Site Loader

Содержание

Работает переменный ток. Основные параметры переменного тока

В данной статье поговорим о параметрах переменного тока. Например, всем привычная бытовая розетка является источником переменного тока и переменной ЭДС.

Изменение ЭДС и изменение тока линейной нагрузки, подключенной к такому источнику, будет происходить по синусоидальному закону. При этом переменные ЭДС, переменные напряжения и токи, можно характеризовать основными четырьмя их параметрами:

Есть и вспомогательные параметры:

    угловая частота;

    фаза;

    мгновенное значение.


Периодом Т переменного тока называется промежуток времени, за который ток или напряжение совершает один полный цикл изменений.

Поскольку источником переменного тока является генератор, то период связан со скоростью вращения его ротора, и чем выше скорость вращения витка или ротора генератора, тем меньшим оказывается период генерируемой переменной ЭДС, и, соответственно, переменного тока нагрузки.

Период измеряется в секундах, миллисекундах, микросекундах, наносекундах, в зависимости от конкретной ситуации, в которой данный ток рассматривается. На вышеприведенном рисунке видно, как напряжение U с течением времени изменяется, имея при этом постоянный характерный период Т.


Частота f является величиной обратной периоду, и численно равна количеству периодов изменения тока или ЭДС за 1 секунду. То есть f = 1/Т. Единица измерения частоты — герц (Гц), названная в честь немецкого физика Генриха Герца, внесшего в 19 веке немалый вклад в развитие электродинамики. Чем меньше период, тем выше частота изменения ЭДС или тока.

Сегодня в России стандартной частотой переменного тока в электрических сетях является 50 Гц, то есть за 1 секунду происходит 50 колебаний сетевого напряжения.

В других областях электродинамики используются и более высокие частоты, например 20 кГц и более — в современных инверторах, и до единиц МГц в более узких сферах электродинамики. На приведенном выше рисунке видно, что за одну секунду происходит 50 полных колебаний, каждое из которых длится 0,02 секунды, и 1/0,02 = 50.


По графикам изменения синусоидального переменного тока с течением времени видно, что токи различной частоты содержат разное количество периодов на одном и том же отрезке времени.


За один период фаза синусоидальной ЭДС или синусоидального тока изменяется на 2пи радиан или на 360°, поэтому угловая частота переменного синусоидального тока равна:


Под термином «фаза» понимают стадию развития процесса, и в данном случае, применительно к переменным токам и напряжениям синусоидальной формы, фазой называют состояние переменного тока в определенный момент времени.

На рисунках можно видеть: совпадение напряжения U1 и тока I1 по фазе, напряжения U1 и U2 в противофазе, а также сдвиг по фазе между током I1 и напряжением U2. Сдвиг по фазе φ измеряется в радианах, долях периода, в градусах. Так, сдвиг по фазе между током I1 и напряжением U2 равен φ = π радиан, как и между напряжением U1 и напряжением U2.

Амплитуда Uм и Iм


Говоря о величине синусоидального переменного тока или синусоидальной переменной ЭДС, наибольшее значение ЭДС или тока называют амплитудой или амплитудным (максимальным) значением.

Наибольшее значение величины, совершающей гармонические колебания (например, максимальное значение силы тока в переменном токе, отклонение колеблющегося маятника от положения равновесия), наибольшее отклонение колеблющейся величины от некоторого значения, условно принятого за начальное нулевое.

Если речь о генераторе переменного тока, то ЭДС на его выводах дважды за период достигает амплитудного значения, первое из которых +Eм, второе -Eм, соответственно во время положительного и отрицательного полупериодов. Аналогичным образом ведет себя и ток I, и обозначается соответственно Iм.

Мгновенное значение u и i


Значение ЭДС или тока в конкретный текущий момент времени называется мгновенным значением, они обозначаются маленькими буквами u и i. Но поскольку эти значения все время меняются, то судить о переменных токах и ЭДС по ним неудобно.

Действующие значения I, E и U


Способность переменного тока к совершению какой-нибудь полезной работы, например механически вращать ротор двигателя или производить тепло на нагревательном приборе, удобно оценивать по действующим значениям ЭДС и токов.

Так, называется значение такого постоянного тока, который при прохождении по проводнику в течение одного периода рассматриваемого переменного тока, производит такую же механическую работу или такое же количество теплоты, что и данный переменный ток.

Действующие значения напряжений, ЭДС и токов обозначают заглавными буквами I, E и U. Для синусоидального переменного тока и для синусоидального переменного напряжения действующие значения равны:

Действующее значение тока и напряжения удобно практически использовать для описания электрических сетей. Например значение в 220-240 вольт — это действующее значение напряжения в современных бытовых розетках, а амплитуда гораздо выше — от 311 до 339 вольт.

Так же и с током, например когда говорят, что по бытовому нагревательному прибору протекает ток в 8 ампер, это значит действующее значение, в то время как амплитуда составляет 11,3 ампер.

Так или иначе, механическая работа и электрическая энергия в электроустановках пропорциональны действующим значениям напряжений и токов. Значительная часть измерительных приборов показывает именно действующие значения напряжений и токов.

Сейчас невозможно представить себе человеческую цивилизацию без электричества. Телевизоры, компьютеры, холодильники, фены, стиральные машины — вся бытовая техника работает на нем. Не говоря уже о промышленности и больших корпорациях. Основным источником энергии для электроприемников является переменный ток. А что это такое? Каковы его параметры и характеристики? Чем отличаются постоянный и переменный ток? Мало кто из людей знает ответы на эти вопросы.

Переменный против постоянного

В конце девятнадцатого века, благодаря открытиям в области электромагнетизма, возник спор по поводу того, какой же ток лучше применять, чтобы удовлетворить человеческие потребности. Как же все начиналось? Томас Эдисон в 1878 году основал свою компанию, которая в будущем стала знаменитой General Electric. Компания быстро разбогатела и завоевала доверие инвесторов и простых граждан Соединенных Штатов Америки, так как было построено по всей стране несколько сотен электростанций, работающих на постоянном токе. Заслуга Эдисона — в изобретении трехпроводной системы. Постоянный ток замечательно работал с первыми электрическими двигателями и лампами накаливания. Это были фактически единственные приемники энергии на то время. Счетчик, который также был изобретен Эдисоном, работал исключительно на постоянном токе. Однако в противовес развивающейся компании Эдисона выступили конкурентные корпорации и изобретатели, которые хотели противопоставить постоянному току переменный.

Недостатки изобретения Эдисона

Джордж Вестингауз, инженер и бизнесмен, заметил в патенте Эдисона слабое звено — огромные потери в проводниках. Однако ему не удалось разработать конструкцию, которая могла бы конкурировать с этим изобретением. В чем же недостаток Эдисоновского постоянного тока? Основная проблема — передача электроэнергии на расстояния. А так как при его увеличении растет и сопротивление проводников, то это значит, что будут увеличиваться и потери мощности. Для понижения этого уровня необходимо либо повышать напряжение, а это приведет к понижению силы самого тока, либо утолщать провод (то есть снижать сопротивление проводника). Способов эффективного повышения напряжения постоянного тока в то время не было, поэтому электростанции Эдисона держали напряжение, близкое к двум сотням вольт. К сожалению, передаваемые таким образом потоки мощности не могли обеспечить нужды промышленных предприятий. Постоянный ток не мог гарантировать генерацию электроэнергии мощным потребителям, которые находились на значительном расстоянии от электростанции. А повышать толщину проводов или строить больше станций было слишком дорого.

Переменный ток против постоянного

Благодаря разработанному в 1876 году инженером Павлом Яблочковым трансформатору, изменять напряжение у переменного тока было очень просто, что давало потрясающую возможность передавать его на сотни и тысячи километров. Однако на тот момент не существовало двигателей, которые работали бы на переменном токе. Соответственно, не было и генерирующих станций, и сетей для передачи.

Изобретения Николы Теслы

Несомненное преимущество постоянного длилось недолго. Никола Тесла, работая инженером в фирме Эдисона, понял, что постоянный ток не может обеспечить человечество электроэнергией. Уже в 1887 году Тесла получил сразу несколько патентов на аппараты переменного тока. Началась целая борьба за более эффективные системы. Основными конкурентами Теслы были Томсон и Стенли. А 1888 году однозначную победу получил сербский инженер, который предоставил систему, способную транспортировать электрическую энергию на расстояния в сотни миль. Молодого изобретателя быстро взял к себе Вестингауз. Однако сразу же началось противостояние между компаниями Эдисона и Вестингауза. Уже в 1891 году была разработана Теслой система трехфазного переменного тока, что позволило выиграть тендер по строительству огромной электрической станции. С тех пор однозначно позицию лидера занял переменный ток. Постоянный же сдавал свои позиции по всем фронтам. Особенно когда появились выпрямители, способные преобразовывать переменный ток в постоянный, что стало удобно для всех приемников.

Определение переменного тока

Пример простейшего генератора

В качестве самого простого источника используют прямоугольную рамку, изготовленную из меди, которая закреплена на оси и вращается в магнитном поле при помощи ременной передачи. Концы этой рамки припаяны контактными кольцами к медным, которые скользят по щеткам. Магнит создает равномерно распределенное в пространстве магнитное поле. Плотность силовых магнитных линий здесь одинакова в любой части. Вращающаяся рамка пересекает эти линии, и на ее сторонах индуцируется переменная электродвижущая сила (ЭДС). С каждым поворотом направление суммарной ЭДС меняется на обратное, так как рабочие стороны рамки за оборот проходят через разные полюса магнита. Так как меняется скорость пересечения силовых линий, то становится другой и величина электродвижущей силы. Поэтому если равномерно вращать рамку, то индуктированная электродвижущая сила периодически будет меняться как по направлению, так и по величине, ее можно измерить при помощи внешних приборов и, как следствие, использовать для того, чтобы создавать переменный ток во внешних цепях.

Синусоидальность

Что это такое? Переменный ток графически характеризуется волнообразной кривой — синусоидой. Соответственно, ЭДС, ток и напряжение, которые изменяются по этому закону, называются параметрами синусоидальными. Кривая так названа потому, что является изображением тригонометрической переменной величины — синуса. Именно синусоидальный характер переменного тока — наиболее распространенный во всей электротехнике.

Параметры и характеристики

Переменный ток — это явление, которое характеризуется определенными параметрами. К ним относят амплитуду, частоту и период. Последний (обозначается буквой Т) — это промежуток времени, в течение которого напряжение, ток или ЭДС совершает цикл полного изменения. Чем быстрее будет вращение ротора у генератора, тем период будет меньше. Частотой (f) называют количество полных периодов тока, напряжения или ЭДС. Она измеряется в Гц (герцах) и обозначает количество периодов за одну секунду. Соответственно, чем больше период, тем меньше частоты. Амплитудой такого явления, как переменный ток, называют наибольшее его значение. Записывается амплитуда напряжения, тока или электродвижущей силы буквами с индексом «т» — U т I т, Е т соответственно. Часто к параметрам и характеристикам переменного тока относят действующее значение. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Переменный электрический ток — ток с меняющимися во времени направлением и силой. Те токи, которые изменяются только по величине, называются пульсирующими. В промышленности и быту чаще всего используется переменный

Преобразование в переменный электрический можно выполнить следующим образом. Поместим в равномерное постоянное магнитное поле виток проволоки. При равномерном вращении этого витка вокруг оси будет непрерывно меняться как по величине, так и по направлению. Вследствие этого, по в витке образуется переменная по направлению и величине Если такой виток присоединить к внешней цепи, то в ней мы получим переменный электрический ток.

Когда плоскость вращающегося витка становится перпендикулярна по отношению к силовым линиям данного магнитного поля, проходящий сквозь нее магнитный поток — наибольший (Φ = Φmax), скорость же изменения его равна нулю (ΔΦ/Δt = 0), так как, проходя через такое положение, проводники витка проскальзывают по силовым линиям поля, не пересекая их. А значит, ЭДС индукции, образующаяся в витке, станет равна нулю (Е = 0).

Когда же плоскость витка параллельна силовым линиям поля, поток, пронизывающий ее, равен нулю (Φ = 0), скорость же изменения его в таком положении наибольшая ((ΔΦ/Δt)max), поскольку проводники витка движутся перпендикулярно относительно силовых линий.

ЭДС, возникающая в этом случае в витке, имеет наибольшее значение (E = Emax). При дальнейшем вращении витка скорость изменения потока, пронизывающего виток, будет увеличиваться; значит, ЭДС по абсолютной величине будет возрастать от 0 до Emax. Так, уровень ЭДС индукции во вращающемся витке за один его оборот изменяется от -Emax до +Emax.

Разомкнем виток проволоки и присоединим его к осциллографу. Когда виток вращается в магнитном поле, осциллограф запишет все изменения тока, по которым можно будет судить и об изменении электродвижущей силы в витке за время одного оборота.

Ток, возникающий в витке при его равномерном обращении в равномерном магнитном поле, как показывает осциллограмма, изменяется синусоидально. Такой ток называют переменным синусоидальным.

Промежуток времени, за который электродвижущая сила выполняет одно колебание, называют периодом переменного тока.

Буквенное обозначение периода колебания — Т. Число колебаний за 1 секунду — частота тока, которую обозначают буквой f. Ее единица измерения — герц (Гц):

f = 1/T, либо T = 1/f.

Если значение ЭДС в некоторый произвольный момент времени мы обозначим через е (ее мгновенное значение), а самое большое значение (амплитудное) — через Emax, то закон, выражающий зависимость е от времени, в случае синусоидального тока можно выразить в виде следующего выражения:

e = Emax˖sin (2/T)t.

В большинстве стран в промышленности и в быту используют переменный электрический ток с частотой 50 Гц, продолжительностью периода 0,02 секунды.

Получение переменного электрического тока из механической энергии выполняется при помощи специальных машин, которые называют генераторами. В основе принципа их работы — закон электромагнитной индукции. Самая простая схема генератора может быть представлена в виде рамки, вращающейся вокруг оси в магнитном поле электромагнита или При вращении рамки в ней образуется переменная электродвижущая сила. Соединив рамку с внешней цепью, получим переменный электрический ток. Генератор переменного тока, имеющий неподвижную магнитную систему и вращающиеся витки, строится достаточно редко.

Почти во всех таких генераторах обмотка (якорь) установлена неподвижно, а магнитная система (индуктор) вращается. Недвижимую часть генератора называют статор, а подвижную — ротор.

В данной расскажем что такое переменный электрический ток и трехфазный переменный переменный ток.

Понятие переменного электрического тока даётся в учебнике физики общеобразовательного учебного заведения — школы. — ток имеющий форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота, с течением времени изменяется по направлению и величине.

Частота – это количество полных изменений полярности переменного электрического тока за одну секунду. Это означает, что ток, в обычной бытовой розетке частотой 50 Герц за одну секунду меняет своё направление с положительного значения на отрицательное и обратно ровно пятьдесят раз. Одно полное изменение направления (полярности) электрического тока с положительного значения на отрицательное и снова на положительное называют — периодом колебания электрического тока . В течение периода Т переменный электрический ток меняет своё направление дважды.

Для визуального наблюдения синусоидальной формы переменного тока обычно используют . Для исключения поражения электрическим током и защиты осциллографа от сетевого напряжения по входу, используют разделительные трансформаторы. Для измерения периода нет разницы, по каким равнозначным (равноамплитудным) точкам его измерять. Можно по максимальным положительным, или отрицательным вершинам, а можно и по нулевому значению. Это поясняется на рисунке.

Из учебника физики мы знаем, что переменный электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.

Представим себе прямоугольную проволочную рамку с несколькими витками, равномерно вращающуюся в однородном магнитном поле. Возникающая в этой рамке э.д.с. индукции меняется по синусоидальному закону. Период колебания Т переменного электрического тока – это один полный оборот магнитной рамки вокруг своей оси.

магнитная рамка

Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.

Максимальное значение напряжения электрического тока Umax — это величина напряжения, соответствующая максимальному значению синусоиды.

Среднее значение напряжения электрического тока Uср — это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:

U ср = 2 * U max / π = 0,636 U max

Синусоиду максимального напряжения можно проконтролировать на экране осциллографа. Понять, что такое среднее значение переменного электрического напряжения можно проведя эксперимент по рисунку и описанию ниже.

Используя осциллограф, подключите к его входу синусоидальное напряжение. Ручкой вертикального смещения развёртки переместите «ноль» развёртки на самую нижнюю линию шкалы экрана осциллографа. Растяните и сместите горизонтальную развёртку так, чтобы одна полуволна синусоидального напряжения поместилась в десять (пять) клеток экрана осциллографа. Ручкой вертикальной развёртки (усилением) растяните развёртку так, чтобы максимальная амплитуда полуволны поместилась ровно в десять (пять) клеток экрана осциллографа. Определите амплитуду синусоиды на десяти участках. Суммируйте все десять значений и поделите на десять – найдите его «средний балл». В результате Вы получите значение напряжения, приблизительно равное 6,36 от его максимального значения — 10.

Измерительные приборы – вольтметры, цешки, мультиметры для измерения переменного напряжения имеют в своей схеме выпрямитель и сглаживающий конденсатор. Эта цепочка «округляет» множитель разницы максимального и измеряемого напряжения до числа 0,7. Поэтому, если Вы будете наблюдать на экране осциллографа синусоиду напряжения амплитудой 10 вольт, то вольтметр (цешка, мультиметр) покажет не 10, а около 7 вольт. Вы думаете что в Вашей домашней розетке – 220 вольт? Так и есть, но не совсем так! 220 вольт – это среднее значение напряжения бытовой розетки, усреднённое измерительным прибором — вольтметром. Максимальное же напряжение следует из формулы:

U max = U изм / 0,7 = 220 / 0,7 = 314,3 вольт

Именно поэтому, когда Вас «бъёт» током от электрической розетки 220 вольт, знайте, что это Ваша иллюзия. На самом деле, Вас трясёт напряжение около 315 вольт.

Трехфазный ток

Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток . Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.

Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).

Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.


Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.

Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.

По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».

В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.

«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.

Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.

Переменный электрический ток (AC, аббревиатрура от англ. alternating current) — это меняющийся по своей величине и направлению с определенной периодичностью электрический ток. В электротехнике в качестве буквенного обозначения электрического тока принято использовать знак тильда (~).

Источниками переменного электрического тока служат генераторы переменного тока, создающие переменную электродвижущую силу, изменение величины и направления которой происходит через определенные промежутки времени.

Основные параметры переменного тока

Для его описания используют следующие параметры (см. график):

  • Период (T) — длительность времени в течение которого электрический ток совершает один полный цикл изменений, возвращаясь к своей начальной величине;
  • Частота (f) — параметр, определяющий количество полных колебаний электрического тока за одну секунду, единица измерения — 1 Герц (Гц). Так, напр. стандарт частоты тока, принятый в отечественных энергосистемах составляет 50 Гц или 50 колебаний в секунду.
  • Амплитуда тока (Im) — максимальное достигаемое мгновенное значение величины тока за период, как видно из представленного графика — высота синусоиды;
  • Фаза — состояние переменного синусоидального электрического тока: мгновенное значение, изменение направления, возрастание (убывание) в цепи. Переменный ток может быть как однофазным, так и многофазным.

Наибольшее распространение получили трехфазные системы, представляющие собой три отдельных эл. цепей с одинаковой частотой и ЭДС, с углом сдвига φ=120°. Более подробно с понятием можно ознакомиться в статье Принцип создания трехфазной цепи переменного тока.

Применение переменного тока

Переменный синусоидальный электрический ток используется практически во всех отраслях хозяйства. Широкое применение переменного тока обусловлено во многом экономической эффективностью его использования в системах электроснабжения, простотой в преобразовании из энергии низкого напряжения в энергию более высокого напряжения и наоборот.

Эта возможность позволяет уменьшить потери электроэнергии при ее передаче на большие расстояние по проводам, существенно снизив площадь их поперечного сечения.

параметры переменного тока — презентация на Slide-Share.ru 🎓

1

Первый слайд презентации: параметры переменного тока

Понятие и параметры переменного тока. Получение однофазной ЭДС. Понятие сдвига фаз. параметры переменного тока

Изображение слайда

2

Слайд 2: 1. Переменный ток — это периодический ток, значение которого меняется каждое мгновение, но повторяются через одинаковые промежутки времени (период)

Изображение слайда

3

Слайд 3: Параметры переменного тока:

1) Мгновенное значение – переменное значение тока в произвольный момент времени i, u, e=f(t). 2) Амплитудное значение – наибольшее значение переменного тока за период Im, Um, Em. 3) Действующее значение – это значение переменного тока эквивалентное постоянному, выделяющему то же количества тепла, что и переменный I, U, E.

Изображение слайда

4

Слайд 4

4) Период переменного тока – это время одного полного изменения тока Т (сек). 5) Частота переменного тока – это число периодов в секунду. Измеряется в Герцах (ГЦ) = 1/секунду 6) Угловая частота переменного тока Измеряется в радианах в секунду –рад/с

Изображение слайда

5

Слайд 5: 2. Чтобы получить переменную эдс, берут рамку и вращают её в магнитном поле

По закону электромагнитной индукции в рамке наводится синусоидальная эдс, она изменяется по закону:

Изображение слайда

6

Слайд 6

Изображение слайда

7

Слайд 7: 3. Если взять два витка, сдвинуть их в пространстве и вращать в магнитном поле, то в них наведается эдс одной амплитуды и частоты, но амплитуды достигаются не одновременно

Наведенные эдс изменяются по формулам:

Изображение слайда

8

Последний слайд презентации: параметры переменного тока

начальная фаза –это электрический угол, характеризующий значение эдс в начальный момент времени. Разность начальных фаз двух синусоидальных величин называют сдвигом фаз :

Изображение слайда

Сообщение на тему Период, амплитуда и частота-параметры переменного тока.docx

Сообщение на тему: Период, амплитуда и частота-параметры переменного тока

Переменный ток характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Рисунок 1. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока. 

Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на амплитудное значение тока, однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением. 

i, е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т. 

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f. 

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Частота переменного тока измеряется единицей, называемой герцем. 

Если мы имеем переменный ток, частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу. 

Итак, мы определили параметры переменного тока — период, амплитуду и частоту, — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики. 

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту

Круговая частота обозначается связана с частотой f соотношением 2пиf

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна 360°f. 

Максимальное значение переменного тока. Основные параметры переменного тока

В данной статье поговорим о параметрах переменного тока. Например, всем привычная бытовая розетка является источником переменного тока и переменной ЭДС.

Изменение ЭДС и изменение тока линейной нагрузки, подключенной к такому источнику, будет происходить по синусоидальному закону. При этом переменные ЭДС, переменные напряжения и токи, можно характеризовать основными четырьмя их параметрами:

Есть и вспомогательные параметры:

    угловая частота;

    фаза;

    мгновенное значение.

Периодом Т переменного тока называется промежуток времени, за который ток или напряжение совершает один полный цикл изменений.

Поскольку источником переменного тока является генератор, то период связан со скоростью вращения его ротора, и чем выше скорость вращения витка или ротора генератора, тем меньшим оказывается период генерируемой переменной ЭДС, и, соответственно, переменного тока нагрузки.

Период измеряется в секундах, миллисекундах, микросекундах, наносекундах, в зависимости от конкретной ситуации, в которой данный ток рассматривается. На вышеприведенном рисунке видно, как напряжение U с течением времени изменяется, имея при этом постоянный характерный период Т.

Частота f является величиной обратной периоду, и численно равна количеству периодов изменения тока или ЭДС за 1 секунду. То есть f = 1/Т. Единица измерения частоты — герц (Гц), названная в честь немецкого физика Генриха Герца, внесшего в 19 веке немалый вклад в развитие электродинамики. Чем меньше период, тем выше частота изменения ЭДС или тока.

Сегодня в России стандартной частотой переменного тока в электрических сетях является 50 Гц, то есть за 1 секунду происходит 50 колебаний сетевого напряжения.

В других областях электродинамики используются и более высокие частоты, например 20 кГц и более — в современных инверторах, и до единиц МГц в более узких сферах электродинамики. На приведенном выше рисунке видно, что за одну секунду происходит 50 полных колебаний, каждое из которых длится 0,02 секунды, и 1/0,02 = 50.

По графикам изменения синусоидального переменного тока с течением времени видно, что токи различной частоты содержат разное количество периодов на одном и том же отрезке времени.

За один период фаза синусоидальной ЭДС или синусоидального тока изменяется на 2пи радиан или на 360°, поэтому угловая частота переменного синусоидального тока равна:

Под термином «фаза» понимают стадию развития процесса, и в данном случае, применительно к переменным токам и напряжениям синусоидальной формы, фазой называют состояние переменного тока в определенный момент времени.

На рисунках можно видеть: совпадение напряжения U1 и тока I1 по фазе, напряжения U1 и U2 в противофазе, а также сдвиг по фазе между током I1 и напряжением U2. Сдвиг по фазе φ измеряется в радианах, долях периода, в градусах. Так, сдвиг по фазе между током I1 и напряжением U2 равен φ = π радиан, как и между напряжением U1 и напряжением U2.

Амплитуда Uм и Iм

Говоря о величине синусоидального переменного тока или синусоидальной переменной ЭДС, наибольшее значение ЭДС или тока называют амплитудой или амплитудным (максимальным) значением.

Наибольшее значение величины, совершающей гармонические колебания (например, максимальное значение силы тока в переменном токе, отклонение колеблющегося маятника от положения равновесия), наибольшее отклонение колеблющейся величины от некоторого значения, условно принятого за начальное нулевое.

Если речь о генераторе переменного тока, то ЭДС на его выводах дважды за период достигает амплитудного значения, первое из которых +Eм, второе -Eм, соответственно во время положительного и отрицательного полупериодов. Аналогичным образом ведет себя и ток I, и обозначается соответственно Iм.

Мгновенное значение u и i

Значение ЭДС или тока в конкретный текущий момент времени называется мгновенным значением, они обозначаются маленькими буквами u и i. Но поскольку эти значения все время меняются, то судить о переменных токах и ЭДС по ним неудобно.

Действующие значения I, E и U

Способность переменного тока к совершению какой-нибудь полезной работы, например механически вращать ротор двигателя или производить тепло на нагревательном приборе, удобно оценивать по действующим значениям ЭДС и токов.

Так, называется значение такого постоянного тока, который при прохождении по проводнику в течение одного периода рассматриваемого переменного тока, производит такую же механическую работу или такое же количество теплоты, что и данный переменный ток.

Действующие значения напряжений, ЭДС и токов обозначают заглавными буквами I, E и U. Для синусоидального переменного тока и для синусоидального переменного напряжения действующие значения равны:

Действующее значение тока и напряжения удобно практически использовать для описания электрических сетей. Например значение в 220-240 вольт — это действующее значение напряжения в современных бытовых розетках, а амплитуда гораздо выше — от 311 до 339 вольт.

Так же и с током, например когда говорят, что по бытовому нагревательному прибору протекает ток в 8 ампер, это значит действующее значение, в то время как амплитуда составляет 11,3 ампер.

Так или иначе, механическая работа и электрическая энергия в электроустановках пропорциональны действующим значениям напряжений и токов. Значительная часть измерительных приборов показывает именно действующие значения напряжений и токов.

Электрический ток- это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов. Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток (DC, по-английски Direct Current) — это электрический ток, у которого свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока, потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Переменный ток (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ».
Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока — действующее значение напряжения и частота.


Обратите внимание , как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота — это отношение числа полных циклов (периодов) к единице времени периодически меняющегося электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями к электрощиту. У многих возникает вопрос: а почему в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах.

С электростанции , где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 , далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи выпрямителей.

Преобразователь постоянного тока в переменный


Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Обозначения, параметры. Мы знаем, что постоянный электрический ток, это ток не меняющийся во времени как по величине, так и по направлению движения электронов. Основное назначение постоянного тока, это питание различной радио и электронной аппаратуры. Источниками постоянного тока являются аккумуляторы, солнечные фотоэлементы, батарейки и генераторы постоянного тока.
В быту и промышленности используется переменный синусоидальный ток. Это связано с тем, что современная энергетика основана на передаче энергии на дальние расстояния от гидро, тепловых и атомных электростанций к потребителю. Для получения электрической энергии на электростанциях используют генераторы переменного тока. Прередача переменного тока выгодна вследствие преимуществ его преобразования и из за малых потерь в линиях электропередачи. Переменный электрический ток легко преобразовать в постоянный ток, а так же получить любые нужные напряжения переменного тока. Например напряжение переменного тока передаваемое по линиям электропередачи составляет несколько тысяч вольт. В жилых кварталах линия электропередачи подключается к трансформатору который преобразует высокое напряжение в стандартное бытовое напряжение 220 вольт. Именно это напряжение мы и имеем в розетках наших квартир.

В отличие от постоянного тока, переменный синусоидальный ток (а так же и переменное напряжение) изменяется со временем по амплитуде (величине) и направлению движения электронов. На графике переменный ток имеет вид синусоиды.

Расстояние между двумя соседними вершинами на графике переменного синусоидального тока называется периодом и обозначается буквой Т. Период, это время одного колебания переменного тока. Измеряется период в секундах или в более малых единицах времени: миллисекундах; микросекундах; наносекундах и т.д. Величина: период Т=1 сек. в минус первой степени (Т -1) или 1/Т называется частотой в 1 Герц. Частота обозначается буквой f. В радио и электронных приборах, в зависимости от их назначения, частота может быть в единицах герц (Гц или Hz), тысячах герц (кГц или kHz) и так далее.
Стандартная частота в бытовой электрической сети равна 50 Гц. В некоторых зарубежных странах стандартная частота равна 60 Гц. Так же, как и постоянный ток, переменный ток передается по двум проводам. Если у постоянного тока есть два полюса — плюс и минус, то у переменного тока один провод является токоведущим и называется «фаза», а второй провод является общим и называется «земля» или «ноль». Напряжение в бытовой электрической розетке равно 220 вольт.


В отличие от постоянного тока, переменный электрический ток (или напряжение) изменяют свою величину, со временем, от максимального до минимального значения. В связи с этим значение переменного тока или напряжения будет несколько ниже значения U или I.

Эти значения называются эффективными (действующими) значениями тока или напряжения и обозначаются соответственно Iэф и Uэф (смотрите рисунок). Именно такие значения показывают измерительные приборы переменного тока.
&nbsp &nbsp Для исследования параметров переменного тока наиболее подходящим измерительным прибором является осциллограф. На электронно лучевой трубке осциллографа — дисплее (см. рисунок) можно наблюдать не только форму переменного тока, но и провести количественный анализ исследуемого сигнала.

Ось Х на дисплее проградуирована в делениях времени, а ось Y проградуирована в делениях амплитуды сигнала. На рисунке переключатель «Время» установлен на время 0.01 микросекунда на деление по оси Х.
На приведенном рисунке период сигнала равен 2 делениям, следовательно: Т = 2 * 0.01 = 0.02 мкС, а частота сигнала f = 1/T = 1/(0.02 -6) = 1/0.00000002 = 50000000 Гц = 50 МГц (МГц — мегагерц).
Переключатель «Значение Y» установлен на амплитуду 10 Вольт на деление по оси Y. Сигнал имеет амплитуду 6 делений, следовательно напряжение сигнала равно 6 * 10 = 60 вольт.
В заключение этой темы хотелось бы сказать о том, что переменный синусоидальный ток применяется не только для питания бытовых и промышленных электрических приборов. В радио и электронике широко используются, например, высокочастотные генераторы переменного тока для радио- передатчиков (как мощные для теле и радио студий, так и маломощные для телефонов сотовой связи, пейджеров и т.д.). В последующих наших темах мы будем часто сталкиваться с переменным электрическим током и законами его усиления, преобразования и так далее.

Переменный ток , в отличие от , непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего .

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле . Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами , т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б .

Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС . На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.

Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1 .

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.

Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой , а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными .

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .

Период, амплитуда и частота — параметры переменного тока

Переменный ток характеризуется двумя параметрами — периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.


Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом.

Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на , однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i , е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f .

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T . Зная частоту переменного тока, можно определить период: T = 1/f

Измеряется единицей, называемой герцем.

Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока — период, амплитуду и частоту , — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .

Круговая частота обозначается буквой ω и связана с частотой f соотношениемω = 2π f

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается ра мка в 1 секунду, и выражает собой скор ость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна ω = 360°f.

Итак, мы пришли к выводу, что ω = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2π радиан, где π =3,14. Таким образом, окончательно получим ω = 2π f. Следовательно, чтобы определить круговую частоту переменного тока (), надо частоту в герцах умножить на постоянное число 6,28.

Переменный и его применение в медицине.

  1. Переменный ток, его виды и основные характеристики.

Переменный ток – это такой ток, направление и числовое значение которого меняются с течением времени (знакопеременный ток).

Примечание: не оговаривается форма кривой тока, периодичность, длительность его изменения.

На практике под переменным током чаще всего подразумевают периодический переменный ток.

Физическая сущность переменного тока сводиться к колебаниям электрических зарядов в среде (проводнике или диэлектрике).

Виды тока:

    Ток проводимости.

    Ток смещения.

Ток проводимости – это такой ток, который обусловлен колебаниями электронов и ионов в среде.

Ток смещения – это ток, который обусловлен смещением электрических зарядов на границе «проводник – диэлектрик» (например, ток через конденсатор).

Ток смещения связан с изменением во времени электрического поля на границе проводник – диэлектрик и имеет особенности:

    Амплитуда тока смещения и его направления совпадают по фазе с таковыми тока проводимости.

    По значению он всегда равен току проводимости.

Частным случаем тока смещения является ток поляризации. Ток поляризации – это ток смещению не в вакууме, а в материальной диэлектрической среде.

Сумма токов смещения и поляризации составляет полный ток смещения.

В медицинской практике применяются следующие виды токов по форме кривой тока:


Самым простым является периодический синусоидальный ток. Он легко описывается математически и графически, форма его не искажается в электрических цепях с R, C, L элементами.

Основные характеристики переменного тока.

    Период – время одного цикла изменения тока по направлению и числовому значению (T, c).

    Частота – это число циклов изменения тока в единицу времени.

 =1/Т (величина обратная периоду с -1 , Гц)

    Круговая частота ( , 2 /Т радиан/с)

    Фаза ( ) – это величина, определяющая во времени взаимоотношение тока и напряжения в электрической цепи.

    Мгновенное значение тока и напряжения — значение этих величин в данный момент времени (i, u).

    Амплитудное значение тока и напряжения – это максимальное за полупериод значение этих величин (I m , U m).

    Среднеквадратическое (действующее, эффективное) значение тока и напряжения — вычисляется как положительный квадратный корень из среднего значению квадрата напряжения или тока по формулам.

I =  I 2 cp

U =  U 2 cp

Среднее значение (U ср ) за период (постоянная составляющая) – это среднее арифметическое мгновенных значений ток или напряжения за период.

На практике среднеквадратическое значение определяется по эффективному (действующему) значению. (I cp , U cp), которое для синусоидального тока вычисляется по формулам:

I эф = I = 0,707 I m

U эф = U = 0,707 U m

В отдельных случаях медицинского применения электрического тока приходиться учитывать и другие характеристики (например, коэффициент амплитуды К а, и коэффициент формы К ф).

Для практики имеют значения следующие формулы связи характеристик:

i(u) ≤I m (U m)

I эф = I = I m / 2 =0,707 I m I m = 1,41 I эф

U эф = U= U m / 2 =0,707 U m U m = 1,41 U эф

2. Цепи переменного тока с активным сопротивлением, индуктивностью, емкостью и их особенности.

Электрическая цепь — это реальная или мыслимая совокупность физических элементов, передающих электрическую энергию от одной точки пространства к другой.

Физическими элементами электрических цепей являются проводники, резисторы, конденсаторы, катушки индуктивности. Элементы цепи являются и элементами её связи, и, кроме того, реализуют соответствующие свойства сопротивления, емкости и индуктивности.

Виды электрических цепей:

Простые цепи содержат только единичные R, C, L – элементы, а сложные имеют их в различных количествах и сочетаниях.

Общей особенностью элементов электрической цепи является то, что при прохождении переменного тока они оказывают сопротивление, которое называется активным (R), индуктивным (X l), емкостным (X c).

Особенности простых идеальных цепей.

Цепь, состоящая из генератора тока и идеального резистора, называется простой цепью с активным сопротивлением.

Условию идеальности цепи :

    Активное сопротивление не равно нулю,

    индуктивность и ёмкость его равны нулю.

R  0

C r = 0 ~ R

Особенности:


    Нет сдвига фаз ( ) между током и напряжением.

Это значит, что ток и напряжение одновременно проходят свои максимальные (амплитудные) и нулевые значения.


    На R – элементе происходят потери энергии в виде выделения тепла.

Цепь с индуктивностью – это электрическая цепь, состоящая из генератора переменного тока и идеального L – элемента- катушки индуктивности.

Условия идеальности цепи:

    Индуктивность катушки не равна нулю

    Её ёмкость и сопротивление равны нулю.

L  0

Особенности цепи:

X L =  L = 2 L

    В цепи есть сдвиг фаз между напряжением и током: V опережает I по фазе на угол  /2


    Индуктивное сопротивление не потребляет энергии, т.к. она запасается в магнитном поле катушки, а затем отдается в электрическую цепь. Поэтому индуктивное сопротивление называется кажущимся или мнимым.

Цепь с ёмкостью – это электрическая цепь, состоящая из генератора переменного тока и идеального C – элемента — конденсатора.

Условия идеальности цепи:

    Ёмкость конденсатора не равна нулю, а его активное сопротивление и индуктивность равны нулю. С  0, R С = 0, L C = 0.

Особенности цепи с ёмкостью:

1. Соблюдается закон Ома.

2. Ёмкость оказывает переменному току сопротивление, которое называется ёмкостным. Оно обозначается X с и уменьшается с увеличением частоты не линейно.

    В цепи есть сдвиг фаз между напряжением и током: V отстает от I по фазе на угол  /2



    Ёмкостное сопротивление не потребляет энергии, т.к. она запасается в электрическом поле конденсатора, а затем отдается в электрическую цепь. Поэтому ёмкостное сопротивление называется кажущимся или мнимым.

  1. Полная цепь переменного тока и её виды. Импеданс и его формула. Особенности импеданса живой ткани.

Полная цепь переменного тока — это цепь из генератора, а также R, C, и L элементов, взятых в разных сочетаниях и количествах.

Для разбора проходящих в электрических цепях процессов используют полные последовательные и параллельные цепи.

Последовательная цепь — это такая цепь, где все элементы могут быть соединены последовательно, один за другим.

В параллельной цепи R, C, L элементы соединены параллельно.

Особенности полной цепи:

    Соблюдается закон Ома

    Полная цепь оказывает переменному току сопротивление. Это сопротивление называется полным (мнимым, кажущимся) или импедансом.

    Импеданс зависит от сопротивления всех элементов цепи, обозначается Z и вычисляется не простым, а геометрическим (векторным) суммированием. Для последовательно соединенных элементов формула импеданса имеет следующее значение:

Z — импеданс последовательной цепи,

R — активное сопротивление,

X L – индуктивное и X C – ёмкостное сопротивление,

L — индуктивность катушки (генри),

C — ёмкость конденсатора (фарад).

Так как ёмкостное и индуктивное сопротивления дают для напряжения сдвиг фаз в противоположном направлении, возможен случай, когда X L = X C . При этом алгебраическая сумма модулей будет равна нулю, а импеданс – наименьшим.

Состояние, при котором в цепи переменного тока ёмкостное сопротивление равно индуктивному, называется резонансом напряжения. Частота, при которой X L = X C , называется резонансной частотой. Эту частоту  p можно определить по формуле Томсона:

  1. Особенности импеданса живой ткани и её эквивалентная электрическая схема.

При пропускании тока через живую ткань, её можно рассматривать как электрическую цепь, состоящую из определенных элементов.

Экспериментально установлено, что это цепь обладает свойствами активного сопротивления и ёмкости. Это доказывается выделением тепла и уменьшением полного сопротивления ткани с возрастанием частоты. Свойств индуктивности у живой ткани практически не обнаруживается. Таким образом, живая ткань представляет собой сложную, но не полную электрическую цепь.

Импеданс живой ткани можно рассматривать как для последовательного, так и для параллельного соединения её элементов.

При последовательном соединении токи через элементы равны, общее приложенное напряжение будет векторной суммой напряжений на R и C элементах и формула импеданса последовательной цепи будет иметь вид:

Z_ — импеданс последовательной цепи,

R — её активное сопротивление,

X C — ёмкостное сопротивление.

При параллельном соединении напряжения на R и C элементах равны, общий ток будет векторной суммой токов каждого элемента, а фомула импеданса будет следующей:

Теоретические формулы импеданса живой ткани при параллельном и последовательном соединении её элементов от экспериментальных отличаются следующим:

    При последовательной схеме соединения практические данные дают большие отклонения на низких частотах.

    При параллельной схеме эти измерения показывают конечное значение Z, хотя теоретически оно должно стремиться к нулю.

Эквивалентная электрическая схема живой ткани – э то условная модель, приближенно характеризующаяживую ткань, как проводник переменного тока.

Схема позволяет судить:

    Какими электрическими элементами обладает ткань

    Как соединены эти элементы.

    Как будут меняться свойства ткани при изменении частоты тока.

В основе схемы лежат три положения:

    Внеклеточная среда и содержимое клетки есть ионные проводники с активным сопротивлением среды Rср и клетки Rк.

    Клеточная мембрана есть диэлектрик, но не идеальный, а с небольшой ионной проводимостью, а, следовательно, и сопротивлением мембраны Rм.

    Внеклеточная среда и содержимое клетки, разделённые мембраной, являются конденсаторами См определенной ёмкости (0,1 – 3,0 мкФ/см 2).

Если в качестве модели живой ткани взять жидкую тканевую среду – кровь, содержащую только эритроциты, то при составлении эквивалентной схемы нужно учитывать пути электрического тока.

    В обход клетки, через внеклеточную среду.

    Через клетку.

Путь в обход клетки представлен только сопротивлением средыRср.

Путь через клетку сопротивлением содержимого клетки Rк, а также сопротивлением и ёмкостью мембраны.Rм, См.

Если заменить электрические характеристики соответствующими обозначениями, то получим эквивалентные схемы разной степени точности:



Схема Фрике (ионная проводимость не

учитывается).

Схема Швана (ионная проводимость учитывается в виде сопротивления мембраны)

Обозначения на схеме:

Rcp — активное сопротивление клеточной среды

Rk — Сопротивление клеточного содержимого

Cm — ёмкость мембраны

Rm — сопротивление мембраны.

Анализ схемы показывает, что при увеличении частоты тока проводимость клеточных мембран увеличивается, а полное сопротивление тканевой среды уменьшается, что соответствует практически проведенным измерениям.

5. Живая ткань как проводник переменного электрического тока. Дисперсия электропроводности и её количественная оценка.

Экспериментально установлены следующие особенности живой ткани как проводника переменного ток:

1. Сопротивление живой ткани переменном току меньше, чем постоянному.

2. Электрические характеристики ткани зависят как от её вида, так и от частоты тока.

3. С увеличением частоты полное сопротивление живой ткани нелинейно уменьшается до определенного значения, а затем остаётся практически постоянным (в большинстве на частотах свыше 10 6 Гц)

4. На определенной частоте полное сопротивление зависит также от физиологического состояния (кровенаполнения), что используется на практике. Исследование периферического кровообращения на основе измерения электрического сопротивления называются реография (импедансплетизмография).

5. При умирании живой ткани её сопротивление уменьшается и от частоты не зависит.

6. При прохождении переменного тока через живые ткани наблюдается явление, которое называется дисперсией электропроводности.

Дисперсия электропроводности — это явление зависимости полного (удельного) сопротивления живой ткани от частоты переменного тока.

Графики такой зависимости называют дисперсионными кривыми. Дисперсионные кривые строят в прямоугольной системе координат, где по вертикали откладывают значения полного (Z) или удельного сопротивления, а по горизонтали — частоту в логарифмическом масштабе (Lg  ).

Частотные зависимости по форме кривой для разных тканей сходный, но отличается значением сопротивления.

Имеется несколько диапазонов частот, на которых дисперсия особенно выражена. Один из них соответствует интервалу 10 2 -10 6 Гц

Особенности дисперсии:

1. Присуща только живым тканям.

2. Более выражена на частотах до 1 МГц.

3. На практике используется для оценки физиологического состояния и жизнеспособности тканей.

Количественно оценка дисперсии проводиться по коэффициенту дисперсии (К).

Коэффициент дисперсии это безразмерная величина, равная отношению низкочастотного (10 2) полного (или удельного) сопротивления к высокочастотному (10 6 Гц).

Z 1 – полное сопротивление на частоте 10 2 Гц

Z 2 – полное сопротивление на частоте 10 6 Гц

 1 ,  2 — удельное сопротивление на этих частотах

Значение коэффициента дисперсии зависит от вида ткани, её физиологического состояния, эволюционной стадии развития животного. Например, для печени животного К = 9 -10 единиц, а для печени лягушки 2 -3 единицы. При умирании ткани коэффициент дисперсии стремиться к единице.

Явление дисперсии связывают с наличием в живых тканях поляризации, которая с увеличением частоты меньше влияет на полное сопротивление. Поэтому коэффициент дисперсии часто называют коэффициентом поляризации.

Кроме частотных зависимостей в живых тканях отмечаются фазовые сдвиги между током и напряжением, которые тоже, но в меньшей степени, зависят от частоты.

Фазовые сдвиги тоже уменьшаются при умирании тканей и, в перспективе, могут быть использованы для практических целей.

Похожие рефераты:

Порядок определения степени проводимости электрической цепи по закону Кирхгофа. Комплекс действующего напряжения. Векторная диаграмма данной схемы. Активные, реактивные и полные проводимости цепи. Сущность законов Кирхгофа для цепей синусоидального тока.

Изучение процессов в электрической однофазной цепи с параллельным соединением приемников, содержащих индуктивные и емкостные элементы, при различном соотношении их параметров. Опытное определение условий достижения в данной цепи явления резонанса тока.

Расчет разветвленной цепи постоянного тока с одним или несколькими источниками энергии и разветвленной цепи синусоидального переменного тока. Построение векторной диаграммы по значениям токов и напряжений. Расчет трехфазной цепи переменного тока.

Вынужденными колебаниями называют такие колебания, которые вызываются действием на систему внешних сил, периодически изменяющихся с течением времени. В случае электромагнитных колебаний такой внешней силой является периодически изменяющаяся э.д.с. источника тока.

Влияние величины индуктивности катушки на электрические параметры цепи однофазного синусоидального напряжения, содержащей последовательно соединенные катушки индуктивности и конденсатор. Опытное определение условий возникновения резонанса напряжений.

Какие значения силы переменного тока называют мгновенными. Основные параметры переменного тока

Обозначения, параметры. Мы знаем, что постоянный электрический ток, это ток не меняющийся во времени как по величине, так и по направлению движения электронов. Основное назначение постоянного тока, это питание различной радио и электронной аппаратуры. Источниками постоянного тока являются аккумуляторы, солнечные фотоэлементы, батарейки и генераторы постоянного тока.
В быту и промышленности используется переменный синусоидальный ток. Это связано с тем, что современная энергетика основана на передаче энергии на дальние расстояния от гидро, тепловых и атомных электростанций к потребителю. Для получения электрической энергии на электростанциях используют генераторы переменного тока. Прередача переменного тока выгодна вследствие преимуществ его преобразования и из за малых потерь в линиях электропередачи. Переменный электрический ток легко преобразовать в постоянный ток, а так же получить любые нужные напряжения переменного тока. Например напряжение переменного тока передаваемое по линиям электропередачи составляет несколько тысяч вольт. В жилых кварталах линия электропередачи подключается к трансформатору который преобразует высокое напряжение в стандартное бытовое напряжение 220 вольт. Именно это напряжение мы и имеем в розетках наших квартир.

В отличие от постоянного тока, переменный синусоидальный ток (а так же и переменное напряжение) изменяется со временем по амплитуде (величине) и направлению движения электронов. На графике переменный ток имеет вид синусоиды.

Расстояние между двумя соседними вершинами на графике переменного синусоидального тока называется периодом и обозначается буквой Т. Период, это время одного колебания переменного тока. Измеряется период в секундах или в более малых единицах времени: миллисекундах; микросекундах; наносекундах и т.д. Величина: период Т=1 сек. в минус первой степени (Т -1) или 1/Т называется частотой в 1 Герц. Частота обозначается буквой f. В радио и электронных приборах, в зависимости от их назначения, частота может быть в единицах герц (Гц или Hz), тысячах герц (кГц или kHz) и так далее.
Стандартная частота в бытовой электрической сети равна 50 Гц. В некоторых зарубежных странах стандартная частота равна 60 Гц. Так же, как и постоянный ток, переменный ток передается по двум проводам. Если у постоянного тока есть два полюса — плюс и минус, то у переменного тока один провод является токоведущим и называется «фаза», а второй провод является общим и называется «земля» или «ноль». Напряжение в бытовой электрической розетке равно 220 вольт.


В отличие от постоянного тока, переменный электрический ток (или напряжение) изменяют свою величину, со временем, от максимального до минимального значения. В связи с этим значение переменного тока или напряжения будет несколько ниже значения U или I.

Эти значения называются эффективными (действующими) значениями тока или напряжения и обозначаются соответственно Iэф и Uэф (смотрите рисунок). Именно такие значения показывают измерительные приборы переменного тока.
&nbsp &nbsp Для исследования параметров переменного тока наиболее подходящим измерительным прибором является осциллограф. На электронно лучевой трубке осциллографа — дисплее (см. рисунок) можно наблюдать не только форму переменного тока, но и провести количественный анализ исследуемого сигнала.

Ось Х на дисплее проградуирована в делениях времени, а ось Y проградуирована в делениях амплитуды сигнала. На рисунке переключатель «Время» установлен на время 0.01 микросекунда на деление по оси Х.
На приведенном рисунке период сигнала равен 2 делениям, следовательно: Т = 2 * 0.01 = 0.02 мкС, а частота сигнала f = 1/T = 1/(0.02 -6) = 1/0.00000002 = 50000000 Гц = 50 МГц (МГц — мегагерц).
Переключатель «Значение Y» установлен на амплитуду 10 Вольт на деление по оси Y. Сигнал имеет амплитуду 6 делений, следовательно напряжение сигнала равно 6 * 10 = 60 вольт.
В заключение этой темы хотелось бы сказать о том, что переменный синусоидальный ток применяется не только для питания бытовых и промышленных электрических приборов. В радио и электронике широко используются, например, высокочастотные генераторы переменного тока для радио- передатчиков (как мощные для теле и радио студий, так и маломощные для телефонов сотовой связи, пейджеров и т.д.). В последующих наших темах мы будем часто сталкиваться с переменным электрическим током и законами его усиления, преобразования и так далее.

Переменный и его применение в медицине.

  1. Переменный ток, его виды и основные характеристики.

Переменный ток – это такой ток, направление и числовое значение которого меняются с течением времени (знакопеременный ток).

Примечание: не оговаривается форма кривой тока, периодичность, длительность его изменения.

На практике под переменным током чаще всего подразумевают периодический переменный ток.

Физическая сущность переменного тока сводиться к колебаниям электрических зарядов в среде (проводнике или диэлектрике).

Виды тока:

    Ток проводимости.

    Ток смещения.

Ток проводимости – это такой ток, который обусловлен колебаниями электронов и ионов в среде.

Ток смещения – это ток, который обусловлен смещением электрических зарядов на границе «проводник – диэлектрик» (например, ток через конденсатор).

Ток смещения связан с изменением во времени электрического поля на границе проводник – диэлектрик и имеет особенности:

    Амплитуда тока смещения и его направления совпадают по фазе с таковыми тока проводимости.

    По значению он всегда равен току проводимости.

Частным случаем тока смещения является ток поляризации. Ток поляризации – это ток смещению не в вакууме, а в материальной диэлектрической среде.

Сумма токов смещения и поляризации составляет полный ток смещения.

В медицинской практике применяются следующие виды токов по форме кривой тока:


Самым простым является периодический синусоидальный ток. Он легко описывается математически и графически, форма его не искажается в электрических цепях с R, C, L элементами.

Основные характеристики переменного тока.

    Период – время одного цикла изменения тока по направлению и числовому значению (T, c).

    Частота – это число циклов изменения тока в единицу времени.

 =1/Т (величина обратная периоду с -1 , Гц)

    Круговая частота ( , 2 /Т радиан/с)

    Фаза ( ) – это величина, определяющая во времени взаимоотношение тока и напряжения в электрической цепи.

    Мгновенное значение тока и напряжения — значение этих величин в данный момент времени (i, u).

    Амплитудное значение тока и напряжения – это максимальное за полупериод значение этих величин (I m , U m).

    Среднеквадратическое (действующее, эффективное) значение тока и напряжения — вычисляется как положительный квадратный корень из среднего значению квадрата напряжения или тока по формулам.

I =  I 2 cp

U =  U 2 cp

Среднее значение (U ср ) за период (постоянная составляющая) – это среднее арифметическое мгновенных значений ток или напряжения за период.

На практике среднеквадратическое значение определяется по эффективному (действующему) значению. (I cp , U cp), которое для синусоидального тока вычисляется по формулам:

I эф = I = 0,707 I m

U эф = U = 0,707 U m

В отдельных случаях медицинского применения электрического тока приходиться учитывать и другие характеристики (например, коэффициент амплитуды К а, и коэффициент формы К ф).

Для практики имеют значения следующие формулы связи характеристик:

i(u) ≤I m (U m)

I эф = I = I m / 2 =0,707 I m I m = 1,41 I эф

U эф = U= U m / 2 =0,707 U m U m = 1,41 U эф

2. Цепи переменного тока с активным сопротивлением, индуктивностью, емкостью и их особенности.

Электрическая цепь — это реальная или мыслимая совокупность физических элементов, передающих электрическую энергию от одной точки пространства к другой.

Физическими элементами электрических цепей являются проводники, резисторы, конденсаторы, катушки индуктивности. Элементы цепи являются и элементами её связи, и, кроме того, реализуют соответствующие свойства сопротивления, емкости и индуктивности.

Виды электрических цепей:

Простые цепи содержат только единичные R, C, L – элементы, а сложные имеют их в различных количествах и сочетаниях.

Общей особенностью элементов электрической цепи является то, что при прохождении переменного тока они оказывают сопротивление, которое называется активным (R), индуктивным (X l), емкостным (X c).

Особенности простых идеальных цепей.

Цепь, состоящая из генератора тока и идеального резистора, называется простой цепью с активным сопротивлением.

Условию идеальности цепи :

    Активное сопротивление не равно нулю,

    индуктивность и ёмкость его равны нулю.

R  0

C r = 0 ~ R

Особенности:


    Нет сдвига фаз ( ) между током и напряжением.

Это значит, что ток и напряжение одновременно проходят свои максимальные (амплитудные) и нулевые значения.


    На R – элементе происходят потери энергии в виде выделения тепла.

Цепь с индуктивностью – это электрическая цепь, состоящая из генератора переменного тока и идеального L – элемента- катушки индуктивности.

Условия идеальности цепи:

    Индуктивность катушки не равна нулю

    Её ёмкость и сопротивление равны нулю.

L  0

Особенности цепи:

X L =  L = 2 L

    В цепи есть сдвиг фаз между напряжением и током: V опережает I по фазе на угол  /2


    Индуктивное сопротивление не потребляет энергии, т.к. она запасается в магнитном поле катушки, а затем отдается в электрическую цепь. Поэтому индуктивное сопротивление называется кажущимся или мнимым.

Цепь с ёмкостью – это электрическая цепь, состоящая из генератора переменного тока и идеального C – элемента — конденсатора.

Условия идеальности цепи:

    Ёмкость конденсатора не равна нулю, а его активное сопротивление и индуктивность равны нулю. С  0, R С = 0, L C = 0.

Особенности цепи с ёмкостью:

1. Соблюдается закон Ома.

2. Ёмкость оказывает переменному току сопротивление, которое называется ёмкостным. Оно обозначается X с и уменьшается с увеличением частоты не линейно.

    В цепи есть сдвиг фаз между напряжением и током: V отстает от I по фазе на угол  /2



    Ёмкостное сопротивление не потребляет энергии, т.к. она запасается в электрическом поле конденсатора, а затем отдается в электрическую цепь. Поэтому ёмкостное сопротивление называется кажущимся или мнимым.

  1. Полная цепь переменного тока и её виды. Импеданс и его формула. Особенности импеданса живой ткани.

Полная цепь переменного тока — это цепь из генератора, а также R, C, и L элементов, взятых в разных сочетаниях и количествах.

Для разбора проходящих в электрических цепях процессов используют полные последовательные и параллельные цепи.

Последовательная цепь — это такая цепь, где все элементы могут быть соединены последовательно, один за другим.

В параллельной цепи R, C, L элементы соединены параллельно.

Особенности полной цепи:

    Соблюдается закон Ома

    Полная цепь оказывает переменному току сопротивление. Это сопротивление называется полным (мнимым, кажущимся) или импедансом.

    Импеданс зависит от сопротивления всех элементов цепи, обозначается Z и вычисляется не простым, а геометрическим (векторным) суммированием. Для последовательно соединенных элементов формула импеданса имеет следующее значение:

Z — импеданс последовательной цепи,

R — активное сопротивление,

X L – индуктивное и X C – ёмкостное сопротивление,

L — индуктивность катушки (генри),

C — ёмкость конденсатора (фарад).

Так как ёмкостное и индуктивное сопротивления дают для напряжения сдвиг фаз в противоположном направлении, возможен случай, когда X L = X C . При этом алгебраическая сумма модулей будет равна нулю, а импеданс – наименьшим.

Состояние, при котором в цепи переменного тока ёмкостное сопротивление равно индуктивному, называется резонансом напряжения. Частота, при которой X L = X C , называется резонансной частотой. Эту частоту  p можно определить по формуле Томсона:

  1. Особенности импеданса живой ткани и её эквивалентная электрическая схема.

При пропускании тока через живую ткань, её можно рассматривать как электрическую цепь, состоящую из определенных элементов.

Экспериментально установлено, что это цепь обладает свойствами активного сопротивления и ёмкости. Это доказывается выделением тепла и уменьшением полного сопротивления ткани с возрастанием частоты. Свойств индуктивности у живой ткани практически не обнаруживается. Таким образом, живая ткань представляет собой сложную, но не полную электрическую цепь.

Импеданс живой ткани можно рассматривать как для последовательного, так и для параллельного соединения её элементов.

При последовательном соединении токи через элементы равны, общее приложенное напряжение будет векторной суммой напряжений на R и C элементах и формула импеданса последовательной цепи будет иметь вид:

Z_ — импеданс последовательной цепи,

R — её активное сопротивление,

X C — ёмкостное сопротивление.

При параллельном соединении напряжения на R и C элементах равны, общий ток будет векторной суммой токов каждого элемента, а фомула импеданса будет следующей:

Теоретические формулы импеданса живой ткани при параллельном и последовательном соединении её элементов от экспериментальных отличаются следующим:

    При последовательной схеме соединения практические данные дают большие отклонения на низких частотах.

    При параллельной схеме эти измерения показывают конечное значение Z, хотя теоретически оно должно стремиться к нулю.

Эквивалентная электрическая схема живой ткани – э то условная модель, приближенно характеризующаяживую ткань, как проводник переменного тока.

Схема позволяет судить:

    Какими электрическими элементами обладает ткань

    Как соединены эти элементы.

    Как будут меняться свойства ткани при изменении частоты тока.

В основе схемы лежат три положения:

    Внеклеточная среда и содержимое клетки есть ионные проводники с активным сопротивлением среды Rср и клетки Rк.

    Клеточная мембрана есть диэлектрик, но не идеальный, а с небольшой ионной проводимостью, а, следовательно, и сопротивлением мембраны Rм.

    Внеклеточная среда и содержимое клетки, разделённые мембраной, являются конденсаторами См определенной ёмкости (0,1 – 3,0 мкФ/см 2).

Если в качестве модели живой ткани взять жидкую тканевую среду – кровь, содержащую только эритроциты, то при составлении эквивалентной схемы нужно учитывать пути электрического тока.

    В обход клетки, через внеклеточную среду.

    Через клетку.

Путь в обход клетки представлен только сопротивлением средыRср.

Путь через клетку сопротивлением содержимого клетки Rк, а также сопротивлением и ёмкостью мембраны.Rм, См.

Если заменить электрические характеристики соответствующими обозначениями, то получим эквивалентные схемы разной степени точности:



Схема Фрике (ионная проводимость не

учитывается).

Схема Швана (ионная проводимость учитывается в виде сопротивления мембраны)

Обозначения на схеме:

Rcp — активное сопротивление клеточной среды

Rk — Сопротивление клеточного содержимого

Cm — ёмкость мембраны

Rm — сопротивление мембраны.

Анализ схемы показывает, что при увеличении частоты тока проводимость клеточных мембран увеличивается, а полное сопротивление тканевой среды уменьшается, что соответствует практически проведенным измерениям.

5. Живая ткань как проводник переменного электрического тока. Дисперсия электропроводности и её количественная оценка.

Экспериментально установлены следующие особенности живой ткани как проводника переменного ток:

1. Сопротивление живой ткани переменном току меньше, чем постоянному.

2. Электрические характеристики ткани зависят как от её вида, так и от частоты тока.

3. С увеличением частоты полное сопротивление живой ткани нелинейно уменьшается до определенного значения, а затем остаётся практически постоянным (в большинстве на частотах свыше 10 6 Гц)

4. На определенной частоте полное сопротивление зависит также от физиологического состояния (кровенаполнения), что используется на практике. Исследование периферического кровообращения на основе измерения электрического сопротивления называются реография (импедансплетизмография).

5. При умирании живой ткани её сопротивление уменьшается и от частоты не зависит.

6. При прохождении переменного тока через живые ткани наблюдается явление, которое называется дисперсией электропроводности.

Дисперсия электропроводности — это явление зависимости полного (удельного) сопротивления живой ткани от частоты переменного тока.

Графики такой зависимости называют дисперсионными кривыми. Дисперсионные кривые строят в прямоугольной системе координат, где по вертикали откладывают значения полного (Z) или удельного сопротивления, а по горизонтали — частоту в логарифмическом масштабе (Lg  ).

Частотные зависимости по форме кривой для разных тканей сходный, но отличается значением сопротивления.

Имеется несколько диапазонов частот, на которых дисперсия особенно выражена. Один из них соответствует интервалу 10 2 -10 6 Гц

Особенности дисперсии:

1. Присуща только живым тканям.

2. Более выражена на частотах до 1 МГц.

3. На практике используется для оценки физиологического состояния и жизнеспособности тканей.

Количественно оценка дисперсии проводиться по коэффициенту дисперсии (К).

Коэффициент дисперсии это безразмерная величина, равная отношению низкочастотного (10 2) полного (или удельного) сопротивления к высокочастотному (10 6 Гц).


Z 1 – полное сопротивление на частоте 10 2 Гц

Z 2 – полное сопротивление на частоте 10 6 Гц

 1 ,  2 — удельное сопротивление на этих частотах

Значение коэффициента дисперсии зависит от вида ткани, её физиологического состояния, эволюционной стадии развития животного. Например, для печени животного К = 9 -10 единиц, а для печени лягушки 2 -3 единицы. При умирании ткани коэффициент дисперсии стремиться к единице.

Явление дисперсии связывают с наличием в живых тканях поляризации, которая с увеличением частоты меньше влияет на полное сопротивление. Поэтому коэффициент дисперсии часто называют коэффициентом поляризации.

Кроме частотных зависимостей в живых тканях отмечаются фазовые сдвиги между током и напряжением, которые тоже, но в меньшей степени, зависят от частоты.

Фазовые сдвиги тоже уменьшаются при умирании тканей и, в перспективе, могут быть использованы для практических целей.

Похожие рефераты:

Порядок определения степени проводимости электрической цепи по закону Кирхгофа. Комплекс действующего напряжения. Векторная диаграмма данной схемы. Активные, реактивные и полные проводимости цепи. Сущность законов Кирхгофа для цепей синусоидального тока.

Изучение процессов в электрической однофазной цепи с параллельным соединением приемников, содержащих индуктивные и емкостные элементы, при различном соотношении их параметров. Опытное определение условий достижения в данной цепи явления резонанса тока.

Расчет разветвленной цепи постоянного тока с одним или несколькими источниками энергии и разветвленной цепи синусоидального переменного тока. Построение векторной диаграммы по значениям токов и напряжений. Расчет трехфазной цепи переменного тока.

Вынужденными колебаниями называют такие колебания, которые вызываются действием на систему внешних сил, периодически изменяющихся с течением времени. В случае электромагнитных колебаний такой внешней силой является периодически изменяющаяся э.д.с. источника тока.

Влияние величины индуктивности катушки на электрические параметры цепи однофазного синусоидального напряжения, содержащей последовательно соединенные катушки индуктивности и конденсатор. Опытное определение условий возникновения резонанса напряжений.

Переменный ток , в отличие от , непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего .

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле . Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами , т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б .

Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС . На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.

Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1 .

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.

Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой , а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными .

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .

Период, амплитуда и частота — параметры переменного тока

Переменный ток характеризуется двумя параметрами — периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.


Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом.

Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на , однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i , е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f .

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T . Зная частоту переменного тока, можно определить период: T = 1/f

Измеряется единицей, называемой герцем.

Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока — период, амплитуду и частоту , — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .

Круговая частота обозначается буквой ω и связана с частотой f соотношениемω = 2π f

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается ра мка в 1 секунду, и выражает собой скор ость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна ω = 360°f.

Итак, мы пришли к выводу, что ω = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2π радиан, где π =3,14. Таким образом, окончательно получим ω = 2π f. Следовательно, чтобы определить круговую частоту переменного тока (), надо частоту в герцах умножить на постоянное число 6,28.

В данной статье поговорим о параметрах переменного тока. Например, всем привычная бытовая розетка является источником переменного тока и переменной ЭДС.

Изменение ЭДС и изменение тока линейной нагрузки, подключенной к такому источнику, будет происходить по синусоидальному закону. При этом переменные ЭДС, переменные напряжения и токи, можно характеризовать основными четырьмя их параметрами:

Есть и вспомогательные параметры:

    угловая частота;

    фаза;

    мгновенное значение.

Периодом Т переменного тока называется промежуток времени, за который ток или напряжение совершает один полный цикл изменений.

Поскольку источником переменного тока является генератор, то период связан со скоростью вращения его ротора, и чем выше скорость вращения витка или ротора генератора, тем меньшим оказывается период генерируемой переменной ЭДС, и, соответственно, переменного тока нагрузки.

Период измеряется в секундах, миллисекундах, микросекундах, наносекундах, в зависимости от конкретной ситуации, в которой данный ток рассматривается. На вышеприведенном рисунке видно, как напряжение U с течением времени изменяется, имея при этом постоянный характерный период Т.

Частота f является величиной обратной периоду, и численно равна количеству периодов изменения тока или ЭДС за 1 секунду. То есть f = 1/Т. Единица измерения частоты — герц (Гц), названная в честь немецкого физика Генриха Герца, внесшего в 19 веке немалый вклад в развитие электродинамики. Чем меньше период, тем выше частота изменения ЭДС или тока.

Сегодня в России стандартной частотой переменного тока в электрических сетях является 50 Гц, то есть за 1 секунду происходит 50 колебаний сетевого напряжения.

В других областях электродинамики используются и более высокие частоты, например 20 кГц и более — в современных инверторах, и до единиц МГц в более узких сферах электродинамики. На приведенном выше рисунке видно, что за одну секунду происходит 50 полных колебаний, каждое из которых длится 0,02 секунды, и 1/0,02 = 50.

По графикам изменения синусоидального переменного тока с течением времени видно, что токи различной частоты содержат разное количество периодов на одном и том же отрезке времени.

За один период фаза синусоидальной ЭДС или синусоидального тока изменяется на 2пи радиан или на 360°, поэтому угловая частота переменного синусоидального тока равна:

Под термином «фаза» понимают стадию развития процесса, и в данном случае, применительно к переменным токам и напряжениям синусоидальной формы, фазой называют состояние переменного тока в определенный момент времени.

На рисунках можно видеть: совпадение напряжения U1 и тока I1 по фазе, напряжения U1 и U2 в противофазе, а также сдвиг по фазе между током I1 и напряжением U2. Сдвиг по фазе φ измеряется в радианах, долях периода, в градусах. Так, сдвиг по фазе между током I1 и напряжением U2 равен φ = π радиан, как и между напряжением U1 и напряжением U2.

Амплитуда Uм и Iм

Говоря о величине синусоидального переменного тока или синусоидальной переменной ЭДС, наибольшее значение ЭДС или тока называют амплитудой или амплитудным (максимальным) значением.

Наибольшее значение величины, совершающей гармонические колебания (например, максимальное значение силы тока в переменном токе, отклонение колеблющегося маятника от положения равновесия), наибольшее отклонение колеблющейся величины от некоторого значения, условно принятого за начальное нулевое.

Если речь о генераторе переменного тока, то ЭДС на его выводах дважды за период достигает амплитудного значения, первое из которых +Eм, второе -Eм, соответственно во время положительного и отрицательного полупериодов. Аналогичным образом ведет себя и ток I, и обозначается соответственно Iм.

Мгновенное значение u и i

Значение ЭДС или тока в конкретный текущий момент времени называется мгновенным значением, они обозначаются маленькими буквами u и i. Но поскольку эти значения все время меняются, то судить о переменных токах и ЭДС по ним неудобно.

Действующие значения I, E и U

Способность переменного тока к совершению какой-нибудь полезной работы, например механически вращать ротор двигателя или производить тепло на нагревательном приборе, удобно оценивать по действующим значениям ЭДС и токов.

Так, называется значение такого постоянного тока, который при прохождении по проводнику в течение одного периода рассматриваемого переменного тока, производит такую же механическую работу или такое же количество теплоты, что и данный переменный ток.

Действующие значения напряжений, ЭДС и токов обозначают заглавными буквами I, E и U. Для синусоидального переменного тока и для синусоидального переменного напряжения действующие значения равны:

Действующее значение тока и напряжения удобно практически использовать для описания электрических сетей. Например значение в 220-240 вольт — это действующее значение напряжения в современных бытовых розетках, а амплитуда гораздо выше — от 311 до 339 вольт.

Так же и с током, например когда говорят, что по бытовому нагревательному прибору протекает ток в 8 ампер, это значит действующее значение, в то время как амплитуда составляет 11,3 ампер.

Так или иначе, механическая работа и электрическая энергия в электроустановках пропорциональны действующим значениям напряжений и токов. Значительная часть измерительных приборов показывает именно действующие значения напряжений и токов.

Предварительные сведения. Параметры переменного тока. — Студопедия

В электрических цепях,электро-, радио- и других установках

широко применяются периодически изменяющиеся электродвижущие силы (э.д.с.), напряжения и токи. В электротехнике переменным токомпринято называть ток, изменяющий по закону:

i = Imaxsin(ωt + φ0i) (2.1)

Аналогично, переменным напряжением называют напряжение, изменяющееся по закону:

u = Umaxsin(ωt + φ0u) (2.2)

Здесь Imax и Umax – максимальные (или амплитудные) значения тока и напряжения соответственно, i и u – их мгновенные значения, φ0u , φ0i – начальная фаза колебания напряжения и тока,

— циклическая частота,

=2 f ,

f — частота переменного тока, равная числу полных колебаний в 1с.

f = (2.3)

Здесь Т – период колебания.

В европейских странах в качестве стандарта частоты принята частота f = 50 Гц, в США и Японии стандарт частоты f = 60 Гц. Такие частоты обеспечивают получение оптимальных частот вращения электродвигателей переменного тока и отсутствие заметного для глаза мигания осветительных ламп накаливания. Следует отметить, что иногда бывает оправданным применение электротехнических устройств повышенной или пониженной частоты.


Графики переменного тока и переменного напряжения изображены на рис. 2.1.

Рис.2.1

Синусоидальный ток, так же как и постоянный, используется для совершения какой-либо работы, при этом электрическая энергия преобразуется в другие виды энергии (механическую, тепловую, и т.д.). Для того чтобы количественно оценить синусоидальный ток, используют значение постоянного тока, эквивалентного синусоидальному по совершаемой работе. Таким образом, вводится понятие действующего значения переменного тока.

Действующим значением переменного синусоидального токаназывается значение такого постоянного тока, при прохождении которого в одном и том же резисторе сопротивлением R за время одного периода Т выделяется столько же теплоты, сколько и при прохождении синусоидального тока.

При синусоидальном токе i = Imaxsinωt количество теплоты, выделяемое в резисторе R за время Т, согласно закону Джоуля-Ленца

Q~ = , (2.4)

При постоянном токе количество теплоты, выделяемое за время Т

Q = I2RT (2.5)

Согласно определению, Q~ = Q , тогда

(2.6)

Вычислим интеграл :

(2.7)

Подставив (2.7) в (2.6) , получим: = ,

или: действующее значение синусоидального переменного тока

(2.8)

Аналогично, действующее значение синусоидального напряжения

(2.9)

Таким образом, действующие значения синусоидальных величин в раз меньше их амплитудных значений.

Электроизмерительные приборы всегда показывают действующие значения тока и напряжения. Зная их, всегда можно вычислить амплитудные значения. Так, например, если вольтметр показывает 220В синусоидального напряжения, то амплитуда такого напряжения равна 220 = 311 В.



Что такое постоянный ток и переменный определение. Основные параметры переменного тока

Господа, мы обсудили основные моменты, касающиеся постоянного тока. Теперь пришло время поговорить про переменный ток. Эта тема немного сложнее постоянного тока и одновременно с этим гораздо интереснее. Сегодня мы коротенечко рассмотрим вопросы, касающиеся переменного тока: что он из себя представляет, как выглядит, чем характеризуется и все в таком духе.

Для начала, призвав на помощь нами всеми любимого капитана Очевидность, введем определение. Как он подсказывает нам, переменный ток — это такой ток, который изменяется во времени. Изменяться он может по величине, направлению или по тому и другому вместе. Когда мы рассматривали постоянный ток , мы полагали, что в течении всего времени его величина постоянна: если сейчас течет 10 Ампер, то и полчаса назад текло 10 Ампер и через час будет течь 10 Ампер. Если же величина тока меняется (сейчас 10 Ампер в одну сторону, а через некоторое время 5 Ампер в другую сторону), то мы уже имеем дело с током переменным. То есть переменный ток можно рассматривать как некоторую зависимость (функцию) тока от времени: I(t). В каждые моменты времени t мгн имеет место быть конкретное значение I мгн =I(t мгн).

Переменный ток неразрывно связан с переменным напряжением. И если при постоянном токе они были просто связаны между собой через закон Ома , то здесь в общем случае все чуточку сложнее. Как именно сложнее — будем выяснять по ходу новых статей. Нет-нет, не переживайте, если дело касается обычных резисторов, закон Ома все так же продолжает выполняться . Для определенности мы будем в данной статье использовать термин «переменный ток», но все, что здесь сказано, применимо так же и для переменного напряжения: просто меняем I(t) на U(t) и все останется верным.

Переменный ток может быть периодическим и непериодическим . Периодический — это такой, который через некоторое время, называемое периодом, полностью повторяет свою форму. Ниже на картинках это будет наглядно видно. Непериодический соответственно колбасится как ему вздумается и мы не можем в нем выделить какой бы то ни было период по крайней мере на протяжении времени наблюдения.

На рисунка 1-4 приведены различные виды переменных сигналов. С некоторыми из них позднее мы подробно познакомимся.


Рисунок 1 — Синусоидальный ток

Рисунок 2 — Прямоугольный ток


Рисунок 3 — Треугольный ток


Рисунок 4 — Шум

На всех этих картинках по оси Х у нас время, а по оси Y — величина тока в Амперах.

На рисунке 2 изображен ток, форма которого называется синусом . Такая форма тока является одной из самых важных и мы будем его подробно рассматривать в дальнейшем. А начнем его изучать прямо в этой статье.

На рисунке 3 изображен прямоугольный ток . Он тоже весьма важен и его тоже мы будем потом подробно рассматривать.

На рисунке 4 изображен треугольный ток . И такая форма тока встречается не редко.

На рисунке 5 я изобразил ток хаотичной формы (шумовой) . С ним постоянно приходится иметь дело в радиотехнике. В ближайшее время его касаться не планирую, но со временем — вполне возможно.

Это лишь часть возможных форм токов, каждый из которых можно считать переменным. Безусловно, существуют и другие формы, главное, чтобы этот ток менялся во времени.

Знакомство с переменным током мы начнем с синусоидального тока. В общем виде закон изменения этого тока можно описать вот таким вот хитрым выражением

Давайте разберемся что здесь есть что. Для этого взглянем на рисунок 5 . Там наглядно все прорисовано.


Рисунок 5 — Синусоидальный ток

А m называется амплитудой тока. Она показывает, какую максимальную величину имеет синусоидальный ток, а именно величину того «пика», которого достигает синус. Это становится возможным благодаря тому, что чистый «математический» синус без какого бы то ни было множителя А m достигает в пике единички . Ясно, что если мы на единичку умножим наше число А m то получим в пике как раз это самое число А m . Очевидно, что чем больше А m , тем большего значения достигает ток.

Величины ω на рисунке 5 нет. Зато на рисунке 5 есть величина f и T. Что же это такое?

Т — это период тока. Это время в секундах, за которое сигнал совершает полный цикл своих изменений. Взглянете на рисунок 5. В точке А ток пересекает ось времени, начинает расти, идет вверх до точки B, где прекращает расти и начинает убывать, снова пересекает ось времени в точке С, идет в отрицательную полуплоскость до точки D, там перестает расти и начинает убывать и становится равным нулю в точке E. Видно, что начиная с точки Е характер изменения тока будет точно таким же, как если бы он начинался с точки А. Посему время, за которое ток изменяется от точки А до точки Е и есть период Т.

Частота f — величина, обратная периоду:

Она показывает сколько периодов (по рисунку 5 — изменений от точки А до точки Е) умещается в одной секунде времени. Соответсвенно чем больше частота, тем меньше пириод и наоборот.

Изменяется частота в герцах. Если частота 1 Гц — это значит, что время изменения тока от точки А до точки Е равно 1 секунда. Если частота, например, 50 Гц (как в наших с вами розетках), это значит, что за 1 секунду успевает произойти 50 полных циклов изменения тока от точки А до точки Е. Если частота 2,4 ГГц (как в некоторых процессорах, и, кроме того, на такой частоте работает всеми нами любимый Wi-Fi), это значит, что за 1 секунду сигнал претерпевает аж 2,4 миллиарда итераций от точки А до точки Е!

С периодом Т (и, соответственно, с частотой f) плотно связана другая величина — как раз та самая ω, которая стоит в нашей формуле под синусом. Называется она круговая частота и связана она следующим образом

Господа, надеюсь, вы помните из курса математики, что синус — сама по себе функция периодическая и период синуса как раз равен 2·π радиан. Ну или 360°, что тоже самое, однако я предпочитаю обычно вести расчет в радианах. То есть для простого классического математического синуса расстояние от точки А до точки Е равно 2·π=6,28 радиан. Как же теперь увязать эти радианы со временем и с нашим периодом? Ведь в нашем графике тока у нас по оси Х именно время, а не радианы. Очень просто. Полагаем, что 2·π радианам соответствует наш период Т. Для того же, чтобы посчитать скольки радианам соответствует произвольное время t 1 надо выполнить следующее преобразование: . Знаю, звучит запутанно, поэтому давайте разберем на примере. Давайте запишем зависимость тока от времени для периода Т=4 секунды. Как будет выглядеть преобразованная формула синуса для этого случая? Как-то так

Изображаем это на рисунке 6.


Рисунок 6 — Синусоидальный ток с периодом 4 секунды

Видите, все честно, на графике наглядно видно, что период синуса равен, как мы и хотели, четырем секундам.

Итак, с амплитудой разобрались, с круговой частотой вроде тоже. Осталось последнее — φ 0 — начальная фаза. Что же это такое? Все просто, господа. Фаза здесь — это просто сдвиг графика тока по временной оси . То есть график тока будет стартовать не с нуля, а с какого-то другого значения. Действительно, если мы в нашу формулу для зависимости тока от времени подставим время, равное нулю, то получим

Из этого выражения очевидно еще и то, что фаза измеряется в градусах или радианах: только градусы или радианы имеют право стоять под синусом.

Давайте возьмем наш график тока с периодом Т=4 секунды и положим, что начальная фаза равна 30° или, что тоже самое, 0,52 радина. Имеем

Построим график для данного случая на рисунке 7.



Рисунок 7 — Синусоидальный ток с периодом 4 секунды и начальной фазой 30°

Внимательный читатель, посмотрев попристальнее на график, изображенный на рисунке 7, скажет: так фаза вообще какая-то скользкая штука. Она ж зависит от того, где мы поставим нолик , то есть когда начнем наблюдать сигнал. И вообще может быть чуть ли не любой. Господа, замечание абсолютно верно! Сама по себе как таковая фаза достаточно редко когда интересна. Гораздо интереснее разность фаз между несколькими сигналами. Взгляните на рисунок 9. На нем изображены два графика: один зеленый имеет начальную фазу в φ 0_зелен =90°, а второй синий — φ 0_син =90° . Разность фаз между ними

Рисунок 8 — Два сигнала, сдвинутые по фазе

И заметьте, господа, эта разность фаз одна и таже всегда для любой точки этих графиков . Без привязки к нулю и к началу. Вот это уже гораздо интереснее и может много где пригодиться.

Вообще фаза такая штука, что как-то традиционно на нее обращается не очень много внимания, между тем, как на самом деле это очень важная величина. Фазовая модуляция, трехфазные цепи, фазированные антенные решетки, фазовые системы автоподстройки частоты, когерентная обработка сигналов — вот лишь малая область систем, где фаза сигнала является одним из главнейших факторов. Поэтому, господа, постарайтесь с ней подружиться .

На сегоня заканчиваем, господа. Сегодня была вводная статья в мир переменного тока. Дальше будем разбираться в нем более подробно. Всем вам большой удачи, и пока!

Вступайте в нашу

Содержание:

Не первое десятилетие продолжаются споры, какой же вид тока опаснее — переменный или постоянный. Одни утверждают, что именно выправленное напряжение несет большую угрозу, другие искренне убеждены, что синусоида переменного тока, совпав по амплитуде с биением человеческого сердца, останавливает его. Но, как всегда бывает в жизни, сколько людей — столько и мнений. А потому, стоит взглянуть на этот вопрос чисто с научной точки зрения. Но сделать это стоит языком, понятным даже для чайников, т.к. не у каждого имеется электротехническое образование. При этом, наверняка любому хочется узнать происхождение постоянного и переменного тока.

С чего же стоит начать? Да, наверное, с определений — что же такое электричество, почему его называют переменным либо постоянным, какой из этих видов опаснее и почему.

Большинству известно, что постоянный ток можно получить от различных блоков или элементов питания, а переменный поступает в квартиры и помещения посредством электросети и благодаря ему работают бытовые электроприборы и освещение. Но мало кто задумывался, почему одно напряжение позволяет получить другое и для чего это нужно.

Имеет смысл ответить на все возникшие вопросы.

Что такое электрический ток?

Электрическим током называют постоянную или переменную величину, которая возникает на основе направленного или упорядоченного движения, создаваемого заряженными частицами — в металлах это электроны, в электролите — ионы, а в газе — и те, и другие. Иными словами, говорят, что электрический ток «течет» по проводам.

Некоторые ошибочно полагают, что каждый заряженный электрон двигается по проводнику от источника до потребителя. Это не так. Он лишь передает заряд на соседние электроны, сам оставаясь на месте. Т.е. его движение хаотично, но микроскопично. Ну а уже сам заряд, двигаясь по проводнику, достигает потребителя.

Электрический ток имеет такие параметры измерения, как: напряжение, т.е. его величина, измеряющаяся в вольтах (В) и сила тока, которая измеряется в амперах (А). Что очень важно, при трансформации, т.е. уменьшении или увеличении при помощи специальных устройств, одна величина воздействует на другую обратно пропорционально. Это значит, что уменьшив напряжение посредством обычного трансформатора, добиваются увеличения силы тока и наоборот.

Ток постоянный и переменный

Первое, что следует понять — это разницу между постоянным и переменным током. Дело в том, что переменный ток не только проще получить, хотя это тоже немаловажно. Его характеристики позволяют передачу на любые расстояния по проводникам с наименьшими потерями, особенно при более высоком напряжении и меньшей его силе. Именно поэтому линии электропередач между городами являются высоковольтными. А уже в населенных пунктах ток трансформируется в более низкое напряжение.

А вот постоянный ток очень просто получить из переменного, для чего используют разнонаправленные диоды (т.н. диодный мост). Дело в том, что переменный ток (АС), вернее частота его колебаний, представляет собой синусоиду, которая, проходя через выпрямитель, теряет часть колебаний. Тем самым на выходе получается постоянное напряжение (АС), не имеющее частоты.

Имеет смысл конкретизировать, чем же, все-таки, они отличаются.

Различия токов

Конечно же, главным различием переменного и постоянного тока является возможность переправки DC на большое расстояние. При этом, если таким же путем переправить постоянный ток, его просто не останется. По причине разности потенциалов он израсходуется. Так же стоит отметить то, что преобразовать в переменный очень сложно, в то время как в обратном порядке подобное действие вполне легко выполнимо.

Намного экономичнее преобразование электричества в механическую энергию именно при помощи двигателей, работающих от АС, хотя и имеются области, в которых возможно применение механизмов только прямого тока.

Ну и последнее по очереди, но не по смыслу — все-таки переменный ток безопаснее для людей. Именно по этой причине все приборы, используемые в быту и работающие от DC, являются слаботочными. А вот совсем отказаться от применения более опасного в пользу другого никак не получится именно по указанным выше причинам.

Все изложенное приводит к обобщенному ответу на вопрос, чем отличается переменный ток от постоянного — это характеристики, которые и влияют на выбор того или иного источника питания в определенной сфере.

Передача тока на большие расстояния

У некоторых людей возникает вопрос, на который выше был дан поверхностный ответ: почему по линиям электропередач (ЛЭП) приходит очень высокое напряжение? Если не знать всех тонкостей электротехники, то можно согласиться с этим вопросом. Действительно, ведь если бы по ЛЭП приходило напряжение в 380 В, то не пришлось бы устанавливать дорогостоящие трансформаторные подстанции. Да и на их обслуживание тратиться не пришлось бы, разве не так? Оказывается, что нет.

Дело в том, что сечение проводника, по которому протекает электричество, зависит только от силы тока и от его потребляемой мощности и совершенно в стороне от этого остается напряжение. А это значит, что при силе тока в 2 А и напряжении в 25 000 В можно использовать тот же провод, как и для 220 В с теми же 2 А. Так что же из этого следует?

Здесь необходимо вернуться к закону обратной пропорциональности — при трансформации тока, т.е. увеличении напряжения, уменьшается сила тока и наоборот. Таким образом, высоковольтный ток отправляется к трансформаторной подстанции по более тонким проводам, что обеспечивает и меньшие потери при передаче.

Особенности передачи

Как раз в потерях и состоит ответ на вопрос, почему невозможно передать постоянный ток на большие расстояния. Если рассмотреть DC под этим углом, то именно по этой причине через небольшой отрезок расстояния электроэнергии в проводнике не останется. Но главное здесь не энергопотери, а их непосредственная причина, которая заключается, опять же, в одной из характеристик AC и DC.

Дело в том, что частота переменного тока в электрических сетях общего пользования в России — 50 Гц (герц). Это означает амплитуду колебания заряда между положительным и отрицательным, равную 50 изменений в секунду. Говоря простым языком, каждую 1/50 с. заряд меняет свою полярность, в этом и заключается отличие постоянного тока — в нем колебания практически либо совершенно отсутствуют. Именно по этой причине DC расходуется сам по себе, протекая через длинный проводник. Кстати, частота колебаний, к примеру, в США отличается от российской и составляет 60 Гц.

Генерирование

Очень интересен вопрос и о том, как же генерируется постоянный и переменный ток. Конечно, вырабатывать можно как один, так и другой, но здесь встает проблема размеров и затрат. Дело в том, что если для примера взять обычный автомобиль, ведь куда проще было бы поставить на него генератор постоянного тока, исключив из схемы диодный мост. Но тут появляется загвоздка.

Если убрать из автомобильного генератора выпрямитель, вроде бы должен уменьшиться и объем, но этого не произойдет. А причина тому — габариты генератора постоянного тока. К тому же и стоимость при этом существенно увеличится, потому и применяются переменные генераторы.

Вот и получается, что генерировать DC намного менее выгодно, чем АС, и тому есть конкретное доказательство.

Два великих изобретателя в свое время начали так называемую «войну токов», которая закончилась только лишь в 2007 году. А противниками в ней были Никола Тесла совместно с Джорджем Вестингауз ом, ярые сторонники переменного напряжения, и Томас Эдисон, который стоял за применение повсеместно постоянного тока. Так вот, в 2007 году город Нью-Йорк полностью перешел на сторону Теслы, ознаменовав тем самым его победу. На этом стоит немного подробнее остановиться.

История

Компания Томаса Эдисона, которая называлась «Эдисон Электрик Лайт», была основана в конце 70-х годов XIX века. Тогда, во времена свечей, керосиновых ламп и газового освещения лампы накаливания, выпускаемые Эдисоном, могли работать непрерывно 12 часов. И хотя сейчас этого может показаться до смешного мало — это был настоящий прорыв. Но уже в 1880-е годы компания смогла не только запатентовать производство и передачу постоянного тока по трехпроводной системе (это были «ноль», «+110 В» и «-110 В»), но и представить лампу накаливания с ресурсом в 1200 часов.

Именно тогда и родилась фраза Томаса Эдисона, которая впоследствии стала известна всему миру, — «Мы сделаем электрическое освещение настолько дешевым, что только богачи будут жечь свечи».

Ну а уже к 1887-му в Соединенных Штатах успешно функционирует больше 100 электростанций, которые вырабатывают постоянный ток и где используется для передачи именно трехпроводная система, которая применяется в целях хотя бы небольшого снижения потерь электроэнергии.

А вот ученый в области физики и математики Джордж Вестингауз после ознакомления с патентом Эдисона нашел одну очень неприятную деталь — это была огромная потеря энергии при передаче. В то время уже существовали генераторы переменного тока, которые не пользовались популярностью по причине оборудования, которое бы на подобной энергии работало. В то время талантливый инженер Никола Тесла еще работал у Эдисона в компании, но однажды, когда ему было в очередной раз отказано в повышении зарплаты, Тесла не выдерживал и ушел работать к конкуренту, которым являлся Вестингауз. На новом месте Никола (в 1988 году) создает первый прибор учета электроэнергии.

Именно с этого момента и начинается та самая «война токов».

Выводы

Попробуем обобщить изложенную информацию. На сегодняшний день невозможно представить пользование (как в быту, так и на производствах) каким-то одним из видов электричества — практически везде присутствует и постоянный, и переменный ток. Ведь где-то необходим постоянный, но его передача на дальние расстояния невозможна, а где-то переменный.

Конечно, доказано, что АС намного безопаснее, но как быть с приборами, помогающими экономить электроэнергию во много раз, в то время как они могут работать только на DC?

Именно по этим причинам сейчас токи «мирно сосуществуют» в нашей жизни, закончив «войну», которая продлилась более 100 лет. Единственное, что не стоит забывать — насколько бы одно ни было безопаснее другого (постоянное, переменное напряжение — не важно), оно может нанести огромный вред организму, вплоть до летального исхода.

И именно поэтому при работе с напряжением необходимо тщательно соблюдать все нормы и правила безопасности и не забывать про внимательность и аккуратность. Ведь, как говорил Никола Тесла, электричества не стоит бояться, его стоит уважать.

Лишь немногие способны реально осознать, что переменный и постоянный ток чем-то отличаются. Не говоря уже о том, чтобы назвать конкретные различия. Цель данной статьи — объяснить основные характеристики этих физических величин в терминах, понятных людям без багажа технических знаний, а также предоставить некоторые базовые понятия, касающиеся данного вопроса.

Сложности визуализации

Большинству людей не составляет труда разобраться с такими понятиями, как «давление», «количество» и «поток», поскольку в своей повседневной жизни они постоянно сталкиваются с ними. Например, легко понять, что увеличение потока при поливе цветов увеличит количество воды, выходящей из поливочного шланга, в то время как увеличение давления воды заставит ее двигаться быстрее и с большей силой.

Электрические термины, такие как «напряжение» и «ток», обычно трудно понять, поскольку нельзя увидеть или почувствовать электричество, движущееся по кабелям и электрическим контурам. Даже начинающему электрику чрезвычайно сложно визуализировать происходящее на молекулярном уровне или даже четко понять, что собой представляет, например, электрон. Эта частица находятся вне пределов сенсорных возможностей человека, ее невозможно увидеть и к ней нельзя прикоснуться, за исключением случаев, когда определенное количество их не пройдет через тело человека. Только тогда пострадавший определенно ощутит их и испытывает то, что обычно называют электрическим шоком.

Тем не менее, открытые кабели и провода большинству людей кажутся совершенно безвредными только потому, что они не могут увидеть электронов, только и ждущих того, чтобы пойти по пути наименьшего сопротивления, которым обычно является земля.

Аналогия

Понятно, почему большинство людей не могут визуализировать то, что происходит внутри обычных проводников и кабелей. Попытка объяснить, что что-то движется через металл, идет вразрез со здравым смыслом. На самом базовом уровне электричество не так сильно отличается от воды, поэтому его основные понятия довольно легко освоить, если сравнить электрическую цепь с водопроводной системой. Основное различие между водой и электричеством заключается в том, что первая заполняет что-либо, если ей удастся вырваться из трубы, в то время как второе для передвижения электронов нуждается в проводнике. Визуализируя систему труб, большинству легче понять специальную терминологию.

Напряжение как давление

Напряжение очень похоже на давление электронов и указывает, как быстро и с какой силой они движутся через проводник. Эти физические величины эквивалентны во многих отношениях, включая их отношение к прочности трубопровода-кабеля. Подобно тому, как слишком большое давление разрывает трубу, слишком высокое напряжение разрушает экранирование проводника или пробивает его.

Ток как поток

Ток представляет собой расход электронов, указывающий на то, какое их количество движется по кабелю. Чем он выше, тем больше электронов проходит через проводник. Подобно тому, как большое количество воды требует более толстых труб, большие токи требуют более толстых кабелей.

Использование модели водяного контура позволяет объяснить и множество других терминов. Например, силовые генераторы можно представить как водяные насосы, а электрическую нагрузку — как водяную мельницу, для вращения которой требуется поток и давление воды. Даже электронные диоды можно рассматривать как водяные клапаны, которые позволяют воде течь только в одну сторону.

Постоянный ток

Какая разница между постоянным и переменным током, становится ясно уже из названия. Первый представляет собой движение электронов в одном направлении. Очень просто визуализировать его с использованием модели водяного контура. Достаточно представить, что вода течет по трубе в одном направлении. Обычными устройствами, создающими постоянный ток, являются солнечные элементы, батареи и динамо-машины. Практически любое устройство можно спроектировать так, чтобы оно питалось от такого источника. Это почти исключительная прерогатива низковольтной и портативной электроники.

Постоянный ток довольно прост, и подчиняется закону Ома: U = I × R. измеряется в ваттах и ​​равна: P = U × I.

Из-за простых уравнений и поведения постоянный ток относительно легко осмыслить. Первые системы передачи электроэнергии, разработанные Томасом Эдисоном еще в XIX веке, использовали только его. Однако вскоре разница в переменном токе и постоянном стала очевидной. Передача последнего на значительные расстояния сопровождалась большими потерями, поэтому через несколько десятилетий он был заменен более выгодной (тогда) системой, разработанной Николой Теслой.

Несмотря на то что коммерческие силовые сети всей планеты в настоящее время используют переменный ток, ирония заключается в том, что развитие технологии сделало передачу постоянного тока высокого напряжения на очень больших расстояниях и при экстремальных нагрузках более эффективной. Что, например, используется при соединении отдельных систем, таких как целые страны или даже континенты. В этом заключается еще одна разница в переменном токе и постоянном. Однако первый по-прежнему используется в низковольтных коммерческих сетях.

Постоянный и переменный ток: разница в производстве и использовании

Если переменный ток намного проще производить с помощью генератора, используя кинетическую энергию, то батареи могут создавать только постоянный. Поэтому последний доминирует в схемах питания низковольтных устройств и электроники. Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы.

Широко распространенным примером может служить любое транспортное средство — мотоцикл, автомобиль и грузовик. Генератор, устанавливаемый на них, создает переменный ток, который мгновенно преобразуется в постоянный с помощью выпрямителя, поскольку в системе электроснабжения присутствует аккумулятор, и большинству электроники для работы требуется постоянное напряжение. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.

Направление движения

Это еще один пример разницы постоянного тока и переменного тока. Как следует из названия, последний представляет собой поток электронов, который постоянно меняет свое направление. С конца XIX века почти во всех бытовых и промышленных электрических всего мира используется синусоидальный переменный ток, поскольку его легче получить и гораздо дешевле распределять, за исключением очень немногих случаев передачи на большие расстояния, когда потери мощности вынуждают использовать новейшие высоковольтные системы постоянного тока.

У переменного тока есть еще одно большое преимущество: он позволяет возвращать энергию из точки потребления обратно в сеть. Это очень выгодно в зданиях и сооружениях, которые производят больше энергии, чем потребляют, что вполне возможно при использовании альтернативных источников, таких как солнечные батареи и Тот факт, что переменный ток позволяет обеспечить двунаправленный поток энергии, является основной причиной популярности и доступности альтернативных источников питания.

Частота

Когда дело доходит до технического уровня, к сожалению, объяснить, как работает переменный ток, становится сложно, поскольку модель водяного контура к нему не совсем подходит. Однако можно визуализировать систему, в которой вода быстро меняет направление потока, хотя не понятно, как она при этом будет делать что-то полезное. Переменный ток и напряжение постоянно меняют свое направление. Скорость изменения зависит от частоты (измеряемой в герцах) и для бытовых электрических сетей обычно составляет 50 Гц. Это означает, что напряжение и ток меняют свое направление 50 раз в секунду. Вычислить активную составляющую в синусоидальных системах довольно просто. Достаточно разделить их пиковое значение на √2.

Когда переменный ток меняет направление 50 раз в секунду, это означает, что лампы накаливания включаются и выключаются 50 раз в секунду. Человеческий глаз не может это заметить, и мозг просто верит, что освещение работает постоянно. В этом заключается еще одна разница в переменном токе и постоянном.

Векторная математика

Ток и напряжение не только постоянно меняются — их фазы не совпадают (они несинхронизированные). Подавляющее большинство силовых нагрузок переменного тока вызывает разность фаз. Это означает, что даже для самых простых вычислений нужно применять векторную математику. При работе с векторами невозможно просто складывать, вычитать или выполнять любые другие операции скалярной математики. При постоянном токе, если по одному кабелю в некоторую точку поступает 5A, а по другому — 2A, то результат равен 7A. В случае переменного это не так, потому что итог будет зависеть от направления векторов.

Коэффициент мощности

Активная мощность нагрузки с питанием от сети переменного тока может быть рассчитана с помощью простой формулы P = U × I × cos (φ), где φ — угол между напряжением и током, cos (φ) также называется коэффициентом мощности. Это то, чем отличаются постоянный и переменный ток: у первого cos (φ) всегда равен 1. Активная мощность необходима (и оплачивается) бытовыми и промышленными потребителями, но она не равна комплексной, проходящей через проводники (кабели) к нагрузке, которая может быть рассчитана по формуле S = U × I и измеряется в вольт-амперах (ВА).

Разница между постоянным и переменным током в расчетах очевидна — они становятся более сложными. Даже для выполнения самых простых вычислений требуется, по крайней мере, посредственное знание векторной математики.

Сварочные аппараты

Разница между постоянным и переменным током проявляется и при сварке. Полярность дуги оказывает большое влияние на ее качество. Электрод-позитивная сварка проникает глубже, чем электрод-негативная, но последняя ускоряет наплавление металла. При постоянном токе полярность всегда постоянная. При переменном она меняется 100 раз в секунду (при 50 Гц). Сварка при постоянном предпочтительнее, так как она производится более ровно. Разница в сварке переменным и постоянным током заключается в том, что в первом случае движение электронов на долю секунды прерывается, что приводит к пульсации, неустойчивости и пропаданию дуги. Этот вид сварки используется редко, например, для устранения блуждания дуги в случае электродов большого диаметра.

Переменным называется электрический ток, I, изменяющийся по величине и направлению с определённой периодичностью, T. В классическом определении, переменный ток представляет собой гармонические колебания изменяющиеся по форме синусоиды. Периодичность изменения направления и величины называется частотой, f, выражаемой в Герцах, Гц. Частота отражает, сколько раз за секунду происходит смена направления тока. Российские сети работают на частоте 50 Гц. Это значит, напряжение меняет полярность, а ток направление 50 раз за секунду.

Свойства переменного тока

С переменным током неразрывно связано явление возникновения электромагнитной индукции. Переменный ток, пропущенный через обмотку, формирует вокруг неё изменяющееся во времени магнитное поле, которое приводит к появлению электродвижущей силы, ЭДС и электрического тока в проводнике, взаимодействующем с этим полем.

Электромагнитная индукция — ключевое явление, обеспечивающее генерацию, транспортировку, использование электроэнергии. Именно электромагнитная индукция лежит в основе принципа действия трансформаторов, генераторов, двигателей. Это физическое явление определило преимущественное использование переменного тока для электроэнергетики.

Переменный ток входит в повседневную жизнь не только в виде розетки, от которой питаются наши компьютеры, телевизоры, холодильники, лампы освещения. Он способен вызывать резонансные явления в цепях, обладающих емкостью и индуктивностью. Это свойство используется для излучения электромагнитных волн, называемых радиоволнами. Радиоволны — это электромагнитные волны, излучаемые антенной, питающейся токами высокой частоты. Диапазон радиочастот от 3 до 3*10 12 Гц. На радиочастотах работают системы радиосвязи, беспроводные системы передачи данных Bluetooth, WiFi, WiMAX, спутниковое и эфирное телевидение, мобильные телефоны, навигационные системы.

Мощное высокочастотное электромагнитное поле способно вызывать нагрев. Эта особенность широко используется в бытовых микроволновых СВЧ печах, индукционных плитах. На производстве с помощью индукционных печей нагревают заготовки, закаливают и плавят металл.

Трёхфазная и однофазная сеть

Различие заключается в количестве проводников и уровне напряжения между ними.

Токи, протекающие в трёхфазной сети имеют вид синусоид, сдвинутых между собой на 120º.

Трёхфазная сеть состоит из трёх фазных проводников, АВС. Однофазная сеть использует один из фазных проводов и нулевой N.

Напряжение между фазами в точках A, B, C, называется линейным, Uл. Между нулевым N и одним из фазных проводов — фазным, Uф. Фазное напряжение меньше линейного в 1,73 раза, что составляет 58 % от его величины. Такое напряжение используется в европейских странах, Росиии, на него рассчитано большинство бытовых приборов.

Преимущества переменного тока

Основные преимущества перед постоянным определили его как основу энергетики:

  • генератор переменного напряжения проще и дешевле генератора постоянного;
  • способность к трансформации в любые уровни напряжения;
  • простое преобразование в механическую энергию;
  • легко преобразуется в постоянный.

Генератор переменного напряжения конструктивно проще, он более компактный, имеет меньшую массу медных деталей, а потому дешевле.

За счёт явления электромагнитной индукции появляется возможность повышать и понижать напряжение до любого уровня с помощью трансформаторов.

Трехфазная сеть очень эффективно используется при работе электродвигателей. Благодаря сдвигу фаз, в машине образуется вращающееся магнитное поле, увлекающее за собой статор. Современные электромоторы имеют КПД на уровне 90%.

Где используется

Переменный ток частотой 50 Гц является промышленным стандартом в энергетике, применяется во всех отраслях промышленности, транспорте, сельском хозяйстве, жилом секторе. На переменном токе работает электрооборудование рудников заводов, фабрик. Он вращает двигатели станков, насосов, конвейеров, подъёмных механизмов. Им снабжается вся инфраструктура метрополитенов от освещения, эскалаторов до электропоездов. Тоже самое относится к электрифицированным железным дорогам. В наши дома и квартиры так же подаётся переменное напряжение.

Как поставляется электроэнергия

Цепь поставки состоит из нескольких звеньев и упрощённо выглядит так:

  1. Генератор электростанции вырабатывает переменный электрический ток с частотой 50 Гц.
  2. Трансформаторы на электростанции повышают напряжение до десятков или сотен тысяч вольт. Энергия поступает на магистральные линии электропередач, ЛЭП.
  3. Трансформаторы на распределительных подстанциях понижают напряжение, энергия передаётся потребителям.

Повышение с последующим понижением напряжения имеет огромный смысл. Нужно это для того, чтобы передать энергию на большие расстояния с наименьшими затратами. Крупные электростанции могут находятся в сотнях, а то и тысячах километров от потребителей. Высокое напряжение позволяет уменьшить сечение проводников, снизить потери при передаче энергии на большие расстояния. Из формулы мощности P = U*I очевидно, при неизменной мощности повышение напряжение приводит к снижению тока, а следовательно, потребуется меньшее сечение проводов.

Например, станция генерирует 100 МВт мощности, которую нужно передать в соседний город при напряжении ЛЭП 1000 В, ток в линии I = P/U= 100*10 6 /1000 = 100 000 кА. Для таких токов потребуется проводник сечением 10 000 мм 2 . При повышении U до 100 кВ, сечение проводника уменьшится в 100 раз. По этой причине магистральные ЛЭП способны работать под напряжением 220-750 кВ.

На стороне потребителя напряжение снижается с помощью трансформаторов до необходимой величины. В ряде случаев используются промежуточные уровни: 10, 6, 0.6, 0.4 кВ для локальных ЛЭП или отдельных потребителей.

Переменный электрический ток (AC, аббревиатрура от англ. alternating current) — это меняющийся по своей величине и направлению с определенной периодичностью электрический ток. В электротехнике в качестве буквенного обозначения электрического тока принято использовать знак тильда (~).

Источниками переменного электрического тока служат генераторы переменного тока, создающие переменную электродвижущую силу, изменение величины и направления которой происходит через определенные промежутки времени.

Основные параметры переменного тока

Для его описания используют следующие параметры (см. график):

  • Период (T) — длительность времени в течение которого электрический ток совершает один полный цикл изменений, возвращаясь к своей начальной величине;
  • Частота (f) — параметр, определяющий количество полных колебаний электрического тока за одну секунду, единица измерения — 1 Герц (Гц). Так, напр. стандарт частоты тока, принятый в отечественных энергосистемах составляет 50 Гц или 50 колебаний в секунду.
  • Амплитуда тока (Im) — максимальное достигаемое мгновенное значение величины тока за период, как видно из представленного графика — высота синусоиды;
  • Фаза — состояние переменного синусоидального электрического тока: мгновенное значение, изменение направления, возрастание (убывание) в цепи. Переменный ток может быть как однофазным, так и многофазным.

Наибольшее распространение получили трехфазные системы, представляющие собой три отдельных эл. цепей с одинаковой частотой и ЭДС, с углом сдвига φ=120°. Более подробно с понятием можно ознакомиться в статье Принцип создания трехфазной цепи переменного тока.

Применение переменного тока

Переменный синусоидальный электрический ток используется практически во всех отраслях хозяйства. Широкое применение переменного тока обусловлено во многом экономической эффективностью его использования в системах электроснабжения, простотой в преобразовании из энергии низкого напряжения в энергию более высокого напряжения и наоборот.

Эта возможность позволяет уменьшить потери электроэнергии при ее передаче на большие расстояние по проводам, существенно снизив площадь их поперечного сечения.

% PDF-1.7 % 5794 0 объект > эндобдж xref 5794 69 0000000016 00000 н. 0000005902 00000 н. 0000006140 00000 н. 0000006186 00000 п. 0000006224 00000 н. 0000007288 00000 н. 0000007443 00000 н. 0000007625 00000 н. 0000007778 00000 н. 0000007929 00000 п. 0000008080 00000 н. 0000008231 00000 п. 0000008382 00000 п. 0000008533 00000 н. 0000008684 00000 н. 0000008835 00000 н. 0000008986 00000 н. 0000009138 00000 н. 0000009290 00000 н. 0000009442 00000 н. 0000009594 00000 н. 0000009746 00000 н. 0000010242 00000 п. 0000010555 00000 п. 0000011331 00000 п. 0000011478 00000 п. 0000011593 00000 п. 0000011706 00000 п. 0000011977 00000 п. 0000012444 00000 п. 0000012698 00000 п. 0000013358 00000 п. 0000014133 00000 п. 0000014557 00000 п. 0000014875 00000 п. 0000015275 00000 п. 0000015636 00000 п. 0000015987 00000 п. 0000016367 00000 п. 0000016707 00000 п. 0000047259 00000 п. 0000070871 00000 п. 0000070939 00000 п. 0000071007 00000 п. 0000071075 00000 п. 0000071143 00000 п. 0000071211 00000 п. 0000071279 00000 п. 0000071347 00000 п. 0000071415 00000 п. 0000071483 00000 п. 0000071551 00000 п. 0000071619 00000 п. 0000071687 00000 п. 0000071755 00000 п. 0000071823 00000 п. 0000086040 00000 п. 0000086300 00000 п. 0000086663 00000 н. 0000087875 00000 п. 0000088197 00000 п. 0000088566 00000 п. 0000088893 00000 п. 0000108281 00000 п. 0000108322 00000 н. 0000123124 00000 н. 0000123226 00000 н. 0000005630 00000 н. 0000001715 00000 н. трейлер ] / Назад 2828419 / XRefStm 5630 >> startxref 0 %% EOF 5862 0 объект > поток h ޴ X XW> i ¢ * Y! LHPZKB! hPЪUPA6 «.48 ‘# S3 ~: S;] Wli} 8𴁨Iå˧ \ v ﯪ_ mn) 3o% 2p۲4Cό [6Cqw * B (.3 # BQn? XGP ~ W |? G $ ݌ / lpw & gLQ’ v, $ h3OoO + rJiq0U 6 ع: oIL \ OSSb ‘{; z0r

(PDF) Ультразвуковая система измерения параметров переменного тока

ISSN 1392-2114 ULTRAGARSAS, Nr. 3 (60). 2006.

или два фиксированных блока ослабления 20 дБ. Управление DDS

осуществляется с ПК через интерфейс USB. Используемый интерфейс USB

обладает высокоскоростным параллельным интерфейсом общего назначения

(GPIF). Коммуникационный мост необходим для соединения

блоков управления и шины PC104, эмулируемой

USB-ядром GPIF.

Другой наиболее важный элемент — это приемная часть. Он

состоит из предусилителя с высоким импедансом (опционально) и

усилителя с программируемым усилением (PGA), управляемый через интерфейс

I2C, который, в свою очередь, подключен к главному компьютеру через ядро ​​USB

. PGA — это AD8367 от Analog Devices [3].

AD8367 — это высокопроизводительный усилитель

с регулируемым усилением 45 дБ с линейной регулировкой усиления по дБ для использования от низких частот

до нескольких сотен мегагерц.Диапазон, равномерность

и точность характеристики усиления достигаются

с использованием архитектуры X-AMP компании Analog Devices, самой последней из серии мощных запатентованных концепций для приложений с переменным усилением

, что намного превосходит то, что может быть

достигнуто с использованием конкурирующих методов. Аналоговый интерфейс управления усилением

очень прост в использовании. Он масштабируется на

20 мВ / дБ, с диапазоном управляющего напряжения от 50 мВ до —

2.От 5 дБ до 950 мВ при +42,5 дБ. Это напряжение получено из

AD5321 [4]. AD5321 — это одиночный ЦАП с 12-битной буферизацией

с выходом напряжения, который может работать от одного источника,

потребляет 120 мкА при напряжении 3 В. Выходной усилитель на кристалле

обеспечивает размах выходного сигнала от Rail-to-Rail. Ссылка для DAC

получена из входов источника питания (поставляемого AD780 [5])

и, таким образом, дает самый широкий динамический диапазон выходного сигнала.

Эти части включают схему сброса при включении, которая

обеспечивает подачу питания на выход ЦАП до 0 В и остается там

до тех пор, пока не произойдет действительное управление.Он использует 2-проводный (совместимый с I2C

) последовательный интерфейс, который является производным от ядра контроллера USB

. Остальное управление также осуществляется через хост-компьютер

, связь через интерфейс USB осуществляется через

через мост GPIF.

Кондиционированный сигнал может подаваться либо на среднеквадратичный детектор

(RMS), либо на двойной высокоскоростной аналоговый преобразователь

(АЦП).

Ядро детектора RMS — AD8361 [6].AD8361 — это

, детектор мощности с средним откликом для использования в сигнальных цепях приемника и передатчика с высокой частотой

, до 2,5

ГГц. Выход представляет собой линейно реагирующее постоянное напряжение с коэффициентом преобразования

, равным 7,5 В / В действующее значение. Для увеличения постоянной времени усреднения можно добавить внешний фильтрующий конденсатор

. Выходной сигнал

дополнительно фильтруется фильтром нижних частот 100 Гц

и подается на последовательный АЦП AD7476 [7]. AD7476 — это

12-разрядный высокоскоростной маломощный АЦП последовательного приближения

с выходом SPI.Мощность обеих частей взята из

AD1582 [8] для повышения стабильности и точности.

Высокоскоростной двухканальный сбор данных

состоит из двух высокоскоростных АЦП AD9214 [9]. AD9214 представляет собой монолитный АЦП с дискретизацией 10-

бит и встроенной схемой отслеживания и удержания

на кристалле. Он работает со скоростью преобразования

до 105MS / с с выдающимися динамическими характеристиками во всем рабочем диапазоне

. Выходные данные ЦАП передаются в высокоскоростную SRAM

IS61LV25616 [10] от Integrated

Silicon Solution, Inc.ISSI IS61LV25616 представляет собой 4-мегабитное статическое ОЗУ с высокой скоростью

, организованное как 256 КБ слов по 16

бит. Он изготовлен с использованием высокопроизводительной CMOS-технологии

от ISSI. Этот высоконадежный процесс, сочетающий

с инновационными методами проектирования схем, дает высокую производительность

и низкое энергопотребление. Время доступа к адресу

составляет 8 нс для поддержания скорости передачи данных 100 мс / с

. Вся промежуточная фиксация, синхронизация и

, управляющая быстрым конечным автоматом с тактовой частотой 100 МГц, — это

, организованные 3 микросхемами комплексного программируемого логического устройства

(CPLD) M4A3-128 / 64 VC-10 [11] от Lattice.

Это 128 макроячеек и 64 контакта ввода / вывода

представители семейства ispMACH 4A от Lattice,

, предлагающие исключительно гибкую архитектуру и

, обеспечивающие превосходное решение CPLD с внутрисистемным программированием

через интерфейс JTAG (IEEE Станд.

1149.1). Скорость распространения сигнала для устройства составляет от 7 нс до

.

обеспечивает работу на частоте 100 МГц. CPLD также выполняет функции моста

PC104.

Такая конфигурация гарантирует, что до 256 тыс. Отсчетов аналогового сигнала

могут быть захвачены на двух каналах сбора данных

с максимальной скоростью 100 Мбит / с. Для наблюдения очень быстрых сигналов

введена схема эквивалентной временной выборки (ETS)

. Скорость ETS в лабораторных условиях может достигать

до 20 Гбит / с. Указанная точность захвата может составлять

при любых обстоятельствах на скорости 5 Гбит / с ETS.

«сердце» ADC Analog Devices ADC AD9214

способно обеспечить полосу пропускания 300 МГц, поэтому

специально разработан для работы ETS, поскольку максимальная частота дискретизации

составляет 105 МГц.Обычно ETS выполняется путем сдвига точек выборки на

в позиции между основными

отсчетами частоты дискретизации. Так как система

предназначена для использования в ультразвуковой системе с возбуждением ступенчатого / пикового типа, то

более удобно интегрировать сигнал возбуждения генератора

пусковой генератор на плату АЦП и выполнять сдвиг по этому сигналу возбуждения

. Такая установка позволяет использовать АЦП на максимальной частоте дискретизации

и производить сдвиг с помощью генератора одиночной задержки

(AD9501 [12]).AD9501 представляет собой цифровой программируемый генератор задержки

, который обеспечивает

запрограммированных временных задержек входного импульса. Потенциал генератора задержки

позволяет использовать еще более высокую частоту дискретизации ETS

, поскольку шаг задержки установлен равным 50 пс. Это будет

соответствовать 20 Гбит / с, но тогда SINAD и эффективное количество бит

начнут ухудшаться, но все еще будут в пределах установленных пределов

. Погрешность апертуры аналого-цифрового преобразователя

(джиттер) составляет 3 пс, а неопределенность задержки (джиттер) AD9501 составляет

53 пс.Чтобы уменьшить влияние джиттера, задержка ETS

должна быть как минимум в 3 раза больше джиттера. Это примерно

соответствует 200ps (почти в 4 раза больше джиттера) и превращает

в надежную частоту ETS 5 ГГц / с.

Оба канала сбора данных (среднеквадратичный и высокоскоростной)

управляются главным компьютером через интерфейс USB. Мост

GPIF, имитирующий шину PC104, используется для подключения

к USB.

Вся связь с главным компьютером

осуществляется с использованием микросхемы Cypress Semiconductor

Corporation EZ-USB FX2LP CY7C68013A [13].Это

— высокоинтегрированный маломощный микроконтроллер USB2.0.

Приемопередатчик USB2.0, модуль последовательного интерфейса (SIE), усовершенствованный микроконтроллер 8051

и программируемый периферийный интерфейс

объединены в одном кристалле. Архитектура

FX2LP обеспечивает скорость передачи данных более 53

Мбайт в секунду, максимально допустимую пропускную способность USB 2.0

при использовании встроенного недорогого микроконтроллера 8051

.Интеллектуальный SIE Cypress обрабатывает большую часть протокола USB

аппаратно, освобождая встроенный микроконтроллер

для функций, специфичных для приложений.

45

Какие основные параметры для запуска асинхронного двигателя переменного тока с клавиатуры? — База знаний по электромеханике — Electromechanical Group

Чтобы запустить асинхронный двигатель переменного тока на AC10 в новом приложении, обратитесь к руководству по быстрому запуску на странице продукта для AC10 на Parker.com — [Руководство, краткое руководство, поддержка продукции и т. Д.].

Ниже приведены минимальные параметры, которые необходимо установить для запуска асинхронного двигателя переменного тока с клавиатуры. Описание этих параметров можно найти в инструкции на странице продукта по ссылке выше. Если вы уже выполнили некоторое программирование на AC10, вы можете сбросить привод до заводских настроек по умолчанию, установив F160 = 1.

Параметры данных двигателя с обязательными значениями:

  • F801 (Номинальная мощность [кВт]) = Значение на паспортной табличке двигателя
  • F802 (Номинальное напряжение [В]) = Значение на паспортной табличке двигателя
  • F803 (номинальный ток [A]) = значение на паспортной табличке двигателя
  • F804 (количество полюсов двигателя) = значение на паспортной табличке двигателя
  • F805 (номинальная скорость вращения [об / мин]) = значение на паспортной табличке двигателя
  • F810 (Номинальная частота двигателя [Гц]) = Значение на паспортной табличке двигателя

Параметры управления с «только клавиатурой» Значения:

  • F200 (Источник команды запуска) = 0
  • F201 (Источник команды останова) = 0
  • F203 (основной источник частоты) = 0
  • F207 (выбор источника частоты) = 0

Параметры скорости со значениями стартера:

  • F106 (режим управления) = 2
  • F111 (максимальная частота [Гц]) = F810
  • F113 (Целевая частота [Гц]) = [Определяется пользователем]
    • Привод набирает скорость до этого значения при первоначальной подаче команды RUN.Установите на [F810] частоту, указанную на паспортной табличке двигателя.
  • F118 (Базовая частота [Гц]) = F810

19.10.2018 Создан СТВ

12SEP19 JD — Обновление

Основные параметры цепи переменного тока.Переменный ток. основные параметры

Переменным током называют это электричество, которое периодически меняется по величине и направлению.

Для получения переменного тока используются электрические машины-генераторы, работа которых основана на явлении электромагнитной индукции … Переменный ток имеет огромное практическое значение … Почти все электричество вырабатывается в виде энергии переменного тока.

Возможность приема переменного тока разных напряжений (высокое — для передачи энергии на большие расстояния, низкое — для питания различных потребителей), простота устройства генераторов и двигателей, надежность их работы, простота использования и высокая характеристики

дал им широкое распространение.

Самый распространенный — синусоидальный ток. Изменение силы тока по синусоидальному закону происходит плавно, без скачков и резких перепадов, что благотворно сказывается на работе электромобилей и устройств.

Временная диаграмма синусоидального тока представлена ​​на рис. 1. Его мгновенное значение описывается формулой

Где — максимальное значение (амплитуда) тока; — угловая частота;

Начальная фаза (значение аргумента в начальный момент времени, т.е.е. при t = 0).

Переменная ЭДС, напряжение переменного тока и переменный ток характеризуются периодом, частотой, мгновенными, максимальными значениями, среднеквадратичным значением.

Рисунок: .1. Временная диаграмма синусоидального тока

Период. Время, в течение которого переменная ЭДС (напряжение или ток) совершает одно полное изменение величины и направления (один цикл), называется периодом. Период обозначается буквой T и измеряется в секундах (с).

Частота … Число полных изменений переменной ЭДС (напряжения или тока), сделанных за 1 с, называется частотой. Частота обозначается буквой и измеряется в герцах (Гц). При измерении высоких частот используются единицы килогерц (кГц) и мегагерцы (МГц):

1 кГц = 1 ООО Гц, 1 МГц = 1 ООО кГц = 1 ООО Гц.

Чем выше частота переменного тока, тем короче период. Таким образом, частота обратно пропорциональна периоду:

.

Когда петля вращается в магнитном поле, одна петля соответствует 360 ° или 2n радианам.Угловая скорость вращения этого контура выражается в радианах в секунду (рад / с) и определяется соотношением. Эта величина называется угловой частотой и обозначается буквой:

.

Угловая частота тока, выраженная в радианах в секунду, в несколько раз больше, чем частота тока, выраженная в герцах

Мгновенное и максимальное значения … Значения переменной ЭДС, силы тока, напряжения и мощности в любой момент называются мгновенными значениями эти значения обозначаются соответственно строчными буквами (,,, ) и записываются следующим образом:

Прием однофазного переменного тока.Основные параметры переменного тока.

Переменная — это ток, изменение значения и направления которого повторяется через равные промежутки времени.

Рассмотрим принцип работы простейшего генератора переменного тока. Между полюсами электромагнита или постоянного магнита (рис. 1) расположен цилиндрический ротор (якорь) из листов электротехнической стали. На роторе установлена ​​катушка, состоящая из определенного количества витков проволоки. Концы этой катушки соединены с контактными кольцами, которые вращаются вместе с ротором.К контактным кольцам подключаются неподвижные контакты (щетки), с помощью которых катушка подключается к внешней цепи. Воздушный зазор между полюсами и ротором профилирован так, чтобы индукция магнитного поля в нем изменялась по синусоидальному закону:


где — угол между плоскостью катушки и нейтральной плоскостью

.

Когда ротор вращается в магнитном поле со скоростью, индукция ЭДС индуцируется на активных сторонах катушки


где — угол между направлениями

ями векторов индукции магнит

фут поля IN и скорость v ;

l — длина активных сторон витков катушки.

Магнитное поле в зазоре расположено так, что угол

… Таким образом,

При количестве витков число активных сторон катушки равно

… Тогда ЭДС катушка :, где

— максимальное значение ЭДС.

Таким образом, ЭДС генератора изменяется по синусоидальному закону. Если к клеммам генератора подключена нагрузка, то через нее будет протекать ток, который также будет изменяться по синусоидальному закону.

Следующие параметры используются для количественной характеристики переменного тока.

1. Мгновенные значения ток i , напряжение u , ЭДС e — их значения в любой момент:

;

;

.

2. Значения амплитуды ток, напряжение

, ЭДС — максимальные значения мгновенных значений I , u и e (см. Рис.)



3. Период T — период времени, в течение которого ток совершает полное колебание и принимает одно и то же мгновенное значение и знак.

4. Угловая скорость характеризует скорость вращения катушки генератора в магнитном поле. На практике, чтобы получить желаемую частоту при относительно небольшой угловой скорости, генераторы имеют несколько пар полюсов r.

На рисунке показан генератор с двумя парами полюсов, в котором за один оборот катушки ЭДС меняет положение 4 раза или 2 r раза.Представляем вам концепцию электронного уголка : email =

… Тогда скорость определяет электрическую угловую скорость катушки:


email / ( pT) = p2 / (pT) = 2 / T,

где p2 — электрический угол, соответствующий одному обороту катушки в пространстве; pT — время, соответствующее r периодам тока.

Таким образом, эта формула определяет электрическую скорость.

5. Циклическая частота f Величина, обратная периоду Т, тех. f = 1 / T ,

и характеризующий количество полных колебаний тока за 1 с.

Единицей измерения циклической частоты является герц (Гц):

[ f ] = 1/ c = Гц.

6. Действующие значения тока I , напряжение U и ЭДС E. Для измерения переменного тока, напряжения и ЭДС введено понятие действующего значения.Переменный ток сравнивают с постоянным тепловым эффектом. Если положение реостатов выбрано таким, чтобы количество тепла, выделяемого в цепях (см. Рис.) На резисторе R было одинаковым, то можно считать, что токи в цепях одинаковы.

Давайте найдем соотношение между эффективным и пиковым значением тока. По определению ,

— количество тепла, выделяемого постоянным и переменным токами):

,

где i 2 Rdt — количество тепла , переменный ток, излучаемый с течением времени dt .

Приравнивая эти выражения, получаем:

.

Сокращая на общий коэффициент R и учитывая, что

, находим выражение для действующего значения тока:

,

или после интегрирования:

Широко используется в промышленности и быту синусоидальная переменная ток. Название «синусоидальный ток» объясняется тем, что напряжение и ток в цепи изменяются по синусоидальному закону.Часто такой ток называют просто переменным или просто синусоидальным.

Преимущества переменного тока следующие:

1. Двигатели переменного тока проще, дешевле и надежнее двигателей постоянного тока. Это очень важно, поскольку миллионы электродвигателей используются в промышленности и в повседневной жизни.

2. Переменный ток можно преобразовать, т. Е. С помощью трансформатора увеличить или уменьшить его значение.

Рисунок: 40. Схема синусоидального переменного тока и график синусоидального тока

Схема с источником переменного тока и график изменения переменного тока показаны на рис.40. На рисунке показана синусоидальная переменная ток … График будет выглядеть точно так же. синусоидальное напряжение или ЭДС.

В отличие от постоянного тока, переменный ток постоянно меняется по величине и направлению.

Синусоидальные колебания состоят из двух полупериодов — положительного и отрицательного. Рисунок 40 показывает, что полупериоды синусоиды одинаковы по высоте и ширине. Они различаются только полярностью.

При изменении полупериода полярность напряжения на выводах истока и соответственно направление тока в цепи (см. Рис.40).

Из рассмотрения графика синусоиды видно, что значение переменного тока в цепи постоянно меняется. В начальный момент периода ток равен нулю. Затем ток увеличивается до положительного максимума, после чего начинает уменьшаться и падает до нуля. В этот момент заканчивается первый (положительный) полупериод.

Во втором (отрицательном) полупериоде ток снова возрастает до максимума, но его направление (полярность) противоположно тому, что было в первом полупериоде.Затем ток падает до нуля и заканчивается второй полупериод.

После этого рассмотренный процесс изменения величины и направления тока повторяется.

Принимающий переменный ток

Переменный ток, используемый в промышленности и в повседневной жизни, вырабатывается генераторами на электростанциях. Работа генераторов основана на явлении электромагнитной индукции. Чтобы лучше понять принцип работы генератора, повторите явление электромагнитной индукции.Рассмотрим, как работает генератор. В генераторе в магнитном поле рамка вращается с угловой скоростью ω (омега). Магнитное поле создается электромагнитами, не показанными на рисунке. Каркас представляет собой изогнутый прямоугольный проводник. Вращение рамы обеспечивается какой-то внешней силой. Например, на гидроэлектростанции вращение рамы обеспечивается падающей водой.


Рисунок: 41. Принцип работы генератора

Боковые стороны рамки пересекают силовые линии магнитного поля.В этом случае в кадре индуцируется ЭДС в соответствии с явлением электромагнитной индукции.

Каждый конец рамы соединен с медным кольцом, которое вращается вместе с рамой. К кольцам прижимаются графитовые щетки. Кольца и щетки необходимы для передачи ЭДС, наведенной во вращающейся раме, на сопротивление стационарной нагрузки R n.

Генераторы переменного тока встречаются не только на гидроэлектростанциях. Аналогичную конструкцию и принцип работы имеют генераторы в автомобилях и других устройствах.

Обратите внимание, что при необходимости d.C. получается из переменной путем ее выпрямления.

Параметры переменного тока

Переменный ток характеризуется рядом параметров. Рассмотрим самые важные из них.

На рис. 42 показывает график синусоидального тока. Графики синусоидального напряжения или ЭДС выглядят аналогично.

Рисунок: 42. График синусоидального тока. Период синусоиды Т.

Показаны мгновенные значения i и амплитуды I m синусоидальной величины

1. Период — время, за которое синусоида совершает одно полное колебание. Период T измеряется в секундах.

2. Частота — показывает количество колебаний синусоиды за 1 секунду. Частота обозначается буквой f (eff) и измеряется в герцах (Гц). Частота синусоидального тока, используемого в промышленности и в повседневной жизни, составляет 50 Гц. Частота и период связаны формулой:

.

3. Угловая частота ω (омега) — показывает угловую скорость вращения рамы генератора (угол в радианах, на который рама генератора будет вращаться за одну секунду):

Один полный оборот кадра составляет 360 градусов или 2π радиан.

4. Мгновенное значение тока, напряжения или ЭДС. Обозначается маленькой (строчной) буквой: i, u, e.

Мгновенное значение — это значение синусоидального значения в данный момент времени, например, в момент t 1 значение тока равно i 1.На рис. 42 показаны мгновенные значения тока для двух моментов времени. Видно, что в каждый момент времени ток имеет свое значение. Сравните на рисунке величину (мгновенное значение) тока в моменты времени t 1 и t 2.

5. Амплитуда (максимальное) значение ток, напряжение или ЭДС — наибольшее из всех мгновенных значений.

На рис. 42 показаны пиковые (максимальные) значения тока для положительного I m и отрицательного -I m полупериодов.Они одинаковы по размеру.

Значения амплитуды обозначаются большой буквой с индексом m. Иногда вместо буквы м пишут макс.

6. Действующее значение тока, напряжения или ЭДС. Обозначается заглавной буквой без индекса: I, U, E.

Актерская ценность — самая важная для практики. Чаще всего используется для оценки величины переменного тока. Вольтметры и амперметры показывают точное действующее значение, соответственно напряжение или ток.

В стандартной бытовой сети эффективное напряжение 220 В.

Значение амплитуды в 1,41 раза больше действующего значения (корень из двух).


Какие параметры для выбора кондиционера

Подпишитесь на обновления Отписаться от обновлений

В Индии бывают жаркие дни, а бывают даже более жаркие. Согласно новостям, каждый год жара превышает рекорд последних десяти лет.Согласно сообщениям, Бангалор приложил все усилия, чтобы в апреле 2016 года побить рекорд 85-летней давности. При таких высоких температурах важно сохранять прохладу. «По мере того, как изнуряющая летняя жара начинает распространяться по всей стране в летние месяцы, люди по всей стране бегут к своим кондиционерам, чтобы оставаться прохладными», — говорит Парас Сирохия, председатель и управляющий директор Cruise Air Conditioner.

Кондиционер (AC) — это прибор, предназначенный для изменения настроек температуры в фиксированной зоне.Охлаждение обычно осуществляется с помощью простого цикла охлаждения. Обычный кондиционер имеет температурные настройки от 15 до 35 градусов Цельсия в соответствии с требованиями. Давайте посмотрим на различные типы этих модуляторов среды.

Первый шаг к тому, чтобы решить, какой кондиционер покупать, — это осмыслить различные типы кондиционеров, представленных на рынке. В этом руководстве основное внимание уделяется типам доступных AC, которые лучше всего подходят для ваших целей.

Раздельный AC

Split AC — самый распространенный вид.Он состоит из двух отдельных блоков, внутреннего и внешнего. Наружный блок содержит компрессор и часто является более шумным из двух. Он подключается к внутреннему блоку через дренажные трубы и электрические кабели. Из-за отсутствия движущихся частей во внутреннем блоке этот блок переменного тока почти бесшумный. Их можно вписать в стены, а с помощью последних дизайнерских решений можно также добавить к фасаду комнаты.

Окно AC

Другой распространенный тип — оконный AC. Единый блок, содержащий компрессор, конденсатор, расширительный клапан или змеевик, испаритель и охлаждающий змеевик, часто можно найти прикрепленным к нижнему уровню окон.По сути, это самые дешевые и экономичные кондиционеры, представленные в настоящее время на рынке. Поскольку он представляет собой единый блок, его установка требует меньших усилий.

Башня AC

Tower AC похож на раздельный AC в том, что оба имеют две отдельные секции. Однако разница в том, что внутренний блок не нужно устанавливать на стене. Так что делать косметический ремонт комнаты вокруг кондиционера не нужно. Он занимает место на полу и благодаря своей высокой охлаждающей способности подходит для очень больших помещений.

Кассета AC

Он имеет другую форму и предназначен для установки на потолке помещения. Благодаря своему расположению в помещении, кассетный кондиционер обеспечивает наиболее равномерное охлаждение в помещении. Но странный форм-фактор также относится к более высокому ценовому диапазону. Они идеально подходят для экономии пространства, так как затрагивают поверхность комнаты с минимальным взаимодействием с человеком — потолок.

Куб AC

Другой тип — куб переменного тока, представленный Panasonic. Это тип сплит-системы кондиционирования, который выглядит как оконный кондиционер в помещении.Он состоит из пропеллерных вентиляторов, специально разработанных для быстрого охлаждения. Большая воздухозаборная решетка еще больше увеличивает его производительность. Его можно закрепить на стене высоко, вдали от вмешательства маленьких детей в комнату.

Выбор кондиционера такой же, как у любого из ваших гаджетов. «Покупка кондиционера всегда имеет решающее значение и включает анализ различных факторов, прежде чем окончательно выбрать нужный», — говорит Сирохия. Вы взвешиваете все «за» и «против», затем подбираете характеристики в соответствии со своими требованиями и делаете выбор.

Когда вы знакомы с функциями, на ум приходит большой вопрос. На рынке много поставщиков с разнообразным списком опций, так к какому из них выбрать?

Несмотря на то, что на рынке есть оборудование с индивидуальными требованиями, предназначенное для очень узкой клиентуры, не каждое устройство подходит для каждого пользователя. Людям, живущим у моря, потребуется другой набор функций по сравнению с людьми, живущими в пустынях.

На этот вопрос можно ответить с помощью приложения AC после его установки.Сценарии использования AC дадут лучшее представление о том, как должен проходить процесс выбора.

Холодопроизводительность

Многие кондиционеры поставляются с размерами охлаждения от 0,75 до примерно пяти тонн. Следует учитывать площадь, подлежащую охлаждению, и количество людей в этой области.

Сплит Кассета Кассета
Размеры помещения Измерение тоннажа переменного тока Доступные конфигурации переменного тока
100-150 кв.фут 0,75 тонны окно / куб
150-250 кв. Футов 1 тонна окно / куб / разделение
250-400 кв. Футов 1-1,5 тонны окно / куб / разрез
~ 500 кв. Футов 1,5-2 тонны сплит / кассета
~ 700 кв. Футов 2 тонны / с кассетой / переносной
~ 1000 кв. Футов 3 тонны / переносная
> 1000 кв.фут > 3 тонны / переносная

Магазин AMPP — 51318-10676-Исследование влияния параметров окружающей среды на коррозионное поведение при переменном токе

  • Дом /
  • Материалы конференции /
  • 51318-10676-Исследование влияния параметров окружающей среды на коррозионное поведение при переменном токе

Доступно для скачивания