Site Loader

Содержание

Переменный электрический ток — Класс!ная физика

Переменный электрический ток

«Физика — 11 класс»

Как получить незатухающие вынужденные электромагнитные колебания?
Переменный ток в осветительной сети представляет собой не что иное, как вынужденные электромагнитные колебания.
Сила тока и напряжение меняются со временем по гармоническому закону.
Переменное напряжение на концах цепи создается генераторами на электростанциях.

Частота переменного тока — это число колебаний в 1 секунду.
Стандартная частота промышленного переменного тока равна 50 Гц, т.е. на протяжении 1 с ток 50 раз идет в одну сторону и 50 раз — в противоположную.
Частота 50 Гц принята для промышленного тока во многих странах мира.

Если напряжение на концах цепи меняется по гармоническому закону, то и напряженность электрического поля внутри проводников будет также меняться гармонически.
Эти гармонические изменения напряженности поля, в свою очередь, вызывают гармонические колебания силы тока.


Переменное напряжение создается генераторами электрического тока.
Проволочную рамку, вращающуюся в постоянном однородном магнитном поле — это простейшая модель генератора переменного тока.


Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции:

Ф = BS cos α.

При равномерном вращении рамки угол α увеличивается прямо пропорционально времени:

α = ωt

где
ω

— угловая скорость вращения рамки.

Поток магнитной индукции меняется по гармоническому закону:

Ф = BS cos ωt

Здесь величина ω играет роль циклической частоты.

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «-» скорости изменения потока магнитной индукции, т. е. производной потока магнитной индукции по времени:

е = -Ф’ = -BS (cos ωt)’ = BSω • sin ωt = m sin ωt

где
m = BSω — амплитуда ЭДС индукции.

Если к рамке подключить колебательный контур, то угловая скорость ω вращения рамки определит частоту со колебаний значений ЭДС, напряжения на различных участках цепи и силы тока.

Пусть вынужденные электрические колебания, происходят в цепях под действием напряжения, меняющегося с циклической частотой ω по закону синуса или косинуса:

u = Um sin ωt

или

u = Um cos ωt

где
Um — амплитуда напряжения, т. е. максимальное по модулю значение напряжения.

Если напряжение меняется с циклической частотой ω, то и сила тока в цепи будет меняться с той же частотой.
Но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения.

Поэтому в общем случае мгновенное значение силы тока в любой момент времени определяется по формуле

i = Im sin (ωt + φс).

где
Im — амплитуда силы тока, т. е. максимальное по модулю значение силы тока, а φс — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин



Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление. Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы

Применение переменного электрического тока. Переменный электрический ток

Нажать Класс

Рассказать ВК

Уважаемые посетители сайта!!!

Все изложенное в рубрике «электротехника», — дается для Вас в более простой, доступной форме обучения. Если вникать в теоретические основы электротехники , то переходить на такое обучение нужно не спонтанно, а постепенно.

Допустим, читаем формулировку правила: «Магнитный поток сквозь поверхность S равен линейному интегралу векторного потенциала по замкнутому контуру, ограничивающему эту поверхность». Данное правило дает понятие об углубленном познании магнитного поля постоянных токов , такой курс обучения проходят в высших технических учебных заведениях. Конечно-же, нужно стремиться к высшему познанию таких вещей, но для человека, которому допустим нужно починить электроплиту либо какой нибудь электроприбор, такие познания в общем-то просто ни к чему.

Полагаю, что если человек зашел на сайт, — ему нужно получить конечный результат такого продукта — полезной информации. В частности, для данной темы речь пойдет о способах получения электрического тока .

Получение переменного тока

Переменный ток вырабатывают генераторы, электрические машины , — как их принято называть в электротехнике. Следует не забывать и о том, что в зависимости от их применения генераторы бывают как переменного так и постоянного тока. В зависимости от их устройства, генераторы вырабатывают:

  • трехфазный ток с выходным напряжением 380 Вольт;
  • однофазный ток с выходным напряжением 220 Вольт.

Где именно могут применяться трехфазные генераторы? Да допустим для питания трехфазной тепловой пушки на 6 кВт 380 В для обогрева складского помещения.

Тогда где-же могут применяться однофазные генераторы? Однофазные генераторы как и трехфазные, применяются допустим в больнице — при аварийном отключении электроэнергии.

Генератору, как нам известно, необходимо придать механическое вращение якоря. Каким образом можно придать якорю генератора механическое вращение? Такими источниками служат двигатели внутреннего сгорания:

  • газовые;
  • бензиновые;
  • дизельные

и другие источники, чтобы привести якорь генератора в движение. Другими источниками получения электрической энергии являются:

  • ветряные электростанции;
  • водяные электростанции;
  • турбинные электростанции.

На рисунке показано схематическое изображение устройства генератора переменного тока \рис.1\. Рамку в этом примере можно представить как якорь, состоящий из одного витка провода. Рамка обозначена сторонами А, Б, В, Г. Два проводника \А и Б\ при вращении рамки, пересекают магнитные силовые линии постоянного магнита С, Ю. При пересечении проводниками силовых линий, в проводниках наводится электродвижущая сила — ЭДС. ЭДС двух проводников по своему значению противоположны друг другу в тот момент, когда они пересекают эти силовые линии.

Величина ЭДС \ри.3\, протекающего тока в рамке, будет зависить:

    от векличины магнитной индукции постоянного магнита \ N, S\;

    длины проводника;

    скорости пересечения проводником магнитных силовых линий

и угла наклона проводника \рис.4\ по отношению к силовым линиям постоянного магнита \sin угла альфа между направлением движения проводника и направлением магнитных силовых линий поля\.


При вращении рамки в магнитном поле, в ней наводится ЭДС двух противоположных значений и ток, как мы можем заметить на графике \рис.5\ получается пульсирующим. Один период Т состоит из двух противоположных пульсаций тока, верхний полупериод — положительный и нижний полупериод — отрицательный. Полупериод обозначен на графике как 1/2 Т.

Поэтому, ток в этом примере рассматривается как:

    пульсирующий;

    синусоидальный

либо как еще его называют — переменный ток .

Получение постоянного тока

Постоянный ток мы получаем от следующих источников, это:

  • первичные источники \обыкновенные, простые батарейки\;
  • электрохимические аккумуляторы;
  • генераторы постоянного тока.

Принцип устройства электрохимических аккумуляторов изображен на рисунке 6. Электрохимические аккумуляторы могут быть возвращены в первоначальное свое состояние под воздействием электрического тока — в процессе их зарядки либо подзарядки.

Первичные источники \элементы\, разнообразные типы батареек \рис.7\, — не могут быть возвращены в свое первоначальное состояние в процессе их зарядки электрическим током, то-есть, такие источники по истечению своего срока эксплуатации подлежат только утилизации.

Различие между генератором переменного тока и генератором постоянного тока состоит в том, что в генераторе постоянного тока размещено большее количество витков в пазах якоря \по сравнению с генератором переменного тока\, а так-же, укреплено четное количество главных и добавочных полюсов на внутренней станине генератора.

Следующий рисунок из себя представляет схему подключения нагрузки к генератору постоянного тока \рис.8\, ток в данной цепи замыкается через нагрузку.


На графике \рис.9\ показаны пульсации тока, выдаваемые генератором постоянного тока. По сравнению с генератором переменного тока, данные пульсации выглядят более сглаженно.

Применение постоянного тока


автомобильный генератор

устройство автомобильного генератора

электростанция для сварки постоянным током

Электроэнергия в современном мире существует в двух видах. Одна её ипостась – постоянный ток, а вторая – переменный. Разница между ними принципиальная и то, что доступно одному виду электричества, недоступно другому. Так, постоянный ток известен людям очень давно, а переменный был поставлен человеком на службу цивилизации буквально сегодня по историческим меркам. Данная статья посвящена рассмотрению различий и мест применения электроэнергии с постоянной и переменной составляющей.

Постоянный ток, его происхождение и применение

С источниками постоянного тока мы сталкиваемся ежесекундно. Когда вы читаете эту статью с экрана своего монитора, в том, что вы различаете буквы, есть заслуга постоянного тока. Именно от источников постоянного тока запитан компьютер и все его микросхемы. Именно перепадами между уровнями сигнала, соответствующим нулю и единице, мы обязаны существованию цифровой вселенной. Постоянный ток протекает в фонарике и мобильном телефоне, в автомобиле и множестве других устройств бытового и специального назначения, где есть хоть один транзистор или диод.

Вместе с тем, способы получения и применение постоянного тока были известны еще во времена Древнего Мира. Археологами, производящими раскопки в долине Евфрата, были найдены странные керамические сосуды в жилище некоторых ювелиров. Сосуды имели устройство, схожее с гальванической батареей и соединялись между собой медной проволокой. Каково же было удивление археологов, когда они ради эксперимента заполнили один из сосудов кислотой и получили на его полюсах потенциал, равный полутора вольтам! Оказалось, что блоки батарей древние ювелиры применяли для гальванического покрытия ювелирных изделий различными металлами, что и подтвердили готовые образцы изделий, которые часто попадались ученым ранее.

Есть гипотезы, говорящие в пользу того, что при строительстве пирамид в Египте использовали электричество для освещения залов и коридоров в тех местах, где наносили росписи барельефы. Ученые спорят до сих пор по этому поводу, так как есть предположение о том, что свет подавали при помощи системы зеркал с поверхности. Как бы то ни было, но следов копоти на стенах древних залов с росписями не обнаружено и это факт, который остается необъяснимым до сих пор. Ясно одно, что шумеры умели пользоваться электричеством, а жили они раньше египетской цивилизации.

В современном понимании постоянный ток возникает в замкнутой цепи, состоящей из источника постоянного т

Переменный электрический ток

Переменный ток – или AC (Alternating Current). Обозначение ( ~ ).

Электрический ток называется переменным, если он в течение времени меняет свое направление и непрерывно изменяется по величине.

Переменный ток, который используется для подключения бытовых или производственных электрических приборов, изменяется по синусоидальному закону:

 

 

График переменного тока

 

 

 

 

  • i – мгновенное значение тока
  • Im – амплитудное или наибольшее значение тока
  • f – значение частоты переменного тока
  • t – время

Широко используется переменный ток благодаря тому, что электроэнергия переменного тока технически просто и экономно может быть преобразована из энергии более низкого напряжения в энергию более высокого напряжения и наоборот. Это свойство переменного тока позволяет передавать электроэнергию по проводам на большие расстояния.

Период переменного тока

 

 

 

Промышленный переменный электрический ток получают при помощи электрических генераторов, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется механическим двигателем, использующим тепловую, гидравлическую или атомную энергию.

Переменный однофазный электрический ток имеет следующие основные характеристики:

f – частота переменного тока определяет количество циклов или периодов в единицу времени. За единицу измерения частоты переменного тока принят Герц ( Гц ):

1гц = 103кгц = 106мгц

Τ – период – время одного полного изменения переменной величины.

Если в 1 секунду происходит 1 период Τ, то частота f = 1 Гц ( Герц ).

1c = 103мс = 106мкс = 1012нс

В Российской Федерации период Τ переменного тока принят равным 0,02 секунды,следовательно по формуле f = 1/Τ можно определить частоту переменного тока:

f = 1/0,02 = 50 Гц

ω – угловая скорость

Помимо частоты f при изучении цепей переменного тока вводится понятие угловой скорости ω. Угловая скорость ω связана с частотой f следующим соотношением:

ω=2πf

При частоте 50 Гц угловая скорость равна 314 рад/с (2 × 3,14 × 50 = 314).

Мгновенное значение (i,u,e,p) – значение величины в данный момент, мгновенное.

Максимальное или амплитудное значение (Im,Um,Em,Pm).

Эффективное значение тока – это величина переменного тока, равная такому току, который на сопротивлении R, создаёт тепловыделение равное данному переменному току, за тоже время t (I,U,E,P).

Получение синусоидальной кривой

В системе декартовых прямоугольных координат совмещены тригонометрический круг и кривая, отражающая изменение величины тригонометрической функции sinβ от величины угла β между осью и радиусом-вектором r. Радиус-вектор r вращается против часовой стрелки. Повернем радиус-вектор на угол β и от конца вектора r проведем пунктиром прямую, параллельную оси . От окружности (точка а) по оси отложим в масштабе отрезок. Из конца отрезка построим перпендикуляр до пересечения с пунктирной прямой. Получим точку с в пересечении перпендикуляра и пунктирной прямой.

Синусоида переменного тока

Аналогичное построение проведем, увеличивая угол β, пока радиус-вектор повернется на угол β = 360°, и получим точки аналогично точке с. Соединим точки плавной кривой, которая и будет отражать синусоидальный закон изменения величины переменного тока.

Понятие о фазе

Если две переменные величины одновременно проходят свои нулевые и максимальные значения, то они совпадают по фазе.

Если две переменные величины не одновременно проходят свои нулевые и максимальные значения, то они не совпадают по фазе.

В радиотехнике используются понятия:

 

1. Активное сопротивление ( Ra )

2. Индуктивное сопротивление ( XL – реактивное сопротивление )

3. Ёмкостное сопротивление ( XC – реактивное сопротивление )

Понятие об активном сопротивлении

Если по проводнику протекает ток, то вследствие явления самоиндукции, электроны распространяются не равномерно по сечению проводника, вследствие чего растёт сопротивление проводника.

Явление неравномерного распространения зарядов по сечению проводника называется – поверхностный эффект. Чем больше частота, тем больше сопротивление.

Определение постоянного и переменного электрического тока

Технический прогресс с появлением электричества начал развиваться семимильными шагами. Новый вид энергии и практическое применение продуктов, получаемых в результате её преобразования, изменили класс жизни человека.

Движение частиц при постоянном и переменном токах

Движение частиц при постоянном и переменном токах

Что такое электрический ток

Перемещения свободных носителей электрических зарядов в вакууме или веществе в фиксированном направлении назвали электрическим током. Свободными носителями в металлах являются электроны, в жидкостях или газах – ионы. Название «ток» имеет два толкования. Первое – обозначает само продвижение электрического заряда в проводнике, второе – оценку числа электронов, проходящих по проводнику за 1 с. Его силу можно определить по Закону Ома. Для этого используется формула:

I=U/R,

где U – напряжение, В; R – сопротивление, Ом.

Ток постоянный и переменный

Электроны в проводниках движутся от плюса к минусу. Движение равномерное, всё время с постоянной величиной. Если задаться вопросом, какие токи носят определение постоянных, сначала нужно хорошо представлять, куда течёт ток.

Внимание! Направлением тока считают то направление, куда движутся положительно заряженные частицы: от плюса к минусу. Хотя дорога свободных электронов лежит от минуса к плюсу.

Направление постоянного тока

Направление постоянного тока

Значит, постоянный ток – это направленное перемещение заряженных частиц, несущих в себе положительный заряд, которые не меняют свои величину и направление с течением времени. Все остальные токи – переменные. В этом их разница.

Alternative Current – AC, так обозначается переменный ток на приборах. Direct Current – DC, это понятное обозначение постоянного тока.

Постоянный и переменный ток

Постоянный и переменный ток

Различия токов

Незнание отличий приводит к неправильному подключению потребителей напряжения к источникам питания. Это вызывает повреждение приборов или, того хуже, опасные для жизни ситуации.

Чтобы чётко разобраться, какой ток называется переменным, какой постоянным, нужно сопоставить параметры.

При сравнении характеристик этих двух видов электричества выделяют отличия:

  1. Физические – у переменного тока сила и направление состоят во временной зависимости. В бытовой сети частота пульсации – 50 Гц. Полярность изменяется по синусоиде 50 раз за секунду. Носители зарядов постоянного тока направленности не меняют.
  2. Конструктивные – на выводах или контактах у DC присутствуют « + » и «– », а у АС на электродах – «ноль» и «фаза». В случае трёхфазной сети 4 контакта: один «ноль» и три «фаза».
  3. Принцип вырабатывания – постоянный ток получают в результате электролитических и химических реакций окисления, работы генераторов постоянного тока и солнечных батарей. Переменный ток вырабатывается трёхфазными генераторами.
  4. В преобразовании – оба вида получают путём превращения одного в другой посредством полупроводниковых выпрямителей и инверторов.

Для информации. В мире действует два головных стандарта частоты и напряжения в потребительской сети переменного тока. Европейский стандарт – 50 герц, 220-240 вольт, и американский – 60 герц, 100-127 вольт.

Преимущества переменного тока

Аккумуляторные батареи практичны как источник постоянного электричества. Однако бесконечно снабжать токоприёмники энергией без подзарядки они не могут. Поэтому создание изменяющегося во времени тока и его доставка потребителю – главные задачи энергосистемы страны. К преимуществам этого вида относятся:

  • лёгкость преобразования из одной величины напряжения в другую;
  • допустимость передачи на дальние расстояния по ЛЭП к распределительным сетям;
  • возможность реализовывать трёхфазные схемы энергоснабжения;
  • ориентированность на потребителей производственных предприятий, рассчитанных на питание переменным током.

Снизить или повысить величину напряжения переменного тока проще. Для этого стоит только пропустить его через трансформатор. Большой КПД этого преобразователя – 99%, потеря мощности – лишь 1%. Трансформатор, имея отдельные обмотки по напряжению, ещё разделяет высокое напряжение от низкого, что допускает возможность разделить установки до 1000 В и свыше 1000 В.

Атомные и гидроэлектростанции расположены в местах, отдалённых от центральных районов расположения потребителей. Поэтому напряжение добытой электроэнергии повышают до сотен кВт, чтобы снизить потери при транспортировке, и передают по ЛЭП в нужное место, где снова понижают.

Гидроэлектростанция – ГЭС

Гидроэлектростанция – ГЭС

Применяя трёхфазное переменное напряжение, повышают производительность структуры энергосистемы. Передача одинаковой мощности трёхфазной сети требует меньшего количества проводников, в отличие от однофазной линии.

Важно! Если сравнить два трансформатора одинаковой мощности, то габариты однофазного трансформатора больше, чем трёхфазного. Изготовление асинхронных двигателей обходится дешевле, чем двигателей постоянного тока. В них отсутствуют коллектор и щётки, по мощности при одинаковых размерах асинхронные двигатели обгоняют постоянные в 2-3 раза.

Недостатки постоянного тока

Кроме того, что источники этого вида тока имеют непростую конструкцию, они сложнее в эксплуатации. При КПД, равном 94%, предельная мощность этих машин не выше 20 МВт. Присущи и другие минусы:

  • для повышения или понижения напряжения применяют сложные схемы;
  • двигатели, рассчитанные на потребление такого электричества, также конструктивно сложны и недешевы;
  • развязка низкого и высокого напряжения требует сложных решений.

Полностью отказаться от таких источников и потребителей не получается, так как они востребованы и имеют свои преимущества.

Недостатки переменного тока

При передаче энергии изменяющего направление тока на большие расстояния возникают затруднения. Создание Единой Энергетической Системы выявило ряд недостатков:

  • пропускная способность кабельных линий низкая из-за ёмкости между проводниками и землёй;
  • при объединении и кольцевании ветвей системы, расположенных друг от друга на больших расстояниях, невозможно выполнить синхронизацию станций;
  • пороговый предел устойчивости, необходимый для согласования, заканчивается на длинах линий свыше 500 км, при этом требуется повышение напряжения до 450 кВ, что приводит к удорожанию оконечного оборудования.

К сведению. При повышенном напряжении у воздушных линий возникает коронный разряд. Это процесс ионизации у проводников с малым радиусом. Чтобы в этом случае не происходило стекание электричества, приходится увеличивать диаметр проводов, это ведёт к удорожанию линии.

Преимущества постоянного тока

Какие качества делают незаменимым постоянный ток? К плюсам относятся:

  • в цепях нет реактивной мощности, которая приводит к потерям;
  • параллельно работающие генераторы нет необходимости синхронизировать;
  • повышенная дальность передачи энергии в больших объёмах;
  • безопасность для человека при соприкосновении с токоведущими жилами.

К достоинствам добавляется то, что такое электричество, как постоянный ток, течёт по всему сечению проводника, поэтому потери мощности минимальны.

Плотность расположения зарядов по сечению проводника

Плотность расположения зарядов по сечению проводника

История появления и «войны токов»

Никола Тесла и Томас Эдисон не дожили до того момента, когда представитель компании Consolidated Edison поставил точку в борьбе двух технологий. Переменный электрический ток одержал победу. В 2007 году ведущий инженер компании отсоединил кабель, символизирующий питание Нью-Йорка постоянным током.

Сербский учёный Никола Тесла ещё в 1882 году придумал, как применить эффект вращающегося электромагнитного поля. В то время Эдисон уже ввёл в строй 2 электростанции, вырабатывающие постоянный ток, и организовал производство кабелей, устройств освещения и динамо-машин. Тесла одно время работал в компании Эдисона и ремонтировал машины постоянного тока. Эдисон обещал Николе заплатить за проекты по модернизации двигателей, но выплатить вознаграждение за проведённую работу отказался. Тесла продал патенты своих изобретений Джорджу Вестингаузу, президенту компании Westinghouse Electric Corporation за 1 млн. долларов. Первая электростанция на 500 В изменяющего свою полярность электричества запущена в 1886 г. Война токов продолжалась более века.

Источники постоянного электрического тока

Для его получения используют специальный генератор, работа которого основана на законе электромагнитной индукции – ЭДС. Если вращать металлическую рамку, в зоне действия электромагнитного поля возникнет ЭДС, и по рамке потечёт электричество.

Генератор постоянного тока

Генератор постоянного тока

Внимание! Увеличение ЭДС получают повышением силы поля или скорости вращения рамки. Снижения пульсации полученного движения электричества добиваются добавлением числа рамок.

Немеханические производители электричества постоянной природы:

  • солнечные батареи;
  • гальванические элементы;
  • термохимические элементы.

Аккумуляторы энергии из этой группы ограниченного срока действия и требуют периодической подзарядки.

Источники постоянного тока

Источники постоянного тока

Применение

Использование в электронике для питания схем – это не конечные варианты применения DC. Постоянный ток нашёл употребление в следующих случаях:

  • в электролизе – получение в промышленных масштабах металлов из солей и растворов;
  • гальванопластике и гальванизации – покрытие металлами электропроводящих поверхностей;
  • в сварочных работах – работа с нержавеющей сталью;
  • на транспорте – двигатели трамваев, электровозов, троллейбусов, ледоколов, подводных лодок;
  • в медицине – ввод лекарственных препаратов в организм при электрофорезе.

Для информации. В СССР начинали электрификацию железной дороги постоянным током на участках Баку – Сурамский перевал и Сабучини. До Великой Отечественной войны напряжение составляло 1,5 кВ, потом было переведено на 3 кВ. В общей сложности половина ж/д линий работало от этого вида тока.

Переменный ток

Вынужденные гармонические электромагнитные колебания – это синусоидальный ток. Колебания происходят с частотой 50 Гц в секунду. Напряжение и ток за период в среднем равны нулю.

Чем постоянный ток отличается от переменного, и каков его путь от источника до потребителя?

Ток постоянный не совершает колебаний, в этом постоянный и переменный ток различаются. Подача Direct Current – DC к потребителям также происходит по проводам и кабелям. Действуют до сих пор ЛЭП Волгоград – Донбасс.

Преобразование

К бытовым приборам, требующим снабжение схем электричеством типа DC, его подают через блоки питания. Это схемы, включающие в себя понижающий трансформатор и выпрямляющий блок. При подключении блока питания к устройству следят за совпадением их параметров по  напряжению и мощности. Параметры указаны на корпусе прибора.

Блок питания от сети 50 Гц

Блок питания от сети 50 Гц

В настоящий момент оба вида электричества отлично уживаются в современном мире. Схемы смешанного питания потребителей только дополняют друг друга.

Видео

«Чем переменный ток отличается от постоянного?» – Яндекс.Знатоки

Переменный ток представляет собой движение заряженных частиц, которое обуславливается приложенным к проводнику переменным электромагнитным полем или электродвижущей силой. Которое постоянно воздействует на носители зарядов в проводящей среде (ионы или электроны, в зависимости от типа материала) и создает колебательные движения с определенной частотой. В бытовой сети, к примеру, частота изменения направления движения заряженных частиц составляет 50Гц.

Постоянный ток, в сравнении с переменным, имеет постоянную по величине электромагнитную силу, воздействующую на проводник. Поэтому все носители заряда в проводнике движутся в одном направлении – от точки с большим потенциалом, к точке с меньшим. Величина постоянного тока, при сравнении его с переменным, никак не изменяется.

Это отличие продемонстрировано на рисунке ниже:

Как видите, для постоянного тока, в какую бы единицу времени вы не сравнили величину тока, она всегда будет одинаковой. Для переменного тока, амплитуда с течением времени постоянно изменяется.

Помимо этого, переменный ток имеет отличное воздействие на электрические приборы и элементы цепи, к примеру, на те же катушки индуктивности, конденсаторы и полупроводниковые элементы. Для каждого рода тока разрабатываются свои типы электрических машин, так как переменный ток не сможет вращать двигатель постоянного тока, а постоянный переменного, или трансформатор не сможет преобразовать величину постоянного напряжения.

14 Переменный Электрический Ток

Вынужденные Электромагнитные Колебания

Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника. Внешним источником ЭДС в электрических цепях являются генераторы переменного тока, работающие на электростанциях.

Принцип действия генератора переменного тока легко показать при рассмотрении вращающейся рамки провода в магнитном поле.

В однородное магнитное поле с индукцией В помещаем прямоугольную рамку, образованную проводниками (abсd).

Пусть плоскость рамки перпендикулярна индукции магнитного поля В и ее площадь равна S.

Магнитный поток в момент времени t0 = 0 будет равен Ф = В*8.

При равномерном вращении рамки вокруг оси OO1 с угловой скоростью w магнитный поток, пронизывающий рамку, будет изменяться с течением времени по закону:

Изменение магнитного потока возбуждает в рамке ЭДС индукцию, равную

где Е0= ВSw — амплитуда ЭДС.

Если с помощью контактных колец и скользящих по ним щеток соединить концы рамки с электрической цепью, то под действием ЭДС индукции, изменяющейся со временем по гармоническому закону, в электрической цепи возникнут вынужденные гармонические колебания силы тока — переменный ток.

На практике синусоидальная ЭДС возбуждается не путем вращения рамки в магнитном поле, а путем вращения магнита или электромагнита (ротора) внутри статора — неподвижных обмоток, навитых на сердечники из магнитомягкого материала. В этих обмотках находится переменная ЭДС, что позволяет избежать снятия напряжения с помощью контактных колец. 

Переменный Ток

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока.

Если индуктивность проводника настолько мала, что при включении его в цепь переменного тока индукционными полями можно пренебречь по сравнению с внешним электрическим полем, то движение электрических зарядов в проводнике определяется действием только внешнего электрического поля, напряженность которого пропорциональна напряжению на концах проводника.

При изменении напряжения по гармоническому закону U = Um cos wt напряженность электрического поля в проводнике изменяется по такому же закону.

Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения:

где i — мгновенное значение силы тока, Im— амплитудное значение силы тока.

Колебания силы тока в цепи являются вынужденными электрическими колебаниями, возникающими под действием приложенного переменного напряжения.

Амплитуда силы тока равна: 

При совпадении фаз колебаний силы тока и напряжения мгновенная мощность переменного тока равна:

Среднее значение квадрата косинуса за период равно 0,5. В результате средняя мощность за период

Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = PR), вводится понятие действующих значений силы тока и напряжения. Из равенства мощностей получим

Действующим значением силы тока называют величину, в корень из 2 раз меньшую ее амплитудного значения:

Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.

Действующее значение переменного напряжения в корень из 2 раз меньше его амплитудного значения:

Средняя мощность переменного тока при совпадении фаз колебаний силы тока и напряжения равна произведению действующих значений силы тока и напряжения:

Сопротивление элемента электрической цепи, в которой происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением. Активное сопротивление участка цепи можно определить как частное от деления средней мощности на квадрат действующего значения силы тока:

Активным сопротивлением R называется физическая величина, равная отношению мощности к квадрату силы тока , что получается из выражения для мощности . При небольших частотах практически не зависит от частоты и совпадает с электрическим сопротивлением проводника.

Пусть в цепь переменного тока включена катушка. Тогда при изменении силы тока по закону в катушке возникает ЭДС самоиндукции . Т.к. электрическое сопротивление катушки равно нулю, то ЭДС равна минус напряжению на концах катушки, созданному внешним генератором (??? Каким еще генератором???) . Следовательно, изменение силы тока вызывает изменение напряжения, но со сдвигом по фазе . Произведение является амплитудой колебаний напряжение, т.е. . Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний тока называется индуктивным сопротивлением .

Пусть в цепи находится конденсатор. При его включение он четверть периода заряжается, потом столько же разряжается, потом то же самое, но со сменой полярности. При изменении напряжения на конденсаторе по гармоническому закону заряд на его обкладках равен . Ток в цепи возникает при изменении заряда: , аналогично случаю с катушкой амплитуда колебаний силы тока равна . Величина, равная отношению амплитуды к силе тока, называется емкостным сопротивлением .

АКТИВНОЕ СОПРОТИВЛЕНИЕ.  ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ СИЛЫ ТОКА И НАПРЯЖЕНИЯ Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения.

Сила тока в цени с резистором. Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением.   Сопротивление R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от  генератора. Эта энергия превращается во внутреннюю энергию проводников — они  нагреваются.   Будем  считать, что напряжение на зажимах цепи меняется по гармоническому закону: u = Um cos t. Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значения силы тока можно применить закон Ома:   В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряже ния (рис. 4.11), а амплитуда силы тока определяется равенством

Мощность в цепи с резистором. В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощ ностъ тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найчи среднюю мощность за один период. Под средней за период, мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой P = I2R.       (4.18) На протяжении очень малого интервала времени переменный ток можно считать практически постоянным.  Поэтому мгновенная моoность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой P = i2R.                                              (4.19) Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение  График зависимости мгновенной мощности от времени изображен на рисунке 4.12, а. Согласно графику (рис. 4.12, б.), на протяжении одной восьмой периода, когда , мощность в любой момент времени больше, чем  .  Зато на протяжении следующей восьмой части периода, когда cos 2t < 0, мощность в любой момент времени меньше    чем  . Среднее за период значение cos 2t равно нулю, а значит равно нулю второе слагаемое в уравнении (4.20). Средняя мощность  равна, таким образом, первому члену в формуле (4.20): Действующие значения силы тока и напряжения. Из формулы (4.21) видно, что величина   есть среднее за период значение квадрата силы тока:     Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы неременного тока. Действующее зртачепие силы неременного тока обозначается через I: Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично действующему значению силы тока: Заменяя в формуле (4.17) амплитудные значения силы тока и напряжения на их действующие значения, получаем Это закон Ома для участка цепи переменного тока с резистором.

Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры ивольтметры переменного тока.

Кроме того, действующие значения удобнее мгновенных значений еще и потому, что именно они непосредственно определяют среднее значение мощности Р переменного тока: P = I2R = UI. Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

Переменный ток оценивается его действием, эквивалентной действия постоянного тока. Активным сопротивлением называют такое сопротивление проводника, в котором электрическая энергия необратимо превращается во внутреннюю. Пусть напряжение в цепи переменного тока изменяется по гармоничным законом. Под действием переменного электрического поля в проводнике возникает переменный ток, частота и фаза колебаний которого совпадает с частотой и фазой колебания напряжения. Амплитудное значение силы тока равна отношению амплитудного значения напряжения к сопротивлению проводника. Мощность тока равна произведению силы тока и напряжения. Тогда активное сопротивление можно определить как отношение мощности переменного тока на участке цепи к квадрату действующей силы тока. Действующим значением силы тока называется сила постоянного тока, благодаря которой в проводнике выделяется за одинаковое время такое же количество теплоты, что и переменным током. Найти действующее значение силы тока можно как отношение амплитудного значения силы тока до квадратного корня из двух. Действующее значение напряжения также в корень из двух меньше его амплитудного значения.

При изучении вынужденных механических колебаний мы ознакомились с явлением резонанса. Резонанс наблюдается в том случае, когда собственная частота колебаний системы совпадает с частотой изменения внешней силы. Если трение мало, то амплитуда установившихся вынужденных колебаний при резонансе резко увеличивается. Совпадение вида уравнений для описания механических и электромагнитных колебаний (позволяет сделать заключение о возможности резонанса также и в электрической цепи, если эта цепь представляет собой колебательный контур, обладающий определенной собственной частотой колебаний.

При механических колебаниях резонанс выражен отчетливо при малых значениях коэфициента трения . В электрической цепи роль коэффициента трения выполняет ее активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока но внутреннюю энергию проводника (проводник нагревается). Поэтому резонанс в электрическом колебательном кон-lype должен быть выражен отчетливо при малом активном сопротивлении R.

Мы с вами уже знаем, что если активное сопротивление мало, то собственная циклическая частота колебаний в контуре определяется формулой Сила тока при вынужденных колебаниях должна достигать максимальных значений, когда частота переменного напряжения, приложенного к контуру, равна собственной частоте колебательного контура: Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внегннего переменного напряжения с собственной частотой колебательного контура.

Амплитуда силы тока при резонансе. Как и в случае механического резонанса, при резонансе в колебательном контуре создаются оптимальные условия для поступления энергии от внешнего источника в контур. Мощность в контуре максимальна в том случае, когда сила тока совпадает по фазе с напряжением. Здесь наблюдается полная аналогия с механическими колебаниями: при резонансе в механической колебательной системе внешняя сила (аналог напряжения в цепи) совпадает по фазе со скоростью (аналог силы тока).

Не сразу после включения внешнего переменного напряжения в цепи устанавливается резонансное значение силы тока. Амплитуда колебаний силы тока нарастает постепенно — до тех пор, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:  Отсюда амплитуда установившихся колебаний силы тока при резонансе определяется уравнением    При R  0 резонансное значение силы тока неограниченно возрастает: (Im)рез  . Наоборот, с увеличением R максимальное значение силы тока уменьшается, и при больших R говорить о резонансе уже не имеет смысла. Зависимость амплитуды силы тока от частоты при различных сопротивлениях (R1 < R2 < R3) показана на рисунке 4.19. Одновременно с увеличением силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке индуктивности. Эти напряжения при ма.пом активном сопротивлении во много раз превышают внешнее напряжение.

Использование резонанса в радиосвязи. Явление электрического резонанса широко используется при осуществлении радиосвязи. Радиоволны от различных передающих станций возбуждают в антенне радиоприемника переменные токи различных частот, так как каждая передающая радиостанция работает на своей частоте. С антенной индуктивно связан колебательный контур (рис. 4.20). Вследствие электромагнитной индукции в контурной катушке возникают переменные ЭДС соответствующих частот и вынужденные колебания силы тока тех же частот. Но только при резонансе колебания силы тока в контуре и напряжения в нем будут значительными, т. е. из колебаний различных частот, возбуждаемых в антенне, контур выделяет только те, частота которых равна его собственной частоте. Настройка контура на нужную частоту  обычно осуществляется путем изменения емкости конденсатора. В этом обычно состоит настройка радиоприемника на определенную радиостанцию. Необходимость учета возможности резонанса в электрической цепи. В некоторых случаях резонанс в электрической цепи может принести большой вред. Если цепь не рассчитана на работу в условиях резонанса, то его возникновеие может привести к аварии.

Чрезмерно большие токи могут перегреть провода. Большие напряжения приводят к пробою изоляции.

Такого рода аварии нередко случались еще сравнительно недавно, когда плохо представляли себе законы электрических колебаний и не умели правильно рассчитывать электрические цепи.

При вынужденных электромагнитных колебаниях возможен резонанс — резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний. На явлении резонанса основана вся радиосвязь.

Изучение цепей переменного тока с активным, емкостным и индуктивным сопротивлениями происходит в следующей логической последовательности: сначала дается понятие о том или ином виде сопротивлений в цепи переменного тока (сравнение с его поведением в цепи постоянного тока), затем фазовые соотношения, формула соответствующего сопротивления, преобразования энергии в цепи, содержащей только активное, емкостное или индуктивное сопротивление. Последовательность изучения сопротивлений в цепи переменного тока может быть и несколько иной.  Понятие действующего значения силы тока и напряжения можно ввести так: вначале выводят выражение для расчета мгновенных значений мощности на активном сопротивлении, отсюда находят среднее значение мощности за период и выясняют, что  есть среднее значение квадрата силы тока за период. Вводят определение: корень квадратный из этой величины называют действующим значением переменного тока. Название связано с тем, что при прохождении такого тока по участку с активным сопротивлением выделяется мощность Такая же мощность выделяется в цепи постоянного тока, величина которого равна действующему значению переменного тока. Итак, действующим значением переменного тока является такое значение постоянного тока, которое в резисторе R выделяет такое же количество теплоты, что и переменный ток. Очень важно отметить, что шкалы электроизмерительных приборов, для измерения переменных силы тока и напряжения градуируют именно в действующих значениях этих величин. Рассмотрение цепи переменного тока со смешанным сопротивлением начинают с эксперимента — измеряют напряжение на каждом из последовательно включенных элементов цепи (лампе, катушке и батарее конденсаторов), подключенных к источнику переменного напряжения. Обращают внимание на следующие опытные факты: 1. Общее напряжение не равно сумме напряжений на отдельных участках, как это имело место для цепей постоянного тока. 2. Напряжение на участке, включающем в себя катушку и конденсатор, равно не сумме, а разности напряжений на каждом из них в отдельности. Объяснить этот результат можно предложить самим учащимся; им известно, что на индуктивности напряжение опережает ток на π/2, а на электроемкости отстает от него на ту же величину. Так как мгновенное значение силы тока в цепи всюду одно и то же, то ясно, что колебания напряжения на индуктивности и электроемкости происходят со сдвигом фаз, равным π, т. е. их фазы противоположны. 3. Полное сопротивление цепи меньше суммы всех включенных в нее сопротивлений (активного, индуктивного и емкостного). Учащихся нужно убедить, что чем меньше сдвиг фаз между током и напряжением, тем большую часть мощности, подводимой к цепи, используют полезно, необратимо превращая в другие виды энергии. Далее рассматривают устройство и работу трансформатора. На примере однофазного трансформатора показывают его действие (повышение и понижение напряжения) и устройство. Вначале рассматривают режим холостого хода, а затем нагруженного трансформатора. В качестве нагрузки целесообразно использовать реостат, так как им проще изменять нагрузку. Показывают, что при увеличении нагрузки возрастает сила тока как во вторичной, так и в первичной обмотке трансформатора. Учащимся предлагают самим с энергетических позиций объяснить возрастание силы тока в первичной цепи (увеличение потребления энергии на нагрузке естественно должно сопровождаться увеличением потребления энергии первичной обмоткой от генератора). Для изучения электромагнитных колебаний широко используется школьный прибор- звуковой генератор школьный ГЗШ. Он перекрывает диапазон генерируемых частот синусоидальных колебаний от 20 до 20000 Гц с диапазонами: «X1» (от 20 до 200 Гц), «X10» (от 200 до 2000 Гц), «X100» ( от 2000 до 20000 Гц), питается от сети переменного тока напряжением 220 В. На лицевую панель генератора выведены тумблёр включения генератора в сеть, сигнальная лампочка, переключатель поддиапазонов на три фиксированных положения, отмеченных «X1», «X10», «X100», диск с неравномерной шкалой деления (от 20 до 200) ручка переменного резистора, позволяющая менять амплитуду выходного сигнала, выходные зажимы, рассчитанные на подключение цепей с разным сопротивлением (5, 600, 5000 Ом). Если для опытов необходимы частоты 20 – 200 Гц, то переключатель устанавливают в положение «X1» если 200 – 2000 Гц – в положение «X10», а для частот 2000 – 20000 Гц используют положение «X100». Плавную регулировку частоты осуществляют поворотом диска.  Так же широко используются выпрямители ВУП-1 и ВУП-2 ВУП-2 предназначен для обеспечения питанием демонстрационных установок в опытах по электричеству. Технические данные: Прибор позволяет получить на выходных зажимах: выпрямленное напряжение 350В при максимальной силе тока 220мА; постоянное отфильтрованное напряжение 250В при максимальной нагрузке 50мА; регулируемое напряжение от 0 до 250В постоянного тока до 50мА; регулируемое напряжение от 0 до +100В и от 0 до-100В постоянного тока до 10мА; напряжение 6.3В переменного тока до 3А. Еще один источник питания без которого практически невозможно осуществлять многие опыты по электричеству РНШ. Регулятор напряжения школьный предназначен для плавного регулирования напряжения однофазного переменного тока с частотой 50 Гц, при проведении лабораторных и демонстрационных опытов в физических кабинетах школ. Прибор присоединяется к сети выводным шнуром. Прибор можно включить в сеть напряжением 127 и 220В. Рабочее напряжение снимается с зажимов, обозначенных «Выходное напряжение». В целях правильной эксплуатации регулятора напряжения в паспорте прибора приведена таблица допустимых значений электрической мощности нагрузки регулятора при разных напряжениях, подаваемых на нагрузку, и при сетевых напряжениях 127 и 220В. Установленный в регуляторе напряжения вольтметр имеет неравномерную шкалу. Достоверный отсчет можно вести только при 50В. В случае необходимости снимать с регулятора более низкие напряжения нужно параллельно выходным зажимам подключать дополнительный вольтметр с соответствующим пределом измерения. Регулятор напряжения может быть использован как для повышения, так и для понижения напряжений переменного тока, при разных демонстрационных и лабораторных опытах Для наглядного отображения электромагнитных колебаний применяют школьные осциллографы ОДШ-2 и ОЭШ-70.  Наиболее широко при­меняют осциллографы для исследования периодических процессов, а также для изучения вольтамперных характеристик диода и трио­да, петли гистерезиса и др. В простейшем случае осциллограф состоит из четырех блоков: блока электронно-лучевой трубки ЭЛТ, генератора развертки ГР, усилителя исследуемого сигнала УС и блока питания БП . Основным элементом первого блока является электронно-лучевая трубка, на экране которой формируется картина исследуемого сиг­нала (осциллограмма). Нить накала НН подогревает ка­тод К, с поверхности которого вылетают элект­роны. Электроны, пролетев через отверстия уп­равляющего электрода, фокусирующего ци­линдра ФЦ и анода А, а также между пласти­нами XX и УУ, попадают на экран и вызывают его свечение. Изменением разности потенциалов между катодом и управляющим электродом мож­но менять число электронов в пучке, а это по­зволяет регулировать яркость изображения на экране. Чем больше по модулю отрицательный потенциал на управляющем электроде относи­тельно катода, тем меньше электронов пройдет через управляющий электрод и достигнет анода. Осциллограф снабжен ручкой «яркость» для уп­равления потоком электронов в пучке. Электрическое поле между фокусирующим цилиндром и анодом способно фокусировать рас­ходящийся электронный пучок. Обычно на передней стенке смонтированы выключатель сети, сигнальная лампочка, за­жимы «Вход У», «Вход X» и делитель входного сигнала. На боко­вую панель выведены ручки управления электронным пучком, «Синхронизация», «Внутр. — от сети — внешн.», «Уси­ление», ручки развертки, «Диапазоны 0, 30, 150, 500 Гц, 2, 8, 16 кГц», «Частота плавно», а также ручки усиления сигнала «Уси­ление У», «Усиление X». Осциллограф ОДШ-2 отличается от ОЭШ-70 конструктивно и внешним оформлением. На переднюю панель выведен не только экран электронно-лучевой трубки, но и основные ручки уп­равления. Верхний ряд ручек предназначен для управления элек­тронным пучком: «Яркость», «Фокус», «Вверх-вниз», «Влево-вправо». Во втором ряду сверху смонтированы ручки управления уси­лителем «Усиление У» и делитель напряжения 1:1, 1:10, 1:30, 1:1OO, 1:1000, а также выключатель сети с сигнальной лампоч­кой. В третьем ряду сверху расположены ручки и кнопки генера­тора развертки: «Частота плавно», «Вкл. 1, 2, 3, 4», «Усиление X». Кнопочный переключатель позволяет менять пилообразное напря­жение частотой от 20 Гц до 20 кГц. Генератор развертки рабо­тает только при нажатой кнопке «Вкл». В нижнем ряду располо­жены зажимы «Вход У», «Вход X», «Внешн. синхр», кнопки син­хронизации «Внешн.», «Внутр.» и ручка синхронизации. На боковую панель осциллографа ОДШ-2 выведены ручки уп­равления двухканальным коммутатором с двумя входами. Комму­татор позволяет наблюдать на экране осциллографа одновремен­но сигналы от двух источников переменного тока. Если частоты источников одинаковы, то по полученным осциллограммам мож­но судить о сдвиге фаз поданных сигналов. Например, на один вход можно подать сигнал, пропорциональный напряжению на конденсаторе, а на другой — пропорциональный силе тока, текущего через конденсатор. Тогда на экране осциллографа можно наблю­дать две синусоиды, сдвинутые по фазе на 90°. Применяя комму­татор, можно сравнивать частоту исследуемого сигнала со стан­дартной частотой, если эти сигналы отличаются по частоте. На задней стенке осциллографов ОДШ-2 и ОЭШ-70 смонтиро­ваны гнезда, позволяющие подавать исследуемый сигнал непосред­ственно на пластины электронно-лучевой трубки. Возможность подавать исследуемый сигнал непосредственно на пластины позво­ляет применить осциллограф и для цепей постоянного тока. По­давая сигнал постоянного напряжения на пластины XX (или УУ) при отключенной развертке, можно наблюдать смещение светя­щейся точки по горизонтали (или вертикали), причем отклонение этой точки пропорционально приложенному напряжению. Следо­вательно, осциллограф можно применить как вольтметр с боль­шим внутренним сопротивлением. Для усиления электромагнитных колебаний применяют усилители низкой частоты. Усилитель низкой частоты – электронный прибор. Предназначенный для усиления электрических колебаний звуковой частоты от 20 Гц до 20 кГц. Обычно усилитель состоит из нескольких блоков: предварительного усилителя напряжения, усилителя мощности, согласующего выходного трансформатора и блока питания. Для школ выпускаются усилители разной конструкции и отличающиеся по внешнему виду. Усилитель УНЧ-3 на лицевой панели имеет ручку регулятора громкости и сигнальную лампочку. Ручкой регулятора громкости производят также включение и выключение сети. В крайнем левом положении ручки при повороте против часовой стрелки прибор отключен. Включение осуществляют поворотом ручки по часовой стрелке после щелчка. Так как усилитель собран на электронных лампах, то он начинает работать после их прогрева.  На боковой стенке смонтированы три входных гнезда: для подключения М – микрофона, АД – адаптера, Л – линии. Нижние гнёзда соединены с корпусом прибора. На задней стенке имеются две пары гнёзд: Гр – для подключения громкоговорителя (низкоомный выход) и Л – высокоомный выход. Здесь же имеются вывод сетевого шнура с вилкой и октальная панель, в которую вставлена специальная вилка с предохранителем (на 0,5 А) для сети с напряжением 220 В. Вилку можно устанавливать в двух положениях: «220 В» и «127 В». Усилитель УНЧ-5 собран на транзисторах. На лицевой панели усилителя смонтирован выключатель сети с индикаторной лампочкой, гнезда выхода, гнезда входа для микрофона и звукоснимателя, разъем для подключения микрофона, ручки регулировки тембра по низкой и высокой частоте, ручка регулировки уровня сигнала, индикатор перегрузки. На задней стенке имеются вывод сетевого шнура с вилкой и предохранитель (на 0,5 А). На вход усилителя могут подаваться сигналы не только с микрофона и звукоснимателя, но и от других датчиков электрических колебаний напряжением от нескольких милливольт до вольт (сигналы с элементов цепи переменного тока, звукового генератора и т.д.). К выходу усилителя можно подключить не только громкоговоритель, но и другие приборы: осциллограф, измерительные приборы переменного тока, головные телефоны и пр. Потребляемая усилителем мощность не более 40 Вт, выходная – около 5 Вт. Запрещается при эксплуатации усилителя менять предохранитель, разбирать и ремонтировать прибор, включенный в сеть. Усилитель на вертикальной панели входит в комплект демонстрационных приборов по радиотехнике. Слева смонтированы универсальные зажимы входа усилителя. Первая лампа работает в режиме усиления напряжения, вторая – как усилитель мощности. В анодную цепь второй лампы включен согласующий трансформатор, вторичная обмотка которого соединена с зажимами низкого и высокого выходного напряжения. Три нижних зажима служат для подключения питания от ВУП –2, на два нижних зажима подаётся напряжение переменного тока 6,3 В для питания накала ламп, а на средний и третий снизу – напряжение постоянного тока 250 В для анодной цепи ламп, причём на третий снизу зажим подаётся положительный потенциал. Подключение блока питания и сборку установок с усилителем на панели запрещается выполнять при включённом в сеть выпрямителе ВУП-2. В демонстрационных установках предпочтение следует отдавать усилителю УНЧ-5.

Переменный электрический ток

«Кто действительно хочет понять все

величие нашего времени, тот должен

познакомиться с историей науки об электричестве.

И тогда он узнает сказку, какой нет и

среди сказок «Тысячи и одной ночи»

Никола Тесла «Сказка об электричестве»

Данная тема посвящена изучению переменного электрического тока.

Электромагнитные колебания – это периодические изменения со временем электрических и магнитных величин в электрической цепи.

Свободные электромагнитные колебания – это колебаниями, которые происходят в идеальном колебательном контуре за счет расходования сообщенной этому контуру энергии, которая в дальнейшем не пополняется.

Свободные колебания не могут существовать сколь угодно долго и со временем затухают. Поэтому, наибольшее практическое значение в настоящее время получили вынужденные электромагнитные колебания, которые представляют собой периодические изменения силы тока в контуре и других электрических величин под действием переменной электродвижущей силы от внешнего источника.

С такими колебаниями знаком каждый человек. Только люди их называют переменным электрическим током.

Переменный электрический ток — это ток, периодически изменяющийся со временем.

В каждом доме есть розетки, в которые включают всю домашнюю технику и осветительные приборы, «питающиеся» переменным током напряжением 220 вольт. В школьных мастерских имеются станки — к ним тоже подведен переменный ток, только более высокого напряжения. Во всех микрорайонах стоят будки с надписями «Трансформатор», в которых находятся трансформаторы, преобразующие переменный ток; вдоль дорог и по лесным просекам протянулись линии электропередачи опять же переменного тока. Миллионы и миллионы генераторов, трансформаторов, электродвигателей во всем мире производят, передают и используют электрическую энергию благодаря особенностям этого вида тока, обнаруженным без малого двести лет назад.

Крупнейший ученый XIX века Герман Гельмгольц говорил, что до тех пор, пока люди пользуются благами электричества, они всегда будут с благодарностью вспоминать имя Фарадея. Явление электромагнитной индукции — фундаментальное научное открытие, совершенное английским физиком Майклом Фарадеем, — легло в основу современной технической цивилизации и кардинально преобразило окружающий нас мир.

Долгие десятилетия шли активные поиски наилучшей реализации этого открытия — вплоть до отчаянной борьбы между сторонниками постоянного и приверженцами переменного тока. Правда, начавшаяся более ста лет назад «война» давно закончилась тесным и плодотворным взаимодействием, когда недостатки одного из видов тока компенсируются достоинствами другого.

Каким способом можно получить переменный электрический ток?

Поместим в постоянное и однородное магнитное поле виток проволоки abcd.

При равномерном вращении этого витка вокруг оси OO магнитный поток, пронизывающий его площадь будет постоянно меняться как по величине, так и по направлению. Вследствие этого, согласно закону электромагнитной индукции, в витке возникает переменная по величине и направлению ЭДС индукции.

Когда плоскость вращающегося витка становится перпендикулярна силовым линиям магнитного поля, пронизывающий ее магнитный поток наибольший, скорость же изменения его равна нулю, так как при прохождении через это положение проводники витка ab и cd скользят вдоль силовых линий поля, не пересекая их. Следовательно, ЭДС индукции, возникающая в витке, которая пропорциональна скорости изменения магнитного потока, будет равна нулю.

Когда же плоскость витка параллельна силовым линиям поля, поток, пронизывающий ее, равен нулю, скорость же изменения его при прохождении через это положение наибольшая, так как в этом случае проводники витка ab и cd движутся перпендикулярно к силовым линиям поля. ЭДС, возникшая в этом случае в витке, имеет наибольшее значение. В части ab витка, ЭДС будет направлена от чертежа к наблюдателю, а в части cd наоборот — от наблюдателя за чертеж.

При дальнейшем вращении витка ЭДС, сохраняя неизменным свое направление, будет уменьшаться до тех пор, пока опять не станет равной нулю. Т.е. в том положении, когда величина магнитного потока будет наибольшей, а скорость его изменения — наименьшей.

При дальнейшем вращении витка скорость изменения потока, пронизывающего виток, будет увеличиваться; следовательно, ЭДС по абсолютной величине будет возрастать. Но, так как теперь виток движется навстречу магнитным силовым линиям другой стороной плоскости, то направление в нем ЭДС изменяется на противоположное: в части ab ЭДС направлена от наблюдателя за чертеж, а в части bc — из-за чертежа к наблюдателю. И опять это направление ЭДС сохраниться и при дальнейшем движении витка, при этом абсолютная ее величина будет убывать.

При последующих оборотах витка все эти явления будут повторяться вновь.

Таким образом, величина ЭДС индукции во вращающемся витке за один его оборот изменяется от минус ξmax до плюс ξmax.

Для того чтобы пронаблюдать за происходящими изменениями ЭДС непосредственно, разомкнем виток и присоединим его концы к осциллографу. При вращении витка в магнитном поле осциллограф запишет все изменения тока, по которым можно будет судить и об изменениях  ЭДС индукции в витке.

На рисунке изображен график изменения ЭДС индукции в витке за время совершения одного полного оборота. Вверху показаны последовательные положения витка в магнитном поле, против них (т.е. внизу) — значения ЭДС индукции в витке. Направление силовых линий магнитного потока, пронизывающего виток, показано стрелками. Кружочки изображают сечение витка плоскостью чертежа с указанием направления тока в нем.

Как показывает осциллограмма, ток, возникающий в витке при равномерном его вращении в однородном магнитном поле, изменяется синусоидально. Поэтому такой ток еще иногда называют переменным синусоидальным током.

В дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения (или ЭДС), меняющегося с циклической частотой по закону синуса или косинуса:

где Um — амплитуда напряжения, т.е. максимальное по модулю значение напряжения.

Аналогичные формулы записываются и для ЭДС индукции.

Если в цепи напряжение меняется с циклической частотой «Омега», то и сила тока в цепи будет меняться с той же частотой. Однако колебания силы тока в цепи не обязательно должны совпадать с колебаниями напряжения. Поэтому, в общем случае, мгновенное значение силы тока будет определяться по формуле:

Рассмотрим еще 2 основные характеристики переменного тока — период и частоту.

Под периодом переменного тока понимают промежуток времени, в течении которого ЭДС (или напряжение, или сила тока) совершает одно полное колебание. Напомним, что обозначается период большой латинской буквой T и измеряется он в секундах.

Частотой переменного тока называется число колебаний переменного тока за одну секунду. Обозначается греческой буквой n и измеряется в Гц (герцах).

Стандартная частота переменного тока, применяемого в промышленности и осветительной сети в России и многих других странах, равна 50 Гц. Этот выбор был сделан с участием русского ученого Михаила Осиповича Доливо-Добровольского.

В США по рекомендации известного ученого Тесла, работавшего в фирме Вестингауз, основным производителем тогда электромагнитной техники, стандартная частота переменного тока равна 60 Гц.

Частота в 50 Гц означает, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз в другую.

Основные выводы:

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Переменный электрический ток представляет собой вынужденные электрические колебания, происходящие в электрической цепи под действием периодически изменяющейся по закону синуса или косинуса внешней ЭДС.

Периодом переменного тока называют промежуток времени, в течении которого сила тока (или напряжение, или ЭДС) совершает одно полное колебание.

Частота переменного тока — число колебаний переменного тока в секунду.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *