Site Loader

Содержание

1. Что такое переменный ток? | 1. Основы теории переменного тока | Часть2

1. Что такое переменный ток?

Что такое переменный ток?

Основная масса начинающих радиолюбителей начинает изучение электроники с основ постоянного тока (DC), который течет в одном направлении и/или обладает напряжением постоянной полярности. Постоянный ток — это вид электричества, производимого батареями (имеющими положительные и отрицательные клеммы), или вид заряда, производимого трением определенных типов материалов друг о друга.

Однако, постоянный ток не является единственным видом электричества. Некоторые источники электропитания (в первую очередь роторные электромеханические генераторы) производят такое напряжение, полярность которого меняется с течением времени. Такой вид электричества известен как переменный ток (АС):

 

 

Так же как знакомое нам условное обозначение батареи используется для обозначения любого источника постоянного напряжения, кружок с волнистой линией внутри используется для обозначения любого источника переменного напряжения.

Можно было бы подумать, что практическое применение переменного тока ограничено. И действительно, в некоторых случаях переменный ток уступает постоянному по части практического применения. В тех системах, где электричество используется для рассеивания энергии в форме тепла, полярность или направление тока не имеет значения, — вполне достаточно, чтобы напряжения и тока хватало нагрузке для производства необходимого тепла (рассеивания энергии).   Однако, используя переменный ток, можно создавать гораздо более эффективные электрогенераторы, электродвигатели и системы распределения энергии. Благодаря этому, в высокомощных системах преобладает использование именно переменного тока. Чтобы понять, почему это так, нам нужно узнать немного больше о переменном токе как таковом.

Согласно закону электромагнитной индукции Фарадея, электродвижущая сила, возникающая в замкнутом проводящем контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Это основополагающий принцип работы генератора переменного тока, или альтернатора.

 

Принцип работы альтернатора

 

Заметьте, как меняется полярность напряжения на катушках, когда при вращении возле них оказываются разные полюсы магнита. При соединении с нагрузкой такое напряжение будет создавать ток, периодически меняющий направление своего движения. Чем быстрее вращается вал альтернатора, тем быстрее будет вращаться магнит, и тем чаще напряжение будет менять полярность, а ток – направление за определённый промежуток времени.

Несмотря на то, что генераторы постоянного тока работают так же по принципу электромагнитной индукции, их устройство гораздо сложнее, чем у их соперников, генераторов переменного тока. У генераторов постоянного тока обмотка находится на валу (у альтернаторах на валу находится магнит), и эта вращающаяся обмотка соприкасается с неподвижными угольными «щётками». Такая конструкция необходима для переключения изменяющейся полярности на выходе катушки во внешнюю схему, чтобы на последней создавалась постоянная полярность: 

 

Принцип работы генератора постоянного тока

 

Генератор, показанный на данном рисунке, производит два импульса напряжения за одно вращение вала. Оба импульса имеют одинаковую полярность. Чтобы генератор постоянного тока производил постоянное напряжение, а не короткие импульсы за каждый полупериод вращения, создаётся набор обмоток, которые периодически входят в контакт с щётками.  Приведенный выше рисунок в упрощенной форме показывает то, что вы увидите на практике.

Проблемы, связанные с возникновением и прерыванием электрического контакта при движении обмотки очевидны (искрение и перегрев), особенно если вал генератора вращается с большой скоростью. Если в среде вокруг генератора содержатся легковоспламеняющиеся или взрывоопасные пары, проблемы, связанные с искрообразованием, усугубляются. Для работы генератора переменного тока (альтернатора) никаких щёток и коммутаторов не требуется,  поэтому он застрахован от проблем, присущих генераторам постоянного тока.

Генераторы переменного тока имеют очевидные преимущества перед генераторами постоянного тока и при использовании их в качестве электродвигателей. В отличие от электродвигателей постоянного тока, двигатели переменного тока не страдают проблемой соприкосновения щёток с подвижной обмоткой.  Электродвигатели постоянного и переменного тока по своему устройству очень похожи на соответствующие электрогенераторы.

Таким образом, становится понятно, что конструкция генераторов и электродвигателей переменного тока гораздо проще конструкции генераторов и электродвигателей постоянного тока. Относительная простота этих устройств на практике выливается в гораздо большую надежность и рентабельность. Для чего же еще используют переменный ток? Наверняка должно быть что-то еще кроме применения его в генераторах и электродвигателях! И действительно, спектр применения переменного тока очень широк. Наверняка вы слышали о таком явлении, как взаимная индукция.  Она возникает при размещении двух или более обмоток таким образом, что переменное магнитное поле, создаваемое одной из обмоток наводит напряжение в другой. Если на одну обмотку мы подадим переменное напряжение, то на другой мы также получим переменное напряжение. Такое устройство известно как трансформатор.

 

 

Главное предназначение трансформатора состоит в его способности повышать и понижать напряжение на вторичной обмотке. Напряжение переменного тока, возникающее во вторичной обмотке равно напряжению переменного тока на первичной обмотке, умноженному на коэффициент отношения числа витков вторичной обмотки к числу витков первичной. Если же со вторичной обмотки ток подаётся в нагрузку, то изменение тока на вторичной обмотке будет прямо противоположным: ток первичной обмотки умножается на коэффициент отношения числа витков первичной к числу витков вторичной обмотки. Механическим аналогом подобных отношений может служить пример с крутящим моментом и скоростью (вместо напряжения и тока, соответственно): 

 

 

Если соотношение витков обмоток обратное, т.е. первичная обмотка имеет меньше витков, чем вторичная, то трансформатор увеличивает напряжение источника до более высокого уровня: 

 

 

Способность трансформатора повышать и понижать переменное напряжение дает переменному току неоспоримое преимущество над постоянным в области распределения энергии (см. рисунок ниже). Гораздо эффективнее передавать электроэнергию на большие расстояния при высоком напряжении и низком токе (провода меньшего диаметра с меньшими потерями на сопротивление), а затем понижать напряжение и усиливать ток при подаче энергии конечным потребителям.

 

 

Благодаря трансформаторам передача электрической энергии на большие расстояния стала гораздо более практичной. Не имея возможности эффективного увеличения и понижения напряжения было бы непомерно дорого создавать системы энергообеспечения для больших расстояний (более нескольких десятков километров).

Для работы трансформаторов необходим только переменный ток. Поскольку явление взаимоиндукции основано на переменных магнитных полях,  трансформаторы просто не будут работать на постоянном токе (постоянный ток способен создавать только постоянные магнитные поля). Конечно, на первичную обмотку трансформатора можно подать постоянный прерывистый (импульсный) ток, чтобы создать переменное магнитное поле (как это делается в автомобильной системе зажигания, для создания искры в свече от низковольтной батареи постоянного тока), но в таком варианте импульсный постоянный ток ничем не отличается от переменного.  Возможно, именно по этой причине переменный ток находит более широкое применение в энергосистемах.

Однофазный переменный ток

Однофазный переменный ток

Подробности
Категория: Электротехника

Однофазный переменный ток

Практически в домашних условиях применяют однофазный переменный ток, который получают с помощью генераторов переменного тока. Устройство и принцип действия этих генераторов основывается на явлении электромагнитной индукции — возникновение электрического тока в замкнутом проводнике при изменении магнитного потока, проходящего через него. Это явление было открыто английским ученым М.Фарадеем (1791-1867) в 1831 г.
Переменный ток, используемый в производстве и быту, изменяется по синусоидальному закону:

                                                                        i = Im

· sin(2·π·f·t),
где  i— мгновенное значение тока;
       Im   — амплитудное (наибольшее) значение тока; 
        f — частота переменного тока;
        t — время.

  

 

На рис. справа представлен график переменного тока и указаны амплитудные и мгновенное значения переменного тока в момент времени t

 


Частота измеряется в герцах (Гц

) в честь немецкого ученого Г. Герца (1857-1894). В сети переменного тока она равна 50 Гц. Частота переменного тока характеризует быстроту периодических процессов, число колебаний, совершаемых в единицу времени. Она измеряется с помощью специальных приборов — частотомеров.
Величина, обратная частоте, называется периодом колебания Т. Он равен для сети переменного тока 0,02 секунды.
Частота переменного тока зависит от частоты вращения ротора генератора и числа пар полюсов индуктора. Она определяется по формуле:                    

                                 

где  p — число пар полюсов индуктора;
       n — частота вращения ротора в минуту.
Если генератор имеет одну пару полюсов, то ротор такого генератора совершает 3000 об/мин для получения переменного тока частотой 50 Гц.
Переменный ток так же, как и постоянный ток, может производить тепловое действие. Накаливание волоска лампочки осуществляется как переменным, так и постоянным током. Поэтому, сравнивая тепловые эффекты постоянного и переменного токов (Q= = Q_), получают соотношение между действующим (эффективным) и максимальным токами:                                                         

 

I =

Im

≈ 0,7· Im

 

 

√2

 

 

или напряжениями:  

 

Um

Um

≈ 0,7· Um

 

 

√2

 

                                                                
где   I, U — действующие значения тока и напряжения; 
Im, Um— максимальные значения тока и напряжения.

Измерительные приборы, включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

Переменный ток одного напряжения, в отличие от постоянного, легко преобразовать в переменный ток другого напряжения с помощью трансформатора.

Трансформатором называется электромагнитный аппарат, который служит для преобразования переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте тока. Трансформаторы широко используются при передаче и распределении электрической энергии переменного тока. Они бывают однофазные и трехфазные.

Однофазный трансформатор состоит из сердечника и двух обмоток изолированного провода. Сердечник трансформатора делается из листов электротехнической стали и служит магнитопроводом. Листы стали изолируются лаком для уменьшения потери энергии в сердечнике. Обмотка, подключенная в сеть, называется первичной, а обмотка, с которой снимается напряжение, — вторичной. Трансформаторы, в которых вторичная обмотка имеет большее число витков, чем первичная, являются повышающими, а трансформаторы, в которых вторичная обмотка имеет меньшее число витков, чем первичная, являются понижающими. Отношение числа витков W1 и W2 обеих обмоток трансформатора равно отношению напряжений U1 и U2 на зажимах обмоток и называется коэффициентом трансформации К, т. е. 

 

 

 

При малых потерях энергии в трансформаторе (1-3%) можно принять, что мощность во вторичной цепи трансформатора приблизительно равна мощности в первичной. Тогда  Р2 ≈ Р1  или I2 . U2 I1 . U1 , откуда  

 

 

I2

=

U1

=

W1

= K

 

I1

U2

W2

 

 

Следовательно, токи в обмотках трансформатора обратно пропорциональны напряжениям, а значит и числу витков обмоток. Это означает, что в повышающем трансформаторе сила тока во вторичной обмотке меньше, чем в первичной, и поэтому вторичная обмотка может быть выполнена из более тонкой проволоки; в понижающем же трансформаторе, наоборот, вторичная обмотка имеет большее сечение провода обмотки, чем первичная.

 Для изменения напряжений в небольших пределах применяют трансформаторы с одной обмоткой — автотрансформаторы, которые представляют как бы трансформатор с последовательным соединением обмоток.

Цепи переменного тока. Определение и основные характеристики.

Приветствую всех на нашем сайте в рубрике «Основы электроники»!

В предыдущей статье мы обсудили понятия тока, напряжения и сопротивления, но все наши примеры были связаны только с постоянным током, поэтому сегодня мы будем разбираться с переменным 🙂 Итак, переходим от слов к делу!

Давайте для начала выясним какова же область применения цепей переменного тока. А область довольно-таки обширна! Смотрите сами — все бытовые электронные приборы, компьютеры, телевизоры и т. д. являются потребителями переменного тока, соответственно, все розетки в нашем доме работают именно с переменным током.

Почему же для данных целей не используется постоянный ток? На этот вопрос можно дать сразу несколько ответов. Во-первых, гораздо проще преобразовать напряжение переменного тока одной величины в напряжение другой величины, чем произвести аналогичные «махинации» с постоянным током. Данные преобразования осуществляются при помощи трансформаторов, о которых мы обязательно поговорим в рамках нашего курса.

Зачем вообще нужно изменять напряжение переменного тока? С этим тоже все просто и логично. Давайте для примера рассмотрим ситуацию передачи сигнала с электростанции в отдельно взятый дом.

Как видите, с электростанции «выходит» высоковольтное переменное напряжение, затем оно преобразуется в низковольтное (к примеру, 220В), а затем уже по низковольтным линиям передачи достигает своей цели — а именно потребителей. Возникает вопрос — к чему такие сложности? Что же, давайте разберемся…

Задачей электростанции является генерировать и передавать сигнал большой(!) мощности (ведь потребителей много). Поскольку величина мощности прямо пропорциональна и значению тока и значению напряжения, то для достижения необходимой мощности нужно, соответственно, либо увеличивать ток, либо напряжение сигнала. Увеличивать значение тока, протекающего по проводам довольно проблематично, ведь чем больше ток, тем больше должна быть площадь поперечного сечения провода. Это связано с тем, что чем меньше сечение проводника, тем больше его сопротивление (вспоминаем формулу из статьи про сопротивление). Чем больше сопротивление, тем больше будет нагреваться провод и, соответственно, рано или поздно он прогорит.

Таким образом, использование токов огромной величины нецелесообразно, да и экономически невыгодно (нужны «толстые» провода). Поэтому мы логически приходим к выводу, что абсолютно необходимо передавать сигнал с большим значением напряжения. А поскольку в домах у нас требуются низковольтные цепи переменного тока, то сразу же становится понятно, что преобразование напряжения просто неизбежно 🙂 А из этого и вытекает преимущество переменного тока над постоянным (именно для данных целей), поскольку как мы уже упомянули — преобразовывать напряжение переменного тока на порядок легче, чем постоянного.

Ну и еще одно важное преимущество переменного тока — его просто проще получать. И раз уж мы вышли на эту тему, то давайте как раз-таки и рассмотрим пример генератора переменного тока…

Генератор переменного тока.

Итак, генератор — это электротехническое устройство, задачей которого является преобразование механической энергии в энергию переменного тока. Давайте рассмотрим пример:

На рисунке мы видим классический пример генератора переменного тока. Давайте разбираться, как же он работает и откуда тут появляется ток!

Но для начала пару слов об основных узлах. В состав генератора входит постоянный магнит (индуктор), создающий магнитное поле. Также может использоваться электромагнит. Вращающаяся рамка носит название якоря. В данном случае якорь генератора имеет только одну обмотку/рамку. Именно эта обмотка и является цепью переменного тока, то есть с нее и снимается переменный ток.

Переходим к принципу работы генератора переменного тока.{\prime}(t) = BSw\medspace sin(\alpha) = BSw\medspace sin(wt)

Эта ЭДС и используется для создания тока в цепи (возникает разность потенциалов и, соответственно, начинает течь ток). Как уже видно из формулы — зависимость тока от времени будет иметь синусоидальный характер:

Именно такой сигнал (синусоидальный) и используется во всех бытовых цепях переменного тока. Давайте поподробнее остановимся на основных параметрах, а заодно рассмотрим основные формулы и зависимости.

Основные параметры синусоидального сигнала.

На этом рисунке изображено два сигнала (красный и синий 🙂 ). Отличаются они только одним параметром — а именно начальной фазой. Начальная фаза — это фаза сигнала в начальный момент времени, то есть при t = 0. При обсуждении генератора мы приняли величину \alpha_0 равной нулю, так вот это и есть начальная фаза. Для данных графиков уравнения выглядят следующим образом:

Синий график: i(t) = I_msin(wt)

Красный график: i(t) = I_msin(wt + \beta)

Для второй формулы (wt + \beta) это фаза переменного тока, а \beta — это начальная фаза.Ti(t)\,\mathrm{d}t

Эта формула представляет собой ни что иное как суммирование всех мгновенных значений переменного тока. А поскольку среднее значение синуса за период равно 0:

I_{cp} = 0

На этом мы на сегодня и заканчиваем, надеюсь, что статья получилась понятной и окажется полезной. В скором времени мы продолжим изучать электронику в рамках нашего нового курса, так что следите за обновлениями и заходите на наш сайт!

Переменный электрический ток

Электрический ток, меняющий свою величину и направление с течением времени, называется переменным током.

Переменный ток, как и постоянный, также является упорядоченным движением заряженных частиц. Но постоянный ток всегда имеет одно направление, от «+» к «-». А переменный ток своё направление постоянно меняет, то есть течёт то в одну, то в другую сторону. Поэтому одно из его направлений условно принимают за положительное, а направление, противоположное ему, считают отрицательным. В зависимости от этого в конкретный момент времени алгебраическая величина тока будет иметь знак «плюс» или знак «минус».

Чтобы ток был переменным, он должен быть подключен к источнику переменной ЭДС. Такими источниками являются генераторы переменного тока – электрические машины, которые преобразуют механическую энергию в электрическую энергию тока.

Периодический переменный ток

Основные параметры переменного тока – период, частота и амплитуда.

Представим, что за какое-то время Т переменный ток пройдёт цикл изменений и вернётся к своему первоначальному значению. Следующий такой же цикл он также пройдёт за такое же время Т. Такой ток называется периодическим переменным током, а величина Тпериодом тока. Это наименьший промежуток времени, через который изменения силы тока и напряжения повторяются. Измеряется период в секундах.

Величина, обратная периоду, называется частотой тока (f). Она отображает количество периодов (полных колебаний), которые ток проходит в единицу времени. Измеряется в герцах (Гц).

f = 1/T

Переменный ток изменяется с частотой в 1 Гц, если его период равен 1 с.

В России, как и в большинстве стран мира, стандартная частота переменного тока в электротехнике 50 Гц. В США и Канаде – 60 Гц. В Японии же используются оба варианта. В западной части применяется частота 60 Гц, а в восточной – 50 Гц. Так случилось, потому что в 1895 г. для Токио были закуплены генераторы немецкой компании AEG, а немного позже для Осаки — американские генераторы General Electric. Так как приведение этих сетей к единому стандарту оказалось весьма дорогостоящим делом, то всё было оставлено как есть, а между сетями установили четыре преобразователя частоты.

Величину тока в данный момент времени называют мгновенным значением переменного тока. Его максимальное значение называется амплитудой и обозначается Im.

Синусоидальный ток

Наиболее распространён в электротехнике синусоидальный ток. Это периодический переменный ток, изменяющий по закону синуса:

i = Im · sin (ωt + ψ),

где i – значение тока в любой момент времени t;

Im – мгновенное значение синусоидального тока;

ω = 2πf = 2πf/T, где ω – угловая частота; ψ – начальная фаза переменного синусоидального тока (фаза в момент времени t = 0).

Наибольшее положительное или отрицательное значение переменного тока называют амплитудой.

График переменного синусоидального тока представляет собой синусоиду.

Два синусоидальный тока совпадают по фазе, если они одновременно достигают максимальных и нулевых значений. Если же их фазы различны, то говорят, что токи сдвинуты по фазе.

Наиболее широко в электротехнике применяется трёхфазный ток. Трёхфазная система состоит из трёх однофазных электрических цепей. Электродвижущие силы, действующие в каждой из них, имеют одинаковую частоту, но сдвинуты по фазе относительно друг друга на 1200.

В электротехнике однофазную электрическую цепь, входящую в состав многофазовой цепи называют фазой. Если все фазы электрически соединены между собой, то такую систему называют электрически связанной. Фазы в трёхфазной системе могут соединяться «треугольником», «звездой с нейтральным проводом» и «звездой без нейтрального провода».

Если мы сложим все мгновенные значения (положительные и отрицательные) переменного синусоидального тока за период, то получим алгебраическую сумму, равную нулю. Но в таком случае и среднее значение тока также равно нулю. Следовательно, это значение нельзя использовать для измерения синусоидального тока.

Как же определить величину переменного синусоидального тока?

Переменный синусоидальный ток, как и постоянный, обладает тепловым действием. Сравнив его тепловое действие с тепловым действием постоянного тока, можно судить о его величине.

Согласно закону Джоуля-Ленца количество теплоты Q, выделяемое на участке электрической цепи за время t при прохождении тока, определяется следующей формулой:

Q = I2Rt,

где I – величина тока; R – электрическое сопротивление.

Если два тока, постоянный и переменный, протекая через одинаковые по величине сопротивления, за одинаковое время выделяют одинаковое количество тепла, то они считаются эквивалентными по тепловому действию.

Величина постоянного тока, который произвёл такое же количество теплоты, что и переменный ток за такое же время, называется действующим значением переменного синусоидального тока.

Величина действующего значения синусоидального тока связана с его амплитудой соотношением:

 

Передача переменного тока

 

Промышленный переменный ток вырабатывается электростанциями. К потребителям он поступает по линиям электропередач (ЛЭП). Поскольку ЛЭП имеют большую протяжённость, то потери энергии при нагревании проводов довольно велики. Чтобы уменьшить тепловые потери, уменьшают силу тока. Для этого с помощью трансформатора повышают электрическое напряжение в сети до нескольких сот тысяч вольт. К примеру, самая высоковольтная в мире ЛЭП Экибастуз-Кокшетау рассчитана на напряжение 1150 кВ (1 миллион 450 тысяч вольт). Работает под напряжением 500 кВ. В конечной точке ЛЭП напряжение понижается до нужного потребителю значения.

«Война токов»

Томас Алва Эдисон

Никола Тесла

Какой ток лучше, постоянный или переменный? Споры на эту тему начались в 80-х годах XIX века и превратились в «войну токов», начало которой было положено двумя великими людьми – американским изобретателем Томасом Эдисоном и сербом по происхождению, инженером и физиком Никола Тесла.

Основанная Эдисоном в 1878 г. компания «Edison Electric Light» занималась строительством электростанций постоянного тока. На постоянном токе в то время работали лампочки накаливания, электродвигатели и счётчики электроэнергии. Других приборов, нуждавшихся в токе, на тот момент не существовало. Для передачи электроэнергии использовалась разработанная Эдисоном «технология трёх проводов». В 1887 г. в США по системе Эдисона работало более 100 электростанций постоянного тока. Но расстояние, на которое удавалось передавать электричество, не превышало 1,5 км.

Основным противником Эдисона в «войне токов» в то время был Джордж Вестингауз, изобретатель и промышленник, хорошо разбиравшийся в физике и считающий переменный ток более перспективным. В 1885 г. он приобрёл несколько трансформаторов, созданных в 1881 г. французом Люсьеном Голаром и англичанином Джоном Гиббсом, и генератор переменного тока фирмы «Siemens & Halske». И в 1886 г. в штате Массачусетс начала работу первая гидроэлектростанция переменного тока.

В 1882 г. Тесла изобрёл многофазный электродвигатель, а в 1888 г.  — счётчик переменного тока, отсутствие которого ранее было одним из препятствий в развитии технологий переменного тока.  В том же году Вестингауз приглашает его к себе на работу. Изобретённые Тесла трансформаторы давали возможность получать любое напряжение. А это позволяло передавать переменный ток на большие расстояния. Казалось бы, ничто уже не могло помешать созданию сетей переменного тока. Но Эдисон прибегнул к чёрному пиару, спонсировав разработку электрического стула для казни и предложив использовать переменный ток для этой цели. Журналисты красочно описали мучения, которые испытывал осуждённый в момент казни. Общество получило отрицательный сигнал, и переменный ток некоторое время не использовали.

И всё-таки Тесла оказался победителем. Компания Вестингауза выиграла тендер на строительство первой в США гидроэлектростанции переменного тока на Ниагаре.

До 1928 г. обе технологии существовали параллельно. Но постоянный ток постепенно уступал свои позиции переменному. В Европе это произошло быстрее. Последними перешли на переменный ток в 40-60-х годах XX века потребители скандинавских стран. В США окончательный перевод электрических сетей с постоянного тока на переменный произошёл в конце 2007 г. Так закончилась длившаяся более 100 лет «война токов».

Но это совершенно не означает, что в настоящее время постоянный ток не используется в электроэнергетике. Конечно, подавляющее большинство ЛЭП транспортируют переменный ток. Но наряду с линиями электропередач переменного тока существуют высоковольтные ЛЭП постоянного тока, спообные передавать ток на большие расстояния, например, ЛЭП Экибастуз — Центр, Южная Корея (материк) — остров Чеджудо и др.

Что такое AC на самом деле?

На самом деле это более сложный вопрос, чем вы себе представляете.

На первый взгляд, мы думаем о синусоидальных вольтах, которые выходят из стены, как о переменном токе, и о вольтах, которые выходят из батареи, как о постоянном токе, но в действительности это всего лишь два, почти чистых, общедоступных примера.

Как упоминает @ThePhoton, в действительности все напряжения могут быть выражены как имеющие два компонента. Часть постоянного тока и некоторая функция времени переменного тока. Функция времени может быть чем угодно. Простой синус, треугольник, пульсовая волна, все что угодно со средней амплитудой, равной нулю.

Очевидно, что настенная розетка имеет или должна иметь нулевую часть постоянного тока, а батарея должна иметь функцию нулевого переменного тока. Однако в действительности почти каждый сигнал в той или иной степени имеет и то, и другое.

На практике, будем ли мы называть сигнал переменным или постоянным током, во многом зависит от того, какую информацию несет сигнал и как мы намереваемся его использовать.

Пример 1. Рассмотрим вывод мостового выпрямителя.

Очевидно, что вход здесь — AC, но то, что мы называем выходом.

Если мы собираемся использовать его для обычной функции для генерации источника питания постоянного тока, мы называем это постоянным током, несмотря на то, что это действительно функция переменного тока с компонентом постоянного тока.

Однако, если бы мы намеревались подать эту полную выпрямленную волну в усилитель в качестве сигнала, мы бы назвали его сигналом переменного тока.

Пример 2: Рассмотрим простой усилитель с постоянным током

Опять же, вход, очевидно, является классическим переменным током, но для правильной работы добавляется компонент напряжения постоянного тока, а на выходе получается компонент постоянного тока Q. Однако мы все равно будем называть выход сигналом переменного тока, несмотря на смещение.

На самом деле это все еще верно, даже если входной сигнал удален. В области видимости выход может выглядеть как напряжение постоянного тока, но мы бы назвали его переменным сигналом с нулевой амплитудой (смещенным).

Пример 3: это переменный или постоянный ток?

Вы можете назвать эту форму волны напряжением постоянного тока с пульсацией или назвать напряжение переменного тока с большим смещением постоянного тока.

Либо может быть правильным. Какой из них более правильный, полностью зависит от того, как используется сигнал. В некоторых приложениях оба могут даже быть правдой.

В заключении:

За исключением простейших примеров линейного напряжения и напряжения батареи, термины AC и DC являются относительными и специфическими для конкретного применения. Какой термин вы используете или слышите, должен вызывать определенное более высокое утилитарное значение.

Переменный ток

6.1. Переменный электрический ток. Генератор переменного тока

Рис. 6.1. Вращающаяся рамка в магнитном поле

Переменный ток — это ток, периодически меняющийся по величине и направлению. Рассмотрим принцип действия генератора переменного тока на примере вращения рамки из проводника в однородном магнитном поле (рис. 6.1).

Пусть рамка имеет площадь S и первоначально расположена в однородном магнитном поле так, что нормаль к плоскости рамки составляет угол =0 с направлением вектора индукции .

При вращении рамки с угловой скоростью угол  изменяется по закону, a магнитный поток Ф, пронизывающий рамку,  по закону: . Так как , где Т — период, то .

Изменения магнитного потока возбуждают в рамке ЭДС индук­ции, согласно закону электромагнитной индукции, равную производной от потока по времени (строчными буквами мы будем обозначать мгновенные значения):

.

Последнее выражение можно переписать в виде: , где  амплитуда ЭДС индукции.

С помощью контактных колец и скользящих по ним щеток концы рамки соединяют с электрической цепью, в которой под действием ЭДС индукции, изменяющейся со временем по гар­моническому закону, возникнет переменный ток такой же частоты. Напряжение на выходных зажимах генератора несколько меньше ЭДС (на величину напряжения на внутреннем сопротивлении  см. раздел 2.2): и также изменяется по гармоническому закону и=Umsin(t). Мгновенное значение силы тока в цепи будет равно: , где Im, — амплитуда колебаний тока, разность фаз между колебаниями тока и напряжения. Амплитуда тока и разность фаз зависят от характера сопротивления цепи.

6.2. Активное, емкостное, индуктивное сопротивление

Рис. 6.2. Резистор в цепи переменного тока. Ток и напряжение колеблются в одинаковой фазе

Активным называется сопротивление, в котором выделяется энергия тока. Таким сопротивлением обладает обычный проводник – резистор. Пусть через резистор (рис. 6.2), подключенный к генератору переменного тока (изображен символом ), протекает ток, изменяющийся по закону . Применим к участку цепи 1,2 закон Ома для мгновенных значений тока и напряжения в виде: . Получаем выражение: , из которого следует, что колебания напряжения на активном сопротивлении совпадают с колебаниями тока по фазе (рис.6.2), так как = 0. Выражение , стоящее перед знаком синуса, есть амплитуда напряжения . Отсюда следует закон Ома для амплитудных значений:

. (6.1)

Мощность, выделяемая в резисторе, равна: . Это мгновенная мощность, зависящая от времени. Она положительна, поскольку в нее входит . Среднее значение равно ½, поэтому средняя мощность (за период) выразится как:

.

Рис. 6.3. Конденсатор в цепи переменного тока. Колебания тока опережают колебания напряжения на угол /2

(Четверть периода)

Действующим (эффективным) значением силы тока называют величину постоянного тока, который на активном сопротивлении за то же время выделяет такое же количество теплоты, как и данный переменный ток. Действующее значение силы тока связано с амплитудным значением соотношением: . Аналогично определяется действующее значение напряжения: . Использование действующих значений приводит полученные выше формулы для мощности к виду (2.17)  такому же, как для постоянного тока. Отметим, что в законе Ома для амплитуд (6.1) можно использовать и действующие значения тока и напряжения (естественно, одновременно).

Рассмотрим конденсатор в цепи переменного тока (рис. 6.3). Постоянный ток не протекает через конденсатор, поскольку тот фактически разрывает цепь постоянного тока. Однако при возникновении колебаний напряжения на конденсаторе происходит его перезарядка и в подводящих проводах возникают колебания тока. Пусть заряд на конденсаторе меняется по гармоническому закону: .

Сила тока является производной заряда по времени:

.

Следовательно, колебания силы тока опережают колебания напряжения на конденсаторе на /2. Амплитуда силы тока равна . Если ввести емкостное сопротивление , то из последнего выражения можно получить закон Ома для амплитуд:

(6.2)

Если вместо амплитудных значений использовать действующие, то получим закон Ома для действующих значений:

.

Рис. 6.4. Индуктивность в цепи переменного тока. Ток отстает от напряжения на угол /2

Индуктивность в цепи переменного тока (рис. 6.4) тоже влияет на величину тока, так как возникает ЭДС самоиндукции. Если активным сопротивлением катушки можно пренебречь, то разность потенциалов на катушке равна . Если ток в цепи меняется по закону , то

Колебания силы тока в катушке отстают от колебаний напряжения на /2. Амплитуда напряжения . Амплитудные (и действующие) значения тока и напряжения также связаны между собой законом Ома:

, (6.3)

где  индуктивное сопротивление.

Мгновенное значение мощности переменного тока равно произведению мгновенных значений силы тока и напряжения:

.

Мгновенная мощность колеблется с удвоенной частотой, принимая как положительные, так и отрицательные значения. В эти моменты (когда мощность отрицательна) цепь отдает мощность внешнему источнику. Практический интерес представляет среднее за период значение мощности:

, (6.4)

или через действующие значения тока и напряжения:

. (6.5)

Косинус угла сдвига фаз между током и напряжением называют коэффициентом мощности.

Если в электрической цепи не совершается работа, средняя мощность выделяется в активном сопротивлении в виде тепла. Чем меньше cos, тем при большем токе выделится заданная мощность. Большие значения тока приводят к бесполезной потере мощности в соединительных проводах, поэтому на практике стараются увеличить коэффициент мощности нагрузки.

При сдвиге фаз =/2 (как в конденсаторе или катушке индуктивности без активного сопротивления) средняя выделяемая мощность равна нулю. Поэтому сопротивления XС, XL называются реактивными.

Что такое постоянный и переменный ток определение. Постоянный и переменный ток. Получение электрического тока

Переменный электрический ток (AC, аббревиатрура от англ. alternating current) — это меняющийся по своей величине и направлению с определенной периодичностью электрический ток. В электротехнике в качестве буквенного обозначения электрического тока принято использовать знак тильда (~).

Источниками переменного электрического тока служат генераторы переменного тока, создающие переменную электродвижущую силу, изменение величины и направления которой происходит через определенные промежутки времени.

Основные параметры переменного тока

Для его описания используют следующие параметры (см. график):

  • Период (T) — длительность времени в течение которого электрический ток совершает один полный цикл изменений, возвращаясь к своей начальной величине;
  • Частота (f) — параметр, определяющий количество полных колебаний электрического тока за одну секунду, единица измерения — 1 Герц (Гц). Так, напр. стандарт частоты тока, принятый в отечественных энергосистемах составляет 50 Гц или 50 колебаний в секунду.
  • Амплитуда тока (Im) — максимальное достигаемое мгновенное значение величины тока за период, как видно из представленного графика — высота синусоиды;
  • Фаза — состояние переменного синусоидального электрического тока: мгновенное значение, изменение направления, возрастание (убывание) в цепи. Переменный ток может быть как однофазным, так и многофазным.

Наибольшее распространение получили трехфазные системы, представляющие собой три отдельных эл. цепей с одинаковой частотой и ЭДС, с углом сдвига φ=120°. Более подробно с понятием можно ознакомиться в статье Принцип создания трехфазной цепи переменного тока.

Применение переменного тока

Переменный синусоидальный электрический ток используется практически во всех отраслях хозяйства. Широкое применение переменного тока обусловлено во многом экономической эффективностью его использования в системах электроснабжения, простотой в преобразовании из энергии низкого напряжения в энергию более высокого напряжения и наоборот.

Эта возможность позволяет уменьшить потери электроэнергии при ее передаче на большие расстояние по проводам, существенно снизив площадь их поперечного сечения.

Электроэнергия в современном мире существует в двух видах. Одна её ипостась – постоянный ток, а вторая – переменный. Разница между ними принципиальная и то, что доступно одному виду электричества, недоступно другому. Так, постоянный ток известен людям очень давно, а переменный был поставлен человеком на службу цивилизации буквально сегодня по историческим меркам. Данная статья посвящена рассмотрению различий и мест применения электроэнергии с постоянной и переменной составляющей.

Постоянный ток, его происхождение и применение

С источниками постоянного тока мы сталкиваемся ежесекундно. Когда вы читаете эту статью с экрана своего монитора, в том, что вы различаете буквы, есть заслуга постоянного тока. Именно от источников постоянного тока запитан компьютер и все его микросхемы. Именно перепадами между уровнями сигнала, соответствующим нулю и единице, мы обязаны существованию цифровой вселенной. Постоянный ток протекает в фонарике и мобильном телефоне, в автомобиле и множестве других устройств бытового и специального назначения, где есть хоть один транзистор или диод.

Вместе с тем, способы получения и применение постоянного тока были известны еще во времена Древнего Мира. Археологами, производящими раскопки в долине Евфрата, были найдены странные керамические сосуды в жилище некоторых ювелиров. Сосуды имели устройство, схожее с гальванической батареей и соединялись между собой медной проволокой. Каково же было удивление археологов, когда они ради эксперимента заполнили один из сосудов кислотой и получили на его полюсах потенциал, равный полутора вольтам! Оказалось, что блоки батарей древние ювелиры применяли для гальванического покрытия ювелирных изделий различными металлами, что и подтвердили готовые образцы изделий, которые часто попадались ученым ранее.

Есть гипотезы, говорящие в пользу того, что при строительстве пирамид в Египте использовали электричество для освещения залов и коридоров в тех местах, где наносили росписи барельефы. Ученые спорят до сих пор по этому поводу, так как есть предположение о том, что свет подавали при помощи системы зеркал с поверхности. Как бы то ни было, но следов копоти на стенах древних залов с росписями не обнаружено и это факт, который остается необъяснимым до сих пор. Ясно одно, что шумеры умели пользоваться электричеством, а жили они раньше египетской цивилизации.

В современном понимании постоянный ток возникает в замкнутой цепи, состоящей из источника постоянного тока, например, аккумуляторной или химической батареи, проводников и нагрузки. В качестве нагрузки может выступать материал с электрическим сопротивлением, гораздо большим, нежели сопротивление проводников, замыкающих электрическую цепь. Это может быть лампочка с вольфрамовой спиралью или реостат из нихромовой проволоки или любая другая нагрузка, сопротивление которой имеет значение, отличное от нуля.

Получают постоянный ток различными способами. Самый древний из них – химический, основанный на возникновении разницы потенциалов между проводниками из разных материалов, помещенных в кислотную или щелочную среду. Химические батареи и аккумуляторы используются людьми не одно тысячелетие и сегодня они в ходу, только в очень усовершенствованном виде по сравнению со своими древними предками. Более современные источники постоянного тока – фотоэлементы, позволяющие получать разницу потенциалов при облучении их Солнцем и генераторы постоянного тока, которые приводят в действие при помощи механической энергии, прилагаемой снаружи. Сегодня генераторы постоянного тока наиболее распространены в ветроустановках с преобразователем напряжения.

Постоянный ток движет поезда на железной дороге. Электрифицированные участки сегодня составляют значительную величину по протяженности в нашей стране. Постоянный ток применяют и для передачи на большие расстояния значительных мощностей электрической энергии при сверхвысоких потенциалах.

При всей широте применения постоянного тока имеются значительные ограничения, которые препятствуют использованию его в повседневной деятельности для питания бытовых приборов и промышленных установок. Связано это с большими потерями на омическое сопротивление в проводниках, что сказывается самым негативным образом на работе осветительного и прочего оборудования. Для того чтобы снизить потери, необходимо применять проводники большего сечения, причем, альтернативы меди здесь практически нет. А медные провода весьма дороги.

Это препятствие заставило ученых искать иные способы получения и передачи электроэнергии на любые расстояния практически без потерь. Ныне в этой области человеческой деятельности главную роль играет переменный ток.

Переменный ток — происхождение и применение

Появление генераторов и систем передачи энергии переменного тока стало одним из важнейших достижений девятнадцатого века. При этом научные изыскания в этой сфере велись с самого начала столетия. В основу исследований были положены теоретические расчеты, которые показывали, что переменное магнитное поле должно вызывать переменное электрическое поле, которое в свою очередь вызывает снова переменное магнитное поле и процесс этот может протекать до бесконечности. При значительной частоте колебаний образуются электромагнитные волны, способные свободно распространяться в пространстве, а при незначительной частоте почти вся энергия остается в проводнике, по которому происходит её передача.

Самый простой способ возбудить электрические колебания с переменной амплитудой напряжения – перемещать постоянный магнит внутри рамки с изолированным проводом. При этом, чем больше количество витков в рамке и чем мощнее магнит, тем выше максимальное значение амплитуды напряжения, которое может зарегистрировать вольтметр на зажимах обмотки рамки.

Важной особенностью переменного напряжения является смена полярности при прохождении магнита в обратную сторону. А так же прохождение нулевой отметки значения амплитуды напряжения при смене полярности. Такое поведение напряжения, а значит и тока при подключении нагрузки, позволяет очень легко преобразовывать переменное напряжение в другие величины при помощи трансформаторов, что открывает отличные перспективы для передачи практически без потерь значительных мощностей на любые расстояния, что недостижимо для установок постоянного тока, кроме работающих на сверхвысоких напряжениях.

Первые генераторы переменного тока были разработаны Теслой и Эдисоном. Тесла разработал трехфазную схему производства и передачи электроэнергии на большие расстояния. Он же предложил принцип трансформации напряжения в зависимости от решаемых задач. Так, для потребления электроэнергии конечными установками он предложил ввести переменное напряжение частотой 50 или 60 Гц с амплитудой 110, 127 или 220 вольт, а для передачи на большие расстояния рекомендовал повышать напряжение до 10 тысяч вольт и выше. При высоких напряжениях для передачи по проводнику одинаковой мощности требуется меньший ток, а чем он меньше, тем меньше потери в проводнике. Поэтому сегодня в линии электропередач подают переменное напряжение с амплитудой до 330 кВ.

Простое преобразование напряжений открывает очень широкие возможности для прямого использования переменного тока. Так, существующие асинхронные трехфазные и однофазные двигатели, осветительные приборы, обогреватели и многие другие бытовые приборы могут работать непосредственно от сети, а более сложная радиотехника и устройства с автоматикой, требующие для работы наличие постоянного напряжения, приспособлены для получения его прямо на месте из переменного сетевого напряжения. Так сводят к минимуму потери постоянного тока в проводниках.

Перспективы совместного существования переменного и постоянного тока

Ученых и практиков от электротехники давно занимает вопрос соединения воедино положительных качеств переменного и постоянного тока. Подобные решения стали возможны, благодаря появлению мощных импульсных полупроводниковых вентилей. Сегодня ни у кого не вызывают удивления инверторные устройства, преобразующие постоянное напряжение в переменное, промышленной частоты, и наоборот. Импульсные источники питания в радиоэлектронной аппаратуре и компьютерной технике стали компактными и мощными, в десятки раз более эффективными по сравнению с источниками питания на обычных трансформаторах.

Сегодня можно утверждать о настоящей революции в сварочном деле, которая произошла благодаря появлению инверторов, значительно облегчивших в прямом и переносном смыслах сварочные аппараты и процессы. Теперь даже те виды сварки, которые считались прерогативой закрытых оборонных предприятий стали доступны любому сварщику, а стоимость производства таких работ, как аргонно-дуговая сварка и полуавтоматическая сварка значительно снизилась. Доступные по цене, легкие переносные сварочные аппараты, которые можно запитывать от обычной розетки в любой квартире, дали возможность проявить свой творческий потенциал многим любителям и профессионалам работы с металлом.

Не менее впечатляющими достижениями импульсной техники могут похвастаться производители источников бесперебойного питания, сетевых импульсных стабилизаторов напряжения, систем получения электроэнергии от альтернативных источников с возможностью аккумулирования и последующего преобразования запасенной энергии при возникновении потребности. Возможности импульсной техники изучены и использованы далеко не полностью. Мы в самом начале этого пути единения постоянного и переменного тока. Совсем не за горами автомобили на электричестве и прочие чудеса, которые станут явью с внедрением новых открытий и разработок в области импульсных источников электроэнергии.

Нажать Класс

Рассказать ВК

Уважаемые посетители сайта!!!

Все изложенное в рубрике «электротехника», — дается для Вас в более простой, доступной форме обучения. Если вникать в теоретические основы электротехники , то переходить на такое обучение нужно не спонтанно, а постепенно.

Допустим, читаем формулировку правила: «Магнитный поток сквозь поверхность S равен линейному интегралу векторного потенциала по замкнутому контуру, ограничивающему эту поверхность». Данное правило дает понятие об углубленном познании магнитного поля постоянных токов , такой курс обучения проходят в высших технических учебных заведениях. Конечно-же, нужно стремиться к высшему познанию таких вещей, но для человека, которому допустим нужно починить электроплиту либо какой нибудь электроприбор, такие познания в общем-то просто ни к чему.

Полагаю, что если человек зашел на сайт, — ему нужно получить конечный результат такого продукта — полезной информации. В частности, для данной темы речь пойдет о способах получения электрического тока .

Получение переменного тока

Переменный ток вырабатывают генераторы, электрические машины , — как их принято называть в электротехнике. Следует не забывать и о том, что в зависимости от их применения генераторы бывают как переменного так и постоянного тока. В зависимости от их устройства, генераторы вырабатывают:

  • трехфазный ток с выходным напряжением 380 Вольт;
  • однофазный ток с выходным напряжением 220 Вольт.

Где именно могут применяться трехфазные генераторы? Да допустим для питания трехфазной тепловой пушки на 6 кВт 380 В для обогрева складского помещения.

Тогда где-же могут применяться однофазные генераторы? Однофазные генераторы как и трехфазные, применяются допустим в больнице — при аварийном отключении электроэнергии.

Генератору, как нам известно, необходимо придать механическое вращение якоря. Каким образом можно придать якорю генератора механическое вращение? Такими источниками служат двигатели внутреннего сгорания:

  • газовые;
  • бензиновые;
  • дизельные

и другие источники, чтобы привести якорь генератора в движение. Другими источниками получения электрической энергии являются:

  • ветряные электростанции;
  • водяные электростанции;
  • турбинные электростанции.

На рисунке показано схематическое изображение устройства генератора переменного тока \рис.1\. Рамку в этом примере можно представить как якорь, состоящий из одного витка провода. Рамка обозначена сторонами А, Б, В, Г. Два проводника \А и Б\ при вращении рамки, пересекают магнитные силовые линии постоянного магнита С, Ю. При пересечении проводниками силовых линий, в проводниках наводится электродвижущая сила — ЭДС. ЭДС двух проводников по своему значению противоположны друг другу в тот момент, когда они пересекают эти силовые линии.

Величина ЭДС \ри.3\, протекающего тока в рамке, будет зависить:

    от векличины магнитной индукции постоянного магнита \ N, S\;

    длины проводника;

    скорости пересечения проводником магнитных силовых линий

и угла наклона проводника \рис.4\ по отношению к силовым линиям постоянного магнита \sin угла альфа между направлением движения проводника и направлением магнитных силовых линий поля\.


При вращении рамки в магнитном поле, в ней наводится ЭДС двух противоположных значений и ток, как мы можем заметить на графике \рис.5\ получается пульсирующим. Один период Т состоит из двух противоположных пульсаций тока, верхний полупериод — положительный и нижний полупериод — отрицательный. Полупериод обозначен на графике как 1/2 Т.

Поэтому, ток в этом примере рассматривается как:

    пульсирующий;

    синусоидальный

либо как еще его называют — переменный ток .

Получение постоянного тока

Постоянный ток мы получаем от следующих источников, это:

  • первичные источники \обыкновенные, простые батарейки\;
  • электрохимические аккумуляторы;
  • генераторы постоянного тока.

Принцип устройства электрохимических аккумуляторов изображен на рисунке 6. Электрохимические аккумуляторы могут быть возвращены в первоначальное свое состояние под воздействием электрического тока — в процессе их зарядки либо подзарядки.

Первичные источники \элементы\, разнообразные типы батареек \рис.7\, — не могут быть возвращены в свое первоначальное состояние в процессе их зарядки электрическим током, то-есть, такие источники по истечению своего срока эксплуатации подлежат только утилизации.

Различие между генератором переменного тока и генератором постоянного тока состоит в том, что в генераторе постоянного тока размещено большее количество витков в пазах якоря \по сравнению с генератором переменного тока\, а так-же, укреплено четное количество главных и добавочных полюсов на внутренней станине генератора.

Следующий рисунок из себя представляет схему подключения нагрузки к генератору постоянного тока \рис.8\, ток в данной цепи замыкается через нагрузку.


На графике \рис.9\ показаны пульсации тока, выдаваемые генератором постоянного тока. По сравнению с генератором переменного тока, данные пульсации выглядят более сглаженно.

Применение постоянного тока


автомобильный генератор

устройство автомобильного генератора

электростанция для сварки постоянным током

Напряжение

— Проблемы с пониманием переменного тока (AC)

Я все время вижу этот вопрос и хотел бы предложить его. Кажется, все понимают постоянный ток, поэтому на мгновение давайте рассмотрим схему батареи с положительной и отрицательной клеммами. Положительная клемма имеет положительное напряжение, а отрицательная клемма обычно считается «землей», а соединение положительной и отрицательной полярности замыкает цепь.

Какое напряжение на плюсовой клемме? 5 В постоянного тока? 9 В постоянного тока? 12 В постоянного тока? Это не нужно исправлять.«Напряжение» на положительном выводе может быть фиксированным, но также может быть переменным.

В источнике переменного напряжения все напряжение появляется на НОЖНОМ проводе в виде синусоидальной волны. Он изменяется от 0 В до + Vpeak, обратно до 0V, затем от отрицательного до -Vpeak, затем снова до 0V. Другой провод, необходимый для замыкания цепи, — НЕЙТРАЛЬНЫЙ, и вся его цель — обеспечить обратный путь. Это не «земля», в источнике переменного тока нет «земли». Все напряжение в источнике переменного тока поступает от провода HOT, поэтому он называется HOT.В источнике переменного тока сигнал напряжения на проводе HOT меняется от 0 В до + vPeak, обратно до 0 В, затем он становится отрицательным до -vPeak, а затем снова до 0 В.

Людям трудно понять идею о том, что HOT может стать отрицательным, потому что они пытаются сравнить это с принципами напряжения постоянного тока, которые используют возврат (отрицательный вывод) в качестве ЗАЗЕМЛЕНИЯ. Источник переменного тока не имеет «земли». Провод HOT передает синусоидальную волну, которая постоянно изменяется от 0 В до + vPeak, обратно до 0 В, затем от отрицательной до -vPeak, а затем снова до 0 В — обычно чередуется около 60 раз в секунду в U.С., от 60хЗ

Третий провод, который вы видите в вилке переменного тока, называемый землей, не похож на землю в цепи постоянного тока. В цепи переменного тока это «заземление» представляет собой дополнительный провод, который обычно подключается к устройству изнутри на другом конце и обеспечивает безопасный путь, чтобы потребители не были поражены электрическим током в случае контакта с чем-то внутри устройства. с ГОРЯЧИМ проводом. В отличие от постоянного тока, в цепи переменного тока заземляющий провод вообще не нужен и не имеет ничего общего с протеканием переменного тока в устройстве.

В цепи переменного тока НЕЙТРАЛЬНЫЙ провод представляет собой возврат для переменного напряжения, протекающего по проводу НОТ. Если мы подключим трансформатор с центральным ответвлением между проводами HOT и NEUTRAL переменного тока, центральный ответвитель станет «ОПОРНОЙ ТОЧКОЙ НАПРЯЖЕНИЯ», которая позволит нам увидеть + напряжение синусоидальной волны, где сторона HOT входит в трансформатор, и — Напряжение синусоиды там, где НЕЙТРАЛЬНЫЙ провод идет в трансформатор. Напряжение не переключается между NEUTRAL и HOT, провод HOT передает синусоидальную волну от 0 В до + vPeak, затем обратно до 0, до -vPeak, а затем обратно до 0.И снова НЕЙТРАЛЬНЫЙ провод замыкает цепь — у него нет напряжения источника. Все напряжение в цепи переменного тока поступает от провода HOT.

Вот почему в цепи переменного тока провода помечены как ГОРЯЧИЙ и НЕЙТРАЛЬНЫЙ и необходимы для завершения цепи. Третий провод, ЗАЗЕМЛЕНИЕ, используется только в целях безопасности. ГОРЯЧИЙ несет синусоидальную ВОЛНУ, НЕЙТРАЛЬНЫЙ — обратный, а ЗЕМЛЯ присутствует строго в целях безопасности.

переменного тока или постоянного тока?

Что безопаснее; Переменный ток (AC) или постоянный ток (DC)?

Когда вы работаете с электронными продуктами, очень важно понимать разницу между переменным током (AC) и постоянным током (DC).Эти знания не только позволят вам работать с этими продуктами с четким пониманием того, как они работают электрически, но также обеспечат вам жизненно важный уровень безопасности.

В конце концов, электричество — это естественная форма энергии, которая может быть очень опасной, если не обращаться с ней осторожно или уважительно. Поэтому, чтобы помочь вам обезопасить себя и расширить ваше понимание электричества, мы рассмотрим как переменный, так и постоянный ток, прежде чем объясним, какой из них безопаснее.

Разница между переменным и постоянным током

переменного и постоянного тока, как следует из их названия, представляют собой оба типа электрических токов, и они различаются направленным потоком, который принимает каждый из них.Чтобы понять их более подробно, мы углубимся в то, что они собой представляют:

  • Переменный ток:

    Этот вид электрического тока может изменять направление его потока — отсюда и альтернативное название — и именно эта универсальность делает его идеальным для подачи электроэнергии в дома и на предприятия. Например, если вы используете телевизор дома, то он работает от сети переменного тока, а если вы используете копировальный аппарат на работе, то опять же, он будет работать от сети переменного тока.

  • Постоянный ток:

    Электрический заряд, который движется только в одном направлении, постоянный ток имеет тенденцию течь через проводники, полупроводники и изоляторы. Чаще всего постоянный ток используется в батареях в качестве источника питания для электронных устройств, но постоянный ток также используется на удаленных объектах генерации, где его можно использовать для передачи энергии в больших количествах.

Теперь вы немного больше разбираетесь в этих двух электрических токах, пора исследовать опасности, которые они представляют, и какой из них более безопасен.

Аспекты безопасности переменного и постоянного тока

Независимо от того, с каким током вы работаете, как переменный, так и постоянный ток являются очень опасными элементами для работы и могут причинить вам серьезный вред. Люди не эволюционировали, чтобы справляться с воздействием электрических токов, прикладываемых к телу, и это может привести к легким электрическим ударам, которые заставят вас прыгнуть до сердечного приступа и смерти.

Хотя оба тока опасны, переменный ток считается более опасным для работы по следующим причинам:

  • Человеческое тело имеет более высокое сопротивление постоянному току, чем переменному току, поэтому это означает, что люди способны противостоять поражению электрическим током, возникающему в результате воздействия постоянного тока, намного лучше, чем при воздействии переменного тока.

  • Эксперименты показали, что легче отпустить токоведущие части цепи постоянного тока, чем наблюдаемые в цепях переменного тока. Естественно, это значительно упрощает снижение воздействия электричества при работе с постоянным током по сравнению с переменным током.

  • Поражение электрическим током может вызвать фибрилляцию желудочков, которая может привести к сердечной недостаточности и смерти. Предпочтительно избегать любой формы поражения электрическим током, но постоянный ток считается более безопасным в этих обстоятельствах, поскольку порог человеческого тела для постоянного тока значительно выше, чем для переменного тока.

Безопасность, как всегда, имеет первостепенное значение при работе с электричеством, и, хотя постоянный ток считается более безопасным, важно соблюдать все меры безопасности, чтобы предотвратить серьезную травму.

Переменный и постоянный ток (+ советы по обеспечению безопасности электрической системы!)

Электричество жизненно важно для нашей повседневной жизни, но мы обычно не задумываемся о том, как оно работает. Нам не нужно знать все детали, чтобы использовать его, но понимание кое-чего об электрическом токе может помочь вам сохранить свой дом и свою семью в безопасности.

Продолжайте читать, чтобы узнать больше о переменном и постоянном токе, о том, как вы обычно взаимодействуете с этими типами тока, и как обеспечить правильное и безопасное функционирование электрических систем и электроники в вашем доме. (Подсказка: электрики Best Pick являются профессионалами в проверках электробезопасности!)

Гарантия лучшего выбора для наших компаний. Позвоните сегодня!

Электроток и основы электричества

Электрический ток создается электронами, движущимися через проводящий материал, например металлический провод.Существует два вида электрического тока: переменный и постоянный.

Измерения тока и напряжения показывают, насколько силен электрический ток. Ток, измеряемый в амперах, — это скорость, с которой течет электричество. Вольт указывают на напряжение или электрическое давление электричества. Если вы когда-нибудь были поражены электрическим током ( не делают это намеренно, ), вы чувствовали напряжение.

Чтобы применить это к чему-то, что у вас, вероятно, есть в вашем доме, подумайте о новейшем зарядном устройстве для сотового телефона, которое вы купили.Вероятно, у него есть два (или более) слота для подключения USB-кабеля, не так ли? В зависимости от того, какое зарядное устройство у вас есть, один из этих слотов, вероятно, обозначен как 2,1 А, а другой — как 1 А.

Слот на 2,1 А обеспечивает электричество (также называемый током) с большей скоростью, чем слот на 1 А. Если вы спешите зарядить свой телефон, слот на 2,1 А справится с этой задачей быстрее, чем слот на 1 А.

переменного тока

Переменный ток меняет направление вперед и назад и меняет полярность.Этот тип тока питает наши электрические розетки. Переменный ток в США меняет направление 60 раз в секунду; переменный ток в Европе меняет направление 50 раз в секунду.

Как работает переменный ток?

Электростанции вырабатывают переменный ток с помощью вращающегося электрогенератора. Затем ток течет по электросети, где напряжение сначала повышается, чтобы его было легче передавать на большие расстояния, а затем постепенно снижается, прежде чем оно попадет в ваш дом.

Большинство розеток в вашем доме рассчитаны на 120 вольт, что намного меньше напряжения, используемого для передачи энергии на большие расстояния, которое может колебаться от 155 000 до 765 000 вольт. Крупные приборы, для работы которых требуется более мощный ток, такие как стиральные машины, холодильники и плиты, должны быть подключены к выделенным розеткам на 220 В.

Почему в наших домах используется переменный ток?

Преобразовать постоянный ток в другое напряжение непросто, а электричество должно протекать под высоким напряжением, чтобы передаваться на большие расстояния.Трансформаторы (обычно называемые большими серыми цилиндрами на вершинах полюсов питания) используются для преобразования переменного тока в более высокие или более низкие напряжения по мере необходимости.

Постоянный ток

Самый распространенный способ взаимодействия с постоянным током — это использование батарей. Батареи вырабатывают электричество в виде постоянного тока. Поскольку постоянный ток не меняет направление и напряжение, он обеспечивает постоянный ток электричества.

Как работает постоянный ток?

Постоянный ток течет в одном направлении.Когда вы помещаете батарею в фонарик, происходит химическая реакция, которая позволяет электрической энергии течь в одном направлении между положительной и отрицательной клеммами батареи. Хотя это очень стабильный поток электричества, постоянный ток может терять мощность в виде тепла, что не идеально для бытовых приборов и зданий.

Почему в наших домах не используется постоянный ток?

Короткий ответ заключается в том, что переменный ток легче производить, передавать и использовать, чем постоянный.Однако помимо простоты есть несколько практических причин.

Уровни напряжения постоянного тока нельзя повысить или понизить с помощью стандартного трансформатора, поэтому, если бы электросеть США работала на постоянном токе, нам потребовались бы электростанции через каждую милю или около того — инфраструктурный кошмар.

Еще одна причина, по которой мы не полагаемся в первую очередь на постоянный ток, заключается в том, что для использования энергии, создаваемой постоянным током, требуются двигатели, двигатели и устройства, которые намного сложнее, чем обычные двигатели с переменным током.Двигатели и приборы, использующие переменный ток, легче строить и обслуживать, и так было с тех пор, как в конце 19 века была создана электросеть США.

Переменный и постоянный ток вместе

Некоторые устройства используют оба типа тока, например, ваш ноутбук, когда он подключен к розетке. Этот громоздкий блок в середине шнура вашего ноутбука преобразует переменный ток из розетки в постоянный, который направляется в аккумулятор вашего ноутбука. Для правильной работы компьютерам требуется более стабильный ток, поэтому переменный ток из розетки необходимо преобразовать в постоянный.

Электробезопасность в доме

Каким бы важным ни было электричество в нашей повседневной жизни, оно также может быть невероятно опасным при неправильном взаимодействии с ним. Вот несколько основных советов по электробезопасности домашней электросистемы:

  1. Не допускайте попадания воды на электрические розетки и оборудование.
  2. Не используйте поврежденные шнуры питания.
  3. Ограничьте использование удлинителей.
  4. Используйте подходящие лампы для ваших осветительных приборов.
  5. Не перегружайте свои торговые точки.
  6. Правильно используйте обогреватели.
  7. Убедитесь, что ваши дымовые извещатели правильно расположены и находятся в рабочем состоянии.
  8. Не подпускайте детей к розеткам. Подумайте о замене стандартных розеток на защищенные от несанкционированного доступа розетки, чтобы защитить детей в вашем доме.

Ваш местный электрик Best Pick — отличный источник информации, который поможет вам безопасно использовать электроэнергию дома. В Интернете также есть множество ресурсов, которые помогут вам оставаться в безопасности и снизить риск электрического пожара.

Надлежащее хранение и утилизация батарей

Несмотря на то, что переменный ток обычно считается более опасным, чем постоянный, с источниками постоянного тока следует обращаться осторожно. Вот несколько советов по хранению, использованию и утилизации аккумуляторов:

Батареи следует хранить при комнатной температуре — хранение их в холодильнике не продлит их срок службы. Их нельзя хранить рядом с горячими предметами, которые могут вызвать утечку или взрыв.

Также важно правильно использовать батарейки.Убедитесь, что положительный и отрицательный концы правильно выровнены. Выньте батарейки из устройств, которые не собираетесь использовать какое-то время. Некоторые устройства потребляют небольшое количество энергии, даже когда они выключены, и батареи внутри этих устройств могут протекать.

Когда пришло время утилизировать батареи, Call2Recycle имеет отделения по всей территории США, где вы можете их выбросить.

Планирование осмотра электрооборудования

Важно убедиться, что ваша электрическая система работает должным образом и соответствует правилам.Позвоните сегодня одному из наших квалифицированных электриков, чтобы назначить электрическую проверку, и они могут проверить:

  • Повреждение электрощита
  • Проблемы с выключателем
  • Выходное повреждение
  • Проблемы с проводкой
  • Детекторы дыма и угарного газа

Электрики обращают внимание на многие другие вещи во время осмотра, но это общие проблемы, которые вы, возможно, уже заметили. Если это так, обязательно примите меры и как можно скорее отремонтируйте поврежденные компоненты электрической системы.

Итог

Как переменный, так и постоянный ток питают нашу жизнь. Один тип тока не обязательно лучше другого — каждый из них имеет разные жизненно важные цели.

Чтобы ваша электрическая система работала бесперебойно, планируйте периодические (в идеале, один раз в год) электрические проверки. Чтобы ваши устройства с батарейным питанием работали, храните и используйте батареи в соответствии с указаниями производителя и не забывайте об окружающей среде при их утилизации.

20.5 Сравнение переменного и постоянного тока — Физика колледжа, главы 1-17

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения. Как только ток установлен, он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление.Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. На рисунке 1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рис. 1. (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (б) График зависимости напряжения и тока от времени для сети переменного тока 60 Гц.Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются. Рис. 2. Разность потенциалов В между выводами источника переменного напряжения колеблется, как показано. Математическое выражение для V дается как V = V 0 sin 2πft .

На рисунке 2 показана схема простой схемы с источником переменного напряжения.Напряжение между клеммами колеблется, как показано, с напряжением переменного тока, заданным параметром

.

[латекс] \ boldsymbol {V = V_0 \; \ textbf {sin} \; 2 \ pi ft}, [/ latex]

где [latex] \ boldsymbol {V} [/ latex] — это напряжение во время [latex] \ boldsymbol {t} [/ latex], [latex] \ boldsymbol {V_0} [/ latex] — пиковое напряжение, и [латекс] \ boldsymbol {f} [/ латекс] — частота в герцах. Для этой простой цепи сопротивления [латекс] \ boldsymbol {I = V / R} [/ latex], поэтому переменный ток равен

[латекс] \ boldsymbol {I = I_0 \; \ textbf {sin} \; 2 \ pi ft}, [/ latex]

, где [latex] \ boldsymbol {I} [/ latex] — это текущий момент времени [latex] \ boldsymbol {t} [/ latex], а [latex] \ boldsymbol {I_0 = V_0 / R} [/ latex] — пиковый ток.В этом примере считается, что напряжение и ток находятся в фазе, как показано на Рисунке 1 (b).

Ток в резисторе меняется взад и вперед, как и напряжение возбуждения, поскольку [латекс] \ boldsymbol {I = V / R} [/ latex]. Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и тускнеет 120 раз в секунду, когда ток постоянно проходит через ноль. Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помахаете рукой вперед и назад между вашим лицом и флуоресцентным светом, вы увидите стробоскопический эффект, свидетельствующий о переменном токе.2 \; 2 \ pi ft} [/ latex], как показано на рисунке 3.

Подключение: домашний эксперимент — лампы переменного / постоянного тока

Помашите рукой между лицом и люминесцентной лампой. Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .

Рис. 3. Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до I 0 V 0 .Средняя мощность (1/2) I 0 V 0 .

Чаще всего нас беспокоит средняя мощность, а не ее колебания — например, у лампочки 60 Вт в настольной лампе средняя потребляемая мощность 60 Вт. Как показано на рисунке 3, средняя мощность [latex] \ boldsymbol {P _ {\ textbf {ave}}} [/ latex] составляет

[латекс] \ boldsymbol {P _ {\ textbf {ave}} =} [/ latex] [латекс] \ boldsymbol {\ frac {1} {2}} [/ latex] [латекс] \ boldsymbol {I_0 V_0}. [/ латекс]

Это видно из графика, поскольку области выше и ниже линии [latex] \ boldsymbol {(1/2) I_0V_0} [/ latex] равны, но это также можно доказать с помощью тригонометрических тождеств.Точно так же мы определяем средний или среднеквадратичный ток [латекс] \ boldsymbol {I _ {\ textbf {rms}}} [/ latex] и среднее или среднеквадратичное напряжение [латекс] \ boldsymbol {V _ {\ textbf {rms}}} [/ латекс] быть соответственно

[латекс] \ boldsymbol {I _ {\ textbf {rms}} =} [/ latex] [латекс] \ boldsymbol {\ frac {I_0} {\ sqrt {2}}} [/ латекс]

и

[латекс] \ boldsymbol {V _ {\ textbf {rms}} =} [/ latex] [латекс] \ boldsymbol {\ frac {V_0} {\ sqrt {2}}}. [/ Latex]

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего.Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее значение (или среднее значение) и извлекается квадратный корень. Это полезно для переменного тока, так как среднее значение равно нулю. Сейчас,

[латекс] \ boldsymbol {P _ {\ textbf {ave}} = I _ {\ textbf {rms}} V _ {\ textbf {rms}}}, [/ latex]

, что дает

[латекс] \ boldsymbol {P _ {\ textbf {ave}} =} [/ latex] [латекс] \ boldsymbol {\ frac {I_0} {2} \ cdot \ frac {V_0} {2}} [/ латекс] [латекс] \ boldsymbol {=} [/ latex] [латекс] \ boldsymbol {\ frac {1} {2}} [/ latex] [латекс] \ boldsymbol {I_0 V_0}, [/ latex]

, как указано выше.Стандартно цитировать [латекс] \ boldsymbol {I _ {\ textbf {rms}}} [/ latex], [latex] \ boldsymbol {V _ {\ textbf {rms}}} [/ latex] и [latex] \ boldsymbol {P _ {\ textbf {ave}}} [/ latex], а не пиковые значения. Например, напряжение в большинстве домашних хозяйств составляет 120 В переменного тока, а это означает, что [латекс] \ boldsymbol {V _ {\ textbf {rms}}} [/ latex] составляет 120 В. Обычный автоматический выключатель на 10 А прерывает устойчивое [латексное] ] \ boldsymbol {I _ {\ textbf {rms}}} [/ latex] больше 10 А. Ваша микроволновая печь мощностью 1,0 кВт потребляет [латекс] \ boldsymbol {P _ {\ textbf {ave}} = 1.0 \; \ textbf {kW}} [/ latex] и так далее. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи.

Подводя итог, при работе с переменным током закон Ома и уравнения мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения. Таким образом, для переменного тока записан закон Ома

[латекс] \ boldsymbol {I _ {\ textbf {rms}} =} [/ latex] [латекс] \ boldsymbol {\ frac {V {\ textbf {rms}}} {R}}. [/ Latex]

Различные выражения для переменного тока [латекс] \ boldsymbol {P _ {\ textbf {ave}}} [/ latex]:

[латекс] \ boldsymbol {P _ {\ textbf {ave}} = I _ {\ textbf {rms}} V _ {\ textbf {rms}},} [/ латекс]

[латекс] \ boldsymbol {P _ {\ textbf {ave}} =} [/ latex] [латекс] \ boldsymbol {\ frac {V _ {\ textbf {rms}} ^ 2} {R},} [/ latex]

и

[латекс] \ boldsymbol {P _ {\ textbf {ave}} = I _ {\ textbf {rms}} ^ 2 R}.[/ латекс]

Пример 1: Пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети 120 В переменного тока? (b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Стратегия

Нам сказали, что [latex] \ boldsymbol {V _ {\ textbf {rms}}} [/ latex] составляет 120 В, а [latex] \ boldsymbol {P _ {\ textbf {ave}}} [/ latex] составляет 60,0 Вт. . Мы можем использовать [latex] \ boldsymbol {V _ {\ textbf {rms}} = \ frac {V_0} {\ sqrt {2}}} [/ latex], чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности найти пиковую мощность из заданной средней мощности.

Решение для (а)

Решение уравнения [латекс] \ boldsymbol {V _ {\ textbf {rms}} = \ frac {V_0} {\ sqrt {2}}} [/ latex] для пикового напряжения [латекс] \ boldsymbol {V_0} [/ latex] и замена известного значения на [latex] \ boldsymbol {V _ {\ textbf {rms}}} [/ latex] дает

[латекс] \ boldsymbol {V_0 = \ sqrt {2} V _ {\ textbf {rms}} = 1,414 (120 \; \ textbf {V}) = 170 \; \ textbf {V}.} [/ Latex]

Обсуждение для (а)

Это означает, что напряжение переменного тока изменяется от 170 В до –170 В и обратно 60 раз в секунду.Эквивалентное постоянное напряжение составляет 120 В.

Решение для (b)

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,

[латекс] \ boldsymbol {P_0 = I_0 V_0 = 2 \; (} [/ latex] [latex] \ boldsymbol {\ frac {1} {2}} [/ latex] [latex] \ boldsymbol {I_0 V_0) = 2P _ {\ textbf {ave}}.} [/ latex]

Мы знаем, что средняя мощность 60,0 Вт, поэтому

[латекс] \ boldsymbol {P_0 = 2 (60.0 \; \ textbf {W}) = 120 \; \ textbf {W}.} [/ Latex]

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

Большинство крупных систем распределения электроэнергии — это переменный ток. Кроме того, мощность передается при гораздо более высоком напряжении, чем 120 В переменного тока (240 В в большинстве частей мира), которые мы используем дома и на работе. Благодаря эффекту масштаба строительство нескольких очень крупных электростанций обходится дешевле, чем строительство множества небольших. Это требует передачи энергии на большие расстояния, и, очевидно, важно минимизировать потери энергии в пути. Как мы увидим, высокие напряжения могут передаваться с гораздо меньшими потерями мощности, чем низкие напряжения.(См. Рис. 4.) В целях безопасности напряжение у пользователя снижено до знакомых значений. Решающим фактором является то, что намного легче увеличивать и уменьшать напряжение переменного тока, чем постоянного, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.

Рис. 4. Мощность распределяется на большие расстояния при высоком напряжении, чтобы уменьшить потери мощности в линиях передачи. Напряжение, генерируемое на электростанции, повышается пассивными устройствами, называемыми трансформаторами (см. Главу 23.7 Трансформаторы), до 330 000 вольт (или более в некоторых местах по всему миру).В месте использования трансформаторы снижают передаваемое напряжение для безопасного использования в жилых и коммерческих помещениях. (Источник: GeorgHH, Wikimedia Commons)

Пример 2: Меньшие потери мощности при передаче высокого напряжения

(a) Какой ток необходим для передачи мощности 100 МВт при 200 кВ? (б) Какая мощность рассеивается линиями передачи, если они имеют сопротивление [латекс] \ boldsymbol {1,00 \; \ Omega} [/ латекс]? (c) Какой процент мощности теряется в линиях электропередачи?

Стратегия

Нам дается [латекс] \ boldsymbol {P _ {\ textbf {ave}} = 100 \; \ textbf {MW}} [/ latex], [latex] \ boldsymbol {V _ {\ textbf {rms}} = 200 \ ; \ textbf {kV}} [/ latex], а сопротивление линий равно [latex] \ boldsymbol {R = 1.2 (1,00 \; \ Omega) = 250 \; \ textbf {кВт}}. [/ Latex]

Решение

Процент потерь — это отношение этой потерянной мощности к общей или входной мощности, умноженное на 100:

.

[латекс] \ boldsymbol {\% \; \ textbf {loss} =} [/ latex] [латекс] \ boldsymbol {\ frac {250 \; \ textbf {кВт}} {100 \; \ textbf {MW}} } [/ latex] [латекс] \ boldsymbol {\ times 100 = 0,250 \%}. [/ latex]

Обсуждение

Четверть процента — приемлемая потеря. Обратите внимание, что если бы мощность 100 МВт была передана при 25 кВ, то потребовался бы ток 4000 А.Это приведет к потере мощности в линиях на 16,0 МВт, или 16,0%, а не 0,250%. Чем ниже напряжение, тем больше требуется тока и тем больше потери мощности в линиях передачи с фиксированным сопротивлением. Конечно, можно построить линии с меньшим сопротивлением, но для этого потребуются более крупные и дорогие провода. Если бы сверхпроводящие линии можно было бы экономично производить, в линиях передачи вообще не было бы потерь. Но, как мы увидим в следующей главе, в сверхпроводниках тоже есть предел.Короче говоря, высокое напряжение более экономично для передачи энергии, а напряжение переменного тока намного легче повышать и понижать, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.

Широко признано, что высокое напряжение представляет большую опасность, чем низкое. Но на самом деле некоторые высокие напряжения, например, связанные с обычным статическим электричеством, могут быть безвредными. Таким образом, опасность определяется не только напряжением. Не так широко признано, что разряды переменного тока часто более вредны, чем аналогичные разряды постоянного тока.Томас Эдисон считал, что электрические разряды более опасны, и в конце 1800-х годов создал систему распределения электроэнергии постоянного тока в Нью-Йорке. Были ожесточенные бои, в частности, между Эдисоном и Джорджем Вестингаузом и Николой Тесла, которые выступали за использование переменного тока в ранних системах распределения энергии. Преобладал переменный ток в значительной степени благодаря трансформаторам и более низким потерям мощности при передаче высокого напряжения.

Исследования PhET: Генератор

Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику этих явлений, исследуя магниты и узнавая, как с их помощью загорается лампочка.

Рисунок 5. Генератор

Проблемные упражнения

1: (a) Каково горячее сопротивление лампочки на 25 Вт, которая работает от 120 В переменного тока? (б) Если рабочая температура колбы составляет 2700 ° C, каково ее сопротивление при 2600 ° C?

2: В определенном тяжелом промышленном оборудовании используется питание переменного тока с пиковым напряжением 679 В. Что такое среднеквадратичное напряжение?

3: Определенный автоматический выключатель срабатывает при действующем значении тока 15.0 А. Каков соответствующий пиковый ток?

4: Военные самолеты используют мощность переменного тока 400 Гц, поскольку на этой более высокой частоте можно разработать более легкое оборудование. Сколько времени на один полный цикл этой мощности?

5: Турист из Северной Америки берет свою бритву мощностью 25,0 Вт и 120 В переменного тока в Европу, находит специальный адаптер и подключает его к источнику переменного тока 240 В. Предполагая постоянное сопротивление, какую мощность потребляет бритва при разрушении?

6: В этой задаче вы проверите утверждения, сделанные в конце потерь мощности для примера 2.(а) Какой ток необходим для передачи мощности 100 МВт при напряжении 25,0 кВ? (b) Найдите потери мощности в линии передачи [латекс] \ boldsymbol {1.00 — \; \ Omega} [/ latex]. (c) Какой процент потерь это представляет?

7: Кондиционер в небольшом офисном здании работает от сети переменного тока напряжением 408 В и потребляет 50,0 кВт. а) Каково его эффективное сопротивление? (b) Какова стоимость работы кондиционера в жаркий летний месяц, когда он работает по 8 часов в день в течение 30 дней, и затраты на электроэнергию [латекс] \ boldsymbol {9.00 \; \ textbf {центов / кВт} \ cdot \; \ textbf {h}} [/ latex]?

8: Какова пиковая потребляемая мощность микроволновой печи на 120 В переменного тока, потребляющей 10,0 А?

9: Каков пиковый ток через обогреватель помещения мощностью 500 Вт, работающий от сети переменного тока 120 В?

10: Два разных электрических устройства имеют одинаковую потребляемую мощность, но одно предназначено для работы от 120 В переменного тока, а другое от 240 В переменного тока. а) Каково соотношение их сопротивлений? б) Каково соотношение их токов? (c) Если предположить, что его сопротивление не изменится, во сколько раз увеличится мощность, если устройство на 120 В переменного тока подключено к 240 В переменного тока?

11: Нихромовая проволока используется в некоторых радиационных обогревателях.2} [/ латекс], нужен ли при температуре эксплуатации 500ºС? (c) Какую мощность он потребляет при первом включении?

12: Найдите время после [latex] \ boldsymbol {t = 0} [/ latex], когда мгновенное напряжение переменного тока 60 Гц впервые достигает следующих значений: (a) [latex] \ boldsymbol {V_0 / 2 } [/ latex] (b) [латекс] \ boldsymbol {V_0} [/ latex] (c) 0.

13: (a) Когда два раза в первый период после [latex] \ boldsymbol {t = 0} [/ latex] мгновенное напряжение переменного тока 60 Гц становится равным [latex] \ boldsymbol {V _ {\ textbf {rms}}} [/ latex]? (б) [латекс] \ boldsymbol {-V _ {\ textbf {rms}}} [/ латекс]?

Основные принципы переменного тока (AC)

В наших домах и офисах мы часто слышим, что кто-то говорит «включите его в розетку переменного тока», когда собираетесь использовать прибор.Когда мы покупаем электронное устройство, продавец обычно говорит вам, что он рассчитан на 220 или 110 вольт переменного тока. А если вы владелец автомобиля и жалуетесь механику на сбой в электрической системе автомобиля, вы иногда услышите, как механик говорит: «Генератор не выдает достаточное напряжение переменного тока». Тогда что же на самом деле это переменный ток или переменный ток?

Синусоидальная волна

Как следует из названия, переменный ток (AC) — это форма энергии, уровень которой меняется во времени.Генератор, который заряжает аккумулятор SLI вашего автомобиля, является одним из конкретных примеров устройства, вырабатывающего переменное напряжение. Он работает, когда магнит, известный как ротор, вращается вокруг проводника, намотанного в катушках, известных как статор.

Источник изображения: Веб-сайт Wisc-Online

Один полный оборот или цикл (эквивалентный 360⁰) приводит к генерации так называемой «синусоидальной волны». Всякий раз, когда вы слышите термин 60 Гц (единица частоты ), это означает, что в течение 1 секунды происходит 60 циклов синусоидальных волн.Величина напряжения, генерируемого генератором переменного тока, обычно находится в диапазоне от 13,5 до 14,4 вольт переменного тока. Этот диапазон электрического тока будет выпрямляться и регулироваться до 12 вольт постоянного тока, который затем будет использоваться для зарядки батареи SLI.

Источник изображения: Emyrdiniz Website

Напряжение переменного и постоянного тока

Вы можете понять, что переменный ток (AC) играет важную роль в наших домах, в наших транспортных средствах и, фактически, почти во всех электронных гаджетах, которые мы используем каждый день.Генераторы на электростанциях и генераторы в наших автомобилях — это то место, где фактически вырабатывается переменный ток (AC). Мы знаем, что аккумуляторные батареи, которыми питаются наши ноутбуки и светодиодные фонарики, вырабатывают постоянное напряжение. Но помните, что это постоянное напряжение не будет доступно без переменного напряжения, поступающего из розеток переменного тока. Процесс, известный как преобразование переменного тока в постоянный ток , будет рассмотрен в следующем сообщении блога.

Статьи по теме:

Как работает генератор?

Что такое батарея SLI?

Что такое электрический ток

Простые основы работы с переменным током

Электроэнергия — основа современной жизни.Он составляет основу промышленного и инфраструктурного развития и делает нашу жизнь более комфортной. Эта статья поможет вам понять основы работы с переменным током .

Сегодня большая часть энергии, которую мы используем, вырабатывается и передается в виде переменного тока. Открытие переменного тока сделало передачу и распределение электроэнергии более эффективной и доступной каждому по меньшей цене. Сегодня миром управляет переменный ток. Свойства переменного тока более сложные, чем у постоянного.

Введение в переменный ток

AC означает переменный ток. Направление протекания переменного тока периодически меняется на противоположное. Напряжение переменного тока имеет синусоидальную природу. Он очень быстро колеблется между положительным максимумом и отрицательным максимумом. В каждый момент переменное напряжение бывает положительным, отрицательным или даже нулевым. Частота переменного тока в США составляет 60 Гц, а в Европе — 50 Гц, что означает, что мощность переменного тока колеблется между положительным максимумом и отрицательным максимумом 60 раз в секунду в США и 50 раз в Европе.

Определение чередования Текущий

Переменный ток можно определить как тип тока, который периодически меняет направление потока на противоположное.

Производство электроэнергии переменного тока

Рассмотрим простую петлю из провода, помещенную в постоянное электромагнитное поле, как показано на рисунке ниже.

Когда катушка вращается вокруг своей оси, она отсекает постоянное магнитное поле. В этот момент предположим, что катушка расположена вертикально по отношению к магнитным силовым линиям.Следовательно, индуцированное в катушке напряжение равно нулю.

Когда он вращается по часовой стрелке (в направлении магнитного поля) на 90 градусов, из-за относительного движения между магнитным полем и индуцированным в катушке напряжением постепенно возрастает до положительного максимума (согласно теории Фарадея). закон электромагнитной индукции).

Когда катушка снова вращается против часовой стрелки на 180 градусов, напряжение постепенно падает до нуля. А при повороте катушки против часовой стрелки на 270 град.и до 360 градусов в катушке индуцируется равное напряжение, но полярность индуцированного напряжения изменяется. Индуцированное напряжение имеет синусоидальную природу, и форма волны индуцированного напряжения показана ниже.

В реальном генераторе ток изменяется так же, как и в генераторе, и при изменении полярности напряжения направление тока также меняется. Практический генератор работает непрерывно, и время, необходимое генератору для завершения одного вращения, такое же, как период одного цикла генерируемого синусоидального напряжения.

Основы переменного тока

Электрическая нагрузка может быть резистивной, индуктивной или емкостной. Когда переменное напряжение подается на резистивную нагрузку, напряжение и ток повторяют ту же синусоидальную форму волны, но с разными амплитудами. Но это не тот случай, когда одно и то же напряжение переменного тока подается на индуктивные или емкостные нагрузки. При подаче на чисто индуктивную нагрузку ток отстает от напряжения на 90 градусов, а при приложении к чисто емкостной нагрузке ток опережает напряжение на 90 градусов.Ниже приведены несколько основных терминов и их определения.

Частота

Переменный ток имеет синусоидальную природу. Частота означает количество циклов в секунду. Измеряется в Герцах.

Реальная мощность

Реальная мощность — это мощность, потребляемая действительно потребляемой электрической нагрузкой во время преобразования энергии. Он также известен как Фактическая сила и Истинная сила. Единица измерения фактической мощности — ватт или Вт.

Реактивная мощность

Реактивная мощность — это мнимая мощность.Это касается изображения только тогда, когда нагрузка является емкостной или индуктивной по своей природе. Измеряется в VAR.

Коэффициент мощности

Коэффициент мощности можно определить как косинус разности фаз между напряжением и током. У него нет подразделения. Это десятичное число от 0 до 1. Подробнее

Импеданс

Импеданс — это полное сопротивление цепи потоку переменного тока. Это комбинация сопротивления и реактивного сопротивления.У него есть действительная часть, обозначающая сопротивление, а мнимая часть обозначает реактивное сопротивление, обеспечиваемое схемой протеканию тока.

Преимущества переменного тока мощность
  • Обнаружение переменного тока сделало возможным изменение напряжения. Напряжение переменного тока можно повышать / понижать при необходимости.
  • Передача электроэнергии высокого напряжения на большие расстояния возможна с меньшими затратами.
  • Напряжение переменного тока генерировать легче.

Solar Fundamentals: в чем разница между переменным током и переменным током?ОКРУГ КОЛУМБИЯ?

В солнечной отрасли производство электроэнергии — наш хлеб с маслом. Это означает, что профессионалам в области солнечной энергетики важно хорошо разбираться в основах электроэнергетики.

Если вы новичок в солнечной энергии, вам есть чему поучиться — вы не можете просто подключить панели к стене и закончить это дело. В сегодняшней статье мы рассмотрим одну из основных тем, которые необходимо знать каждому монтажнику об электричестве: разницу между двумя типами электрического тока: переменным и постоянным.

переменного и постоянного тока задействованы в солнечной фотоэлектрической системе.Итак, если ваше знакомство с AC / DC начинается и заканчивается со знаменитой группой, эта статья для вас!

Разница между мощностью переменного тока (AC) и постоянного тока (DC)

AC означает переменный ток, а DC — постоянный ток. Мощность переменного и постоянного тока относится к текущему потоку электрического заряда. Каждый представляет собой тип «потока» или формы, которую может принимать электрический ток.

Как мы объясняем в нашем учебнике по натяжке солнечных панелей, ток — это скорость протекания электрического заряда (т.е.е. поток электронов).

Хотя это может показаться немного техническим, разница между ними довольно проста:

  • Постоянный ток всегда течет в одном и том же направлении.
  • Переменный ток, как можно догадаться из названия, часто меняет направление (хотя возвратно-поступательное движение электронов по-прежнему передает энергию конечному устройству).

«Простой способ визуализировать разницу состоит в том, что на графике постоянный ток выглядит как плоская линия, тогда как поток переменного тока на графике образует синусоиду или волнообразный узор», — говорит Карл К.Берггрен, профессор электротехники Массачусетского технологического института.

История электричества: борьба между переменным и постоянным током

Когда электроэнергия только разрабатывалась и использовалась, было неясно, станет ли переменный или постоянный ток доминирующим способом подачи электроэнергии. Два известных пионера электричества — Томас Эдисон и Никола Тесла — предложили каждый из этих вариантов.

Тесла запатентовал переменный ток, а Эдисон — постоянный ток. Вначале стандарт DC был стандартом.Однако одна проблема с постоянным током заключается в том, что его нелегко преобразовать в более высокие или более низкие напряжения, что, очевидно, полезно для различных приложений.

AC решает эту проблему. Его можно преобразовать в другое напряжение с помощью трансформаторов, а энергетическим компаниям также проще передавать мощность переменного тока на большие расстояния. Итак, несмотря на дезинформационную кампанию Эдисона по дискредитации А.С. как опасного (в которой он зашел так далеко, что публично казнил животных электрическим током!), В конечном итоге она победила.

Используется ли в предметах домашнего обихода постоянный или переменный ток?

Короткий ответ — «оба».Электросеть США и электричество, поступающее в ваш дом, — это переменный ток. В результате большинство подключаемых к электросети бытовых приборов — холодильников, электрических духовок, микроволновых печей и т. Д. — работают от сети переменного тока

. Однако батареи

используют постоянный ток: у них есть положительная и отрицательная клеммы, и ток всегда течет в одном направлении между этими точками — от положительной клеммы к отрицательной, когда они разряжены.

Поскольку батареи работают с постоянным током, многие из используемых вами электронных устройств — например, ваш ноутбук и сотовый телефон — также работают от постоянного тока.

Солнечная энергия — постоянный или переменный ток?

Солнечные панели производят постоянный ток: солнце, падающее на панели, стимулирует поток электронов, создавая ток. Поскольку эти электроны текут в одном направлении, ток прямой.

Инвертор в доме, преобразующий постоянный ток в переменный.
Потребность в инверторах

Вот почему солнечные фотоэлектрические системы используют инверторы. Инвертор преобразует энергию постоянного тока в энергию переменного тока, поэтому его можно использовать дома или отправить обратно в электрическую сеть (в дополнение к некоторым другим функциям).

А что насчет устройств с питанием от постоянного тока? Адаптер питания, входящий в состав зарядного устройства для этих устройств, по сути, представляет собой инвертор. Они преобразуют сеть переменного тока в мощность постоянного тока, которая может использоваться устройством.

Итак, когда вы подключаете свой ноутбук к дому, работающему на солнечной энергии, мощность постоянного тока от солнечных панелей преобразуется в переменный ток вашим инвертором, а затем обратно в постоянный ток инвертором вашего ноутбука, чтобы ваш ноутбук мог его использовать!

Это может показаться много. К счастью, существует программное обеспечение для солнечной энергии, которое может помочь облегчить бремя фактического применения этих концепций на практике при проектировании солнечных систем.В этом руководстве для покупателя программного обеспечения для солнечной энергии подробно описаны некоторые особенности, на которые следует обратить внимание при выборе решения.

А как насчет солнечных панелей переменного тока?

Как мы уже говорили выше, традиционные солнечные панели производят энергию постоянного тока. Затем эта энергия преобразуется инвертором в мощность переменного тока. Это тот случай, если ваша фотоэлектрическая система включает в себя струнный инвертор (который преобразует энергию из одной или нескольких цепочек солнечных панелей) или микроинверторы (которые преобразуют ее для отдельных или, в некоторых случаях, нескольких солнечных панелей).

Однако вы, возможно, слышали и о солнечных панелях переменного тока. Если солнечные панели по своей природе производят постоянный ток, то что это?

Что такое солнечные панели переменного тока?
Панели

AC — это просто солнечные панели, в которые встроены микроинверторы.

Проектирование системы с использованием панелей переменного тока такое же, как проектирование системы с микроинверторами, за исключением того, что установщику не нужно покупать и прикреплять микроинверторы.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *