ U м со знаком плюс; если встречно ему, то со знаком минус.

Аналогично, если м. д. с. совпадает с направлением обхода, она входит в ∑ Iω со знаком плюс, в противном случае — со знаком минус.

В качестве примера составим уравнения по законам Кирхгофа для разветвленной магнитной цепи, изображенной на рис. 6.12.

 

 

Рисунок 6.12

 

Левую ветвь назовем первой и все относящиеся к ней величины обозначим с индексом 1 (поток Ф1 напряженность поля Н1 длина;пути в стали l 1 длина воздушного зазора δ1 м. д. с. I 1 ω 1.

Среднюю ветвь назовем второй и все относящиеся к ней величины будут соответственно с индексом 2 (поток Ф2, напряженность поля H 2, длина пути в стали l2, длина воздушного зазора δ2, м. д. с. I 2 ω2.

Все величины, относящиеся к правой ветви, имеют индекс 3 (поток Ф3, длина пути на вертикальном участке 13, суммарная длина пути на двух горизонтальных участках l 2.

     Произвольно выбираем направление потоков в ветвях.

Положим, что все потоки (Ф1, Ф2, Ф3) направлены вверх (к узлу а). Число уравнений, которые следует составить по законам Кирхгофа, должно быть равно числу ветвей цепи (в рассматриваемом случае надо составить три уравнения).

По первому закону Кирхгофа необходимо составить столько уравнений сколько в цепи узлов без единицы.

В цепи рис. 6.12 два узла; следовательно, по первому закону Кирхгофа надо составить одно уравнение:

Ф1 + Ф2 + Ф3 = 0.                                            (а)

По второму закону Кирхгофа надо составить число уравнений, равное числу ветвей, за вычетом числа уравнений, составленных по первому закону Кирхгофа. В рассматриваемом примере по второму закону Кирхгофа следует составить 3 — 1 = 2 уравнения.

Первое из этих уравнений составим для контура, образованного первой и второй ветвями, а второе — для контура, образованного первой и третьей ветвями (для периферийного контура).

Перед составлением уравнений по второму закону Кирхгофа надо выбрать положительное направление обхода контуров. Будем обходить контуры по часовой стрелке.

Уравнение для контура, образованного первой и второй ветвями,

H1 11 + Hδ1 δ1H2 12Hδ2 δ2 = I1ω1I2ω2,                 (б)

                 где Hδ1 и Hδ2 — напряженности поля соответственно в воздушных зазорах δ 1 и δ2.

В левую часть уравнения вошли слагаемые H 1 11 + Hδ1 δ 1 со знаком плюс, так как на первом участке поток Ф1 направлен согласно с обходом контура; слагаемые H 2 12 и Hδ2 δ 2 — со знаком минус, так как поток Ф2 направлен встречно обходу контура.

В правую часть уравнения м. д. с. I 1 ω 1 вошла со знаком плюс, так как она направлена согласно с обходом контура, а м. д. с. I 2 ω 2 — со знаком минус, так как она направлена встречно обходу контура.

Составим уравнение для периферийного контура, образованного первой и третьей ветвями:

H1 11 + Hδ1 δ1H3/ 13/H3 δ3 = I1ω1,                                (в)

     Совместно решать три уравнения (а, б, в) с тремя неизвестными Ф1, Ф2, Ф3) не будем, так как в 6.18 дается решение рассматриваемой задачи более совершенным методом, чем метод на основе законов Кирхгофа, — методом двух узлов.

 

Как второй закон Кирхгофа связан с правилом петли

Результаты листинга Как второй закон Кирхгофа связан с правилом петли

Как правило Кирхгофа связано с законом Ома

5 часов назад Правила Кирхгофа Physics Lumen Learning. 2 часа назад Второе правило Кирхгофа (правило цикла ) является применением сохранения энергии. PE elec = qV.Напомним, что ЭДС — это разность потенциалов источника при отсутствии тока. В замкнутом контуре , какая бы энергия ни подавалась