Страница не найдена — ЛампаГид
Монтаж
Часто при электромонтаже освещения зданий необходимо сделать так, чтобы лампы одного из помещений включались
Квартира и офис
С появлением новых строительных материалов, технологий внутренней отделки помещений изменяются и приемы использования светотехники
Теория
Полупроводниковые элементы, служащие для выпрямления и стабилизации переменного тока от электрической сети, называются стабилитронами.
Производственные помещения
Свет – это излучение, воспринимаемое человеческим глазом. Он необходим для жизни и очень важен
Дом и участок
Помимо места для безопасного нахождения автомобиля, современные гаражи используются как мастерские для проведения различных
Квартира и офис
Электричество, в частности электрическое освещение, является обязательным атрибутом в нашей повседневной жизни. Трудно встретить
Как паять SMD компоненты — краткая инструкция с фотографиями
Возможно, вы в ужасе от небольшого размера SMD компонентов, которые обычно используются в современной электронике. Но этого не стоит бояться! Вопреки расхожему мнению, пайка SMD компонентов намного проще, чем пайка THT элементов (англ. Through-hole Technology, THT — технология монтажа в отверстия).
HILDA — электрическая дрель
Многофункциональный электрический инструмент способн…
У SMD компонентов, несомненно, есть много преимуществ:
- низкая цена;
- небольшие размеры — на одной поверхности можно разместить больше элементов;
- не нужно сверлить отверстия, а в крайних случаях вообще ничего не надо сверлить;
- вся пайка происходит на одной стороне, и нет необходимости постоянно ее переворачивать;
Итак, давайте посмотрим, что нам необходимо для пайки SMD компонентов:
- Паяльник – подойдет обычный, не дорогой паяльник.
- Пинцет — можно купить в аптеке.
- Тонкий припой — например, диаметром 0,5 мм.
- Флюс — канифоль растворенная в этиловом спирте или вы можете купить готовый флюс в шприце для пайки SMD деталей.
И что? Это все? Да! Для пайки большинства SMD компонентов не требуется никакого специального оборудования!
Пайка SMD в корпусе 1206, 0805, MELF, MINIMELF и т. д.
В этих корпусах производят резисторы, конденсаторы, диоды и светодиоды. Такие элементы поставляются в бумажных или пластиковых лентах, адаптированных к автоматической сборке. Такие ленты наматывают на барабаны и обычно содержат 5000 штук элементов, хотя, может быть, даже 20000 в одной катушке.
Такие катушки устанавливаются в сборочные машины, благодаря чему весь процесс производства может быть полностью автоматизирован. Роль человека в подобном производстве — это только установка новых катушек и контроль качества готовой продукции.
В названии корпуса закодированы размеры SMD компонента. Например, 1206 означает, что длина элемента составляет 120 mils, а ширина — 60 mils. Mils составляет 1/1000 дюйма или 0,0254 мм.
На практике чаще всего используются корпуса 1206, 0805, 0603, 0402, 0201, 01005. Для ручного монтажа идеально подходит корпус 1206, но даже 0402 можно паять вручную, хотя это довольно утомительно. Элементы MELF имеют цилиндрическую форму и чаще всего являются диодами или резисторами. Давайте теперь перейдем к делу!
Припаять диод в корпусе MELF
Прежде всего, мы должны облудить одну из контактных площадок. Мы обрабатываем площадку флюсом и прикасаемся к ней кончиком паяльника, и через некоторое время наносим припой. Припой должен немедленно расплавиться и равномерно покрыть всю площадку. Все, что вам нужно, это тонкий слой припоя — лучше, чтобы его было мало, чем слишком много.
Далее мы берем SMD компонент за боковые стороны и кладем его на место пайки. После этого следует разогреть ранее облуженную площадку и придавить в нее SMD компонент. Припой должен равномерно охватить вывод компонент.
Последний этап — пайка второго контакта. Здесь нет ничего сложного — мы прикасаемся к контакту и к площадке жалом паяльника, затем прикладываем к нему припой, который быстро плавиться, обволакивая место пайки ровным слоем.
На следующих рисунках показано, как припаивается конденсатор в корпусе 1206. Последовательность операций идентична приведенной выше.
Пайка SMD в корпусе SO8, SO14, SO28 и т. д.
В корпусах SO встречается большинство простых интегральных микросхем, такие как логические элементы, регистры, мультиплексоры, операционные усилители и компараторы. Они имеют относительно большой шаг выводов: 50mils. Вы можете легко припаять их без специального оборудования.
Первый шаг — лужение контактной площадки, расположенной в одном из углов. Мы касаемся площадки паяльником, нагреваем ее, а затем наносим немного припоя.
Далее берем микросхему с помощью пинцета и кладем ее на место пайки. Аналогично примеру с 1206, мы разогреваем облуженное поле, чтобы микросхема прилипала к плате. Если микросхема сдвинулась, то снова разогрейте контакт и отрегулируйте ее положение.
Если микросхема установлена правильно и держится надежно, то пропаиваем оставшиеся ножки. Прикладываем к ним жало паяльника, прогреваем, а затем прикасаемся к ним припоем, который, расплавляясь, обволакивает их. Чтобы сделать пайку качественнее следует применить флюс.
Пайка SMD в корпусе TQFP32, TQFP44, TQFP64 и т. д.
В принципе компоненты в корпусе TQFP тоже можно припаять без флюса, так же, как и SO, но мы хотим здесь наглядно показать, что дает активный флюс. Вы можете купить его в шприцах с надписью FLUX.
В следующем примере мы припаяем микросхему в корпус TQFP44.
Начнем с смазывания всех паяльных площадок флюсом. Флюс имеет густую консистенцию и очень липкий. Будьте осторожны, чтобы не испачкаться, потому что вы сможете отмыть его только растворителем.
Мы не будем предварительно облуживать, как писали ранее. Мы ставим микросхему сразу на ее место и устанавливаем в правильном положении.
До этого пайка осуществлялась острым жалом. Теперь продемонстрируем пайку жалом в форме ножа, которым одновременно можно припаять сразу несколько ножек.
Набираем немного припоя на кончике жала, а затем касаемся двух ножек в противоположных углах микросхемы. Таким образом, мы фиксируем микросхему, чтобы она не сдвигалась при пайке остальных ножек.
Теперь важно иметь на жале паяльника небольшое количество припоя. Если его много, протрите жало влажной губкой. Мы касаемся кончиком жала ножек, которые еще не пропаяны. Не следует опасаться замыкания ножек, поскольку благодаря использованию активного флюса этого можно избежать.
Если все-таки где-то произошло замыкание ножек припоем, то достаточно очистить жало паяльника, а затем распределить припой по соседним ножкам, или вовсе убрать его в сторону.
В заключение, нужно смыть активный флюс, так как через некоторое время он может окислить медь на плате. Для этого можно использовать этиловый или изопропиловый спирт.
extronic.pl
Паяльный фен YIHUA 8858
Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час…
ПАЙКА SMD ДЕТАЛЕЙ БЕЗ ФЕНА
Все понимают, как можно с помощью обычного паяльника ЭПСН, мощностью 40 ватт, и мультиметра, самостоятельно ремонтировать различную электронную технику, с выводными деталями. Но такие детали сейчас встречаются, в основном только в блоках питания различной техники, и тому подобных силовых платах, где протекают значительные токи, и присутствует высокое напряжение, а все платы управления, сейчас идут на SMD элементной базе.
На плате SMD радиодетали
Так как же быть, если мы не умеем демонтировать и впаивать обратно SMD радиодетали, ведь тогда минимум 70% от возможных ремонтов техники, мы уже самостоятельно не сможем выполнить… Кто нибудь, не очень глубоко знакомый с темой монтажа и демонтажа, возможно скажет, для этого необходимы паяльная станция и паяльный фен, различные насадки и жала к ним, безотмывочный флюс, типа RMA-223, и тому подобное, чего в мастерской домашнего мастера обычно не бывает.
Паяльная станция
У меня есть дома в наличии, паяльная станция и фен, насадки и жала, флюсы, и припой с флюсом различных диаметров. Но как быть, если тебе вдруг потребуется починить технику, на выезде на заказ, или в гостях у знакомых? А разбирать, и привозить дефектную плату домой, или в мастерскую, где есть в наличии соответствующее паяльное оборудование, неудобно, по тем или иным причинам? Оказывается выход есть, и довольно простой. Что нам для этого потребуется?
Что нужно для хорошей пайки
- 1. Паяльник ЭПСН 25 ватт, с жалом заточенным в иголку, для монтажа новой микросхемы.
- 2. Паяльник ЭПСН 40-65 ватт с жалом заточенным под острый конус, для демонтажа микросхемы, с применением сплава Розе или Вуда. Паяльник, мощностью 40-65 ватт, должен быть включен обязательно через Диммер, устройство для регулирования мощности паяльника. Можно такой как на фото ниже, очень удобно.
- 3. Сплав Розе или Вуда. Откусываем кусочек припоя бокорезами от капельки, и кладем прямо на контакты микросхемы с обоих сторон, в случае если она у нас, например в корпусе Soic-8.
- 4. Демонтажная оплетка. Требуется для того, чтобы удалить остатки припоя с контактов на плате, а также на самой микросхеме, после демонтажа.
- 5. Флюс СКФ (спиртоканифольный флюс, растолченная в порошок, растворенная в 97% спирте, канифоль), либо RMA-223, или подобные флюсы, желательно на основе канифоли.
- 6. Удалитель остатков флюса Flux Off, или 646 растворитель, и маленькая кисточка, с щетиной средней жесткости, которой пользуются обычно в школе, для закрашивания на уроках рисования.
- 7. Трубчатый припой с флюсом, диаметром 0.5 мм, (желательно, но не обязательно такого диаметра).
- 8. Пинцет, желательно загнутый, Г — образной формы.
Распайка планарных деталей
Итак, как происходит сам процесс? Кое-что почитайте тут. Мы откусываем маленькие кусочки припоя (сплава) Розе или Вуда. Наносим наш флюс, обильно, на все контакты микросхемы. Кладем по капельке припоя Розе, с обоих сторон микросхемы, там где расположены контакты. Включаем паяльник, и выставляем с помощью диммера, мощность ориентировочно ватт 30-35, больше не рекомендую, есть риск перегреть микросхему при демонтаже. Проводим жалом нагревшегося паяльника, вдоль всех ножек микросхемы, с обоих сторон.
Демонтаж с помощью сплава Розе
Контакты микросхемы у нас при этом замкнутся, но это не страшно, после того как демонтируем микросхему, мы легко с помощью демонтажной оплетки, уберем излишки припоя с контактов на плате, и с контактов на микросхеме.
Итак, мы взялись за нашу микросхему пинцетом, по краям, там где отсутствуют ножки. Обычно длина микросхемы, там где мы придерживаем ее пинцетом, позволяет одновременно водить жалом паяльника, между кончиками пинцета, попеременно с двух сторон микросхемы, там где расположены контакты, и слегка тянуть ее вверх пинцетом. За счет того что при расплавлении сплава Розе или Вуда, которые имеют очень низкую температуру плавления, (порядка 100 градусов), относительно бессвинцового припоя, и даже обычного ПОС-61, и смещаясь с припоем на контактах, он тем самым снижает общую температуру плавления припоя.
Демонтаж микросхем с помощью оплетки
И таким образом микросхема у нас демонтируется, без опасного для нее перегрева. На плате у нас образуются остатки припоя, сплава Розе и бессвинцового, в виде слипшихся контактов. Для приведения платы в нормальный вид мы берем демонтажную оплетку, если флюс жидкий, можно даже обмакнуть ее кончик в нее, и кладем на образовавшиеся на плате “сопли” из припоя. Затем прогреваем сверху, придавив жалом паяльника, и проводим оплеткой вдоль контактов.
Выпаивание радиодеталей с оплеткой
Таким образом весь припой с контактов впитывается в оплетку, переходит на нее, и контакты на плате оказываются очищенными полностью от припоя. Затем эту же процедуру, нужно проделать со всеми контактами микросхемы, если мы собираемся запаивать микросхему в другую плату, или в эту же, например после прошивания с помощью программатора, если это микросхема Flash памяти, содержащая прошивку BIOS материнской платы, или монитора, или какой либо другой техники. Эту процедуру, нужно выполнить, чтобы очистить контакты микросхемы от излишков припоя. После этого наносим флюс заново, кладем микросхему на плату, располагаем ее так, чтобы контакты на плате строго соответствовали контактам микросхемы, и еще оставалось немного места на контактах на плате, по краям ножек. С какой целью мы оставляем это место? Чтобы можно было слегка коснувшись контактов, жалом паяльника, припаять их к плате. Затем мы берем паяльник ЭПСН 25 ватт, или подобный маломощный, и касаемся двух ножек микросхемы расположенных по диагонали.
Припаивание SMD радиодеталей паяльником
В итоге микросхема у нас оказывается “прихвачена”, и уже не сдвинется с места, так как расплавившийся припой на контактных площадках, будет держать микросхему. Затем мы берем припой диаметром 0.5 мм, с флюсом внутри, подносим его к каждому контакту микросхемы, и касаемся одновременно кончиком жала паяльника, припоя, и каждого контакта микросхемы. Использовать припой большего диаметра, не рекомендую, есть риск навесить “соплю”. Таким образом, у нас на каждом контакте “осаждается” припой. Повторяем эту процедуру со всеми контактами, и микросхема впаяна на место. При наличии опыта, все эти процедуры реально выполнить за 15-20 минут, а то и за меньшее время. Нам останется только смыть с платы остатки флюса, растворителем 646, или отмывочным средством Flux Off, и плата готова к тестам, после просушивания, а это происходит очень быстро, так как вещества применяемые для смывания, очень летучие. 646 растворитель, в частности, сделан на основе ацетона. Надписи, шелкография на плате, и паяльная маска, при этом не смываются и не растворяются.
Единственное, демонтировать таким образом микросхему в корпусе Soic-16 и более многовыводную, будет проблематично, из-за сложностей с одновременным прогреванием, большого количества ножек. Всем удачной пайки, и поменьше перегретых микросхем! Специально для Радиосхем — AKV.
Форум
Форум по обсуждению материала ПАЙКА SMD ДЕТАЛЕЙ БЕЗ ФЕНА
042-Пайка SMD компонентов. — GetChip.net
Вот, решил показать, как я паяю SMD компоненты («Surface Montage Details» — означает поверхностный монтаж деталей). Вообще, почему-то, бытует мнение, что паять SMD компоненты сложно и неудобно. Я постараюсь Вас переубедить в обратном. Более того, я докажу, что паять SMD компоненты намного проще обычных TH компонентов («Through Hole» в переводе «сквозь отверстие» — сквозьдырочные компоненты :)).Если быть совсем уж откровенным у TH и SMD компонентов есть свои назначения и области использования и попытки с моей стороны убеждать Вас в том, что SMD лучше, немного не корректны. Ну да ладно — все равно, я думаю, Вам будет интересно почитать.
Знаете, какая главная ошибка тех, кто первый раз пробует паять SMD компоненты?
Как все должно проходить в теории? Когда жало паяльника приложено к ножкам начинает действовать сила смачивания — олово под действием этой силы начинает «обтекать» ножку со всех сторон. Под ножку олово «затягивается» капиллярным эффектом одновременно начинается «смачиваться» контактная площадка под ножкой и на плате. Припой равномерно «заливает» площадку вместе с ножкой. После того как жало паяльника убрано от ножек и пока еще припой в жидком состоянии, сила поверхностного натяжения формирует из припоя каплю, не давая ему растекаться и сливаться с соседними ножками. Вот такие сложные процессы происходят при пайке. Но все эти процессы происходят сами собой, а от Вас требуется лишь поднести жало паяльника к ножке (или сразу к нескольким). Правда просто?!
На практике есть определенные проблемы с пайкой очень мелких SMD компонентов (резисторы, конденсаторы …) они могут во время пайки «прилипать» к жалу. Для того чтобы избежать такой проблемы нужно паять отдельно каждую сторону.
Для того, чтобы добиться хорошей пайки, нужны определенные материалы и инструменты.
Главным материалом, обеспечивающим комфортную пайку, является жидкий флюс. Он обезжиривает и снимает окислы с поверхности спаиваемого металла, что увеличивает силу смачивания. Кроме того, во флюсе припою легче образовать каплю, что препятствует созданию «перемычек-соплей» Рекомендую применять именно жидкий флюс — канифоль или вазелин-флюс не дают такого эффекта. Жидкий флюс не редкость в магазинах — купить его будет не проблема. На вид это прозрачная жидкость с противным запахом напоминающий ацетон (тот, что я покупаю называется «F5 – флюс для пайки тонкой электроники»). Можно, конечно, попробовать паять и спирто-канифолью, но во-первых, эффект будет хуже, во-вторых, после удаления застывшей канифоли спиртом, остается белый налет, который очень проблематично убрать.
Вторым по важности является паяльник. Очень хорошо если имеется регулировка температуры – можно не боятся перегреть компоненты. Оптимальная температура для пайки SMD компонентов находится в пределах 250-300 оС. Если нет паяльника с регулировкой температуры, тогда лучше применять низковольтный паяльник (12v или 36v мощность 20-30w) он имеет меньшую температуру жала. Самый худший результат дает обычный паяльник на 220v. Проблема в том, что температура жала у него слишком высока, из-за чего флюс быстро испаряется и ухудшается смачиваемость поверхности пайки. Большая температура не позволяет длительно греть ножку, из-за этого пайка превращается в нервное тыканье жалом в плату. Как частичный выход из положения можно посоветовать включить паяльник через регулятор мощности (сделать самому – схема довольно простая или купить готовый – в магазине светильников такие продаются как регуляторы яркости свечения светильников, люстр).
Жало у паяльника должно иметь ровный рабочий срез (это может быть или классический «топорик», типа «отвертка» или срез под 45 градусов).
Жало-конус плохо подходит для пайки SMD компонентов – не паяйте им, намучаетесь. Очень хорошие результаты дает жало «микроволна». Кто не знает – это жало имеющее в рабочей плоскости отверстие. При помощи этого отверстия и капиллярного эффекта создаваемого в нем припой можно не только наносить, но и эффективно убирать излишки (после того как я попробовал паять «микроволной» остальные жала валяются в коробочке без дела).
Припой. Особого припоя не нужно – используйте тот, каким Вы обычно пользуетесь. Очень удобен припой в тонкой проволочке – легко дозировать. У меня проволочка диаметром 0.5мм. Не используйте припой без свинца (на него пытаются заставить перейти производителей электроники по причине вредности свинца). Из-за отсутствия в припое свинца значительно уменьшается сила поверхностного натяжения, паять обычным паяльником станет проблематично.
Еще нужен пинцет. Тут без особенностей – подойдет любой удобный для Вас.
Технология пайки очень проста!
Если паяем микросхему, то технология такая. Позиционируем микросхему так, чтобы ножки попали на свои контактные площадки, обильно смачиваем места пайки флюсом, припаиваем одну крайнюю ножку, окончательно совмещаем ножки с площадками (припаянная ножка позволяет, в определенных пределах, «вертеть» корпус микросхемы), припаиваем еще одну ножку по диагонали, после этого микросхема надежно закреплена и можно спокойно пропаивать остальные ножки. Паяем не спеша, проводя жалом по всем ножкам микросхемы. Если образовались перемычки нужно очистить жало от избытка припоя, обильно смазать перемычки жидким флюсом и повторно пройтись по ножкам. Лишний припой заберется жалом — «сопли» устранятся.
http://www.youtube.com/watch?v=xVTHi4uyiMw
(Visited 29 695 times, 4 visits today)
Пайка smd компонентов — это просто!! cavr.ru
Что нужно для хорошей пайки
2. Паяльник ЭПСН 40-65 ватт с жалом заточенным под острый конус, для демонтажа микросхемы, с применением сплава Розе или Вуда. Паяльник, мощностью 40-65 ватт, должен быть включен обязательно через Диммер, устройство для регулирования мощности паяльника. Можно такой как на фото ниже, очень удобно.
3. Сплав Розе или Вуда. Откусываем кусочек припоя бокорезами от капельки, и кладем прямо на контакты микросхемы с обоих сторон, в случае если она у нас, например в корпусе Soic-8.
4. Демонтажная оплетка. Требуется для того, чтобы удалить остатки припоя с контактов на плате, а также на самой микросхеме, после демонтажа.
5. Флюс СКФ (спиртоканифольный флюс, растолченная в порошок, растворенная в 97% спирте, канифоль), либо RMA-223, или подобные флюсы, желательно на основе канифоли.
6. Удалитель остатков флюса Flux Off, или 646 растворитель, и маленькая кисточка, с щетиной средней жесткости, которой пользуются обычно в школе, для закрашивания на уроках рисования.
7. Трубчатый припой с флюсом, диаметром 0.5 мм, (желательно, но не обязательно такого диаметра).
8. Пинцет, желательно загнутый, Г — образной формы.
Как правильно паять паяльником: последовательность действий
Большинство видов пайки происходит по одной и той же технологии, за исключением некоторых отличий. Освоив элементарные операции, намного проще научиться последующим методикам.
Лужение жала. Перед началом работы всегда требуется очищать жало до новой операции. При лужении нужно покрыть его тонким слоем припоя, чтобы улучшить свойства во время пайки, в частности, повысить теплообмен между припоем и спаиваемым материалом.
Разогрев. Жало должно быть хорошо разогрето перед использованием. Его температура по всей поверхности должна быть равномерной. Лучше всего, если устройство будет с регулятором температуры, в ином случае, придется следить за тем, чтобы жало не перегрелось.
Смазка платы. Плату необходимо промазать кислотой, чтобы можно было нормально работать без остановки. Если получилось слишком большое количество расходного материала, то его стоит убрать.
Чистка насадки. Верхняя часть насадки покрывается флюсом, чтобы поверхность была полностью закрыта, при этом не было остатков. Лучше всего удалять их при помощи специальной губки или тряпки.
Как паять плату
Чтобы разобраться, как правильно паять микросхемы паяльником, следует освоить несколько вполне простых, но очень важных этапов:
- Подготовка поверхности. Чтобы обеспечить прочный контакт, поверхность должна быть тщательно очищена от всего постороннего. В ином случае, на месте соединения повышается сопротивление. Для обезжиривания платы подойдет мыльный раствор, который нужно нанести салфеткой. Если схема загрязнена твердыми отходами, требуется применять специальный состав или ацетон.
- Расположение. После того как схема будет очищена, на ней нужно будет правильно расположить контакты. Начало процесса следует вести с мелких плоских деталей, после чего переходить к более крупным, таким как транзисторы, конденсаторы и прочее. Это необходимо для сохранности чувствительности компонентов. Благодаря правильному подбору мощности, температурное воздействие не влияет на свойства платы, только если совсем не переусердствовать с нагревом.
- Нагрев. Припой следует нанести на самый конец жала, чтобы увеличить теплопроводность металла в рабочем участке. Чтобы нагреть соединение, включенный паяльник нужно упереть жалом в компоненты платы. Как правило, хватает 2-3 секунд для достижения нужного результата.
- Нанесение припоя. Когда свинец полностью разогрелся, можно приступать к нанесению материала. Паять следует аккуратно, при этом необходимо следить за участком разжижения, чтобы перейти дальше, чем это требуется.
После окончания пайки необходимо удалить все лишние остатки. Это нужно делать только после полного остывания.
Советы и хитрости
Имея опыт, как правильно выпаивать микросхемы феном, и в совершении прочих операций с платами, можно выделить определенные особенности, которые помогут улучшить качество процесса. Сюда стоит отнести:
Необходимость держать наконечник в чистоте. Это позволяет сохранять свойства теплопроводности жала. Таким образом, нельзя запускать его состояние, чтобы пайка была качественной.
После окончания пайки места соединения стоит перепроверить
Это делается визуально с помощью лупы, чтобы там не было трещин и отслоений.
Чувствительные детали желательно ставить последними, а в первую очередь уделять внимание мелким соединениям.
Заключение
Есть масса способов, как без паяльника припаять провод к плате, или выпаять контакты со схемы с помощью подручных устройств. Они не отличаются высоким уровнем и надежностью. Лучше всего выбирать профессиональную технику, которая даст качественный и безопасный результат. Главное, чтобы паяльник обеспечивал тонкость работы с мелкими деталями.
Особенности технологии в заводских условиях
Для промышленного производства паста для пайки SMD компонентов адаптирована под групповую систему, где задействована электронная система нанесения флюса по поверхности микросхемы. На поверхности контактных рабочих площадках используют тонкую технологию нанесения при помощи шелкографии. Таким образом, по своей технологии и консистенции материал чем-то напоминает нам привычную зубную пасту. Субстанция включает в себя припой порошка, а также компоненты флюса. Вся субстанция перемешивается и конвейерным способом наносится на поверхность микросхемы.
Внешний вид пасты для СМД
Автоматизированная система аккуратно переворачивает платы, которые необходимо запаять, далее микросхемы перемещаются в температурный шкаф, где происходить растекание массы с последующим припоем. В печи, под воздействие требуемой температуры происходит условное обтекание технологических контактных ножек SMD компонентов, и в итоге получается довольно прочное соединение. После температурного шкафа микросхему снова перемещают в естественную среду, где происходит остывание.
Можно ли самостоятельно паять пастой SMD?
Теоретически да, но практически нужен довольно большой опыт для проведения данной технологической операции. Для работы нам понадобятся следующие инструменты и препараты:
- Специальный паяльник с тонким жалом для SMD-компонентов.
- Бокорезы инструментальные.
- Пинцет производственный.
- Шило или специальная тонкая игла.
- Материал припоя.
- Увеличительное стекло, можно лупу (необходимо будет постоянно наблюдать за тонкими ножками СМД-компонентов).
- Флюс с нейтральными безотмывочными свойствами (дополнительный препарат).
- Шприц, при помощи которого будем наносить флюс.
- Если нет безотмывочного препарата, используем настой спиртовой и канифоль.
- Паяльный фен средней нагрузки и мощности.
Флюс всегда должен быть в жидком состоянии, таким образом, вы полностью обеззараживаете поверхность микросхемы. Кроме этого, препарат в процессе работы убирает образование окислов на поверхности платы. Помните, что спиртовой раствор совместно с канифолью не могут обеспечить качество пайки, и их применение допустимо только в том случае, если нет под рукой подходящего состава для пайки.
Выбор паяльника
Для работы требуется подобрать специальный паяльник, который имеет регулировку диапазона нагрева. Для работы с микросхемой подойдёт паяльник, который имеет рабочую температуру нагрева не боле +250…+300 С. Если под рукой нет такого паяльника, допускается использовать устройство с мощностью от 20 до 30 Вт и не более 12-36 Вольт.
Паяльник с напряжением 220 Вольт не сможет обеспечить качество пайки, где очень трудно регулировать требуемую температуру нагрева флюса.
Паяльник для пайки СМД компонентов
Не советуем применять паяльник с жалом типа «конус», это приведёт к повреждению обрабатываемой поверхности. Самым оптимальным жалом является тип «микроволна». Паяльник с напряжением 220 Вольт не только быстро нагревается, но и приводит к тому, что в процессе пайки происходит улетучивание компонентов. Для эффективной работы паяльника, рекомендуем использовать тончайшую проволочку для обеспечения взаимодействия жала, флюса и припоя.
- Помещаем SMD- компоненты на специальную контактную рабочую площадку.
- Наносим жидкий препарат на ножки задействованных компонентов очень аккуратно.
- Под действие рабочей температуры происходит растекание флюса и припоя по контактной площадке.
- Даём время необходимого для того, чтобы могли остыть контакты и препарат на поверхности платы.
Но, для микросхемы процедура пайки немного отличается от вышеприведённой:
- Производим монтаж SMD-контактов на точно установленные контактные места.
- В метах соединения смачиваем флюсом.
- Для качественного припоя делаем надёжный контакт с одной стороны, после этого припаиваем другую ножку.
- Предельно аккуратно припаиваем другие рабочие компоненты, не забываем при этом жалом паяльника удалять образования.
В некоторых случаях допускается использовать для пайки специальный паяльный фен, но для этого необходимо создать подобающие рабочие условия. Помните, что фен допускается разогревать только до температуры +250 С, не более (в редких случаях до +300 С).
Технология пайки
Как уже указывалось выше, пайка SMD-компонентов осуществляется прямо на поверхность монтажных пятачков. Очень часто при этом выводы деталей после монтажа даже не видны. Поэтому использование традиционного паяльника невозможно.
Пайка СМД-компонентов осуществляет одним из нескольких способов:
- разогревом всей платы в печи;
- использованием инфракрасного паяльника;
- применением термовоздушного паяльника или фена.
Когда устройства с применением SMD-компонентов изготавливаются промышленными методами, применяются специальные роботы-автоматы. В этом случае на монтажных пятачках уже предварительно нанесен припой в количестве, достаточном для монтажа. В иных случаях при подготовке, по трафарету наносится паяльная паста для SMD-компонентов. Манипулятор робота устанавливает детали на свои места и надежно фиксирует их. После этого платы с установленными SMD-компонентами отправляются в печь.
Температуру в печи плавно повышают до определённого значения, при котором расплавляется припой. Для материала, из которого изготовлены платы и радиокомпоненты, это температура не опасна. После того, как весь припой расплавлен, температуру снижают. Снижение производится плавно по определенной программе, определяемой термопрофилем. Именно при таком остывании, а не при резком охлаждении, пайка будет наиболее прочной.
Подготовка платы в домашних условиях
Чтобы качественно припаять SMD-компоненты в условиях домашней мастерской, понадобится инфракрасный паяльник или термовоздушная станция. Перед пайкой обязательно нужно подготовить плату. Для этого ее надо очистить и облудить пятачки. Если плата новая и ни разу нигде не использовалась, почистить можно обычным ластиком. После этого необходимо обезжирить поверхность, нанеся флюс. Если же она старая, и на ней присутствует загрязнения и остатки прежнего припоя, можно подготовить ее при помощи мелкозернистой наждачной бумаги, также обезжирив после зачистки флюсом.
Паять SMD-компоненты обычным паяльником не очень удобно из-за малого размера контактных площадок. Но если нет паяльной станции, то можно применить и паяльник с тонким жалом, работая им аккуратно, набирая припой на разогретое жало и быстро дотрагиваясь до контакта.
Нанесение пасты
Чтобы качественно припаять микросхемы, лучше воспользоваться не припоем, а паяльной пастой. Для этого элемент необходимо расположить на плате и зафиксировать. Из инструментов используют пинцет, пластиковые прижимы, небольшие струбцины. Когда выводы SMD-компонента оказались точно на монтажных пятачках, на них наносится паяльная паста. Для этого можно использовать зубочистку, тонкую кисть или медицинский шприц.
Наносить состав можно, не заботясь о том, что он покрывает и поверхность платы вокруг монтажных пятачков. Во время прогрева силы поверхностного натяжения соберут его в капли и локализуют в местах будущих контактов SMD-компонента с дорожками.
Прогревание
После нанесения необходимо прогреть область монтажа инфракрасным паяльником или феном (температура примерно 250 °C). Паяльный состав должен расплавиться и растечься по контактам монтируемого компонента и пятачка. Мощность струи фена надо отрегулировать таким образом, чтобы она не сдувала капли паяльной пасты с платы. Если позволяют характеристики устройства, используемого для пайки, снижать температуру надо плавно. Не допускается ускорять остывание путем обдува контактов SMD-компонентов воздухом.
По такой же технологии осуществляется и пайка светодиодов, в случае замены перегоревших элементов в каком-либо светильнике или, например, в подсветке приборов. Различие лишь в том, что плату во время пайки необходимо прогревать со стороны, обратной той, на которой установлены компоненты.
Паяльные станции – стоит ли выбирать оборудование для пайки микросхем?
Некоторые считают, что паяльные станции, это то, что нужно для пайки микросхем. В большей части такие мнения имеют почву для того, чтобы сказать, что качество пайки будет на достаточно высоком уровне исполнения. Паяльные станции оснащены всем необходимым, где и качество работы будет очень высоким, и оперативность выполнения пайки микросхем будет достаточно приемлемым. Есть одно но, это дороговизна оборудования. Если вы планируете осуществлять ремонт микросхем в домашних условиях, то вам достаточно купить простейший паяльник, который понадобиться от случая к случаю. Если вы планируете развивать бизнес по ремонту микросхем, и у вас есть постоянный цикл проведения восстановительных работ, в данном случае вам поможет мощная паяльная станция с современными характеристиками.
Паяльная станция для микросхем
Дополнительное оборудование
Чтобы обеспечить высокое качество пайки сложнейших микросхем в радиоэлектронике, необходимо использовать не только специальные приборы, но и дополнительные устройства и аппараты. В качестве таковых используются:
- Технологический пинцет (продаётся в специальных магазинах), необходим для оттягивания и поддерживания контактов.
- Кусачки миниатюрные, необходимы для удаления изоляции и дефектных проводов.
- Надфиль или маленький напильник необходим для зачистки жала, то есть для очистки и лужения.
- Полая конструкция игры, с отпиленным острым концом (можно от шприца), для обеспечения нанесения на поверхность флюса.
- Шило техническое, с острым наконечником.
- Нож острый, можно использовать обычный канцелярский вариант.
Дополнительное оборудование для пайки
Дополнительно нужно обеспечить удобство и комфортность использования рабочего места. Обязательно используем качественную систему освещения, где наличие мощной лампы будет обязательным критерием качества проведения работ. Не забываем проветривать комнату, а также соблюдаем необходимый минимум по требованиям электробезопасности, пожарной безопасности. На рынке имеются разнообразные варианты паяльников, начиная от самых дешёвых, производства КНР, и заканчивая надёжными и долговечными, которые произведены в странах Евросоюза. Вся продукция сертифицирована, прошла необходимый минимум контроля качества и рекомендована к применению в странах бывшего Союза.
Методики демонтажа
Способ, как выпаивать микросхемы, зависит, в основном, от типа выводов, хотя есть и универсальные методы.
Демонтаж микросхемы паяльником
Это самый трудоемкий и ненадежный способ. Применяется только тогда, когда количество ножек микросхемы минимальное. Перед тем, как выпаивать микросхемы паяльником, кончик жала тщательно облуживают и очищают от остатков припоя, чтобы он остался только в виде тонкой пленки. Расплавленный припой, который окружает ножку ИМС, под действием силы натяжения переходит на жало. Повторяя процедуру несколько раз, полностью освобождают выводы.
Важно! Перед каждым касанием платы жало очищают от припоя. Время касания не должно быть более трех секунд
Если ножка освобождена не полностью, заняться ею можно только через некоторое время после остывания. В это время можно заниматься следующими выводами.
Демонтаж микросхемы с помощью бритвенного лезвия
При работе с планарными элементами на помощь придет обыкновенное бритвенное лезвие. Для удобства лезвие бритвы разламывают пополам вдоль. Прислонив лезвие вплотную к границе вывода и платы, прогревают привой до его расплавления. Просунув лезвие между ножкой и платой, разделяют их. Лезвие выполнено из нержавеющей стали, поэтому припой к нему не пристает.
Использование демонтажной оплетки
Специальная демонтажная оплетка работает благодаря капиллярному эффекту, втягивая в себя расплавленный материал. Можно с тем же эффектом использовать оплетку экранированного кабеля. Оплетка должна быть чистой, без следов окисления. Для того чтобы улучшить растекание расплава, оплетку смачивают жидким флюсом.
Оплетка для демонтажа
Демонтаж микросхем с помощью оловоотсоса
Оловоотсос представляет собой специальный поршень, который при движении втягивает в себя расплав, освобождая вывод. Данный метод пригоден для работы с DIP и SIP компонентами.
Оловоотсос для выпаивания
Использование медицинских иголок
Такой способ наилучшим образом показал себя при демонтаже ИМС, особенно для одностороннего печатного материала. Двухсторонний печатный монтаж также может использоваться для демонтажа иглы от шприцов. Выбирая иглу, нужно, чтобы ее внутренний диаметр позволял свободно входить ножке микросхемы, а наружный – проходить в отверстие печатной платы. Кончик иглы стачивают надфилем до получения ровной поверхности.
Иглу надевают на кончик ножки и прогревают вывод паяльником. После расплавления припоя иглу вводят в отверстие платы и плавно поворачивают вокруг оси до застывания олова. После этого снимают иглу с ножки, которая теперь полностью свободна. Материал иглы (нержавеющая сталь) не облуживается, поэтому вращение вокруг ножки необходимо только для того, чтобы легче было вынуть ее из отверстия.
Как выпаять ИМС иглой
Использование сплава розе
Используя сплав розе, можно выпаять одновременно все выводы ИМС, благодаря тому, что легкоплавкий сплав растекается между выводами и равномерно и одновременно передает всем им тепло от разогретого жала паяльника. После полного прогрева деталь аккуратно извлекают из платы при помощи пинцета.
Минус у данного метода один – после демонтажа остатки сплава розе собрать не получится, поскольку он будет засорен излишками олова и свинца, которые изменят его состав и температуру плавления.
Как выпаять микросхему из платы феном
При работе с SOJ, PLCC, QFJ и BGA корпусами необходима паяльная станция или фен с регулировкой температуры. При помощи станции прогревают целиком участок платы до освобождения микросхемы, а при помощи фена с насадкой поток горячего воздуха направляют на выводы ИМС до их освобождения.
Отпаивать радиоэлементы необходимо при температуре 250⁰С. Соседние элементы для исключения перегрева следует прикрыть алюминиевой фольгой.
Паяльный фен с насадками
Как выпаять конденсаторы из материнской платы
Чтобы выпаять конденсаторы или другие двухвыводные элементы, нет необходимости использовать специальный паяльный инструмент. В процессе демонтажа прогревают один из выводов конденсатора, одновременно наклоняя элемент с целью выхода ножки из отверстия. Далее повторяют то же самое со второй ножкой, наклоняя деталь в обратную сторону. Во избежание отрыва не надо сильно давить на конденсатор. Прогревая поочередно оба вывода, постепенно освобождают их.
Использование специальной оплётки
Удаление микросхем паяльником основано на способности его жала притягивать на себя припой. Объясняется это тем, что качественно залуженное и обработанное флюсом остриё отличается повышенной смачиваемостью (то есть при пайке хорошо захватывает припой).
Этот эффект удаётся усилить за счёт применения снятой с коаксиального кабеля оплётки. Её роль может выполнить экран от антенного провода, снятый с него и обильно смоченный флюсом.
Если прижать расплетённую «косичку» экрана к контактному пятачку, а потом «пройтись» по этому месту паяльником – можно наблюдать интересный эффект. Из-за пористости и высокой гигроскопичности оплёточной структуры она хорошо впитывает припой, постепенно освобождая корпус микросхемы с ножками.
Ликбез для начинающих
Для выпаивания детали из платы, нужно сделать так, чтобы контакты разогрелись до плавления припоя (примерно 230 °C). Основная ошибка начинающих — место паяльных работ сразу прогревают на 300 — 350 °C.
Например, нужно выпаять микросхему из платы паяльной станцией Lukey 702.
Многие радиолюбители и электронщики выставляют параметры нагрева выше 300 °C.
В первый момент, на деталь действует около 200 °C. На контактах и окружающем месте паяльных работ комнатная температура.Нагрев детали достигает 300 °C, а контакты еще не дошли до 200 °C.На микросхему поступает критическая температура 350 °C. Тем временем, окружающее место пайки неравномерно прогревается, даже если происходят равномерные движения феном по месту пайки. На контактах детали появляется заметная разница температур.400 °C и микросхема начинает зажариваться.
Еще чуть-чуть, и она отпаяется из-за того, что и контакты практически нагрелись до плавления припоя. Но это происходит потому, что плата прогрелась. И в данном случае, это произошло неравномерно. Высокие значения температур приводят к тепловому пробою микросхемы, она выходит из строя. Плата сгибается, чернеет, появляются пузыри из-за вскипевшего текстолита и его составляющих.
Как все-таки без ущерба паять детали?
Нужно проанализировать место пайки и оборудование:
Оценить толщину платы. Чем толще плата – тем сложнее и дольше ее прогревать. Плата представляет собою слои дорожек, маски, площадки и много металлических деталей, которые очень теплоемкие.
- Что находится рядом. Чтобы не повредить окружающие компоненты, нужно их защитить от температуры. С этой задачей справятся: термоскотч, алюминиевый скотч, радиаторы и монетки.
- Какая температура окружающей среды. Если воздух холодный, то плату придется нагревать чуть дольше. Особое значение имеет то, что находится под платой. Не нужно паять на металлической пластине, или на пустом столе. Лучше всего подойдет деревянная дощечка или набор салфеток. И при этом плата должна находиться в одной плоскости, без перекосов.
- Оборудование. Многие паяльные станции продаются без калибровки. Разница между показываемой температуры на индикаторе и фактическая может достигать как 10 °C, так и все 50 °C.
В домашних условиях
Пайка микросхем в домашних условиях может потребоваться для ремонта сложной бытовой техники, материнских плат компьютеров.
Как правило, чтобы припаять ножки микросхемы, используют паяльник или паяльный фен.
Работа паяльником осуществляется с помощью обычного припоя или паяльной пасты.
В последнее время стал чаще применяться бессвинцовый припой для пайки с более высокой температурой плавления. Это необходимо для уменьшения вредного действия свинца на организм.
Какие приспособления потребуются
Для пайки микросхем, кроме самого паяльного оборудования, потребуются еще некоторые приспособления.
Если микросхема новая и выполнена в BGA-корпусе, то припой уже нанесен на ножки в виде маленьких шариков. Отсюда и название – Ball Grid Array, что означает массив шариков. Такие корпуса предназначены для поверхностного монтажа. Это означает, что деталь устанавливается на плату, и каждая ножка быстрым точным действием припаивается к контактным пятачкам.
Если же микросхема уже использовалась в другом устройстве и используется как запчасти, бывшие в употреблении, необходимо выполнить реболлинг. Реболлингом называется процесс восстановления шариков припоя на ножках. Иногда он применяется и в случае отвала – потери контакта ножек с контактными пятачками.
Для осуществления реболлинга понадобится трафарет – пластина из тугоплавкого материала с отверстиями, расположенными в соответствии с расположением выводов микросхемы. Существуют готовые универсальные трафареты под несколько самых распространенных типов микросхем.
Паяльная паста и флюс
Для правильной пайки микросхем необходимо соблюдать определенные условия. Если работа осуществляется паяльником, то жало его должно быть хорошо облужено.
Для этого используется флюс – вещество, растворяющее оксидную пленку и защищающее жало от окисления до покрытия припоем во время пайки микросхемы.
Наиболее распространенный флюс – сосновая канифоль в твердом, кристаллическом виде. Но, чтобы припаять микросхему, такой флюс не годится. Ножки ее и контактные пятачки обрабатывают жидким флюсом. Его можно сделать самостоятельно, растворив канифоль в спирте или кислоте, а можно купить готовый.
Припой в этом случае удобнее использовать в виде присадочной проволоки. Иногда он может содержать внутри флюс из порошковой канифоли. Можно приобрести готовый паяльный набор для пайки микросхем, включающий в свой состав канифоль, жидкий флюс с кисточкой, несколько видов припоя.
При осуществлении реболлинга используется паяльная паста, представляющая собой основу из вязкого материала, в которой содержатся мельчайшие шарики припоя и флюса. Такая паста наносится тонким слоем на ножки микросхемы с обратной стороны трафарета. После этого паста разогревается феном или инфракрасным паяльником до расплавления припоя и канифоли. После застывания, они образуют шарики на ножках микросхемы.
Как выпаять радиодетали из платы – обзор методик
Что для этого понадобиться?
Существует множество приспособлений для выпаивания деталей. Конечно же, не обойтись радиолюбителю без паяльника, который и будет основным помощником в этом деле. Однако помимо паяльника, для того, чтобы выпаять элемент, вам понадобятся:
- Пинцет. Для извлечения разогретых радиодеталей. Вместо пинцета можно взять зажим типа крокодил (показан на фото ниже). Преимущество зажима в том, что он надежно захватит деталь и к тому же станет хорошим теплоотводом.
- Полые иглы для демонтажа. Приобрести их будет не проблема, стоимость небольшая. С помощью игл можно выпаять радиодеталь быстро и аккуратно, о чем мы расскажем ниже.
- Демонтажная оплетка. Служит так называемой губкой, которая впитывает расплавленный припой в себя, очищая этим самым плату.
- Оловоотсос. Название говорит само за себя. Незаменимая вещь для частого выпаивания радиодеталей из плат в домашних условиях.
Также нужно подготовить рабочее место. Оно должно быть с хорошим освещением. Лучше всего, если лампа находится над рабочим местом, чтобы свет падал вертикально, не создавая теней.
Методики демонтажа
Итак, сначала мы расскажем о самой популярной технологии – как выпаять деталь из платы паяльником без дополнительных приспособлений. После чего вкратце рассмотрим более простые способы.
Если вы хотите выпаять электролитический конденсатор, достаточно захватить его пинцетом (либо крокодилом), прогреть 2 вывода и быстро, но аккуратно изъять их из платы.
С транзисторами дела обстоят точно также. Капаем на все 3 вывода припоем и извлекаем радиодеталь из платы.
Что касается резисторов, диодов и неполярных конденсаторов, очень часто их ножки загибают во время пайки с обратной стороны платы, что вызывает сложно при выпаивании без дополнительных приспособлений. В этом случае рекомендуется сначала разогреть один вывод и с помощью крокодильчика, с небольшим усилием вытянуть часть детали из схемы (ножка должна разогнуться). Потом уже аналогичную процедуру выполняем со вторым выводом.
Это мы рассмотрели методику, когда под рукой нет ничего кроме паяльника. А вот если вы приобрели набор игл, тогда выпаять элемент будет еще проще: сначала разогреваем паяльником контакт, после чего одеваем на вывод иглу подходящего диаметра (она должна проходить через отверстие в микросхеме) и ждем, пока припой остынет. После этого достаем иглу и получаем оголенный вывод, который с легкостью можно вывести. Если несколько ножек у радиодетали, действуем также – разогреваем контакт, надеваем иглы, ждем и снимаем.
Все, о чем мы рассказали в этой статье, вы можете наглядно увидеть на видео, в котором предоставлена технология выпайки элементов из платы:
Кстати вместо специальных игл можно использовать даже обычные, которые идут со шприцом. Однако в этом случае изначально нужно сточить конец иглы, чтобы он был под прямым углом.
Выпаять деталь с помощью демонтажной оплетки также не сложно. Перед началом работы намочите конец обмотки спирто-канифольным флюсом. После этого наложите оплетку в месте выпаивания (на припой) и прогрейте жалом паяльника. В результате разогретый припой должен впитаться в оплетку, что позволит освободить выводы радиодеталей.
С оловоотсосом дела обстоят аналогичным образом – взводится пружина, разогревается контакт, после чего наконечник подносят к расплавленному припою и нажимают кнопку. Создается разрежение, которое и втягивает припой внутрь оловоотсоса.
Вот и все, что хотелось рассказать вам о том, как выпаять радиодетали из платы в домашних условиях. Надеемся, предоставленные методики и видео уроки были для вас полезными и интересными. Напоследок хотелось бы отметить, что можно выполнить выпаивание элементов из микросхемы строительным феном, но мы не советуем так делать. Фен может повредить находящиеся рядом детали, а также ту, которые вы хотите извлечь!
Интересное по теме:
Настройка технологических параметров
Для получения качественных , необходима настройка технологических параметров паяльной линии. Во-первых, формой и ориентацией сопла формируется гребень волны оптимального профиля, во-вторых, движущаяся над ванной плата располагается под некоторым углом к поверхности расплава.
Правильно выбранные параметры процесса позволяют избежать брака в виде перемычек между токоведущими дорожками и наплывов (сосулек) на выводах деталей.
Для этой же цели может использоваться технология пайки двойной волной. В этом случае, первая волна припоя имеет турбулентный характер, что позволяет лучше смачивать паяемую поверхность и проникать припою в монтажные отверстия платы.
Вторая волна, имеющая более плавное ламинарное течение, смывает огрехи в виде лишних капель и наплывов припоя, формируя при этом окончательную геометрию гантелей.
Пайка волной не всегда автоматизирована. Например, на многих сборочных конвейерах Китая и других стран Азии, установка деталей на плату, последующая обработка флюсом и обмакивание платы в ванну с припоем выполняют люди.
При этом плата берётся руками посредством специального захвата и обмакивается в ванну жидкого припоя.
Распайка планарных деталей
Демонтаж с помощью сплава Розе
Контакты микросхемы у нас при этом замкнутся, но это не страшно, после того как демонтируем микросхему, мы легко с помощью демонтажной оплетки, уберем излишки припоя с контактов на плате, и с контактов на микросхеме.
Итак, мы взялись за нашу микросхему пинцетом, по краям, там где отсутствуют ножки. Обычно длина микросхемы, там где мы придерживаем ее пинцетом, позволяет одновременно водить жалом паяльника, между кончиками пинцета, попеременно с двух сторон микросхемы, там где расположены контакты, и слегка тянуть ее вверх пинцетом. За счет того что при расплавлении сплава Розе или Вуда, которые имеют очень низкую температуру плавления, (порядка 100 градусов), относительно бессвинцового припоя, и даже обычного ПОС-61, и смещаясь с припоем на контактах, он тем самым снижает общую температуру плавления припоя.
Демонтаж микросхем с помощью оплетки
И таким образом микросхема у нас демонтируется, без опасного для нее перегрева. На плате у нас образуются остатки припоя, сплава Розе и бессвинцового, в виде слипшихся контактов. Для приведения платы в нормальный вид мы берем демонтажную оплетку, если флюс жидкий, можно даже обмакнуть ее кончик в нее, и кладем на образовавшиеся на плате “сопли” из припоя. Затем прогреваем сверху, придавив жалом паяльника, и проводим оплеткой вдоль контактов.
Выпаивание радиодеталей с оплеткой
Таким образом весь припой с контактов впитывается в оплетку, переходит на нее, и контакты на плате оказываются очищенными полностью от припоя. Затем эту же процедуру, нужно проделать со всеми контактами микросхемы, если мы собираемся запаивать микросхему в другую плату, или в эту же, например после прошивания с помощью программатора, если это микросхема Flash памяти, содержащая прошивку BIOS материнской платы, или монитора, или какой либо другой техники. Эту процедуру, нужно выполнить, чтобы очистить контакты микросхемы от излишков припоя. После этого наносим флюс заново, кладем микросхему на плату, располагаем ее так, чтобы контакты на плате строго соответствовали контактам микросхемы, и еще оставалось немного места на контактах на плате, по краям ножек. С какой целью мы оставляем это место? Чтобы можно было слегка коснувшись контактов, жалом паяльника, припаять их к плате. Затем мы берем паяльник ЭПСН 25 ватт, или подобный маломощный, и касаемся двух ножек микросхемы расположенных по диагонали.
Припаивание SMD радиодеталей паяльником
В итоге микросхема у нас оказывается “прихвачена”, и уже не сдвинется с места, так как расплавившийся припой на контактных площадках, будет держать микросхему. Затем мы берем припой диаметром 0.5 мм, с флюсом внутри, подносим его к каждому контакту микросхемы, и касаемся одновременно кончиком жала паяльника, припоя, и каждого контакта микросхемы. Использовать припой большего диаметра, не рекомендую, есть риск навесить “соплю”. Таким образом, у нас на каждом контакте “осаждается” припой. Повторяем эту процедуру со всеми контактами, и микросхема впаяна на место. При наличии опыта, все эти процедуры реально выполнить за 15-20 минут, а то и за меньшее время. Нам останется только смыть с платы остатки флюса, растворителем 646, или отмывочным средством Flux Off, и плата готова к тестам, после просушивания, а это происходит очень быстро, так как вещества применяемые для смывания, очень летучие. 646 растворитель, в частности, сделан на основе ацетона. Надписи, шелкография на плате, и паяльная маска, при этом не смываются и не растворяются.
Единственное, демонтировать таким образом микросхему в корпусе Soic-16 и более многовыводную, будет проблематично, из-за сложностей с одновременным прогреванием, большого количества ножек. Всем удачной пайки, и поменьше перегретых микросхем! Специально для Радиосхем — AKV.
Обсудить статью ПАЙКА SMD ДЕТАЛЕЙ БЕЗ ФЕНА
Оцените статью:Пайка SMD компонентов — это просто!! — Паяльники и паяльные станции — Инструменты
Данный пост раскажет начинающим радио-мучителям, как можно без фена, красиво, легко и быстро паять SMD компоненты («Surface Montage Details» — означает поверхностный монтаж деталей). Вообще, почему-то, бытует мнение, что паять SMD компоненты сложно и неудобно. Постараюсь Вас убедить в обратном. Более того, докажу, что паять SMD компоненты намного проще обычных TH компонентов («Through Hole» в переводе «сквозь отверстие»).«Если быть совсем уж откровенным у TH и SMD компонентов есть свои назначения и области использования и попытки убеждать Вас в том, что SMD лучше, немного не корректны. Ну да ладно – все равно думаю, Вам будет интересно почитать.»
Знаете, какая главная ошибка тех, кто первый раз пробует паять SMD компоненты?
Разглядывая меленькие ножки микросхемы, сразу возникает мысль о том, какое тонкое жало нужно взять, чтобы паять эти мелкие ножки и не насажать «соплей» между ними. В магазине находим конусное тонкое жало, цепляем его на паяльник, набираем маленькую капельку припоя и пытаемся иголкой-жалом обпаять каждую ножку отдельно. Получается долго, утомительно и не аккуратно. Данный подход, казалось бы, логичен, но в корне не верен! И вот почему – паять SMD компоненты помогают такие «страшные силы» как поверхностное натяжение, силы смачивания, капиллярный эффект и не использовать их значит сильно усложнять свою жизнь.
Как все должно проходить в теории? Когда жало паяльника приложено к ножкам начинает действовать сила смачивания – олово под действием этой силы начинает «обтекать» ножку со всех сторон. Под ножку олово «затягивается» капиллярным эффектом одновременно начинается «смачиваться» контактная площадка под ножкой и на плате. Припой равномерно «заливает» площадку вместе с ножкой. После того как жало паяльника убрано от ножек и пока еще припой в жидком состоянии, сила поверхностного натяжения формирует из припоя каплю, не давая ему растекаться и сливаться с соседними ножками. Вот такие сложные процессы происходят при пайке. Но все эти процессы происходят сами собой, а от Вас требуется лишь поднести жало паяльника к ножке (или сразу к нескольким). Правда просто?!
«На практике есть определенные проблемы с пайкой очень мелких SMD компонентов (резисторы, конденсаторы …) они могут во время пайки «прилипать» к жалу. Для того чтобы избежать такой проблемы нужно паять отдельно каждую сторону.»
Для того, чтобы добиться хорошей пайки, нужны определенные материалы и инструменты.
Главным материалом, обеспечивающим комфортную пайку, является жидкий флюс. Он обезжиривает и снимает окислы с поверхности спаиваемого металла, что увеличивает силу смачивания. Кроме того, во флюсе припою легче образовать каплю, что препятствует созданию «перемычек-соплей» Рекомендую применять именно жидкий флюс – канифоль или вазелин-флюс не дают такого эффекта. Жидкий флюс не редкость в магазинах – купить его будет не проблема. На вид это прозрачная жидкость с противным запахом напоминающий ацетон (тот, что я покупаю называется «F5 – флюс для пайки тонкой электроники»). Можно, конечно, попробовать паять и спирто-канифолью, но во-первых, эффект будет хуже, во-вторых, после удаления застывшей канифоли спиртом, остается белый налет, который очень проблематично убрать.
Вторым по важности является паяльник. Очень хорошо если имеется регулировка температуры – можно не боятся перегреть компоненты. Оптимальная температура для пайки SMD компонентов находится в пределах 250-300 оС. Если нет паяльника с регулировкой температуры, тогда лучше применять низковольтный паяльник (12v или 36v мощность 20-30w) он имеет меньшую температуру жала. Самый худший результат дает обычный паяльник на 220v. Проблема в том, что температура жала у него слишком высока, из-за чего флюс быстро испаряется и ухудшается смачиваемость поверхности пайки. Большая температура не позволяет длительно греть ножку, из-за этого пайка превращается в нервное тыканье жалом в плату. Как частичный выход из положения можно посоветовать включить паяльник через регулятор мощности (сделать самому – схема довольно простая или купить готовый – в магазине светильников такие продаются как регуляторы яркости свечения светильников, люстр).
Жало у паяльника должно иметь ровный рабочий срез (это может быть или классический «топорик», типа «отвертка» или срез под 45 градусов).
Жало-конус плохо подходит для пайки SMD компонентов – не паяйте им, намучаетесь. Очень хорошие результаты дает жало «микроволна». Кто не знает – это жало имеющее в рабочей плоскости отверстие. При помощи этого отверстия и капиллярного эффекта создаваемого в нем припой можно не только наносить, но и эффективно убирать излишки (после того как я попробовал паять «микроволной» остальные жала валяются в коробочке без дела).
Припой. Особого припоя не нужно – используйте тот, каким Вы обычно пользуетесь. Очень удобен припой в тонкой проволочке – легко дозировать. У меня проволочка диаметром 0.5мм. Не используйте припой без свинца (на него пытаются заставить перейти производителей электроники по причине вредности свинца). Из-за отсутствия в припое свинца значительно уменьшается сила поверхностного натяжения, паять обычным паяльником станет проблематично.
Еще нужен пинцет. Тут без особенностей – подойдет любой удобный для Вас.
Технология пайки очень проста!
Кладем на контактные площадки SMD компонент, обильно его смачиваем жидким флюсом, прикладываем жало паяльника к компоненту, припой с жала перетекает на контакты компонента и контактные площадки платы, убираем паяльник. Готово! Если компонент очень мелок или большой (жало не захватывает одновременно обе стороны) паяем каждую сторону отдельно, придерживая компонент пинцетом.
Если паяем микросхему, то технология такая. Позиционируем микросхему так, чтобы ножки попали на свои контактные площадки, обильно смачиваем места пайки флюсом, припаиваем одну крайнюю ножку, окончательно совмещаем ножки с площадками (припаянная ножка позволяет, в определенных пределах, «вертеть» корпус микросхемы), припаиваем еще одну ножку по диагонали, после этого микросхема надежно закреплена и можно спокойно пропаивать остальные ножки. Паяем не спеша, проводя жалом по всем ножкам микросхемы. Если образовались перемычки нужно очистить жало от избытка припоя, обильно смазать перемычки жидким флюсом и повторно пройтись по ножкам. Лишний припой заберется жалом – «сопли» устранятся.
Не много видео, наглядно демонстрирующее выше описаное. «СМОТРЕТЬ СДЕСЬ»
Урок 7 — Монтаж и пайка SMD
Монтаж и пайка SMD-компонентов
Даже если тебе никогда в жизни не придётся самостоятельно иметь дело с чип-деталями, надо понимать, что 99% всей современной электроники создаётся именно на их основе. Поэтому каждый уважающий себя радиолюбитель должен хотя бы в общих чертах представлять SMD-техпроцесс.
В предыдущем уроке мы уже познакомились с так называемыми SMD-компонентами (чип-компонентами). Сейчас же пришло время узнать, как осуществляется их монтаж и пайка.
Можно припаять SMD-деталь и с помощью самого обычного припоя и паяльника с тонким жалом. Процесс состоит из трёх шагов:
— наносим припой на одну контактную площадку;
— с помощью пинцета устанавливаем чип-компонент на нужную позицию и, удерживая деталь пинцетом, прогреваем один из его выводов. Деталь зафиксирована, пинцет можно убрать;
— припаиваем второй вывод компонента.
Ручная пайка SMD-компонентов
Примерно таким же образом можно паять SMD-транзисторы и микросхемы.
Но ручная пайка – это очень долгий и кропотливый процесс, поэтому применяется только радиолюбителями для создания единичных конструкций. На крупных радиозаводах всё стараются автоматизировать. Поэтому там никто не паяет каждую деталь по отдельности паяльником, процесс совершенно другой.
Ты уже знаешь, что такое припой: гибкая оловянно-свинцовая проволока, которая при нагреве паяльником расплавляется, а после остывания застывает и надёжно фиксирует вывод радиодетали, обеспечивая при этом электрический контакт. Но припой может быть не только в виде оловянно-свинцового прутка. Можно создать припой в виде пасты, которая так и называется – паяльная паста. Паста содержит в своём составе и флюс, и мельчайшие частички олова. При нагреве паста расплавляется, а после остывания застывает, обеспечивая электрический и механический контакт.
Паяльная паста наносится на все контактные площадки. При производстве опытных образцов и мелкосерийных партий пасту наносят с помощью ручных дозаторов: шприцом, например, или даже зубочисткой. Но при крупносерийном производстве используется другая технология нанесения пасты. Сначала изготавливается трафарет: тонкий лист из нержавеющей стали, в котором имеются отверстия, точно совпадающие с контактными площадками печатной платы. Трафарет прижимается к печатной плате, сверху наносится слой паяльной пасты и разравнивается специальным шпателем. Затем трафарет поднимается, и таким образом буквально за пару секунд паяльная паста оказывается нанесённой на все контакты печатной платы.
Печатная плата с нанесённой на контактные площадки паяльной пастой
Теперь на плату можно устанавливать компоненты. SMD-компонент можно аккуратно установить на нужные контактные площадки. В радиолюбительстве установку компонентов производят вручную с помощью обычного или вакуумного пинцета, а на крупных производствах эту операцию выполняют роботы, которые могут установить до нескольких сотен деталей в минуту! Благодаря тому, что паяльная паста вязкая, компонент как бы фиксируется на своём месте, и это очень удобно.
После установки всех SMD-компонентов происходит пайка платы. Плата помещается в специальную печь, где за несколько минут нагревается примерно до 300С. Паяльная паста расплавляется, а после остывания обеспечивает механический и электрический контакт компонентов. Для того, чтобы избежать термоударов, важно настроить термопрофиль, то есть скорость нагрева и охлаждения печатной платы. В промышленности используются специальные многозонные печи, в каждой камере которых поддерживается строго заданная температура. Печатная плата, двигаясь по конвейеру, последовательно проходит все зоны печи.
Паяльные печи: промышленная (слева) и для мелкосерийной пайки (справа)
В мелкосерийном и опытном производстве используются компактные печки, в которых платы «запекаются» по одной. Радиолюбители и вовсе иногда приспосабливают для этих целей бытовые духовые шкафы, или нагревают печатную плату горячим воздухом с помощью промышленного фена. Конечно, качество пайки при таких кустарных методах очень нестабильно, но и требования к надёжности радиолюбительских конструкций обычно не высокие.
После окончания пайки плату промывают от остатков флюса, входящего в состав паяльной пасты, сушат и проверяют. Если в конструкции имеются DIP-компоненты, их припаивают в последнюю очередь, и даже на крупных радиозаводах этот процесс производится, как правило, вручную. Дело в том, что автоматизировать DIP-процесс очень сложно и дорого, именно поэтому современная радиоэлектроника в основном проектируется на SMD-компонентах.
Скачать урок в формате PDF
Недорогие инструменты для поверхностной пайки
Intro: Нетрудно потратить тысячи долларов на оборудование для поверхностной пайки. Хороший микроскоп и аппарат горячего воздуха с соплами для разных пакетов микросхем сами по себе сломают банк. К счастью, можно припаять практически любой тип компонентов для поверхностного монтажа, не тратя целое состояние. На этой странице описаны наши любимые недорогие инструменты и принадлежности, начиная с самого необходимого и заканчивая более роскошными предметами.
Bare Essentials:
- Флюс: ключ к пайке для поверхностного монтажа. Flux удаляет оксиды с металла, препятствующие прилипанию к нему припоя, а также помогает распределять тепло. Во время обычной пайки порошковой проволокой весь необходимый флюс содержится в припое. Когда провод касается горячего соединения, флюс вытекает, очищает соединение и предотвращает дальнейшее окисление. Однако при пайке с поверхностным монтажом (закрепите себя) часто припой расплавляется на железе, а затем переносится на соединение.За это время флюс быстро выкипает и становится бесполезным, поэтому на соединение требуется дополнительный флюс. Если перенос припоя таким способом кажется сомнительным, помните, что общий процесс в промышленности, называемый пайкой волной припоя , аналогичен. Флюсированные платы медленно проходят через гигантскую волну расплавленного припоя, который впитывается в соединения. Флюс бывает самых разных типов и аппликаторов. В нашем руководстве по сквозной пайке рассматриваются различные типы, их классификация в отрасли и необходимость очистки остатков.Подводя итог, мы рекомендуем использовать канифольный флюс, RMA (канифоль умеренно активированный) от Kester® (или любого другого производителя, который действительно публикует спецификации по коррозионной активности остатков). Мы, , не думаем, что очистка остатков необходима для этого типа флюса для некритических применений, но вы все равно можете чистить — просто обязательно сделайте это вскоре после пайки, потому что остатки быстро затвердевают. Флюсы «без очистки» имеют очень низкий уровень активации и поэтому менее эффективны, чем активированные флюсы, но отлично подходят для чистых деталей.Используйте флюс без очистки, если вы создаете схемы для НАСА или иным образом страдаете паранойей (и чтобы утолить паранойю, обратите внимание, что многие в промышленности используют флюсы без очистки). Если вы используете водорастворимый флюс, остатки являются коррозионными и должны удаляться теплой водой.
На рисунке выше показаны два способа нанесения флюса: бутылки с иглами или кистями, ручка для флюса и паста флюс в шприце. С флюсовой ручкой легче удерживать флюс только там, где он нужен, чем с иглой или кисточкой.Однако, если вам нужно добавить больше флюса на булавки с мелким шагом, лучше подойдут бутылки, так как ручка может согнуть булавки. Липкость пастообразного флюса помогает удерживать компоненты на месте.
- фитиль для припоя / оплетка: Используется для удаления перемычек / коротких замыканий между контактами. Одним из популярных методов является заливка выводов припоем, а затем удаление излишков припоя, но с этим связаны риски — прочтите наше руководство по поверхностному монтажу QFP для получения дополнительной информации. Подставка под паяльник
- припой: .Мы предпочитаем порошковые припои диаметром 015 или 0,02 дюйма. Мы включаем 63/37 (63% олова, 37% свинца) в наш стартовый набор, но 60/40 тоже работает. Некоторое время назад промышленность по производству печатных плат перешла на 63/37 с 60/40, потому что это было в некоторой степени более эффективным для массовой пайки микросхем поверхностного монтажа. Чтобы узнать о тонких различиях между припоями, см. Раздел о припоях в нашем руководстве по пайке через отверстия. Короче говоря, 63/37 является эвтектическим, что означает, что он замерзает при одной температуре (например, вода), тогда как 60/40 проходит через «пластичное» состояние, когда его части заморожены, а другие остаются жидкими.Это означает, что 63/37 замерзает немного быстрее, течет немного лучше и с меньшей вероятностью образует нарушенный сустав. Если отвлечься от теории, мы не сможем увидеть большой разницы в ручной пайке. Пища для размышлений: вода замерзает при одной температуре, но стакан воды замерзает снаружи вовнутрь — не сразу.
Главное решение при использовании припоя с флюсовой сердцевиной — какой флюс использовать, и наши вышеупомянутые рекомендации применимы и здесь: используйте тип RMA или RA и «без очистки», если вы разрабатываете кардиостимуляторы. И обязательно удалите остатки водорастворимого припоя с флюсовой сердцевиной.
Некоторые рекомендуют для пайки SMD припой с содержанием серебра. Доступен припой, содержащий 2% серебра, но изначально был добавлен для предотвращения растворения припоем серебра на компонентах с серебряным покрытием. Хотя серебряный припой может быть немного прочнее и иметь более высокую проводимость, эти различия чрезвычайно малы и, скорее всего, несущественны.
- Увеличение: При хорошем освещении вы можете обойтись без увеличения для больших шагов (скажем,>.8 мм). Типичная лупа с подсветкой на штанге всегда полезна, но она дает только 2-3-кратное увеличение. 10X или более полезно при проверке компонентов с меньшим шагом на предмет наличия достаточного количества припоя и коротких замыканий между контактами. Лупа — самый дешевый вариант, но ее можно использовать для проверки только после завершения пайки. В процессе пайки можно смотреть через стереомикроскоп с зумом, но он стоит 400 долларов и больше для новых прицелов. Наши рекомендации по прицелу: получить 30-кратное увеличение, стереозум и максимально возможное «рабочее расстояние».Рабочее расстояние — это расстояние между линзами и работой — чем больше места для инструментов и рук, тем лучше. Helping Hands
- паяльник и жало: Во многом это зависит от личных предпочтений, но мы рекомендуем приобрести паяльную станцию с регулируемой температурой не менее 50 Вт и жало 1/32 дюйма в форме долота или отвертки.
- утюг / станция : наша рекомендуемая паяльная станция: Weller WES51 (50 Вт, контроль температуры) или 4 Pos.Винтовая клемма
Небольшие соединения на компонентах для поверхностного монтажа не потребляют столько энергии, поэтому мощность 15 Вт будет работать, но если вы когда-нибудь закончите пайку с большой заземляющей пластиной, большим разъемом или большим проводом, вы захотите у вас была сила. Большинство ручных утюгов не имеют контроля температуры, что означает, что они постоянно теряют свою номинальную мощность в виде тепла, независимо от температуры наконечника. Станция с регулируемой температурой регулирует подачу тепла для поддержания постоянной температуры.Это полезно, потому что утюг будет давить сильнее, если вы паяете много стыков или крупных компонентов, тогда как нерегулируемый утюг будет остывать и нагревать соединения дольше. Стандартные рекомендуемые температуры: 600-700 градусов по Фаренгейту для оловянно-свинцового припоя и 700-800 градусов по Фаренгейту для бессвинцового припоя. Наше видео для поверхностного монтажа было снято при температуре 610-640 градусов по Фаренгейту.
Что касается температуры наконечника, вот видео на YouTube, показывающее температуру наконечника различных утюгов RadioShack® во время пайки.
- Наконечник : Мы используем долото 1/32 дюйма даже для компонентов с шагом 0,5 мм. Наконечники меньшего размера не будут работать с методами, показанными в нашем видео о пайке SMD 101, потому что трудно удерживать припой на самом конце наконечника. Самый популярный метод поверхностной пайки, называемый «волочащейся пайкой», использует еще больший наконечник, чтобы удерживать каплю припоя, которую затем можно протащить по контактам. Некоторые названия перетаскиваемых паяльных наконечников включают «копытные», «мини-волны» и «скошенные» наконечники. Используем сторону наконечника стамески, как показано на видео.Комплект перемычек (350 штук)
Для распайки SMD используются наконечники других форм, но мы не рекомендуем покупать разные наконечники для каждого чипа — просто используйте ChipQuik®, горячий воздух или сковороду.
Короткое видео, демонстрирующее демонтаж SOIC с помощью специального наконечника для демонтажа.
- утюг / станция : наша рекомендуемая паяльная станция: Weller WES51 (50 Вт, контроль температуры) или 4 Pos.Винтовая клемма
- ChipQuik®: По сути, это припой с низкой температурой плавления, который при нагревании остается расплавленным достаточно долго, чтобы все штыри были высвобождены одновременно.
, содержащий сплав, пастообразный флюс в шприце и спиртовые салфетки для очистки. Щелкните ссылку для просмотра 40-секундного демонстрационного видео.
Горячий воздух: необходим для пайки / демонтажа бессвинцовых корпусов
Некоторые микросхемы, такие как QFN (Quad Flat No-Lead), имеют соединения в нижней части микросхемы, которые невозможно паять с помощью обычного утюга. Если не считать SchmartBoard® или просверлить отверстие в печатной плате, для нагрева соединений требуется горячий воздух (сковорода или тостер тоже подойдут — см. Ниже).
Пакет QFN (Quad Flat No-Lead) перевернут, показывая нижние соединения по периметру и радиатор посередине.
Можно приобрести широкий ассортимент насадок, которые подходят практически к любому стилю упаковки, но нам повезло, что мы использовали только круглые наконечники 3/16 дюйма для всех чипов, кроме самых больших. На картинке показана относительно недорогая станция горячего воздуха, в которой предусмотрена регулировка как температуры, так и расхода. На нем также изображено то, что называется инструментом для тиснения, который обычно используется для создания декоративных рельефных рисунков тушью на приглашениях и других проектах в области декоративно-прикладного искусства.Удобно, когда температура воздуха достаточно высока (около 600 ° F) для пайки на поверхности. Станция горячего воздуха нагревается примерно до 900 градусов по Фаренгейту (превышение 800 опасно), но для стандартного припоя на основе свинца (для бессвинцового припоя требуется немного более высокая температура) инструмент для тиснения выполняет свою работу, и вы не можете победить Цена: 25 долларов. Обратите внимание, что стандартные тепловые пушки из хозяйственных магазинов имеют слишком большие сопла; они обычно бывают слишком горячими.
Различные насадки для горячего воздуха
- Предварительный нагреватель / горячая пластина: Для плат с более крупными компонентами или участками земли большая часть тепла, прикладываемого инструментом горячего воздуха, отводится от целевого компонента в окружающую плату.Это означает, что для поднятия целевой детали до температуры оплавления требуется больше времени и тепла, а это всегда увеличивает риск повреждения. Кроме того, большинство компонентов и паяльных паст имеют ограничения на то, насколько быстро они могут нагреваться. Если одна область микросхемы или платы нагревается намного быстрее, чем другая, тепловое расширение может деформировать платы или разрушить стружку. Войдите в предварительный нагреватель или конфорку. Повышая общую температуру платы до 212–250 градусов по Фаренгейту, потребуется меньше тепла от инструмента с горячим воздухом, и тепловой удар будет гораздо менее серьезным.Маделл и Зефир продают довольно недорогие подогреватели, но Mr. Coffee® за 7 долларов хорошо подходит для небольших односторонних досок. Вам понадобится держатель для печатной платы, если вы используете один из воздухонагревателей.
Можете ли вы обойтись без него? Возможно, но имейте в виду, что тепловое повреждение может сократить срок службы вашей доски, а не просто убить ее немедленно. Предварительный нагрев еще более важен для BGA, поскольку их тепловые профили гораздо более важны.
Держатель печатной платы, подогреватель и устройство Mr.Нагреватель кофе
Другой путь использования безвыводных чипов (или если вы хотите использовать небольшое количество плат) — это использовать паяльную пасту и тостер, духовку или сковороду.
Маленькие тостеры можно использовать для оплавления паяльной пасты
Паяльная паста нескольких различных марок
- Паяльная паста: Она состоит из крошечных шариков припоя, плавающих в гелеобразном флюсе. После того, как паста наносится на подушечки, сверху кладется стружка, и доска «оплавляется» (паста плавится) в тостере или горячим воздухом.Пасту можно наносить с помощью шприцев, показанных на рисунке, или с помощью ракеля и трафарета. Для трафаретов попробуйте StencilsUnlimited.com. Пасту в шприцах можно приобрести на сайтах ChipQuik, Zephyrtronics, SMTSolderPaste.com и многих других. Обратите внимание, что паста в шприцах обычно содержит немного меньше металла, чтобы она могла проходить через маленькие иглы. Если вы используете трафарет, возьмите пасту в банке. Главный выбор — паста, не подлежащая очистке, или паста, растворимая в воде. Мы рекомендуем не чистить, если у вас нет оснований полагать, что ваши компоненты трудно паять, т. Е. Старые и, возможно, корродированные.Остатки водорастворимой пасты вызывают коррозию, поэтому обязательно промойте их теплой водой. Имейте в виду, что некоторым дистрибьюторам требуется 2-дневная или более быстрая доставка, так как срок службы пасты уменьшается вне холодильника. Если у вас есть шприц, вам, вероятно, придется также купить иглу и поршень. Игла 22-го калибра — хорошее место для начала, и вы всегда можете нанести более толстый шарик пасты, просто вытолкнув больше.
Паяльная паста при 30-кратном увеличении
Некоторые второстепенные вещи, которые неплохо иметь:
- 4-40 Метчик для крупной резьбы и No.43 Сверло: Если вы хотите удалить остатки флюса, используйте кислотную щетку со спиртом IPA. Обязательно вытрите остатки безворсовой салфеткой (например, салфетки Kim), а не просто перемещайте их по доске.
- Инструмент для удаления заусенцев При нажатии на верхнюю часть в чашу накачивается небольшое количество спирта, при этом остальная часть не испаряется.
- Губка с отверстием: Целая посередине дает вам край, по которому можно протереть железный наконечник, а также место, куда может упасть использованный припой, чтобы вам не пришлось очищать наконечник от старого мусора.
- Мелок для индикации температуры: Метки этого постоянно меняют цвет, когда достигают определенной температуры, и полезны, если вы используете тостер без каких-либо термопар для наблюдения за температурой. Однако нам посчастливилось просто наблюдать за расплавлением припоя. В любом случае разные части платы будут достигать температуры плавления в разное время из-за поверхностей заземления и крупных компонентов, которые поглощают тепло.
- Зажим PanaVise Junior: Альтернатива губке, он содержит завитки из мягкого металла, покрытые флюсом, которые очищают наконечник, не подвергая его термическому воздействию.Это может помочь продлить срок службы наконечника.
- 10-24 Крупный метчик резьбы: Меньшая версия популярного PanaVise имеет слоты для размещения печатных плат и намного более стабильна, чем «руки помощи».
- Датчики касания Softpot: Эта компания производит целую линейку макетных плат для компонентов поверхностного монтажа, включая все, от резисторов до QFP с мелким шагом, QFN и BGA. Это умный продукт, в котором для выравнивания кристалла используются небольшие углубления, предварительно заполненные припоем.Чтобы припаять, вы просто прижимаете припой к каждому контакту маленьким железным наконечником.
- исправление ошибок: Ручка с токопроводящими чернилами позволяет просто рисовать следы на доске. Другой вариант — использовать крошечный провод (например, проволочную обмотку 30-го калибра) для перемычки через ошибки или поднятые контактные площадки. Они называются «зелеными проводами», потому что производители изначально использовали провода зеленого цвета, чтобы они сливались с зеленой печатной платой.
- Plug-in Bread Board Dual Power Supply: (не показан) Тонировщик / очиститель наконечников (который вы все еще можете получить от RadioShack®!) Имеет более агрессивный флюс, который может помочь счистить стойкие остатки с наконечника.Вы также можете приобрести полировальную пластину, чтобы освежить грязный наконечник. Однако слегка отполируйте — как только защитное внешнее покрытие проколото, припой быстро растворяет медь внутри.
Другие ссылки и руководства:
Как сделать паяльник для поверхностного монтажа
Модернизация современного оборудования часто означает перемещение или удаление крошечных компонентов для поверхностного монтажа и использование стандартной пайки. железо кажется таким же эффективным, как использование молотка, чтобы убить муху. Если покупка дорогих рабочих станций оплавления кажется Чтобы разогнать ноутбук, ознакомьтесь с сегодняшними практическими рекомендациями, в которых мы создадим простой инструмент перекомпоновки менее чем за 20 долларов.Не надо знаете, о чем мы говорим? Что ж, вы все равно можете нажать на нее, тем не менее, это впечатляющий подвиг, который может хотите, чтобы вы устанавливали определенные фишки на определенные игровые консоли (или нет).Для сегодняшних практических рекомендаций:
Вам понадобится:
- Паяльник Radio-Shack (10 долларов США)
- Воздушный насос для небольших аквариумов (7 $)
- Виниловый воздушный шланг для аквариума от шести до восьми футов (1 доллар США)
- Тесьма или стальная вата для удаления припайки
- Застежки-молнии
Модифицируйте распайку
Наконечнику утюга нужно немного поработать, чтобы эффективно нагреть воздушный поток.Мы слегка пощипали кончик наконечник с нашими тисками. Кажется, что раздавливание наконечника помогает направить воздушный поток, но мы не считаем это необходимым. Позволь нам знать, что лучше всего подходит для вас.
Следующий трюк — добавить теплообменный материал на кончик утюга. Отрежьте кусок распайки заплести или обзавестись небольшим пучком стальной ваты. Оплетка медная, поэтому она должна более эффективно проводить тепло. Сверните тесьму / шерсть и слегка набейте ею кончик утюга. Не давите так сильно, чтобы ограничить воздух расход много.Материал немного замедлит воздушный поток и поможет излучать тепло утюга в воздух. Осторожно установите наконечник на место, он сделан из мягкого металла.
Обеспечьте приток воздуха к утюгу
Поскольку у нас нет термостойких трубок, мы использовали грушу как громоздкий, но простой теплоизолятор. Просверлите отверстие в конце лампы сверлом 5/32 дюйма или чем-то подобным. Отверстие должно быть круглым для хорошая печать.
Вставьте трубку
Немного поможет обрезка конца виниловой трубки под углом 45 градусов.Слегка смочите конец трубки и вставьте конец в отверстие, которое вы просверлили в лампочке. Присоедините другой конец трубки к выпускному отверстию воздушного насоса. К почистить вещи, прикрепить воздушный шланг к утюгу и вдоль линии электропередачи с помощью стяжек. Позже мы заменили Застежка-молния на ручке с помощью стильной красной изоленты.
Горячие продукты
Для эффективного использования пистолета дайте утюгу достаточно времени прогреться, не включая воздушный насос. Как только это поджаренный, подключите воздушный насос, и он будет готов к работе.Чтобы понять, как работает теплопередача, мы опробовал наш пистолет на нескольких материалах верстака.Трубка термоусадочная
Трубка мгновенно сжимается, без следов ожога, которые мы получили при использовании более примитивных методов.
Горячий клей
Если вы когда-либо использовали паяльник, чтобы разрезать стойкий горячий клей, вам понравится этот трюк.
Горячий клей отличный, но иногда он мешает. Нагретый воздух разжижает горячий клей, не сжигая его.
Монтаж на поверхность:
А как насчет пайки компонентов для поверхностного монтажа? Наша паяльная паста уже заказана, поэтому пришлось ее протестировать. на предварительно собранной плате. Он легко плавит паяные соединения на этой микросхеме.
Заключение
Работа с оборудованием для поверхностного монтажа была для нас постоянной проблемой. Мы ненавидим это признавать, но, возможно, у нас есть фактически прибегли к разрушению некоторых резисторов SMD, чтобы включить некоторые функции в нашем оборудовании. Помимо безумного Как научный взгляд на наш новый инструмент, нам не терпится предложить модифицировать чью-нибудь консоль, эм, деталями из аквариума.А также это, друзья, достаточная причина, чтобы пройти через это практическое руководство. Да, раньше в gideontech строили. Наши не растают
шланг; Нет, мы не читали твое сначала.
[Спасибо, GideonX]
Чтобы действительно отдать должное самому раннему, мы мог бы откопать, посмотрите это из 2001 года. [Via usbmicro.com]
Если вам не нравится покупать вещи у RadioShack, они сами скатали, пожертвовав микроволновой печью. для науки. [Через dansworkshop.com]
Все продукты, рекомендованные Engadget, выбираются нашей редакционной группой, независимо от нашей материнской компании.Некоторые из наших историй содержат партнерские ссылки. Если вы покупаете что-то по одной из этих ссылок, мы можем получать партнерскую комиссию.
Как пользоваться припоем SMD
Ручная пайка устройств поверхностного монтажа (SMD) пугает многих строителей, но это проще, чем кажется. Иногда это проще, чем паять классические компоненты со сквозным отверстием. Действительно!
Обновлено 24 марта 2021 г.
1 — Инструменты
2 — Как удерживать компонент на месте
3 — Другие колодки
4 — Последняя проверка
Инструменты
С этой работой справится любой паяльник.Нет необходимости в дорогих, конкретных, крошечных чаевых. Лично я использую наконечники шириной 1 или 2 мм. Одно но: кончик должен быть чистым, блестящим.
Также следует избегать конических наконечников. Я рекомендую наконечники типа зубила / отвертки.
Если у вас регулируемый утюг, установите его в соответствии с температурой плавления вашего сплава (проверьте его данные) и добавьте не менее 10 или 20 ° C (в зависимости от теплоемкости наконечника вашего утюга вам может потребоваться компенсация путем увеличения температура).
Никаких необычных инструментов не требуется. Паяльная проволока с выводами проще в использовании.К сожалению, сейчас его сложно найти.
Sn60Pb40 в порядке, Sn63Pb37 лучше. Мой любимый сплав — Sn62Pb36Ag2.
Будьте осторожны с дешевыми припоями. Я видел действительно ужасные результаты, вызванные сомнительными продуктами. Паяльная проволока стоит дорого. Особенно для проволоки меньшего диаметра.
Ваша припаянная проволока обязательно должна содержать флюсовый сердечник. Существует несколько степеней коррозионной активности. Также предпочтительны «без очистки» и «без брызг».
Марка припоя значения не имеет. Важен диаметр.0,3 мм идеально подходит для простой и красивой работы. 0,5 мм более универсален и подходит для SMD.
Как удерживать компонент на месте
Компонентыс сквозным отверстием (TH) естественным образом удерживаются на месте благодаря своим ножкам, в то время как, конечно, устройства для поверхностного монтажа (SMD) просто сидят на печатной плате, ожидая лишь малейшего сотрясения, чтобы улететь. И, как бы они ни были маленькими и легкими, они неплохо летают и довольно далеко!
Мои первые попытки были катастрофическими, обычно, к сожалению, заканчивались прожаренным резистором, застрявшим на моем железном наконечнике…
Итак, мы должны держать компонент на месте, без необходимости использования третьей или четвертой руки.
Метод, который я использую с большим успехом, состоит из двух этапов: сначала нанесите небольшое количество припоя на печатную плату.
Нанесите небольшое количество припоя на одну площадку
Затем с помощью тонкого пинцета в одной руке и паяльника в другой поместите компонент на контактные площадки.
Представьте компонент и оплавьте контактную площадкуКогда вы будете готовы, удерживая компонент с помощью пинцета, поместите свой железный наконечник в контакт с каплей припоя. Тепло расплавит («оплавит») припой, который «пропитается» контактом компонента.
Когда припой остывает, компонент остается на месте. У вас есть один блокнот. Поздравляю!
Если вас не устраивает общее расположение компонента, не паникуйте. Вы можете снова переместить компонент, расплавив припой, перетаскивая компонент с помощью пинцета. Это можно повторить несколько раз. Однако в какой-то момент паяное соединение станет тусклым и не будет течь правильно. Это потому, что флюс полностью сгорел. Если у вас есть дозатор флюса (ручка, шприц…), вы можете нанести его.Или дождитесь последнего шага ниже.
На этом этапе необходимо убедиться, что компонент правильно ориентирован и ровно сидит на печатной плате. Если есть угол, вам нужно исправить положение сейчас.
Теперь компонент удерживается на месте. Можно припаять другую сторону. (Но этот должен быть отцентрирован лучше!)Когда положение правильное, пора припаять вторую контактную площадку.
Другие колодки
Теперь пришло время припаять вторую (или более) контактную площадку. Техника более традиционная: припой в одной руке, а утюг в другой.
Как и в случае с компонентами со сквозным отверстием, сначала нагрейте контактную площадку и штырь компонента, а затем нанесите небольшое количество припоя.
Паяные соединения должны быть блестящими и «вогнутыми»
Компоненты для поверхностного монтажа крошечные и требуют меньше тепла, чем их более крупные аналоги со сквозным отверстием. Вы можете сильно повредить их, если позволите утюгу слишком долго соприкасаться со штырями.
Будьте предельно осторожны с самими контактными площадками печатной платы. Вы можете повредить медную площадку, если приложите слишком много тепла и давления.Не заставляйте!
SMD имеют небольшие размеры и требуют меньше припоя, чем контактные площадки TH. Паяное соединение должно быть вогнутым (не выпуклым) и блестящим.
В случае, если вы добавили слишком много припоя, используйте луженую оплетку / фитиль для удаления припоя.
Если вы хотите паять компоненты с более чем двумя контактными площадками или ножками, этот метод также очень хорошо работает, если у вас есть доступ к контактным площадкам компонентов. Например, вы не можете паять BGA или QFN. SO, SOIC, SSOP, TSOP, TQFP и т. Д. В порядке.
Последняя проверка
Необходимо проверить перемычки из припоя.Они легко происходят с SOIC и меньшими пакетами. Чтобы удалить паяльную перемычку, ваш железный наконечник должен быть идеально чистым (удалите припой слегка влажной губкой). Затем оплавьте контактные площадки там, где возник мост. Поскольку припой имеет тенденцию течь, он будет перемещаться к наконечнику вашего железа. Снова очистите наконечник и повторяйте, пока мост не будет удален.
Использование флюса здесь может очень помочь.
Если перемычка слишком важна (слишком много припоя), используйте фитиль для припоя.
Когда остальные контакты припаяны правильно, может быть хорошей идеей немного переделать некоторые из первых контактных площадок.
Поскольку мы паяли их в два этапа, есть вероятность, что количество флюса было недостаточным, и полученное паяное соединение не было таким хорошим, как должно быть. Хорошее паяное соединение является вогнутым, припой должен растекаться и намочить как штырьки, так и контактные площадки, а поверхность должна быть блестящей.
Если он тусклый, образует что-то вроде хрустящей капли и т. Д., То вы должны исправить сустав.
Чтобы исправить это, нанесите немного флюса (ручка, шприц и т. Д.) И оплавьте паяное соединение. Легкий.
На самом деле флюс значительно упрощает работу.
Наслаждайтесь!
Как выбрать лучший паяльник?
Паяльник — это ручной инструмент для пайки, то есть для постоянного соединения двух металлических объектов с использованием другого металла (припоя), который имеет более низкую температуру плавления, чем соединяемые компоненты. Пайка — основной метод сборки электронных компонентов на печатных платах.
Выбор паяльника для электронной мастерской — очень важный шаг в организации этого места.Многие начинающие электронщики могут задаться вопросом, какой паяльник им подойдет, и, следовательно, , как выбрать лучший паяльник . На рынке доступно множество решений, и нужен ли вам простой паяльник, паяльный пистолет или что-то более продвинутое, например паяльная станция зависит от ваших индивидуальных потребностей.
Если вы любитель и только начинаете свое приключение с пайкой, ознакомьтесь со следующими советами.
Прежде всего, вы должны выбрать между простым паяльником (часто описываемым как паяльный карандаш) и паяльным пистолетом, оснащенным трансформатором.Существуют также паяльники с горячим воздухом, но они предназначены для продвинутых пользователей и используются в основном для пайки SMD (устройств поверхностного монтажа), особенно в том числе больших интегральных схем с разъемами, расположенными на нижней поверхности (например, BGA, QFN).
Следует иметь в виду, что паяльные пистолеты нагреваются быстрее, чем паяльные карандаши, но если вам нужен более точный инструмент, выберите последний. Они доступны с гораздо меньшими жалами паяльника, которые идеально подходят для пайки мелких деталей — поэтому такие жала иногда называют «игольчатыми».
При выборе паяльника для электроники следует учитывать ряд важных параметров — мощность, диапазон рабочих температур, размер паяльного жала. Их выбор зависит от целевого назначения паяльника — вы должны обдумать это, прежде чем делать окончательный выбор.
Из этой статьи вы узнаете о:
Подбор паяльника и его назначение
Подбирая паяльник для электроники, нужно знать, для чего он будет нужен.Для пайки кабелей вам понадобится другой паяльник, чем для работы с SMD компонентами.
Если паяльник, который вы ищете, будет использоваться для пайки проводов, особенно с большим поперечным сечением, то лучше всего выбрать инструмент с высокой мощностью ( более 100 Вт ) и большим паяльником. . Для этого подойдут паяльники и простые паяльники.
Для пайки крупных электронных компонентов, особенно используемых для монтажа THT (т.е.е. со штырями) можно выбрать паяльник или карандаш для пайки. Если вы выберете паяльный пистолет, вам понадобится подходящее жало для него.
Для пайки небольших электронных компонентов, особенно SMD, вам понадобится паяльный карандаш с точным паяльным наконечником.
Диапазон мощности и рабочих температур
Паяльнику требуется мощность, достаточная для нагрева деталей до определенной температуры плавления нанесенного припоя. Олово, используемое в электронике в качестве припоя, плавится при температурах от прибл.От 180 ° C до 230 ° C — в зависимости от добавок в сплав. Более низкие температуры предназначены для сплавов, содержащих свинец, которые в настоящее время заменяются (согласно Директиве RoHS с 1 июля 2006 г., за некоторыми исключениями, припой не может содержать свинец). Бессвинцовые припои плавятся в диапазоне температур от прибл. От 210 ° C до 230 ° C. Это означает, что ваш паяльник должен нагревать компонент как минимум до этой температуры.
Во время пайки жало паяльника необходимо нагреть до температуры, намного превышающей температуру плавления припоя, чтобы быстро нагреть заготовку.Типичная температура рабочего жала колеблется от 260 ° C до 350 ° C и зависит от размера паяльного жала и теплоемкости деталей.
Не все паяльники оснащены термостатом — стоит убедиться, что купленный вами инструмент способен поддерживать постоянную температуру жала. Это особенно важно при пайке чувствительных электронных компонентов, поскольку перегрев может их повредить.
В случае пайки или лужения (так называемого лужения) толстых кабелей вам потребуется много энергии, чтобы быстро нагреть большой объем металла в кабеле.Для этого подходят паяльники мощностью более 100 Вт и паяльные пистолеты, оснащенные трансформатором. Для пайки электронных компонентов следует использовать точный паяльный карандаш мощностью от 30 Вт до 90 Вт. Он должен быть оснащен системой точного контроля температуры, чтобы не повредить паяемые компоненты.
Более мощные паяльники нагреваются быстрее и стабильнее поддерживают заданную температуру. Если у купленного инструмента есть хорошая система контроля температуры, лучше выбрать модель с большей мощностью, потому что это значительно повысит комфорт использования.
Тип и форма паяльного жала
Паяльное жало — горячий элемент на конце паяльника — это часть паяльника, которая отвечает за передачу тепловой энергии на припаянную деталь. Являясь самой «трудолюбивой» частью паяльника, она довольно быстро изнашивается. Покупая паяльник, убедитесь, что подходящие паяльники легко купить и заменить. Таким образом, в случае повреждения этого компонента его можно будет без проблем заменить.
Жала паяльника доступны в различных размерах и формах. Наиболее популярны стамески, мини-ложки, копытные и конические наконечники. Помните, что при выборе паяльного жала, помимо формы, следует также обращать внимание на совместимость с вашей паяльной станцией.
Размер паяльного жала должен соответствовать паяльному элементу — чем больше паяльный элемент, тем больше должно быть паяльное жало для более эффективной передачи тепла.Форма наконечника, в свою очередь, влияет на распределение припоя на паяемой поверхности — мини-ложка — самый универсальный и рекомендуемый выбор для новичков.
Эргономика
При выборе паяльника также следует обращать внимание на форму ручки. Удобный паяльник даст нам больше комфорта, поэтому рекомендуется покупать устройство, оснащенное, например, силиконовые накладки на ручку. Если вы предпочитаете пистолетную рукоятку, характерную для паяльных пистолетов, но вам нужен простой паяльник с точным наконечником, подумайте о выборе e.грамм. ИНСТРУМЕНТЫ JBC 55N.
Принадлежности
Нередко к паяльникам прилагаются вспомогательные принадлежности. Хотя это не должно диктовать выбор самого устройства, хорошо бы убедиться, что в купленный набор входит устойчивая подставка, на которой можно разместить паяльник и средство для очистки жала — с металлической стружкой или губкой. Вы также можете приобрести их отдельно.
Аккумуляторные паяльники
Аккумуляторные паяльники становятся все более популярными.До недавнего времени в этой области преобладали газовые паяльники, но в настоящее время на рынке появляется все больше и больше электроприборов такого типа с батарейным питанием.
Аккумуляторные паяльники — идеальное решение, если вам предстоит работа в полевых условиях в местах, где нет доступа к электрической розетке. Такой паяльник хорошо иметь при себе даже в палатке, на кемпинге или в ящике с основными инструментами в машине.
Выбор паяльника — это только начало!
Когда вы покупаете свой первый паяльник, вам также следует вооружиться набором основных принадлежностей и материалов, необходимых для пайки или поддержания вашего нового инструмента в рабочем состоянии.
В первую очередь вам понадобится припой и флюс. Припои обычно выпускаются в виде проволоки различного диаметра. Выбирать его следует в соответствии с размером паяемых элементов — для пайки небольших SMD-элементов лучше всего подойдет провод диаметром 0,25 мм или 0,3 мм. Для лужения концов толстых проводов стоит выбирать припой 3 мм или 4 мм.
Если говорить о припоях, выбирайте бессвинцовые. У них более высокая температура плавления и худшие связывающие свойства, чем у припоев, содержащих свинец (которые больше не используются), но они не так вредны для здоровья и окружающей среды, как свинцовые сплавы.Тем не менее, не забывайте работать в хорошо проветриваемом помещении и использовать, например, специальный дымосос.
Флюс способствует плавлению припоя и предотвращает его окисление. В любительских приложениях канифоль по-прежнему является наиболее широко применяемым флюсом. Он доступен во многих формах — паста, раствор или классическая, твердая форма. Кроме того, существуют и другие флюсы в виде паст, ручек, гелей и т. Д. Также стоит выбрать флюсы «No Clean» , то есть флюсы, которые не вызывают коррозию печатной платы и не требуют промывки печатной платы. после пайки.Если вы уже приобрели флюс, требующий промывки, ознакомьтесь с его описанием — проверьте, следует ли его промывать водой или другими средствами, например изопропиловым спиртом.
Что касается химикатов для пайки, помимо флюсов и очистителей для печатных плат, средство для регенерации наконечников также может быть полезно для очистки остатков припоя на печатных платах. Восстанавливает свежий вид даже самых поврежденных и изношенных наконечников. Его не следует использовать регулярно, так как он не может заменить тщательный уход за наконечником — i.е. регулярно чистить металлической губкой и не перегревать без надобности.
В дополнение к вышеперечисленным принадлежностям для пайки вам наверняка понадобится демонтажный насос для удаления излишков расплавленного связующего, а также пинцет или вакуумный захват для интегральных схем, который поможет удерживать горячие электронные компоненты во время пайки.
Инструменты и методы для поверхностной пайки горячим воздухом
Наилучший способ пайки устройств поверхностного монтажа (SMD) на печатные платы (PCB) — это печь оплавления, но когда это невозможно, можно успешно использовать станцию горячего воздуха.
Обзор
В этой статье будут представлены основы пайки SMD (устройств поверхностного монтажа) с использованием горячего воздуха. Первая часть будет посвящена инструментам и оборудованию; вторая часть продемонстрирует вам некоторые приемы, которые вы должны рассмотреть.
Внимание! Пайка горячим воздухом, как и любая пайка, включает температуру, которая может превышать 500 ° C, что может привести к ожогам глаз, кожи, мебели, драпировок, одежды и т. Д. Будьте очень осторожны при пайке; защита глаз особенно важна.Если какие-либо действия, описанные в этой статье, неясны или кажутся вам рискованными, не выполняйте их. Безопасность — ваша первая обязанность.
Чтобы получить максимальную отдачу от этой статьи, вы должны знать основы ручной пайки. Вы должны быть знакомы с тем, что представляет собой хорошее паяное соединение, различные типы припоя, которые можно использовать, и несколько основных инструментов, общих для сборки электроники. Полезны и знания, полученные при использовании печи оплавления.
Инструменты и оборудование для пайки горячим воздухом
Ключевым элементом оборудования для пайки горячим воздухом является, конечно же, паяльная станция.Блок, показанный на фото ниже, принадлежит автору; он доступен под различными торговыми марками и был произведен в Китае. Его цена близка к нижней границе диапазона, но он кажется достаточно хорошо собранным и более чем подходящим для использования любителями. Профессионалы, вероятно, будут использовать более дорогую станцию.
Как видите, он включает в себя не только термовоздушную паяльную станцию, но и ручную паяльную станцию. Для каждого инструмента предусмотрен отдельный контроль температуры и цифровое считывание (в градусах Цельсия); Термовоздушная станция также имеет ручку регулировки расхода воздуха.
В дополнение к контролю количества воздуха, проходящего через нагревательный элемент пистолета, устройство также включает в себя три наконечника, которые можно использовать для регулирования выхода горячего воздуха. На фото ниже показаны размеры сопел в комплекте; другие размеры и формы доступны как аксессуары.
Для эффективного использования паяльной станции с горячим воздухом необходимо несколько дополнительных элементов. На фото ниже приведены примеры некоторых из самых необходимых вещей.
- Шприц содержит паяльную пасту , которая представляет собой смесь очень мелких частиц припоя и флюса. При нажатии на поршень шприца паяльная паста проталкивается через тупую иглу, которая часто используется для нанесения припоя и флюса непосредственно на контактные площадки печатной платы перед установкой компонентов для поверхностного монтажа. Паяльная паста также доступна в небольших баночках, из которых паста может быть перенесена в шприц или нанесена непосредственно на печатную плату с помощью очень маленького инструмента, чтобы окунуть пасту и нанести на контактные площадки.
- Проволока для припоя используется (с помощью ручного паяльника) для подкраски или зачистки стыков, закороченных на соседние контакты, или стыков, которые плохо соединены.
- Изопропиловый спирт используется вместе с мягкой зубной щеткой, ватными тампонами и / или тканью для очистки поверхности печатных плат перед пайкой и для удаления остатков флюса после пайки. Показанный спирт почти на 100% чист, но можно использовать меньшую концентрацию (например, чистоту 91%), если дать остаточной воде дополнительное время для испарения.
- Flux необходим для получения хорошей текучести и покрытия расплавленного припоя. Помимо жидкого флюса (как показано), флюс также доступен в виде аппликатора в виде ручки и в форме геля для нанесения с помощью шприца и тупой иглы.
- Пара пинцетов с загнутым носом полезна для работы с SMD; инструмент для вакуумного захвата — еще один вариант.
- Паяльная оплетка используется (с помощью ручного паяльника) для удаления излишков припоя с выводов компонентов, тем самым устраняя короткое замыкание между выводами.Паяльная оплетка доступна разной ширины для компонентов различных размеров; полезны как 2,0 мм, так и 3,0 мм (показано).
Процесс
Зона испытательной доски
Пайка горячим воздухом обычно используется для устройств поверхностного монтажа, прикрепляемых к печатным платам. В следующих описаниях используется этот метод и основное внимание уделяется небольшому участку печатной платы, как показано ниже; верхняя фотография показывает плату, которая была заполнена и припаяна оплавлением в печи, а нижняя фотография показывает голую плату.
Как видите, на фотографиях показано только семь мест расположения компонентов, но их разнообразия будет достаточно, чтобы продемонстрировать основные методы пайки горячим воздухом: J1 — это разъем mini-USB, R3 и R4 — резисторы 0805, C1, C4, и C5 — конденсаторы 0805, а U1 — преобразователь USB-to-UART TSSOP16.
Выбор и применение паяльной пасты
Паяльная паста доступна в различных смесях металлов, но проще всего использовать примерно 60% олова и 40% свинца.Это конфигурация, используемая на изображениях и видео в этой статье, и ее настоятельно рекомендуется использовать. Если у вас есть опыт работы с другими типами припоев (например, бессвинцовые), и вы чувствуете себя комфортно, вы можете их использовать, но вам потребуется внести изменения в описанный здесь процесс.
Следующим шагом после тщательной очистки голой печатной платы спиртом является нанесение припоя. Для любителей есть два основных метода нанесения паяльной пасты на печатную плату для устройств поверхностного монтажа: вручную с помощью шприца или очень маленького шпателя (например, деревянной зубочисткой) и вручную с помощью трафарета.
На фото ниже показана наша тестовая плата с паяльной пастой, нанесенной шприцем. В случае компонентов 0805 на каждую подушечку наносили каплю пасты, но в случае подушек меньшего размера на подушечки наносили полоску пасты. (Как станет более очевидно в процессе оплавления, на каждой контактной площадке слишком много пасты.)
Размер игл для дозирования паяльной пасты определяется калибром, меньшие числа соответствуют меньшим иглам.Те, которые потенциально подходят для нанесения паяльной пасты, имеют размер от 14 до 20. Автор предпочитает калибр 16; что-то большее дает слишком много припоя, а что-то меньшее очень трудно протолкнуть. Надеюсь, вы добьетесь лучших результатов, чем показанные выше.
Некоторые примеры игл для заполнения показаны на следующей фотографии; размеры обозначены цветом пластикового разъема, но цветовой код варьируется от одного поставщика к другому. Учтите, что кончики игл могут быть обрезаны под прямым углом или под углом; автор предпочитает квадратные наконечники.
На фото ниже паста нанесена по трафарету. Улучшения в размещении пасты и дозированном количестве очевидны. (Подробнее об использовании трафаретов для паяльной пасты читайте в этой статье.)
Размещение деталей SMD
Детали размещены на своих местах на двух следующих фотографиях. Очевидным преимуществом платы с нанесенной по трафарету пастой является то, что точное расположение контактных площадок более очевидно, что приводит к более точному размещению компонентов.Не столь очевидное преимущество пасты, наносимой шприцем, заключается в том, что дополнительная паста более надежно удерживает детали перед пайкой.
Актуальная пайка горячим воздухом
В этой статье обсуждаются профили пайки оплавлением, которые могут вас заинтересовать. В нем описаны четыре стадии пайки оплавлением и указаны время и температура для каждой из четырех стадий при использовании печи для пайки оплавлением. Четыре этапа: предварительный нагрев, выдержка, оплавление и охлаждение.В широком смысле они применимы для пайки оплавлением с помощью термовоздушной станции.
Проблема в том, что при использовании станции горячего воздуха задействовано больше переменных, чем при использовании печи оплавления. Помимо времени и температуры, переносной термофен учитывает несколько других факторов, в том числе размер сопла, расстояние от сопла до припоя, угол воздушного потока от сопла к припою, скорость воздух, выходящий из сопла, скорость, с которой сопло перемещается по участкам, подлежащим пайке, и, вероятно, другие факторы, которые здесь не учитываются.
В идеале пистолет следует держать так, чтобы отверстие сопла было перпендикулярно поверхности печатной платы и примерно на 12 мм (0,5 дюйма) над ней. Следует следить за тем, чтобы сопло было направлено на паяемые контакты / контактные площадки, избегая при этом корпусов компонентов в максимально возможной степени. Движение сопла должно быть как можно более равномерным; однако более крупные штифты / подушки (например, для монтажных ножек J1) потребуют больше времени горячего воздуха, чем меньшие штифты / подушки , и поэтому сопло нужно будет чаще перемещать по ним.Как правило, стоит мысленно разделить большие печатные платы на более мелкие секции и полностью припаять одну секцию, прежде чем переходить к следующей. Опыт поможет отточить эти техники.
В результате всех этих переменных пайка горячим воздухом становится очень персонализированной — каждый человек разрабатывает свою собственную комбинацию переменных, которая кажется ему наиболее подходящей. Рискуя оттолкнуть всех «ученых» читателей, на ум приходит термин «стиль».
В двух следующих видео показано, как автор паяет два ранее показанных варианта секции тестовой платы: один, на который паяльная паста наносилась с помощью шприца, а другой — с помощью трафарета.За исключением этой разницы, используемые методы и условия должны были быть идентичными; в обоих случаях температура была установлена на 280 ° C, поток воздуха был установлен на 3, и использовалось 8-миллиметровое сопло.
Увы, капризы все еще закрадывались, часть из которых можно объяснить трудностью работы с несколькими сантиметрами под объективом камеры, с тремя световыми стойками и штативом. Тем не менее, были непреднамеренные различия в действиях; посмотрите два видео и обратите внимание на различия.
Пайка с шприц-пастой:
Пайка печатной платы с трафаретной вставкой:
На фото ниже показаны результаты работы на обклеенной шприцем плате. На всех контактных площадках слишком много припоя, но это отрицательно сказывается только на двух компонентах. У J1 два или три верхних контакта замкнуты. U1 имеет штыри 4, 5 и 6 перемычкой. Контакты 9 и 10, возможно, не подключены к контактным площадкам, а контакты 11, 12, 13 и 14, возможно, соединены перемычкой.Доработка определенно потребуется и, вероятно, будет утомительной.
На следующем фото показаны результаты работы на доске, наклеенной по трафарету. C1 ударился во время процесса пайки, но во время процесса оплавления был вытянут ближе к его предполагаемому положению. C5, который также подвергся ударам, был полностью вытянут во время оплавления на место. J1 остался на месте, несмотря на то, что его ударили, благодаря пластиковым штифтам, которые выступают из нижней части домкрата через отверстия в плате.И у U1 нет перемычек для пайки или других функциональных проблем, несмотря на то, что он немного смещен.
Ради общего вида, C1 следует переместить, чтобы он находился на его контактных площадках, но даже в этом случае нет проблем с пайкой, которые могли бы вызвать функциональный сбой.
Переделка картона с шприцем
Rework является частью пайки устройства для поверхностного монтажа, и он был абсолютно необходим на приклеенной шприцем плате. Была предпринята попытка очистить паяные перемычки от U1 медной оплеткой, но безуспешно.В результате U1 был удален, как показано в следующем видео.
Удаление старого U1:
После удаления U1 контактные площадки были очищены от припоя с помощью медной оплетки, а поверхность очищена от остатков флюса изопропиловым спиртом. Обратите внимание, что блестящая область между контактами 10 и 11 U1 не является остатком припоя, а является следом печатной платы, который был слишком коротким, чтобы его можно было закрыть паяльной маской. Кроме того, паяные перемычки между тремя верхними контактами J1 были очищены медной оплеткой до того, как были сделаны две фотографии ниже.
Фотография непосредственно выше показывает плату после повторной вставки подушечек U1 с помощью шприца; пасты еще слишком много. На видео ниже показан процесс пайки U1.
Новый U1 на месте и припаивается:
Из-за избытка паяльной пасты между некоторыми контактами U1 образовались перемычки. На видео ниже показано, как использовать пайку для очистки мостов.Обратите внимание, что на железо следует нанести свежий припой, чтобы получить наилучшие результаты от использования оплетки. Оплетка должна быть наложена на штыри с перемычкой, а луженое железо повернуто почти параллельно печатной плате, когда она накладывается на оплетку. Важно нагреть оплетку утюгом и позволить припою в оплетке нагреть контакты, а не напрямую нагревать перемычки.
Очистка мостов от контактов 1-8 и 9-16 нового U1:
После очистки перемычек от пайки и очистки области вокруг U1 от остатков флюса пора провести осмотр.Наконец, работа проходит, как показано в последнем видео.
Заключительная проверка:
Выводы
При небольшой практике пайка горячим воздухом не представляет особой сложности, но каждый человек должен найти подходящий для него баланс температуры, воздушного потока, размера сопла и движения пистолета. Очевидно, что более эффективное нанесение паяльной пасты сокращает количество переделок, что значительно экономит время. Трафареты обычно быстрее и точнее наносят паяльную пасту, чем шприцы и тупые иглы.
Горячий воздух лучше всего подходит для удаления или изменения положения SMD-корпусов (особенно многополюсных ИС), но он не приближается к простоте использования и скорости печи оплавления. По этой причине их называют «горячими переделанными станциями».
Если у вас есть дополнительные советы и методы пайки горячим воздухом, опубликуйте их в разделе комментариев ниже.
Паяльник оплавления| Hackaday.io
Теперь, что на самом деле делает пайка оплавлением и зачем она вообще нам нужна?
Вы видите, что большинство из нас обычно используют паяльник для пайки электронных компонентов на печатной плате.но иногда это становится действительно сложной задачей, когда дело доходит до пайки SMD-деталей, потому что они настолько крошечные, что их паять вручную немного сложно. Поэтому вместо этого мы используем подогреваемую тарелку. Наносим паяльную пасту на контактные площадки печатной платы и кладем на нее компонент. Затем мы помещаем печатную плату в электрическую плиту, которая заметно нагревает плату снизу до точки, когда паяльная паста плавится и соединяет компонент с печатной платой.
Давайте посмотрим, какие компоненты нам нужны,
- Сухой утюг — я использую этот утюг мощностью 600 Вт, который есть у меня дома, но вы можете использовать любой старый электрический утюг
- Твердотельное реле или обычное реле
- Ардуино или любой другой микроконтроллер
- Дисплей — Я использую сенсорный экран для Arduino, который придает ему красивый интерфейс.
- Источник питания 5 В для Arduino — я использую этот тип SMPS, потому что легче подключать провода к винтовым клеммам.
- Модуль MAX6675 с термопарой типа K для считывания температуры.
- Вентилятор охлаждения 5В
Так почему я решил его модернизировать?
Что ж, с моей предыдущей настройкой у меня было несколько проблем, например, я не мог знать температуру утюга, и мне в значительной степени приходилось полагаться на встроенный термостат, который не так точен.Поэтому я добавил термопару внутрь утюга, чтобы считывать температуру конфорки.
Принцип работы этой установки довольно прост, после включения у нас есть некоторые базовые настройки на дисплее, которые мы можем настроить в соответствии с нашими потребностями. Процесс пайки оплавлением состоит из 3 этапов.
- Первый — это предварительный нагрев, при котором вся плата нагревается до определенной температуры (около 120–150 ° C).
- Когда температура достигает этого значения, процесс оплавления начинается с заданной температуры на короткое время (около 180-200 ° C).
- И все остывает в конце, когда процесс оплавления закончился.
Я использую таймер, чтобы отслеживать время перекомпоновки. При необходимости предопределенные значения могут быть изменены в коде. При необходимости мы также можем изменить значения во время его работы.
После установки всех значений нажимаем кнопку пуска, реле активируется и начинает этап предварительного нагрева. Здесь температура утюга постепенно увеличивается. По достижении заданной температуры он переходит в стадию оплавления, и таймер начинает обратный отсчет.На этапе оплавления. Если температура превышает установленное значение, оно отключит питание, выключив реле, и включит его снова, когда температура опустится ниже установленного значения.
Когда обратный отсчет закончился, реле выключилось. Раньше для охлаждения утюга требовалось некоторое время, поэтому я решил добавить небольшой вентилятор постоянного тока, который нагнетает воздух, чтобы ускорить процесс охлаждения. Таким образом, вы можете быстро и легко оплавить наши печатные платы.
Ручная пайка для поверхностного монтажа | Уэйн и Лэйн
Это обзорная страница компонентов, предназначенных для поверхностного монтажа вручную.Это часть нашей пайки для поверхностного монтажа может быть проще, чем вы думаете! серии.
При ручной пайке используются утюг, припой, припой и иногда флюс для прикрепления компонентов поверхностного монтажа к печатной плате.
Инструменты
Паяльник с регулируемой температурой
Утюг без температурного контроля за 10 долларов — не лучший вариант для изучения пайки SMT. Вам не нужен дорогой утюг, но вам нужно уметь контролировать температуру.
Один из утюгов, который нам нравится здесь, в Wayne and Layne, — это Weller WCL100.Ручка идет от 0 до 5, вместо того, чтобы напрямую регулировать температуру, но мы сделали много хороших стыков с этим маленьким парнем. Это относительно недорого, около 50 долларов. Он поставляется с наконечником ST3, который может быть шире, чем вы привыкли, но на самом деле относительно полезен для пайки. Многим людям может быть удобнее использовать ST7 или ST8.
Припой
Для ручной пайки поверхностного монтажа мы предпочитаем использовать свинцовый припой 60/40 0,015 ″. При необходимости можно использовать бессвинцовый припой, а для некоторых методов может пригодиться более толстый припой.
Фитиль для припоя
Одна вещь, которую мы считаем важной для ручной пайки SMT, — это фитиль припоя. Это также известно как оплетка для распайки. Он сделан из тонкой медной проволоки в плоской оплетке, иногда с флюсом. Помогает удалить припой.
Пинцет
Пинцет с острым концом необходим для перемещения и удержания компонентов поверхностного монтажа. Нам нравятся те, у которых изогнутый кончик. Вы можете получить достойные примерно за 6 долларов в магазине на нашем веб-сайте.
Некоторые люди используют инструменты для вакуумного захвата, чтобы подбирать и размещать компоненты.Мы этого не делаем.
Флюс
Мы не всегда используем флюс при ручной пайке плат SMT, но некоторые люди этим доверяют. Флюс обычно используется при ручной пайке SMT, потому что более тонкий припой обычно содержит меньше флюса, а паяные соединения SMT часто нагреваются более одного раза, поэтому небольшой флюс, который был там с самого начала, был израсходован.
Лупа и свет
Вам понадобится много света при пайке SMT, и вам может потребоваться некоторое увеличение во время работы. Есть хорошие козырьки с 2-мя козырьками.5-кратное увеличение, как у OptiVisors, а также у ламп со встроенными лупами.
Когда вы закончите работу, вам может понадобиться что-нибудь вроде 10-кратной лупы, чтобы проверить свою работу. Есть даже 10-кратные лупы со встроенным освещением!
Методы
Удаление припоя с помощью фитиля для припоя
Для использования наложите тесьму на стык и положите утюг поверх тесьмы. Тепло (и флюс) затягивает припой в оплетку. Используйте конец тесьмы, и если он не работает, сначала отрежьте небольшой кусок тесьмы от катушки и используйте его.В зависимости от обстоятельств тепло может перемещаться по оплетке вместо того, чтобы нагревать область стыка. Если оплетка старая, флюс может не подойти. Вы можете добавить флюс, чтобы зарядить тесьму еще больше.
Пайка резисторов и конденсаторов
Такие вещи, как резисторы и конденсаторы, часто имеют форму маленьких прямоугольников, где два противоположных конца являются контактами. Чтобы припаять их вручную, добавьте немного припоя на одну площадку на плате. С помощью пинцета удерживайте компонент на плате так, чтобы один конец находился над припоем.Прикоснитесь утюгом к штырю на контактной площадке с припоем. Компонент должен плотно прилегать к плате, а оба конца должны совпадать с контактными площадками. Добавьте немного припоя на другой конец, создав «галтели» между контактной площадкой и компонентом. В идеале на конце не должно быть большого шарика припоя. Если есть, используйте фитиль для припоя, чтобы удалить лишний припой.
Пайка SOIC и прочего с торчащими ножками
Распространенным более крупным чипом для поверхностного монтажа является SOIC.Это расшифровывается как «интегральная схема с мелкими контурами». Добавьте немного припоя на одну площадку на плате. Воспользуйтесь пинцетом, чтобы совместить чип с контактными площадками на доске. Слегка надавите пинцетом, протолкнув микросхему на плату, в припой, а затем прикоснитесь утюгом к контакту на контактной площадке с припоем. Микросхема должна плотно прилегать к плате, а все штыри должны быть на одной линии с контактными площадками. Вы можете повторно нагреть пэд несколько раз, чтобы чип полностью прижался вниз, а пэды выровнялись.Припаяйте другой штифт с другой стороны, чтобы закрепить (или «зафиксировать») микросхему на месте.
Припаиваем остальные контакты. Когда закончите, осмотрите доску. Исправьте любые перемычки припоя. Небольшие перемычки можно легко закрепить, просто нагревая соответствующие штыри и «вытягивая» припой, а более крупные перемычки можно легко закрепить с помощью фитиля для припоя.
В качестве альтернативы, если вы не хотите паять каждый вывод по одному, после того, как вы закрепили чип на месте, добавьте много припоя на контакты и контактные площадки.Затем используйте фитиль для припоя, чтобы очистить его.
Паяльная пайка
Пайка волочением — еще один метод быстрой пайки многополюсных корпусов. Идея состоит в том, чтобы закрепить чип, нанести флюс на выводы, а затем провести шарик припоя по контактам.